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Abstract: In this paper, we will make explicit the relationship that exists between 
geometric objects and geometric figures in planar Euclidean geometry. That will enable 
us to determine basic features regarding the role of geometric figures and diagrams when 
used in the context of pure and applied planar Euclidean geometry, arising due to this 
relationship. By taking into account pure geometry, as developed in Euclid’s Elements, 
and practical geometry, we will establish a relation between geometric objects and 
figures. Geometric objects are defined in terms of idealizations of the corresponding 
figures of practical geometry. We name the relationship between them as a relation of 
idealization. This relation, existing between objects and figures, is what enables figures 
to have a role in pure and applied geometry. That is, we can use a figure or diagram as a 
representation of geometric objects or composite geometric objects because the relation 
of idealization corresponds to a resemblance-like relationship between objects and 
figures. Moving beyond pure geometry, we will defend that there are two other ‘layers’ 
of representation at play in applied geometry. To show that, we will consider Euclid’s 
Optics. 
 
 
1 Introduction 
 
The role of diagrams in geometry has been the subject of many philosophical inquires, 
and different views have been proposed. Here, we endeavor to determine what kind of 
relationship exists between geometric objects and geometric figures in planar Euclidean 
geometry. In this work, geometric figure stands for drawings that we commonly name as 
segments, circles, and so on. We reserve the term diagrams for composite figures. One 
well-known example is that of the diagram accompanying proposition 1 of book 1 of 
Euclid’s Elements. There, we have a drawing of two circles that intersect and three 
segments that form an equilateral triangle. 
     The rationale behind this work is the following. If there is a clear relation existing 
between geometric objects and geometric figures, then, this might condition or even 
determine what role geometric figures and diagrams can have when used in the context 
of pure or applied geometry. In this work, we will show what kind of relation there is 
between objects and figures and what it enables regarding the use of figures or diagrams 
in the context of pure and applied planar Euclidean geometry. 
     The work unfolds as follows. First, in part 2, we will address geometric figures. For 
that purpose, we will consider a historical example of practical geometry that is previous 
to the arising of pure geometry. This will enable two things: 1) address geometric figures 
in a context of a concrete geometrical practice – not some fictional account that might be 
twisted according to our interests (even if inadvertently); 2) address geometric figures 
independently of geometric objects, since during this historical period there was still no 
pure geometry. After addressing geometric figures in the context of a practical 
geometrical practice, we will consider, in part 3, the treatment of geometric objects in 
Euclid’s Elements. This will enable us to bring to light the relationship that geometric 

 
1 This is a somewhat longer version of a paper with the same name published in the proceedings of the 12th 
International Conference, Diagrams 2021. 
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objects have with geometric figures. We will keep from the first part only those aspects 
of practical geometry that are taken into account in the articulation of geometric objects 
in pure geometry.  Having established this, we will, in part 4, determine basic features 
that geometric figures or diagrams have due to this relationship when used in the context 
of pure or applied planar Euclidean geometry. For this purpose, we will consider how 
figures and diagrams are used in propositions of pure and applied geometry in the light 
of the established relationship. 
 
 
2 Geometric figures in practical geometry 
 
We can have geometric figures even without a clear indication of how they are 
conceptualized. In fact, e.g., there is evidence that there was a notion of circular shape 
already at play in Mesopotamia before the mid-third millennium. This is attested in early 
Mesopotamian visual culture. We see it in sketchy drawings or in the form given to some 
artifacts (see, e.g., Frankfort 1970, pp. 17-37). One very beautiful example is a game 
board decorated with symmetrical drawings some of which have a circular form. The 
game’s pieces are also circular (see, e.g., Robson 2008, pp. 45-6). 
     A conceptualization proper of geometric figures arises in the context of a practical 
geometry where there are clear geometrical practices, and, importantly, the figures are 
named. This is already the case during the Old Babylonian period (Robson 2004). 
     A good example is that of the rectangle. Each side is given a name. They are named 
the ‘long side’ and the ‘front’. This naming refers to agricultural field plots that, for 
practical reasons, were given rectangular forms. The side called the ‘front’ is one of the 
small sides and is parallel to an irrigation channel (Høyrup 2002, p. 34). 
     That Mesopotamian practical geometry arises in the context of field measurements has 
important implications regarding how the geometric figures were conceptualized. The 
rectangle, be it an actual field plot or a drawing (for example, a field plan), is 
conceptualized in terms of the boundary that establishes an inner space separated from 
the outside by it. The figure proper is what is inside the boundary; however, due to the 
importance of this boundary, in many cases, the names for the figure and the boundary 
are the same (Robson 2008, 64). In Eleanor Robson’s terms, we have a “fundamentally 
boundary-oriented conceptualization of two-dimensional space” (Robson 2008, 64). This 
can be seen in the land surveyors’ practices of the time. 
     Not only was it fundamental to have a clear demarcation between field plots belonging 
to different people but also to measure the areas of plots for personal and administrative 
control (Baker 2011). In Mesopotamia, the area of a field plot was calculated from the 
measurement of its boundary. Surveyors could only rely on length measurements. For that 
purpose, they could use, e.g., ropes whose lengths were given in terms of a metrological 
length unit (Baker 2011, 296-7). 2  To calculate the area of quadrilateral field plots, 
surveyors applied the so-called surveyors’ formula. This formula enables us to calculate 
what for us is the approximate value of a quadrilateral figure. For field plots not deviating 
too much from a rectangular, the formula gives a close approximation to the area of the 
plot. According to Peter Damerow, “the ancient surveyors apparently assumed that the 
area of a field remains equal if they subtract some part from one side of a field and add a 
part of the same size to the opposite side” (Damerow 2016, 107). This view leads 

 
2 In the Old Babylonian period, an important unit of length was the rod, corresponding approximately to 6 
meters (Cooper 2013, 403). 
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straightforwardly to the surveyors’ formula in which the area is calculated by the 
multiplication of the mean values of the two sets of two opposite sides.3 
     This boundary-oriented conceptualization of space lasted in Mesopotamian 
mathematics. In geometrical problems from the Old Babylonian period, one still finds 
“the assumption that the area of a quadrilateral is determined by the surveyors’ formula” 
(Damerow 2016, 117). 
     We can say that the notion of area of geometric figures derives from the notion of 
practical geometry (Damerow 2016, 115-7). We see an example of this in the conception 
of circle in Mesopotamian mathematics. It can be hardly the case that surveyors dealt with 
circular fields. But the existence of circular objects or figures is well attested. It might 
well be the case that one needed at some point to determine the area of a circular object 
or figure. For example, considering a circular oven (Cooper 2013, 404), we might for 
some reason need to calculate its area. Like in the case of a rectangular figure, a circle is 
conceptualized in terms of its boundary (what we call the circumference). Accordingly, 
“a circle was the shape contained within an equidistant circumference” (Robson 2004, 
20). The circle and its boundary were given the same name, something like “thing that 
curves” (Robson 2004, 20). Like in the case of quadrilateral figures the area of the circle 
is calculated from the length of its boundary (which can be measured). The area is 
calculated using a formula. It is given by the square of the length of the circumference 
divided by 12 (Robson 2004, 18). 
     Circle figures are well-attested in ancient Mesopotamian mathematical problems. 
Following Damerow’s view, one should address these figures in light of their practical 
geometry. The drawings can be very sketchy but also quite precise. One example of this 
can be found in the tentative solution of mathematical assignment made in a clay tablet.  
Here, there is a drawing of an equilateral triangle inscribed in a circle (Friberg 2007, 207 
and 488). Not only the sides of the triangle are quite rectilinear, which can be achieved 
by using some sort of straightedge, but also the circle is very precise. This results from 
the fact that the circle was drawn using a compass (Høyrup 2002, 105; Friberg 2007, 207). 
In summary: during the Old Babylonian period, a circle is still conceptualized in terms of 
the practical geometrical practice of land surveyors, i.e., in terms of a boundary. The circle 
is ‘individuated’ as a geometrical figure by being given a name, by the existence of a 
specific formula to calculate its area from the measurement of its boundary, and by the 
possibility of being drawn in a very precise way using a specific instrument – a compass. 
 
 
3 Relating geometric objects to geometric figures 
 
In pure planar geometry as developed in Euclid’s Elements, the geometric object called 
circle, like other geometric objects, is explicitly defined in the definitions. This is done in 
definitions 15 and 16 of book 1. Taking them together, the geometric object called circle 
is defined as follows: 
 

 
3 Let l1, l2, l3, and l4 be the sides of a quadrilateral field plot, in which l1 and l3 are opposite sides as is the 
case with l2 and l4. The surveyors’ formula gives for the area of the field plot the value (l1 + l3)/2 x (l2+ l4)/2. 
As mentioned, the sides of the field plot are measured by the surveyors using, e.g., ropes with given 
measures. 
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A circle is a plane figure contained by one line such that all the straight lines falling upon 
it from one point among those lying within the figure are equal to one another; and the 
point is called the center of the circle. (Euclid 1956, pp. 153-4) 
 
But what warrants that there is a geometric object corresponding to this definition? This 
warranty is given by the third postulate of the Elements: “Let the following be postulated: 
[...] To describe a circle with any center and distance” (Euclid 1956, p. 154). 
    At this point, it might be useful to make a silly question. Why do we name this 
geometric object with the same name as that of a figure? This is at the crux of the 
relationship between geometric objects and figures. 
     As it is, the definition of geometric circle in the Elements is rather distinct from the 
conceptualization of circle as a figure in ancient Mesopotamian mathematics. But this is 
not a real problem. If there is a relationship between a notion of circle from practical 
geometry and pure geometry this must be made in the same cultural context. That is, 
taking into account Greek practical geometry. We will come to this just next. 
     To help to answer our silly question we will first consider another silly question. Why 
not take the above definition of a circle as a geometric object as a definition of a circle 
figure? As it is the definition of circle in the Elements seems to correspond to the practice 
of drawing a circle figure using a compass, something that was already present in 
Mesopotamian mathematics. Taking this definition outside the context of the Elements, it 
could very well be the recipe for drawing a circle using a compass. The center of the circle 
is the needle point of the compass, and all points of the circumference drawn with the 
compass lead are at the same distance from this point as measured using, e.g., a ruler. In 
fact, we could even dispense with this measurement. We can imagine having a cord 
stretched between the needle point and the lead of the compass. In practical terms, while 
drawing the circle this cord is ‘measuring’ its radius and all points of the circumference 
are at the same distance from the center of the circle as measured by this cord. This 
definition/conceptualization of practical circle is certainly different from that we have 
seen in the previous section but there is a crucial aspect in common. In fact, this aspect is 
the one that is fundamental for our present purpose. When we say that the radii of a circle 
figure have all the same length, we are saying this in the context of a practical geometrical 
practice in which we talk about measurable lengths. This is so independent of the details 
of how a figure is conceptualized. For practical purposes, or due to the limitations in the 
precision of a length measurement using, e.g., a measuring rod, the radii are equal. 
Whatever small differences are there, these are negligible. For practical purposes the radii 
are equal. And this is so independent of how we conceptualize the circle figure. As 
mentioned by Eleanor Robson: 
 
If plane figures were conceptualised, named, and defined from the inside out, then the 
centre of the circle and the idea of the rotating radius could not have played an important 
part in Mesopotamian mathematics. (Robson 2004, 20) 
 
However: 
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[This does] not mean that the ancient Mesopotamians did not know that circles could be 
generated by rotating radii. There is a great deal of visual evidence to show that they did. 
For example, BM 15285, a compilation of plane geometry problems from Larsa, depicts 
several circles whose deeply impressed centres reveal that they were drawn by means of 
rotating compasses. (Robson 2004, 20) 
 
In this way, we can conceive of a conceptualization of a circle figure in the exact terms 
of the definition of geometric circle in Euclid’s Elements. The crucial aspects of a circle 
figure are that it is drawn with a compass, that the lengths of the circumference and radii 
are measurable using, e.g., measuring rods or ropes, and that the area is calculated 
indirectly from these measures. The few elements we have regarding Greek practical 
geometry and its conception of circle are compatible with this reduced list of crucial 
aspects of a circle figure.4 
     Let us return to Euclid’s definition of circle as a geometric object. We have been using 
it as a definition of a circle figure. Who can this be possible, having the same definition 
for a drawn figure and for a geometric object? For us, it comes down to semantics; in 
particular to the meaning of a few terms, which must be understood in the context of a 
particular mathematical practice. The definition of circle as a geometric object starts by 
mentioning that it is a plane figure. What does it mean for a geometric object to be a plane 
figure? That a circle figure is taken to be a plane figure has, certainly, a quite different 
meaning. In practical geometry what this means is that it is drawn in a practically planar 
surface, e.g., a dusted surface or a wax tablet (Netz 1999, pp. 14-6). 
     As mentioned above, what warrants that there is a geometric circle is the third postulate 
of the Elements. This postulate mentions the possibility of ‘describing’ a circle with any 
center and radius. Where is the circle described and why can it have any center and radius? 
A geometric object is described or instantiated in what we might call the Euclidean plane. 
This plane is not mentioned in the Elements, however, as Mueller noticed, “normally, 
when plane geometry is developed as an independent subject, it is taken for granted that 
all objects considered lie in a single plane, which never has to be mentioned” (Mueller 
1981, p. 208). We can say that the Euclidean plane is “an abstraction from physical 
boards” (Taisbak 2003, p. 19). It is in pure geometry the counterpart of, e.g., a wax tablet. 
      A geometric object like the circle is, implicitly, described or instantiated in the 
Euclidean plane. Like the case of a wax tablet where we might put the needle point of the 
compass in different positions and draw a circle with a chosen radius, we take the same 
to be feasible in the Euclidean plane. This is why in the third postulate it is mentioned 
that the circle as a geometric object can have any center and radius. 
      At this moment we are very close to understanding the relationship between circle as 
a geometric object and circle as a drawn figure. A circle as a geometric object is 
instantiated in an idealized plane – an abstraction from a real physical plane. As defined, 

 
4  To the best of our knowledge, there is no extant text containing a practical definition of circle 
corresponding to that of geometric circle in the Elements. However, there are records of a conceptualization 
that approaches that in terms of radius. It is a conceptualization of circle whose main element is the diameter 
that is conceived as rotating about its center (Robson 2004, 20). That this conceptualization can be ascribed 
to circle figures independently of having been adopted in the context of pure geometry is suggested, e.g., 
by a Greek third-century BC papyrus containing practical geometrical problems among others. Here, the 
key measure associated with a circle is the diameter (Cuomo 2001, 70-2), and not the circumference like in 
the Old Babylonian case. 
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the circle as a geometric object has all radii equal to one another. Here, ‘equal’ does not 
mean the same as ‘equal’ in practical geometry. In the latter case, the equality of different 
radii is a practical one; we simply neglect whatever small difference in lengths there are. 
In the case of the geometric object, equality is absolute – is of an ideal type. The radii of 
the geometric circle instantiated in the Euclidean plane are absolutely equal to one 
another. This is an idealization of the practice of practical geometry of taking measured 
lengths as equal by disregarding what we might call the uncertainty in the measurement. 
In practical geometry, when we say that the length of one of the radii of a circle is, e.g., 
20 cm, this is a shortcut to say that the measurement gave the result 20 ± the uncertainty, 
where the uncertainty depends on the precision of the measuring instrument (Hughes and 
Hase 2010, pp. 2-6). 
      In pure geometry, it is made an idealization of this practical approach and instead of 
conceiving of practically equal radii, these are conceived as exactly equal. We have what 
we might call an exactification of the equality of lengths. The relationship between the 
geometric circle and the circle figure is what we might call a relation of idealization: the 
abstract object is defined in terms of an idealization of the concrete figure. 
     This relation of idealization is made clearer by taking into account similar relations for 
lines and points (Valente 2020a). They are all taken into account, implicitly, in the 
definition of circle. As defined in the Elements, “a point is that which has no part. A line 
is breadthless length” (Euclid 1956, p. 153).  A geometric line can be seen as an 
idealization of a concrete line. Some idealizations that are manifested in the geometric 
line are its lack of depth, that it is breadthless, and the exactification of length. The lack 
of depth can be seen as a property of the Euclidean plane and because of this of geometric 
objects instantiate in the plane. That a line is defined as breadthless length and a point as 
that which has no part can be seen as arising from an idealization of what is done in the 
practice of practical geometry. As mentioned by Harari, “a point is characterized as a non-
measurable entity, as it has no parts that can measure it” (Harari, 2003, p. 18). This is 
what happens with concrete points like the needle point of a compass; it is simply 
meaningless to conceive of a practical measurement made on this concrete point. In the 
same way, in practical geometry, lines have small breadths (this is the case, e.g., of a 
circumference drawn using a compass). The lengths of these breadths are disregarded in 
practical terms (even if we might conceive of measuring them with some precision 
instrument). We idealize the concrete line as a geometric object that has an exact length 
and is breadthless. We can say that both the geometric line and the geometric point are in 
a relation of idealization with lines and points from practical geometry. 
     The relationship between geometric objects and figures is manifested very clearly in 
the definition of geometric line. We can see that the definition of geometric line is made 
by reference to an idealization at play. The geometric line is defined in relation to what is 
being implicitly idealized: a line from practical geometry. It only makes sense a definition 
in terms of breadthless length, in relation to something that has breadth. That is, we can 
only have a notion of breadthless when having first a notion of breadth. And this is the 
case with a line figure. The definitions of geometric objects are dependent on the figures 
and result from an idealization of these. This enables us to say that between geometric 
objects and figures we have a relation of idealization. 
  
 
4 Basic features of the role of diagrams in pure and applied geometry 
 
In the previous section, we have determined what we called the relation of idealization 
between geometric objects and figures. As mentioned in the introduction, we expect that 



 
 
 

7 

this relationship determines basic features regarding the role of figures or diagrams when 
used in the context of pure or applied geometry.5 To show this, in this section, we will 
consider two propositions, one from pure geometry and another from applied geometry. 
We will start with pure geometry. 
     In proposition 1 of book 1 of Euclid’s Elements (proposition I.1), one constructs a 
geometric object – an equilateral triangle – by a particular procedure where one uses two 
circles that intersect each other. We can see this proposition as containing two aspects: 1) 
the procedure to instantiate the geometric object; 2) the proof that the procedure enables, 
in fact, this construction. The text is accompanied by a lettered diagram (see figure 1), 
and with the letters one refers in the text to parts of the diagram. For example, one 
mentions the segment AB, the circles BCD and ACE, the point C, and so on.6   
 

 
Figure 1. The diagram in proposition I.1 of the Elements 
 
The basic point we want to make here is to question how come that in the demonstration 
of a result in pure geometry we use a diagram which is a drawing consisting of several 
figures? The evident answer is that we take the diagram to represent the geometric objects. 
But what justifies using figures from practical geometry as a representation of geometric 
objects? More generally, we have to know what enables something to be a representation 
of something else. There are two features related to representation that are relevant here: 
intentionality and resemblance (see, e.g., Abell 2009; Kulvicki 2006; Blumson 2014). 
According to John Kulvicki: 
 
There are at least two senses in which one object might be judged to resemble another, 
and the differences between them need to be kept clear. Objects may be judged to look 
alike, in the sense of being apparently similar or experienced as similar to one another, or 

 
5 These features should be general enough to be compatible with different views on the role of diagrams in 
Euclidean geometry. We will not address this issue here. For that, we need a detailed analysis of different 
approaches to the role of diagrams in pure and applied geometry while taking into account the view 
proposed here. 
6 Proposition I.1 is as follows: On a given finite straight line to construct an equilateral triangle. Let AB 
be the given finite straight line. Thus it is required to construct an equilateral triangle on the straight line 
AB. With center A and distance AB let the circle BCD be described; [Post. 3] again, with center B and 
distance BA let the circle ACE be described; [Post. 3] and from the point C, in which the circles cut one 
another, to the points A, B let the straight lines CA, CB be joined. [Post. I] Now, since the point A is the 
center of the circle CDB, AC is equal to AB. [Def. I5] Again, since the point B is the center of the circle 
CAE, BC is equal to BA. [Def. I5] But CA was also proved equal to AB; therefore each of the straight lines 
CA, CB is equal to AB. And things which are equal to the same thing are also equal to one another; [C. N. 
I] therefore CA is also equal to CB. Therefore the three straight lines CA, AB, BC are equal to one another. 
Therefore the triangle ABC is equilateral; and it has been constructed on the given finite straight line AB. 
(Being) what it was required to do (Euclid 1956, 241-42).  
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they may be judged to be genuinely similar in that they share specified properties. 
(Kulvicki 2006, 82) 
 
For our purpose, it is not necessary to distinguish between these two possibilities. 
Regarding the intentionality in the adoption of a representation, what is relevant for us 
here is not so much that the intention of the author that adopts a particular representation 
is usually relevant in the interpretation of the representation, but that ‘intentionality’ 
underlies the possibility of choosing quite freely what we take to be the representation of 
something else. For example, we might decide that a hand-drawn line represents a 
segment drawn using a straightedge. That is, we intentionally take the sketchy line to 
represent the practical segment or segment figure. 
    The intentionality enables us to choose whatever we want as a symbol (representation) 
of something else. With an ad hoc representation, we would not go very far in the case 
under consideration. If we choose an abstract Pollock-like image as our representation of 
a geometric object it would not be useful neither for the ‘construction’ of the equilateral 
triangle neither for the proof that this construction actually instantiates a triangle that is 
equilateral. So, we rely on another concept related to representation. That of resemblance. 
We would go from just a symbol to a symbol that has iconic properties. That is, to a 
symbol that in some way resembles what it is symbolizing. But here we face a major 
problem. A geometric object is not something that we can see. It is instantiated in an 
abstract space – the Euclidean space – not in the space of our experience.  There is no 
way in which we might say that a circle figure resembles a geometric circle. How do we 
overcome this difficulty? 
     A circle figure does not resemble a geometric circle; this simply has no meaning, 
unless we twist considerably the semantics of the word ‘resemblance’.  However, we have 
another kind of relationship between geometric objects and figures. We can adopt the 
relation of idealization, e.g., between a geometric circle and a circle figure to take the 
second as a representation of the first. The relation of idealization works as a resemblance-
like relation. While the circle figure does not resemble the geometric figure, we can 
nevertheless establish a simulacrum of a resemblance between them. The circle figure has 
as its center the needle point of the compass. To this concrete point corresponds the 
geometric point as the center of the geometric circle. To the drawn circumference 
corresponds a breadthless line. While the radii of the circle figure are equal only within a 
particular practice of practical geometry where we neglect small measurement 
differences, the radii of a geometric circle are equal exactly as if corresponding to an 
idealized measurement in which all lengths are exactly equal. 
     The relation of idealization is a sort of resemblance-like relation that enables us to take 
the circle figure to be a representation of the geometric circle. Since we have one-to-one 
resemblance-like relations between all relevant elements of the geometric circle and the 
circle figure (center, circumference, radii, diameter, etc.), the circle figure works as an 
avatar of the geometric object in the diagram. When in the text we refer to aspects of the 
diagram we can take these as referring to the corresponding aspects of geometric objects. 
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     This is a very basic characteristic of the use of diagrams in pure geometry. We suggest 
that any account of the role of diagrams in pure geometry should be compatible with this 
feature and how it arises. 
     Let us now address the issue of the role of diagrams in applied geometry. We will 
consider proposition 1 of Euclid’s Optics. What we want to determine here is in what way, 
if any, do we move beyond the representational role that a figure has in pure geometry. 
In that case, as we have just seen, we can establish a resemblance-like relationship 
between geometric object and figure. 
     When applying geometry like in the Optics, we take geometric objects to represent 
physical phenomena. As noticed by Stephen Toulmin, the development of geometric 
optics corresponds to «the application of new modes of representation» (Toulmin 1953, 
p. 43); it consists of a «geometrical method of representing optical phenomena» (Toulmin 
1953, p. 26). This view applies equally to the case of Euclid’s Optics. Let us see why. 
     The basic idea developed in Euclid’s Optics is that the eyes emit ‘visual fire’. It is the 
‘visual fire’ that enables us to see the world around us. For example, the incidence of 
‘visual fire’ in objects is what enables us to see them.  ‘Visual fire’ is represented in the 
Optics by geometric segments (Darrigol 2012, p. 8; see also Burton 1945). Some of the 
assumptions of the Optics are the following: 
 
The straight lines drawn from the eye diverge to embrace the magnitudes seen. The figure 
contained by a set of visual rays is a cone of which the apex is in the eye and the base at 
the limits of the magnitudes seen. Those magnitudes are seen upon which visual rays fall, 
and those magnitudes are not seen upon which visual rays do not fall. (cited in Darrigol 
2012, p. 9) 
 
The statement of proposition 1 of the Optics is as follows: 
 
Prop. 1: No observed magnitude is seen simultaneously as a whole. 
Call AD the observed magnitude, and B the eye from which the visual rays BA, BG, BK, 
BD fall. Since the visual rays diverge, they do not fall on the magnitude AD in a 
contiguous manner; so that there are intervals of this magnitude on which the visual rays 
do not fall. Consequently, the entire magnitude is not seen simultaneously. However, as 
the visual rays move rapidly, it is as if we saw [the entire magnitude] simultaneously. 
(cited in Darrigol 2012, p. 10) 
 

      
Figure 2. The diagram in proposition 1 of the Optics. 
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Here, we are going to make some magic. We will use diagram 2 to help us to interpret the 
text. We will take advantage of the representational roles of the diagram even if we have 
not clarified what these are. The geometric segment AD represents the physical object 
that we see. The geometric segments BA, BG, BK, BD represent the physical ‘visual fire’ 
emitted by an eye of the observer. The geometric point B represents an eye. Here, we are 
using the diagram to help us clarify the representational role of geometric figures. In fact, 
we are ascribing to the diagram these features. When we look, for example, at the drawn 
line BA, we take it to represent the ‘visual fire’. The point is that since we have a 
resemblance-like relation established between the figure and its corresponding geometric 
object, and we take the geometric object to represent a physical entity, we can 
intentionally ascribe to the figure the representational role of its corresponding geometric 
object. We put another ‘layer’ of representation on top of the first one. 
     At this point, we can say that in applied geometry, the geometric figure has a double 
representational role. The geometric figure (or diagram) represents the geometric object, 
and this represents a physical entity. In this way, the geometric figure represents the 
physical entity, via the geometric object represented by the figure.7 
     There is in our view a third ‘layer’ of representation in the diagrams of Euclid’s Optics. 
As we have seen, the geometric objects are given a representational character in the 
context of several assumptions. For example, it is assumed that the straight lines drawn 
from the eye diverge to embrace the magnitudes seen. How the visual rays ‘diverge to 
embrace’ is further specified in proposition 1. There, the visual rays are taken to “move 
rapidly” (Darrigol 2012, p. 10).  This corresponds to ascribing to the diagram a new 
‘layer’ of representation of the optical phenomena. We have the assumption that there is 
a sort of scanning of magnitudes by emitting successively the visual rays BA, BG, BK, 
and BD. The diagram as a whole is a static representation of a dynamic situation (see also 
Valente 2020b). 
     While this layer of representation relates, as the second one, to the geometric objects, 
it is only meaningful when taking into account the whole diagram. Like with the second 
layer of representation (where we can regard it as implemented directly on the figures), 
we can see this further ‘layer’ of representation as implemented directly on the diagram. 
An important difference with the second ‘layer’ is that it is not implemented so much on 
the figures that form the diagram but on the diagram as a whole. 
     For applied geometry, the situation is then as follows. The figures represent geometric 
objects due to the relation of idealization existing between them. Since we take the 
geometric objects to represent physical phenomena like, e.g., ‘visual rays’, we take the 
corresponding figures to represent the physical phenomena. This is a second ‘layer’ of 
representation that we ascribe to the figures. Besides this, the geometric objects on a 
whole have a dynamic relationship between them since they represent not only physical 

 
7 One might ask what justifies taking a geometric object to represent physical phenomena in the first place. 
Again, it is due to the relation of idealization that we have between geometric objects and concrete objects. 
For instance, a geometric segment is in a relation of idealization not only with, e.g., a practically drawn 
segment but also, e.g., with a rod, a stretched rope, or with the ‘visual fire’ taken to be a sort of light beam 
(Valente 2020a). 
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entities but also their dynamics. We must take into account that the visual rays ‘move 
rapidly’. This corresponds to ascribing a third ‘layer’ of representation not to each figure 
individually but to the diagram as a whole since it is only at this ‘level’ that we can 
represent the dynamics. With this third ‘layer’ of representation, the diagram represents 
the dynamics of the physical phenomena. 
     These are basic aspects of the role of diagrams in applied geometry that follow from 
the relation of idealization that exists between geometric objects and figures and from 
taking geometric objects to represent physical phenomena. We suggest that any account 
of the role of diagrams in applied geometry should be compatible with this view. 
 
 
5 Conclusions 
 
In this work, we have tried to determine what kind of relationship there is between 
geometric figures of practical geometry and geometric objects of pure geometry. Since 
not much is known about Greek practical geometry we have focused on the more ancient 
Mesopotamian practical geometry and mathematics. From this particular case, we have 
extracted some key elements of practical figures that are relevant for our discussion and 
are compatible with the little we know about Greek practical geometry. When considering 
pure geometry as developed in Euclid’s Elements and practical geometry together, we 
have established that there is a relationship between geometric objects and figures. 
Geometric objects in the Elements are defined in terms of idealizations of the 
corresponding figures of practical geometry. We have named the relationship between 
them as a relation of idealization. 
     This relation existing between objects and figures is what in our view enables figures 
to have a role in pure and applied geometry. That is, we can use a figure or diagram as a 
representation of geometric objects or composite geometric objects because the relation 
of idealization corresponds to a resemblance-like relationship between objects and 
figures. It is not simply that we intentionally decide to adopt a figure as a representation 
of a geometric object. It goes beyond this. We might as well choose a Pollock-like figure 
as a representation, but this would not be very fruitful in the practices of pure and applied 
geometry as manifested in Euclid’s Elements and Optics. The geometric figures and 
diagrams can have a role in pure and applied geometry because the relation of idealization 
works as a resemblance-like relationship between objects and figures. 
          Moving beyond pure geometry we have defended that there are two other ‘layers’ 
of representation at play in applied geometry: 1) geometric figures can be ascribed as 
representing physical phenomena when we give this representational role to their 
corresponding geometric objects due to the relation of idealization existing between them; 
2) The diagram as a whole can be taken to represent dynamical features of the physical 
phenomena also for the same reason. For example, the diagram in proposition 1 of the 
Optics represents a sequence of ‘emissions’ of visual rays; the diagram is a static 
rendering of a dynamical situation. We suggest that any consistent view on the role of 
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diagrams in pure and applied geometry should be compatible with these basic features 
and the way in which they are established. 
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