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ABSTRACT 

 

The origin of the genetic code has been attributed in part to an accidental assignment of 
codons to amino acids. Although several lines of evidence indicate the subsequent 
expansion and improvement of the genetic code, the hypothesis of Francis Crick 
concerning a frozen accident occurring at the early stage of genetic code evolution is 
still widely accepted. Considering Crick’s hypothesis, mathematical descriptions of 
hypothetical scenarios involving a huge number of possible coexisting random genetic 
codes could be very important to explain the origin and evolution of a selected genetic 
code. This work aims to contribute in this regard, that is, it provides a theoretical 
framework in which statistical parameters of error functions are calculated. Given a genetic 
code and an amino acid property, the functional code robustness is estimated by means of a 
known error function. In this work, using analytical calculations, general expressions 
for the average and standard deviation of the error function distributions of completely 
random codes with standard stop codons were obtained. As a possible biological 
application of these results, any set of amino acids and any pure or mixed amino acid 
properties can be used in the calculations, such that, in case of having to select a set of 
amino acids to create a genetic code, possible advantages of natural selection of the genetic 
codes could be discussed. 
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1. INTRODUCTION 
All current natural genetic codes may have evolved from a single ancestral code. According 
to the Crick hypothesis in 1968, this ancestral code would have consisted of fixed random 
codon assignments for each encoded amino acid and the stop signal. This approach is 
known as "the frozen accident" (Crick 1968). An explanation for the original fixed codon 
assignments could be the deleterious effects of genetic changes. These effects would be 
increasingly catastrophic as the number of genes in organisms increased. However, in early 
evolution extensive horizontal gene transfer might have been useful because only one code 
survived, a requirement for the transition to the cellular level of complexity (Vetsigian et al. 
2006). Given the above, the origin of LUCA (Last Universal Cellular Ancestor) (Weiss et 
al. 2018), the first common ancestor of all current organisms, but not the first cell, would 
have been a bottleneck resulting from this horizontal gene transfer, which would have 
resulted in the selection of a universal code (Koonin 2003; Koonin 2017; Vetsigian et al. 
2006).   

 

Thus, at an early stage a completely random universal code could be possible. 
However, this evolved in such a way that there were fewer reading and writing failures, 
diminishing the structural and functional consequences of the encoded proteins (i.e., the 
error function as a cost function) (Freeland and Hurst 1998). Moreover, considering that 
sometimes code errors could be important for developing new cellular adaptive properties, 
perhaps genetic code evolution, rather than a way of optimizing stability, tended to 
optimize the balance between stability and adaptability. According to an evolutionary 
increase in stability, it has been found that the errors associated with the standard genetic 
code are considerably smaller than most random codes, although its achieved stability is not 
the best possible (Błażej et al. 2018; Błażej et al. 2016; Buhrman et al. 2011; Freeland and 
Hurst 1998; Goldman 1993; Haig and Hurst 1991; Haig and Hurst 1999; Novozhilov et al. 
2007; Salinas et al. 2016; Santos and Monteagudo 2010; Wnętrzak et al. 2018; Wnętrzak et 
al. 2019). The remarkable stability of the standard genetic code, besides being a driving 
force through the selection pressure, may have been a consequence of the expansion of the 
genetic code by mean of similar mechanism of codon assignments to physicochemically 
similar amino acids (Crick 1968; Koonin 2017). Thus, the hypothetical accidental nature of 
a selected ancestral genetic code is in agreement with subsequent genetic code extension 
and optimization mechanisms (Koonin and Novozhilov 2017). In this work, the average 
and standard deviation of error functions of random genetic codes with fixed standard stop 
codons were analytically obtained assuming that a primitive and completely random 
version of an ancestral genetic code may have been selected from a large set of random 
codes. The used error functions are different depending on a parameter indicating which 
codon bases (i.e., first, second or third) can be wrong.  As a possible application of these 
results in future research, the deduced expressions of statistical parameters could be useful 
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to select different sets of natural amino acids and many kinds of amino acid properties, 
either pure or mathematically combined. This approach, regarding the different statistical 
behaviors of the error function in a random Crick scenario, could allow a better 
understanding of the code stability as a selective pressure on the origin and evolution of the 
genetic code.  

 

 

For calculations, the following mathematical formalism is introduced: 

 

In the standard genetic code, from the 64 possible codons, there are 3 stop codons 
and 61 amino acid encoding codons, which encode the 20 standard amino acids. Hence, a 
genetic code can be described by a function, such that there are 61 different triplets ijk 
(with bases ) termed codons, each one encoding one amino acid; 

 is the set of pairs of triplets indicated by (𝑖𝑗𝑘, 𝑖!𝑗!𝑘!), that only differ in position p, 

with p = 1, 2 or 3, such that only codon pairs (𝑖𝑗𝑘, 𝑖!𝑗𝑘), (𝑖𝑗𝑘, 𝑖𝑗!𝑘)	 and (𝑖𝑗𝑘, 𝑖𝑗𝑘!) (𝑖 ≠
𝑖!, 𝑗 ≠ 𝑗! and 𝑘 ≠ 𝑘! respectively) are considered. For p = 0, E0 denotes the union  𝐸" ∪
𝐸# ∪ 𝐸$ (Buhrman et al. 2011).  

 
Let be the numeric value of property 𝑎% as expressed by the standard amino acid 

𝑢  coded by triplet  codon (that is, in functional notation, 𝑢 = 𝑢(𝑖𝑗𝑘))	 

	𝑟&'( ≡	𝑎% = 𝑎%(&'()  (1)     

The values of the six amino acid properties used in this work are shown in Table 1. Four 

of these properties are real properties taken from Haig and Hurst (Haig and Hurst 1991); 
however, two other properties are not real, but are only arbitrary values to increase the 
number of cases to test the theoretical results of this study. 

 
 

To understand the robustness of the genetic code, the consequences of single-point 
changes in codons (either mutation or translation errors) have been studied. Hence, genetic 
code robustness can be inversely estimated by measuring a global error, basically a cost 
function associated with decoding mistakes. Such an error function (MS) is defined as 
follows:  
           

{ }UGCABkji ,,,,, =Î

pE

ijkr

ijk

ijkr
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𝑀𝑆+ ≡
1
3𝐸+3

4 5𝑟&'( −	𝑟&!'!(!7
#

(&'(,&!'!(!)∈."

 

(2) 
 

where  is the cardinality of set . 

 

We find that   

3𝐸+3 = 4 1
(&'(,&!'!(!)∈."

 

         (3) 

and verify that 

 |𝐸/| = |𝐸"| + |𝐸#| + |𝐸$|  (4) 

 
Considering 61 amino acid encoding codons and the 3 standard stop codons (UAG, UAA, 
and UGA), and since codon pairs with inner differences simultaneously in more than one 
position are not considered, we have , , , and  (Buhrman 

et al. 2011). 
 
 
2. THEORETICAL FRAMEWORK AND RESULTS 
Only completely random models of the genetic code with the fixed three standard stop 
codons (also named the unrestricted structure model (Wnętrzak et al. 2018)) were 
considered. Genetic codes were built fixing the three standard stop codons and using the 
other 61 codons to encode the 20 standard amino acids. Although the number of possible 
codes is finite (Novozhilov et al. 2007; Schönauer and Clote 1997), the number of 
randomly selected codes from the huge number of possible codes can be infinite. 
Hereinafter we will refer to an “infinite number of sampling cycles of random genetic 
codes” as “infinite random codes”. Thus, let  〈 〉0 be the average of infinite random codes. 
Then we denote the average of MSp (Eq. 2) over infinite random genetic codes by 〈𝑀𝑆+〉0: 
 

〈𝑀𝑆+〉0 = 〈
1
3𝐸+3

4 5𝑟&'( −	𝑟&!'!(!7
#

(&'(,&!'!(!)∈."

〉0 

          (5) 

pE pE

2630 =E 871 =E 882 =E 883 =E
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Let s+ be the standard deviation of MSp over infinite random genetic codes. Then s+#  is the 
variance given by 

s+# =	 〈5𝑀𝑆+ − 〈𝑀𝑆+〉07
#	〉0  (6) 

 
For the computer calculations, 100,000 randomly sampled genetic codes were 

obtained using randomly-generated non-overlapping block of codons with random 
assignment of the amino acids. In addition, six kinds of amino acid properties (Table 1) 
were used and their statistical properties were analyzed with respect to changes in a single 
position of the codon (p = 1, 2, or 3). The parameters 〈𝑀𝑆+〉0 and s+ were numerically 
calculated using the Monte Carlo method. Subsequently, these parameters were analytically 
calculated using general expressions, which were obtained for any amino acid property and 
any set of encoded amino acids. Comparisons between the values obtained using numerical 
and analytical methods are shown in Tables 2 and 3. The analytical results are very similar 
to the numerical results of the Monte Carlo computational calculation. In fact, because the 
results of the analytical calculations are completely based on mathematical arguments, a 
numerical proof of these results is not necessary. However, Tables 2 and 3 are useful to 
show how derived statistical expressions can be applied and numerically contrasted. 
 
 
2.1. Analytical calculation of 〈𝑀𝑆+〉0 (p = 1, 2, or 3) for infinite completely random 
genetic codes with the standard stop codons. 

From Eq. 5, since summations of 𝑟&'(#  and 𝑟&!'!(!
#  are equal, by exchanging summation and 

average operators (〈∑ 〉 = 	∑〈 〉), we obtain 

 

〈𝑀𝑆+〉0 =
2
3𝐸+3

> 4 〈𝑟&'(# 〉0
(&'(,&!'!(!)∈."

− 4 〈𝑟&'(𝑟&!'!(!〉0
(&'(,&!'!(!)∈."

? = 

 

=
2
3𝐸+3

>〈𝑟&'(# 〉0 4 1
(&'(,&!'!(!)∈."

− 〈𝑟&'(𝑟&!'!(!〉0 4 1
(&'(,&!'!(!)∈."

? 

           (7) 
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where 〈𝑟&'(# 〉0  and 〈𝑟&'(𝑟&!'!(!〉0 are constants because they are obtained from infinite 
selected random codes from all possible codes. That is, the averages 〈 〉0  do not depend 
on the subscripts for 𝑟 and therefore they can be written outside of the summations, as a 
factor. 

 

Note that  

〈𝑟&'(𝑟&!'!(!〉0 = 〈𝑟&'(〉0#   (8) 

 

Using Eqs. 1, 3 and 8 in Eq. 7 results in 

 

〈𝑀𝑆+〉0 = 2(〈𝑎%#〉0 − 〈𝑎%〉0# ) (9) 

 

Because each 𝑢-th amino acid has the same statistical weight in calculations of averages 
over infinite random genetic codes, in Eq. 9 we replace 〈 〉0 with 〈 〉12, that is the 
average over the 20 standard amino acids (i.e. 〈 !〉"# ≡		∑ !

$%
!&' 20⁄ )). Thus, we obtain  

	
〈𝑀𝑆+〉0 = 2(〈𝑎%#〉12 − 〈𝑎%〉12# ) (10) 

where p = 1, 2, or 3. The application results are shown in Table 2, and another 
demonstration of Eq. 10 is shown in Appendix A.  

 

2.2. Analytical calculation of 𝜎( (p = 1, 2, or 3) for infinite completely random genetic 
codes with standard stop codons. 

In Appendix B the following expression for the standard deviation is obtained 

𝜎( = 2 +
1
-𝐸(-

〈(𝑎𝑢 − 〈𝑎𝑢〉𝐴𝑎))〉"#1
'
$
 

         (11) 

where p = 1, 2, or 3. The application results are shown in Table 3. 
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3. DISCUSSION 

In the calculation of the averages over random genetic codes, each code has the same 
probability of being obtained by the Monte Carlo method. Therefore, the averages for 
infinite number of sampling cycles of random genetic codes are equal to the corresponding 
averages for the finite set of all possible genetic codes. Using standard stop codons in the 
completely random model of genetic code, we analytically obtained the average (Eq. 10) 
and standard deviation (Eq. 11) of error functions (Eq. 2) of infinite random codes selected. 
The formulae in Eq. 10 and 11 were exact and applicable for any kind of amino acid 
property, even for new properties resulting from combinations of some already known (e.g., 
a linear combination of several amino acid properties). Similarly, the set of encoded amino 
acids could also be redefined into the formulae. In computational experiments, using 
100,000 random genetic codes, in addition to the 20 standard amino acids and 6 kinds of 
amino acid properties (4 real properties and the other 2 invented, for test purposes only) 
both statistical parameters (i.e., 〈𝑀𝑆+〉0 and σ+ (p = 1, 2, or 3) were obtained with values 
very similar to those predicted by the analytical calculations (See Tables 2 and 3). 
 

It is interesting that the average of the error function of the code is proportional to 
the mean squared change (Eq. 10) of the encoded amino acid property, as long as the 
variance is proportional to the mean quartic change (Eq. B22). Such a simple result could 
avoid a large number of computational calculations and was capable of establishing a 
theoretical framework that could be applied to a random scenario prior to a universal code. 
For example, it seems plausible that genetic codes with small error function values are 
more competitive (i.e., genetic codes having a greater tolerance to errors of use) as σ+	 
decreases and 〈𝑀𝑆+〉0 increases. That could be achieved by a suitable selection of sets of 
amino acids and their properties (pure or mathematically combined) to give the appropriate 
parameters to the error function in primitive systems containing amino acids, such as in 
some meteorites or in primary organic soups (Burton et al. 2012; Cleaves 2010; Zaia et al. 
2008). In this regard, the following question seems interesting: how optimal are the current 
standard amino acids and their selected properties in terms of the competitiveness of 
genetic codes within a system with more options of amino acids to be encoded? Therefore, 
the statistical parameters found here to describe the error in random genetic codes could be 
applied to the selection of sets of amino acids or to find more appropriated amino acid 
properties function, so that a few codes could be much more efficient (greater tolerance to 
error) than the rest, something very appropriate for a natural selection of a genetic code.   

 

Despite the optimization patterns of the standard genetic code, Francis Crick’s 
frozen accident theory still survives when combined with theories of genetic code 
expansion (Koonin 2017), although it has been said that the emphasis is on the frozen part 
(Kun and Radvanyi 2018). However, it seems important to consider random events in the 
earliest stages of the genetic code. Assuming a hypothetical early random scenario for the 
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origin of the genetic code, in this approach the distribution of the error function for the 
completely random model was mathematically described under very general conditions, 
which may facilitate subsequent applications. 
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APPENDIX A  

Alternative calculation of 〈𝑀𝑆+〉0 for infinite completely random genetic codes with 
standard stop codons. 

 

From p = 3 into Eq. 5, we obtain  

 

〈𝑀𝑆$〉0 = 〈
1
|𝐸$|

4 5𝑟&'( −	𝑟&'(!7
#

(&'(,&'(!)∈.#

〉0 

(A1) 

Using the Kronecker delta function 𝛿67 (i.e., given that 𝑥 and	𝑦 are positive integers, if 𝑥 =
𝑦, then 𝛿67= 1 and else 𝛿67= 0), Eq. A1 becomes  

 

〈𝑀𝑆$〉0 = 〈
1

2|𝐸$|
4 5𝑟&'( −	𝑟&'(!7

#51 − 𝛿8&𝛿1'𝛿9( −	𝛿8&𝛿1'𝛿1( −	𝛿8&𝛿9'𝛿1(7
&,',(,(!∈	;

51

− 𝛿8&𝛿1'𝛿9(! −	𝛿8&𝛿1'𝛿1(! −	𝛿8&𝛿9'𝛿1(!7〉0 

           (A2) 

whereby 

〈𝑀𝑆$〉0 = 〈
1

2|𝐸$|
4 5𝑟&'( −	𝑟&'(!7

#51 − 𝛿8&𝛿1'𝛿9(! −	𝛿8&𝛿1'𝛿1(! −	𝛿8&𝛿9'𝛿1(!
&,',(,(!∈	;

− 𝛿8&𝛿1'𝛿9( + 	𝛿8&𝛿1'𝛿9( 	𝛿8&𝛿1'𝛿9(! +	𝛿8&𝛿1'𝛿9(𝛿8&𝛿1'𝛿1(!
+	𝛿8&𝛿1'𝛿9(𝛿8&𝛿9'𝛿1(! − 	𝛿8&𝛿1'𝛿1( + 𝛿8&𝛿1'𝛿1( 	𝛿8&𝛿1'𝛿9(!
+ 𝛿8&𝛿1'𝛿1( 	𝛿8&𝛿1'𝛿1(! + 𝛿8&𝛿1'𝛿1( 	𝛿8&𝛿9'𝛿1(! − 	𝛿8&𝛿9'𝛿1(
+ 𝛿8&𝛿9'𝛿1( 	𝛿8&𝛿1'𝛿9(! + 𝛿8&𝛿9'𝛿1( 	𝛿8&𝛿1'𝛿1(!
+ 𝛿8&𝛿9'𝛿1( 	𝛿8&𝛿9'𝛿1(!7〉0 

(A3) 

Note that 
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4 5𝑟&'( −	𝑟&'(!7
#𝛿6&𝛿7'𝛿<(

&,',(,(!∈	;

= 4 5𝑟&'( −	𝑟&'(!7
#𝛿6&𝛿7'𝛿<(!

&,',(,(!∈	;

 

(A4) 

𝛿67𝛿67 = 𝛿67  (A5) 

and 

𝛿67𝛿<7 = 0  given that 𝑥 ≠ 𝑧  (A6) 

 

Moreover, since that Eq. A1 does not depend of any values of the 𝑟819 , 𝑟811 and 𝑟891, we 
conveniently choose the values of those parameters as 

𝑟819 = 𝑟811	 =	𝑟891	 = 0  (A7) 

 

Applying Eqs. A4-A7 in Eq. A3 results in 

 

〈𝑀𝑆*〉+ =
1

2|𝐸*|
〈 5 6𝑟,-. −	𝑟,-.!9

$61 − 2𝛿/,𝛿"-𝛿0. −	2𝛿/,𝛿"-𝛿". −	2𝛿/,𝛿0-𝛿".9
,,-,.,.!	∈	4

〉+ 

(A8) 

which is 

〈𝑀𝑆$〉0 =	
1

2|𝐸$|
〈 4 5𝑟&'( −	𝑟&'(!7

#

&,',(,(!	∈	;

− 4 4 𝑟81(#

(	∈	;

− 2 4 𝑟89(#

(	∈	;

〉0 

(A9) 

 

equivalently 

〈𝑀𝑆*〉+ =	
1
|𝐸*|

〈 5 𝑟,-.$

,,-,.,.!	∈	4

− 5 𝑟,-.$

,,-,.	∈	4

− 5 𝑟,-.𝑟,-.!
,,-,.,.!	∈	4
(.6.!)

− 2 5 𝑟/".$

.	∈	4

− 5 𝑟/0.$

.	∈	4

〉+ 

(A10) 
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and this can be written as 

〈𝑀𝑆$〉0 =	
1
|𝐸$|

〈3 4 𝑟&'(#

&,',(	∈	;

− 2 4 𝑟81(#

(	∈	;

− 4 𝑟89(#

(	∈	;

〉0 −		
1
|𝐸$|

〈 4 𝑟&'(𝑟&'(!
&,',(,(!	∈	;
((=(!)

〉0 

(A11) 

Considering Eqs. A7 and A11, results from left to right in Eq. A11 summations having 61, 
2, 3 and 176 amino acidic terms, respectively. Besides, the average of those terms are such 
that 〈𝑟&'(# 〉0 =	 〈𝑟81(# 〉0 = 〈𝑟89(# 〉0. Then, we obtain 

 

〈𝑀𝑆$〉0 =	
(3x61 − 2x2 − 1x3)

|𝐸$|
〈𝑟&'(# 〉0 −

176
|𝐸$|

〈𝑟&'(𝑟&'(!〉0 

(A12) 

so that 

〈𝑀𝑆$〉0 =	
176
|𝐸$|

〈𝑟&'(# 〉0 −		
176
|𝐸$|

〈𝑟&'(〉0#  

(A13) 

From  and Eq. A13 we have 

〈𝑀𝑆$〉0 = 	25〈𝑟&'(# 〉0 −	〈𝑟&'(〉0# 7   (A14) 

 

Similar to that indicated to obtain Eq. 10 from Eq. 9, in Eq. A14 we replace 𝑟&'( and 〈 〉0 
by 𝑎% and 〈 〉12, respectively. Thus, A14 becomes 

	
〈𝑀𝑆$〉0 = 2(〈𝑎%#〉12 − 〈𝑎%〉12# )   (A15) 

Similar demonstrations for p = 1 and 2 can be developed. Thus we obtain  

  

〈𝑀𝑆+〉0 = 2(〈𝑎%#〉12 − 〈𝑎%〉12# )  (A16) 

where p = 1, 2, 3, in agreement with Eq. 10. 

883 =E
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APPENDIX B 

Analytical calculation of 𝜎( (p = 1, 2, 3) for infinite completely random genetic codes 
with standard stop codons. 

 

Alternatively, Eq. 6 can be written as 

 	
s+# =	 〈𝑀𝑆+#	〉0 − 〈𝑀𝑆+〉0#   (B1) 

 

From p = 3 into Eq B1 we obtain 

s$# =	 〈𝑀𝑆$#	〉0 − 〈𝑀𝑆$〉0#   (B2) 

 

Calculating the term 〈𝑀𝑆$#	〉0 , from p = 3 and Eq. 2, it becomes 

〈𝑀𝑆$#	〉0 =
1

|𝐸$|#
〈K 4 5𝑟&'( −	𝑟&'(!7

#

(&'(,&'(!)∈.#

L

#

〉0 

(B3) 

equivalently 

〈𝑀𝑆$#	〉0 =
4

|𝐸$|#
〈K 4 5𝑟&'(# − 𝑟&'(𝑟&'(!7
(&'(,&'(!)∈.#

L

#

〉0 

(B4) 

Calculating from Eq. B4 

〈𝑀𝑆$#	〉0 =
4

|𝐸$|#
〈 4 5𝑟&'(#𝑟>?@# + 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@! − 2𝑟&'(#𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0 

(B5) 

which is 
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〈𝑀𝑆$#	〉0 =
4

|𝐸$|#
〈 4 5𝑟&'(#𝑟>?@# + 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0

−
8

|𝐸$|#
〈 4 5𝑟&'(#𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0 

(B6) 

 

On the other hand 

〈 4 5𝑟&'(#𝑟>?@# + 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0

=	 〈 4 𝑟&'(A
(&'(,&'(!)

∈.#

							+ 4 𝑟&'(#𝑟>?@#
(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

+ 4 𝑟&'(#𝑟&'(!#
(&'(,&'(!)

∈.#

+	 4 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!
(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

	〉0 

(B7) 

 

And then, reordering 
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〈 4 5𝑟&'(#𝑟>?@# + 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0 	

= 4 〈𝑟&'(A 〉0
(&'(,&'(!)

∈.#

+	 4 〈𝑟&'(# 〉0#
(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

+ 4 〈𝑟&'(# 〉0#
(&'(,&'(!)

∈.#

 

+ 4 〈𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!〉0
(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

	 

(B8) 

 

which is, considering Eq. 3 and Eq. B8, 

 

〈 4 5𝑟&'(#𝑟>?@# + 𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!7
(&'(,&'(!),
(>?@,>?@!)

∈.#

〉0 	

= |𝐸$|〈𝑟&'(A 〉0 +	|𝐸$|#〈𝑟&'(# 〉0# 	+ 4 〈𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!〉0
(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

 

(B9) 

 

Considering B9 in B6, we obtain 
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〈𝑀𝑆$#	〉0 =
4
|𝐸$|

〈𝑟&'(A 〉0 + 	4〈𝑟&'(# 〉0# 	+
4

|𝐸$|#
4 〈𝑟&'(𝑟&'(!𝑟>?@𝑟>?@!〉0

(&'(,&'(!),
(>?@,>?@!)

∈.#
(&'(,&'(!)=(>?@,>?@!)

−
8

|𝐸$|#
4 〈𝑟&'(#𝑟>?@𝑟>?@!〉0

(&'(,&'(!),
(>?@,>?@!)

∈.#

 

(B10) 

 

and using constants 𝛼, 𝛽, and	𝛾, Eq. B10 can be written as 

 

〈𝑀𝑆$#	〉0 =
4
|𝐸$|

〈𝑟&'(A 〉0 + 	4〈𝑟&'(# 〉0# 	+ 𝛼〈𝑟&'(# 〉0〈𝑟&'(〉0# + 𝛽〈𝑟&'($〉0〈𝑟&'(〉0 + 𝛾〈𝑟&'(〉0A  

(B11) 

 

Similar to that indicated to obtain Eq. 10 from Eq. 9, in Eq. B11 we replace 𝑟&'( and 〈 〉0 
by 𝑎% and 〈 〉12, respectively. Thus, B11 becomes 

 

〈𝑀𝑆$#	〉0 =
4
|𝐸$|

〈𝑎%A〉12 + 	4〈𝑎%#〉12# 	+ 𝛼〈𝑎%#〉12〈𝑎%〉12# + 𝛽〈𝑎%$〉12〈𝑎%〉12 + 𝛾〈𝑎%〉12A  

(B12) 

Replacing Eqs. 10 and B12 into Eq. B2, we obtain  

 

s$# =
A
|.#|

〈𝑎%A〉12 + 	4〈𝑎%#〉12# 	+ 𝛼〈𝑎%#〉12〈𝑎%〉12# + 𝛽〈𝑎%$〉12〈𝑎%〉12 + 𝛾〈𝑎%〉12A   

-4(〈𝑎%#〉12 − 〈𝑎%〉12# )# 

(B13) 

Let a change of variable given by  
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𝑟&'(! = 𝑟&'( − 〈𝑎%〉12  (B14) 

and  

𝑏% = 𝑎% − 〈𝑎%〉12  (B15) 

    (defining a new amino acid property) 

Eqs. 1, B14 and B15 give 

𝑟&'(! =	𝑏%   (B16) 

 

Let 𝑀𝑆′$ be an error function calculated for the encoded  𝑏% values of the new amino acid 
property 

𝑀𝑆$! =
1
|𝐸$|

4 5𝑟′&'( −	𝑟′&'(!7
#

(&'(,&'(!)∈.#

 

(B17) 

Let s$	! be the standard deviation of 𝑀𝑆′$ over infinite random genetic codes 

s$	!
# =	 〈(𝑀𝑆′$ − 〈𝑀𝑆′$〉0)#	〉0  (B18) 

(Similar to Eq. 6 with p = 3) 

 

Then, considering the 𝑏% values of the new amino acid property results 

 

s$	!
# = A

|.#|
〈𝑏%A〉12 + 	4〈𝑏%#〉12# 	+ 𝛼〈𝑏%#〉12〈𝑏%〉12# + 𝛽〈𝑏%

$〉12〈𝑏%〉12 + 𝛾〈𝑏%〉12A   

-4(〈𝑏%#〉12 − 〈𝑏%〉12# )# 

(B19) 

(Similar to Eq. B13, but using s$	!
# and 𝑏% 

instead of s*$ and 𝑎%, respectively) 

 

Replacing 〈𝑏%〉12 = 0 (from B15) in Eq. B19, we obtain 
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s$	!
# =

4
|𝐸$|

〈𝑏%A〉12 

(B20) 

 

Finally, from σ$ = σ$	! (because  𝑟&'( −	𝑟&'(! = 𝑟′&'( −	𝑟!&'(!), Eqs. B15 and B20, we have 

 

s*$ =
4
|𝐸*|

〈(𝑎𝑢 − 〈𝑎𝑢〉𝐴𝑎))〉"# 

(B21) 

 

Similar demonstrations for p = 1 and 2 can be developed. Thus, we obtain 

 

s($ =
4
-𝐸(-

〈(𝑎𝑢 − 〈𝑎𝑢〉𝐴𝑎))〉"# 

(B22) 

where p = 1, 2, 3. Whereby the standard deviation is 

𝜎( = 2 +
1
-𝐸(-

〈(𝑎𝑢 − 〈𝑎𝑢〉𝐴𝑎))〉"#1
'
$
 

          (B23) 
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Table 1. Values of amino acid properties used in this study. Four properties are taken 
from Haig and Hurst (Haig and Hurst 1991): polar requirement, hydropathy, molecular 
volume and isoelectric point. The other two amino acid properties are not real, but are 
arbitrary designations to increase the number of cases to apply the analytical and numerical 
calculation modes used in this study. 

  

Amino 
acid 

Value of 
the amino 

acid 
property 

(𝑎%) 

Amino acid property 

Po
la

r 
re

qu
ire

m
en

t 

H
yd

ro
pa

th
y 

M
ol

ec
ul

ar
 

vo
lu

m
e 

. 

Is
oe

le
ct

ric
 

po
in

t 

R
an

do
m

 
(∈

 [0
, 1

0]
) 

B
in

ar
y 

(∈
 {

1,
 -1

})
 

Ala 𝑎" = 7.0 1.8 31 6.00 7.8 1 
Arg 𝑎# = 9.1 -4.5 124 10.76 5.1 1 
Asn 𝑎$ = 10.0 -3.5 56 5.41 4.3 1 
Asp 𝑎A = 13.0 -3.5 54 2.77 5.3 1 
Cys 𝑎C = 4.8 2.5 55 5.07 1.9 1 
Gln 𝑎D = 8.6 -3.5 85 5.65 4.2 1 
Glu 𝑎E = 12.5 -3.5 83 3.22 6.3 1 
Gly 𝑎F = 7.9 -0.4 3 5.97 7.2 1 
His 𝑎G = 8.4 -3.2 96 7.59 2.3 1 
Ile 𝑎"/ = 4.9 4.5 111 6.02 5.3 1 

Leu 𝑎"" = 4.9 3.8 111 5.98 9.1 -1 
Lys 𝑎"# = 10.1 -3.9 119 9.74 5.9 -1 
Met 𝑎"$ = 5.3 1.9 105 5.74 2.3 -1 
Phe 𝑎"A = 5.0 2.8 132 5.48 3.9 -1 
Pro 𝑎"C = 6.6 -1.6 32.5 6.30 5.2 -1 
Ser 𝑎"D = 7.5 -0.8 32 5.68 6.8 -1 
Thr 𝑎"E = 6.6 -0.7 61 6.16 5.9 -1 
Trp 𝑎"F = 5.2 -0.9 170 5.89 1.4 -1 
Tyr 𝑎"G = 5.4 -1.3 136 5.66 3.2 -1 
Val 𝑎#/ = 5.6 4.2 84 5.96 6.6 -1 
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Amino acid 
property 

 
P 

Average of 𝑀𝑆+ 
(〈𝑀𝑆+〉0) 

 
Error 

Analytical Numerical 

Polar requirement 
1 11.995 12.066 -0.6 % 
2 11.995 12.059 -0.5 % 
3 11.995 12.060 -0.5 % 

Hydropathy 
 

1 16.952 17.047 -0.6 % 
2 16.952 17.036 -0,5 % 
3 16.952 17.039 -0.5 % 

Molecular Volume 
 

1 3505.4 3522.2 -0.5 % 
2 3505.4 3526.2 -0.6 % 
3 3505.4 3522.4 -0.5 % 

Isoelectric Point 
 

1 5.9302 5.9626 -0.5 % 
2 5.9302 5.9674 -0.6 % 
3 5.9302 5.9651 -0.6 % 

Random 
(∈ [0, 10]) 
 

1 8.156 8.2001 -0.5 % 
2 8.156 8.2010 -0.5 % 
3 8.156 8.1986 -0.5 % 

Binary 
(∈ {1, -1}) 
 

1 2 2.0109 -0.5 % 
2 2 2.0115 -0.6 % 
3 2 2.0096 -0.5 % 

 

Table 2. Analytical and numerical calculations of the average of MSp over infinite 
completely random genetic codes with standard stop codons (〈𝑴𝑺𝒑〉0). MSp (Eq. 2) is 
the error function of the genetic code. 〈𝑀𝑆+〉0 is calculated analytically using Eq. 10 and 
numerically by computational statistics over 100,000 completely random genetic codes 
with standard stop codons. The values of the amino acid properties are shown in Table 1. 
The 〈𝑀𝑆+〉0 error is defined as 𝐸𝑟𝑟𝑜𝑟 =
100%5𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙	〈𝑀𝑆+〉0 − 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙	〈𝑀𝑆+〉07 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙⁄ 	〈𝑀𝑆+〉0. Moreover, in 
addition to the two artificial properties of the table, more artificial random properties were 
applied (using 100 set of random properties and the same 1000 random codes for each one). 
As a result, the averages of 𝐸𝑟𝑟𝑜𝑟 were equal to -0.5 % (0.6),   -0.5 % (0.5) and   -0.6 % 
(0.5), for non-binary random properties between 0 and 10 (∈ [0, 10]), and -0.4 % (0.5), -0.5 
% (0.4) and -0.5 % (0.4), for binary random properties (∈ {1, -1}). In both cases, with p = 1, 
2 and 3, respectively, and with the standard deviations of the 𝐸𝑟𝑟𝑜𝑟 in parentheses.  



21 
 

 

 

Amino acid 
property 

 
P 

Standard deviation of 
𝑀𝑆+ (σ+) 

 
Error 

Analytical Numerical 

Polar requirement 
1 2.1320 2.1095 1.1 % 
2 2.1199 2.1066 0.6 % 
3 2.1199 2.1099 0.5 % 

Hydropathy 
 

1 2.3867 2.3666 0.8 % 
2 2.3731 2.3617 0.5 % 
3 2.3731 2.3636 0.4 % 

Molecular Volume 
 

1 568.03 560.83 1.3 % 
2 564.79 563.65 0.2 % 
3 564.79 559.59 0.9 % 

Isoelectric Point 
 

1 1.4088 1.3946 1.0 % 
2 1.4008 1.3989 0.1 % 
3 1.4008 1.3985 0.2 % 

Random 
(∈ [0, 10]) 
 

1 1.3287 1.3101 1.4 % 
2 1.3211 1.3133 0.6 % 
3 1.3211 1.3169 0.3 % 

Binary 
(∈ {1, -1}) 
 

1 0.2144 0.2128 0.8 % 
2 0.2132 0.2108 1.1 % 
3 0.2132 0.2112 0.9 % 

 

Table 3. Analytical and numerical calculations of the standard deviation of MSp over 
infinite completely random genetic codes with standard stop codons (𝛔𝒑). σ+ is 
calculated analytically using Eq. 11 and calculated numerically by computational statistics 
using the same genetic codes for Table 2. The σ+ error is defined as 𝐸𝑟𝑟𝑜𝑟 =
100%5𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙	σ+ 	− 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙	σ+	7 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙⁄ 	σ+.  Moreover, for the same 
simulation of codes with additional artificial random properties described in the legend of 
Table 2, the calculated averages of 𝐸𝑟𝑟𝑜𝑟 were equal to 0.9 % (2.1), 0.2 % (2.2) and 0.3 % 
(1.9), for non-binary random properties, and 0.6 % (2.3), 0.7 % (2.4) and 1.0 % (2.3), for 
binary random properties. In both cases, with p = 1, 2 and 3, respectively, and with the 
standard deviations of the 𝐸𝑟𝑟𝑜𝑟 in parentheses.        
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