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Abstract Representation is typically taken to be importantly separate from its
physical implementation. This is exemplified in Marr’s three-level framework, widely
cited and often adopted in neuroscience. However, the separation between representa-
tion and physical implementation is not a necessary feature of information-processing
systems. In particular, when it comes to analog computational systems, Marr’s repre-
sentational/algorithmic level and implementational level collapse into a single level.
Insofar as analog computation is a better way of understanding neural computa-
tion than other notions, Marr’s three-level framework must then be amended into
a two-level framework. However, far from being a problem or limitation, this sheds
lights on how to understand physical media as being representational, but without
a separate, medium-independent representational level.

1 Introduction

Discovering and understanding neural and mental representations is a central compo-
nent of neuroscience and cognitive science. According to the generally-accepted view,
investigating the brain does (and should) proceed via different levels. Marr’s three-
level framework is extraordinarily influential here: Marr (1982) articulates the place
of representation-based explanations as one particular level in the overall project
of explaining any information-processing system, including the mind/brain. More
specifically, Marr made explicit the idea that representations and algorithms (i.e.
the representational-algorithmic level) can be studied and explained independently
from “higher-level” investigations of the purpose and goals of the computations made
possible by those representations and algorithms (i.e. the computational level). At the
same time, representations and algorithms can be studied and explained independent
of “lower-level” investigations of the specific physical media that implement those
representations and algorithms (i.e. the implementational level). While a complete
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understanding and explanation of an information-processing system like a digital
computer or the mind/brain requires all three levels, this three-way split of inde-
pendent levels allows for a clear division of investigative labor, and perhaps a clear
division of how the mind/brain is itself organized.

The proper understanding of Marr’s framework has generated much discussion,
and many questions about its interpretation remain. One could take the framework
to reflect ontological commitments, for example. On such an interpretation there
would be some real sense in which information-processing systems have these differ-
ent levels. Or one could take the framework to reflect explanatory or epistemological
concerns. On that kind of interpretation the levels might only reflect the goals of
particular investigative or explanatory practices. Recent research has focused on
other topics as well, such as the importance and independence of each level (Bechtel
and Shagrir, 2015), the levels at which one should posit mental content (Ritchie,
2019), and how to understand the representational/algorithmic level as connecting
the computational and implementational levels (Love, 2015).

My goal here, however, is not to contribute to the literature on Marr. Rather,
I will use Marr’s framework as something of a placeholder for what I take to be an
important and long-lasting assumption in neuroscience and cognitive science, which
is the independence of the representational-algorithmic level from the implementa-
tional level. Whether Marr’s framework in particular is the right way to understand
these levels (or if they are best understood as “levels” at all) is immaterial: my tar-
get is the general view that representations and algorithms are, in some important
sense, independent from the physical substrate(s) that implement them. This view—
that representations and algorithms are independent of (or can be analyzed without
reference to) their implementing physical media—has been referred to as “medium
independence” in the philosophy of computation.

Now, when it comes to neuroscience, the assumption of medium independence
may seem to imply that research on how to locate representations in the brain (the
subject of this special issue) might be something of a category mistake if taken lit-
erally. Specifically, questions of what can be found at the neural level lie at the im-
plementational level; questions regarding representations lie at the representational
level, independent of the implementational level. Trying to find representations at
the neural level might seem akin to looking for cursors or email programs in the
electrical circuitry of a microchip: one will find the physical structures required to
implement cursors and email programs, but one will not find cursors or email pro-
grams themselves.1

So why is this not a category mistake? Certainly I (and many others, such as
Thomson and Piccinini (2018)) do not take the search for representations in the brain
to be misguided, or merely metaphorical. One way forward might be to further clarify
how one understands Marr’s framework (or whatever other framework we might
want to adopt). Another way forward—the one I will pursue here—is illuminated
by questioning the independence of the implementational and the representational/
algorithmic levels in the first place.

The idea is this: the view of the mind/brain as a computer—one of the founda-
tional assumptions of cognitive science and the departure point for Marr’s levels—

1 One should not push this idea too far, however. As an anonymous referee points out, it
does not seem mistaken to take at least some physical objects as being representations, such as
the punch cards of mid-twentieth-century digital computers, or even data recorded on a DVD.
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implicitly takes “computer” to mean “digital computer.” This, in turn, informs the
idea that one can analyze representations and algorithms independent of their physi-
cal implementation. For digital representation and computation, this is a well-known
and often repeated point: this type of representation and computation is medium-
independent in a deep and important sense. However, the extent to which this inde-
pendence applies to analog representation and computation is unclear; I will argue
that it simply does not. In other words, the representational/algorithmic level is not
separable from the implementational level the way they are for the digital case. This
extends the implications for the idea that mind/brain is a computer without being a
digital computer, but an analog computer, in whole or in part (Maley, 2018). To the
extent that that is the case, it would then be a mistake to take the representational
and implementational levels as separate and independent. For those who like slogans,
we can say “No representation without implementation.” Or so I will argue.2

Here is the shape of things to come. First, I will review the Marrian framework,
then outline the account of analog representation and computation I take to be
most useful for neuroscience and cognitive science. Next, I will argue that, when it
comes to analog representation in the brain and in analog computers, what counts as
representational and what counts as implementational are not clearly distinct, espe-
cially when contrasted with the more familiar digital representational paradigm. This
point will be made by comparing cases of analog representation in neural systems
with analog representation in mid-twentieth century analog computers. In each case,
investigating the physical nature of the representational medium illuminates the na-
ture of the representation itself. Thus, rather than a distinct, medium-independent
representational level, these cases of representation are medium-dependent. I will
conclude with some more general considerations about the status of computational
explanation in neuroscience—particularly when it comes to representations—and the
utility of the Marrian framework.

2 Background: Marr’s Levels, the Analog, and the Digital

This section will set the stage for the main thesis of this article by getting all of the
elements on the table. First, I will briefly review the three levels of analysis originally
presented in (Marr, 1982). This will include an illustration of how analyses at Mar-
rian levels are orthogonal to other level schemata. For example, one can decompose
the elements of a Marrian level analysis into smaller elements that themselves remain
at the original Marrian level. Marr’s levels are simply not levels of abstraction or
composition, a point that can lead to confusion. Next, I will review a recent account
of analog computation and representation, pointing out the important differences
between analog and digital computation and representation. On this account, the
analog/digital distinction is not merely about continuity versus discreteness, as the
received view of this distinction has it. Instead, analog representation is a fundamen-
tally different way of representing that can be either continuous or discrete. What is
most important for the thesis of this paper is that analog representation depends on
the physical nature of its implementing substrate: it is not medium-independent in

2 “The Marrian representational/algorithmic level is actually a single representational/
algorithmic/implementational level” would be more accurate, but less catchy, and a good
slogan is nothing if not catchy.
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the way that non-analog representation is. We will return to that point in the next
section.

2.1 Marrian Levels

Like many sciences, neuroscience and computer science are committed to the view
that there are levels to their objects of study.3 At the lowest resolution, computing
machines have two separate levels: the hardware level and the software level. At a
higher resolution, they have many more levels, including digital circuitry, registers
and ALUs, machine code, assembly language, APIs, operating systems, and user
interface elements (to name just a few). The same is true of brains: at a very low
resolution, one might carve the brain up into individual lobes and what each one
does (necessarily very roughly characterized). At a higher resolution, investigations
might involve a particular area of cortex and its function; a still higher resolution
might involve cortical columns, and so on. It is not a deep observation to note that
different investigations take place at different levels; some at the level of brain regions
and networks, others at the level of ions and neurotransmitters.

Now, what precisely are these levels supposed to be levels of ? The answer is not
always clear, but even when it is, different answers serve different purposes. Scientists
and philosophers of science have proposed various typologies, including levels of
reality or being, levels of abstraction, levels of organization, levels of size, levels of
mechanism, and many others (Craver, 2015). I will limit this discussion to Marr’s
levels, which Marr himself called levels of description or analysis (and sometimes
known as Marr’s “tri-level” framework or hypothesis). Because this framework is
rather well-known, I will only provide a brief overview here.

Marr (1982, p. 25) characterizes his three levels of the analysis of information
processing systems, including cognitive systems, as follows:

Computational theory What is the goal of the computation, why is it appropri-
ate, and what is the logic of the strategy by which it can be carried out?

Representation and algorithm How can this computational theory be imple-
mented? In particular, what is the representation for the input and output, and
what is the algorithm for the transformation?

Hardware implementation How can the representation and algorithm be realized
physically?

To illustrate the idea, consider applying this framework to a simple pocket cal-
culator. At the computational level (CL), this would involve specifying that, for the
operation of addition, pairs of inputs (the summands) are to be mapped to a single
output (the sum). For every mathematical operation required, we specify different
mappings. At this level, we are not concerned with how numbers are represented,

3 It is particularly interesting that neuroscience and computer science share this feature,
given that they grew up together. Many influential thinkers from the twentieth century explic-
itly related ideas about the workings of automata and neural machinery, including (McCulloch
and Pitts, 1943) and (von Neumann, 1958). That history is itself fascinating, and in some ways
foreshadows the advent of cognitive science, where the activity of the mind/brain is explicitly
likened to computation (Lycan, 1990; Von Eckardt, 1993). I cannot discuss that history in any
detail here, partially because a thorough chronicle has yet to be written. I simply note that
parallels between neuroscience and computer science run deep.
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just that mathematical operations are performed in the requisite way. For simple
operations like addition, there may not be much in the way of a “strategy” by which
such operations are carried out at the computational level. However, for more com-
plicated operations, we may have to specify a sequence of operations. For example, if
we had a scientific calculator that can multiply polynomials or compute derivatives,
we might specify the order of operations required to produce the requisite answers.

At the representational/algorithmic level (RAL), our calculator is analyzed in
terms of digital representations (in the sense outlined in (Maley, 2011), and discussed
in the next section). Briefly, digital representations of numbers involve numerals
in specific places (i.e. digits), which just is the standard way that we represent
numbers. Thus, three hundred fourteen is represented as the sequence of numerals
“314”, where the value of the entire representation is a function of the numerals in
their respective places. This type of representation lends itself to the application of
particular algorithms. For addition, this is one of the standard techniques learned in
elementary school: add the least-significant digits, then add the next-most-significant
digits (plus the carry digit from the previous addition, if there is one), and so on. This
kind of representation also constrains the kind of physical implementation possible.
For instance, if the digital representation is in binary (i.e. base-2), then we need a
physical medium that can be in one of two distinguishable physical states; if it is in
decimal (i.e. base-10), then we need ten such states. However, the representational
level is medium-independent in the sense that any physical device can be used that
satisfies these constraints.

Finally, at the implementational level (IL), we get into the details of the physical
device used to implement the representations and algorithms. For a typical calculator
that uses internal binary representations, this would involve a characterization of the
circuitry used to store strings of digits, what voltage levels are used to represent the
two states (e.g. the 0s and 1s of binary representations implemented as zero and five
volts), the circuitry responsible for manipulating voltages in the correct order, and so
on. This level is, by definition, medium-dependent: we must understand the physical
properties of the media involved in order to understand how the device does what it
does qua physical device.

For the purposes of this essay, it is particularly important to be clear about the
relationship between representations and the three Marrian levels. We can summarize
those relationships as follows:

Computational Level What is it that is represented? (e.g. proximal or distal stim-
uli, numbers, magnitudes, etc.)

Representational/Algorithmic Level What is the format of the representation?
How do variations in the format correspond to variations in what is represented?
How do algorithms manipulate those variations? (e.g. discrete or continuous,
analog or non-analog, type of code or coding, etc.)

Implementational Level How is the representation and algorithm realized phys-
ically? (e.g. electrical circuitry, chemical gradients, mechanical movement, etc.)

A particularly important observation is that the RAL does not specify what is
represented; that is a computational-level specification. Instead, the RAL specifies
how the things specified at the computational level are represented.

Besides being clear about these details, we should note an important source
of potential confusion regarding Marrian levels, which is that they are orthogonal
to analyses involving other level schemata. For example, given an analysis of an
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information-processing system at a particular Marrian level, the parts of that level
might be decomposed into smaller units without thereby resulting in an analysis
at a different Marrian level. Rather, such a decomposition would simply result in
a higher-resolution analysis at the same Marrian level. This point is particularly
important for later discussion, so let us look at a concrete example.

0101 5
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0 0 1 0 1 1 0 1 1 0 12
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Fig. 1 Top: Schematic of conversion of output from internal format to display format. Bottom:
Higher resolution decomposition of the same conversion.

Returning again to the example of the pocket calculator, let us focus on an
analysis at the RAL. While the internal representations are binary (which is simpler
and more efficient to physically implement), the input and output is displayed in
decimal (which is simpler for humans to understand). Consider just the output. The
calculator will end an operation with a number represented in binary, which then
needs to be converted to decimal in order to be displayed. That is not quite accurate
however: we do not really need to convert the number to a decimal format, but only
display its digits in decimal format. Thus, if the output of a calculation is five, then
we will have an internal binary representation of 0101, which will need to display
the numeral 5. A schematic of this analysis is diagrammed in the top half of Figure
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1. At this level of detail, we only characterize the fact that our internal, binary
representation must be transformed (in some unspecified way) to a numeral 5.

We can characterize what happens at this stage at a higher resolution while still
remaining at the RAL. For example, if we want to use a seven-segmented display
to show our decimal digits (a common strategy in pocket calculators), then we can
analyze the transformations that need to occur at the level of individual bits. This is
shown in the lower half of Figure 1, where a truth table shows how the individual bits
of the output are mapped to the activation of the individual segments of the display.
This is not an analysis at the IL , because we are not yet concerned with the physical
devices that will implement this part of the computation. Rather, we are still dealing
with representations (binary digits) and algorithms (truth-table mappings), but at
a higher level of detail.

Another way to put this point is that the low-resolution analysis (the top half of
Figure 1) is an abstraction of the high-resolution analysis. On the received view of
abstraction and idealization (Potochnik, 2017), abstraction is the process whereby
certain details of an explanation or analysis are left out in order to focus on others
(e.g. leaving out details about material properties, except for mass, in a simulation),
whereas idealization is including in an analysis details which are known to be false,
but which make relevant explanatory details clearer (e.g. infinite population size,
or frictionless surfaces). There is clearly much more detail at the high-resolution
analysis (e.g. details of the particular transformation given in the truth table), but
much of it may be distracting for certain explanatory purposes, or even limiting
to other applications (such as when the “5” is displayed in some other way). Most
important to note, though, is that the relationship between the two parts of Figure
1 is not one of implementation: they are both analyses at the RAL level, albeit at
different resolutions.

A further decomposition may not be possible at this Marrian level, simply because
we are at the level of individual binary digits and the individual segments that
compose the output display. However, this is not surprising or problematic: analyses
have to bottom out somewhere. We could switch to an IL analysis, showing how the
bits are physically implemented, and illustrating the physical configuration of the
circuits that would implement the transformation characterized by the truth table.
But that would not be a further decomposition—a still higher-resolution analysis—at
the RAL ; that would be moving to a different Marrian level entirely.

2.2 Analog and digital representation

According to the received view of the analog/digital distinction, “analog” is syn-
onymous with “continuous”, and “digital” is synonymous with “discrete.” On this
characterization, the feature that divides one from the other is simply whether the
representations involved vary smoothly or in discrete steps. Because representations
are either analog (i.e. continuous) or digital (i.e. discrete) on this view, an account
of one automatically gives you an account of the other. They are mutually exclusive
and jointly exhaustive.

However, there is an alternative way to characterize analog and digital representa-
tion that is more useful for neuroscience, cognitive science, and computer science (at
least insofar as it correctly classifies analog computation machines of the twentieth
century). This alternative is what Adams (2019) calls the “Lewis-Maley” account



8 Corey J. Maley

of analog and digital representation (Lewis, 1971; Maley, 2011). On this account,
there is not a simple difference between analog and digital representation; instead,
they are quite different in kind. As such, a characterization of what counts as ana-
log does not automatically generate an account of what counts as digital (or vice
versa): each piece of the “distinction” needs its own, separate characterization. This
account is particularly apt when it comes to understanding the role of analog and
digital representation when it comes to computation. In brief, analog representation
is the representation of numbers via physical magnitudes, while digital representa-
tion is the representation of numbers via their digits. What follows will be a brief
overview of the Lewis-Maley view. More details can be found in (Maley, 2011).

2.2.1 Analog representation

Analog representation, according to the Lewis-Maley view, is a species of what Beck
(2018) calls “mirroring” accounts. These accounts characterize analog representation
as involving a kind of mirroring between the representation and what is represented;
they are the “representation of, magnitudes by magnitudes,” (Peacocke, 2019, 52).
For example, a mercury thermometer is analog because the literal height of the
mercury represents the temperature; thus, an increase/decrease in the mercury’s
height reflects an increase/decrease in the temperature represented. Similarly, the
literal angle of the second hand of an analog clock represents the number of seconds
past the minute.

This point is worth belaboring a bit. On this account, analog representation is
characterized by an analogy between the physical representation and what is being
represented. Besides the examples just given, an hourglass is an analog representation
of elapsed time, and a vinyl record is an analog representation of sound. In each case,
a physical property of the representation—the very property doing the representing—
covaries with what it represents. Again, the increasing/decreasing height of the liquid
in the thermometer represents a corresponding increase/decrease in temperature.
Similarly for the sand in the hourglass with respect to time, and the ridges and
grooves in the vinyl with respect to the frequencies and amplitudes of sounds.

This is clearer when contrasted with digital representations, where particular
symbols represent a number, and the magnitude of that number represents an in-
crease/decrease in temperature. However, there is no literal increase in the repre-
sentation itself. Thus, the two-digit sequence “54” is no smaller or larger than the
sequence “55,” even though fifty four (the number represented by “54”) is less than
fifty five. However, a 54 mm column of mercury is literally shorter than a 55 mm
column (more on this point is in the next section).

Importantly, in this characterization of analog representation, the quantities
above can be continuous or discrete. Take the hourglass, for example. The repre-
sentational medium—the “sand”—could be a continuous fluid, or a true particulate
substance. The analog representation is there in either case: the more substance
there is (fluid or number of particles), the more time has passed. Furthermore, if the
substance is discrete, it also does not matter if the kinematics of the hourglass are
continuous or discrete. Suppose one grain of sand falls every second.4 We still have
an analog representation. There is no essential difference qua analog representation,

4 Thanks to Felipe De Brigard for this example.
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whether the quantity being represented, or the quantity doing the representing, is
continuous or discrete.

Now, when it comes to analog computation, analog computers often used con-
tinuous representations. However, there are also examples of analog computers that
used discrete (rather than continuous) representations and processes. One simple
example is a discontinuous (i.e. discrete) programmable step function generator:
while still analog, the representations used are not continuous (Maley, forthcoming).
Whereas the received view cannot make sense of what is analog about these analog
computers, the Lewis-Maley view can: they are simply computers that use discrete
analog representations, rather than continuous ones. Although it may sound odd at
first, it is the same principle involved in an analog watch that ticks in discrete steps.
It is still analog in virtue of the fact that it is doing its representing via a physical
magnitude (in this case, the angle of the hands); it does not matter whether the
variation occurs smoothly or in steps. Analog clocks do not turn into digital clocks
when they tick instead of running smoothly.

2.2.2 Digital representation

On the other side of the analog/digital distinction, the received view has it that
digital representation is nothing more than discrete representation. Lewis and Maley
have argued that, while it is true that digital representations are necessarily discrete,
this is not their defining feature. Instead, digital representation essentially involves
the representation of the digits of a number—which is just the usual way that we
represent numbers.

In common parlance, “digital” is often taken to be synonymous with “discrete.”
In conjunction with the received view that “analog” is similarly synonymous with
“continuous,” taking digital representation to be nothing more than discrete repre-
sentation offers a clean and simple way of carving the space of representational types:
the analog/digital distinction is the distinction between discrete and continuous rep-
resentation, mutually exclusive and jointly exhaustive. However, just as there is more
to analog representation than continuity, there is more to digital representation than
discreteness.

As was the case for analog representation, the account of digital representation
most useful for our purposes here, which include understanding computation, was
originally suggested by Lewis (1971), then further defended by Maley (2011). On
this view, digital representation is representation of a number by its digits, where
digits are understood as numerals in specific places; as mentioned above, this is, in
fact, the way we typically represent numbers.5 Thus, the digital representation of the
number five hundred twenty five and three tenths is the four-digit (plus one decimal
point6) sequence “525.3”, which has the value

(5× 102) + (2× 101) + (5× 100) + (3× 10−1) = 500 + 20 + 5 + .3 = 525.3

5 The fact that this kind of representation is so common makes pointing out its peculiarities
difficult at times. Johnstone (2006, 1) said it best: “It is, after all, the familiar that is so
strange.”

6 The use of ellipses in the expressions that follow obscures the decimal point; however, the
decimal point is necessary for the digital representation of rational and real numbers.
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More generally, for base b and digits dk . . . d0.d−1 . . . d−m, where each digit dj ∈
{0, 1, . . . (b−1)}, the digital representation “dkdk−1 . . . d0.d−1 . . . d−m” has the value

(dk × bk) + (dk−1 × bk−1) + . . .+ (d0 × b0) + (d−1 × b−1) + . . . (d−m × b−m)

Note that in order to represent rational and real numbers (and for the decimal point
to be meaningful), the base b must be two or larger.

Why is this particular way of understanding “digital” useful for understanding
computation? Simply because contemporary digital computers are not only discrete,
but digital in exactly the sense just articulated. Data and instructions in digital com-
puters are not just strings of discrete symbols, but strings of discrete symbols that
represent numbers in the usual binary way. Manipulations of these representations
depend crucially on interpreting them as numbers, with more and less significant dig-
its. For example, different computer architectures use different “endianness,” which
is the order in which bytes are stored. Big-endian computers store bytes much the
way we write digital representations of numbers: the most-significant element comes
first (i.e. the leftmost element), and the least-significant element comes last (i.e.
rightmost). Little-endian computers are the reverse, similar to how we could write
numbers with the most-significant digit on the right. This choice is arbitrary, and
for uninteresting historical reasons, different computers use different conventions.
However, within any particular computer, knowing which digit counts as the most
significant is crucial.7

In marked contrast to the received view, characterizing analog and digital rep-
resentation in this way results in a view according to which these two types are not
jointly exhaustive: they do not carve the entire space of possible representations into
two clean sectors. For example, symbols such as π and words such as “desk” are
neither analog nor digital, even though each is discrete in a straightforward way.
Furthermore, many non-representational yet continuous phenomena are not analog,
such as liquids or electric current. One could, of course, use quantities of liquid or
current as analog representations (as they are in real-world examples of analog com-
puters). But keeping “continuous” and “analog” distinct avoids confusing things that
really are representations for things that are not.

2.3 First- and second-order representation

Proponents of the received view would agree with the assertion that analog and dig-
ital representation are fundamentally different (after all, continuity and discreteness
are mutually exclusive). I mentioned above that this view is not correct, however,
because of the discrete analog representations found in analog computers. There is a
deeper distinction between analog and digital representation that needs to be made
clear: analog representation is a kind of first-order representation (i.e. the repre-
sentation of the magnitude of a number by physical magnitudes), whereas digital
representation is a kind of second-order representation (i.e. the numerical represen-
tation of a number by its digits, which themselves are individually represented by
variations in the values of a physical property). There is much to unpack here, but
doing so will help us understand precisely how analog and digital representation and

7 Maley (2011) goes into much more detail about why digital computers are digital on this
understanding of the term.
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computation differ (as well as what the received view of the analog/digital distinction
misses).

Consider the example of a four-bit analog-to-digital converter, adapted from sec-
tion 4.1 of (Maley, forthcoming), shown in Figure 2. This converter has one input
and four outputs, and its job is to convert an analog representation of a number into
the digital representation of the same number (all within the context of an electronic
computer). In this example, we are converting an analog representation of the num-
ber seven into its binary digital representation. Although I am using the example
of a converter here, the point of the example is simply to illustrate the difference
between analog and digital representations side-by-side. Also, this is decidedly not a
Marrian analysis; that point will be important later.

7 v

0 v

5 v

5 v

5 v

7

0

1

1

1

Fig. 2 Left: Physical characterization of input and output lines. Right: What those physical
values represent. Note that this is not a Marrian-level analysis.

On the left side of Figure 2, this device is characterized only in terms of its
physical inputs and outputs. When the input is seven volts, then the first (top) input
will be zero volts, then the next three will each be five volts. Characterized purely
physically, this device maps single voltages to patterns (i.e. ordered quadruples, or
sequences) of voltages.

On the right side of Figure 2, this device is characterized in terms of what the
voltages represent. The input—the analog representation—represents the number
seven (by seven volts). As for the outputs, each one represents either the numeral 0
(by zero volts) or 1 (by five volts); thus, the four outputs, taken together, represent
the sequence “0111.”

Importantly, whereas the analog representation requires no further interpreta-
tion, the digital representation does. The sequence “0111” per se is not what we
want to represent; rather, this sequence is a sequence of numerals in specific places
(i.e. digits). Furthermore, given that we already stipulated that this is a binary
analog-to-digital converter, and given the assumption that we know which digit is
the most-significant (i.e. the left-most), we know that the correct interpretation of
this sequence of digits is (1× 22) + (1× 21) + (1× 20) = 4 + 2 + 1 = 7.

Now, exactly how this device converts the analog representation to the digital
representation does not matter here. This example is only meant to show that ana-
log and digital representations do their representational work in very different ways.
Given a number X, an analog representation of X is a representation of the magni-
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tude of X via the magnitude of some physical magnitude. A digital representation
of X, on the other hand, is a representation of the digits of X, where those digits,
in turn, are represented via distinguishable values of a physical property.

This point can be put in a different way. Whatever numbers themselves are, they
are, in some sense or another, abstract. Thus, one cannot really manipulate numbers
at all, except indirectly via concrete representations of them. One way to represent
them is to represent their magnitude, and one way to represent their magnitudes is
with other magnitudes. However, because we are talking about concrete representa-
tion, we must represent the magnitudes of numbers with physical magnitudes. And
a straightforward way to represent magnitudes with physical magnitudes is to use
a homomorphism between the represented magnitude and the representing physical
magnitude. This gives us analog representation where, as mentioned above, an in-
crease (or decrease) in the relevant physical magnitude (e.g. the height of the liquid
in the thermometer) represents an increase (or decrease) in the magnitude being
represented.

Another way to represent numbers is to represent them by their digits.8 In this
case, sets of physical properties represent sequences of digits, where those digits, in
turn, represent the number. I say “physical properties” instead of “physical mag-
nitudes” because, unlike analog representation, digital representation only requires
distinguishable differences in some property or another, and there need not be a
homomorphic relationship between the numerals represented and what is doing the
representing. One could represent the decimal (base-10) digits of a number using
arbitrarily-assigned colored squares for each numeral, for example.

There are many others ways that numbers can be (and have been) represented,
such as purely conventional symbols like π and e, or the use of cumulative systems
like Roman numerals; analog and digital representation are far from the only games
in town (Chrisomalis (2020) provides a fascinating history and analysis of a variety
of such systems). However, analog and digital representation (properly understood)
are the most relevant for understanding the role of representation in information
processing systems, so we will not consider other schemes here.

In summary, analog representation is a kind of first-order representation: a phys-
ical property (in this case a magnitude) represents the magnitude of a number.
Digital representation, on the other hand, is a kind of second-order representation: a
physical property (not necessarily a magnitude, but some property with distinguish-
able values) represents numerals, and the numerals, interpreted in the right way (i.e.
according to their order and the base), then represent a number.

So much for getting the relevant background concepts on the table. Let us now
turn to why it was important to do so.

8 There is, of course, one way in which the digits of numbers do represent their magnitude,
albeit in a rather different way than what concerns us here. This is hinted at in the way that we
interpret the digits of a number: the leftmost digit is the most significant, the rightmost is the
least significant, and each numeral has a different interpretation, depending on which digital
place it is in. However, for our purposes, we will set this complexity aside, simply because it
will take us too far away from the main thesis of this essay.
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3 Analog Physicality and the Marrian Collapse

The idea that I propose here is that, when it comes to analog computational systems
(which relies on analog representation), Marr’s levels must be applied in an amended
form such that the representational/algorithmic level (RAL) and implementational
level (IL) collapse into a single level. This may be interesting in its own right, but
is particularly important for cognitive science and neuroscience, simply because (as
I will argue in the next section) it is more likely that neural systems are analog
computational systems, rather than digital (Maley, 2018). First though, we will look
in more detail why analog representation and representation requires reference to the
implementing medium (and is thus medium-dependent, contra accepted views about
the necessity of medium-independence for computation (e.g. Chapter 2 of(Piccinini,
2020))), leading to the Marrian collapse.

3.1 Analog physicality

Characterizing analog representation qua representation depends upon the physical
details of the system that implements those representations in a way that digital
representation does not. This is due to the fact that, with respect to their physical
implementation, analog representations are what I above called first-order, whereas
digital representations (and non-analog representations more generally) are second-
order. The idea I develop here is that analog representation simply cannot be sep-
arated from its physical implementation in the way that digital representation can.
Thus, in terms of the Marrian framework, the RAL and the IL are not separable.

Consider the following initial value problem (a differential equation with initial
conditions, adapted from (Peterson, 1967, p. 36), cited in (Maley, forthcoming)):

y = x′′ + 3x′ + 16x; y = −80

x′(0) = −0.64; x(0) = 2

An electronic differential analyzer (EDA), one of the oft-used components in
many electronic analog computers, can be set up or programmed to solve this system.
Doing so requires that we arrange certain electronic components in a way that reflects
the mathematical structure of this system. In this example, shown in Figure 3, we
have an adder (triangle with

∑
), two integrators (triangles with

∫
), a sign inverter

(triangle with −), and two multipliers (circles with ×).
Notice that this seems to be an IL diagram: the inputs and outputs are all volt-

ages, and the adder, integrator, and inverter are all electrical components. We could,
of course, examine these implementational level elements at a higher resolution: a
single integrator, for example, is itself composed of several individual electrical com-
ponents. But that would only be increasing the resolution of what is already an
analysis at the IL.

Now, given this IL analysis, what does this same set of components look like in a
RAL analysis? Much like the example illustrated in Figure 2, it might seem that we
only need to remove the voltage signs for the variables, because the number of volts
represents the magnitude of the value of the variables. Given the initial condition that
y = −80, we represent the value −80 by −80 volts; similarly for the other variables
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Fig. 3 Electronic analog computer schematic.

and their values.9 As for the individual components, what they represent is given by
their names. The integrator (the component with the

∫
) represents integration, the

adder represents addition, and so on.
However, this is not quite right. Remember that at the RAL, we do not find

what is represented; that is for the CL. Instead, at the RAL, we find what does the
representing. While it is true that −80 volts represents the value −80, −80 is not a
representation: it is the thing represented! So what exactly are the representations
of the RAL in this system?

If we attend closely, it is not quite correct to say that is an IL characterization of
this analog computer. Instead, this example is a hybrid representational/algorithmic/
implementational level characterization (which is very often the case when it comes to
these kinds of analog computer diagrams). Strictly speaking, addition and integration
are mathematical operations, not defined on physical quantities. Strictly speaking,
it does not make sense to apply a mathematical operation (addition) to a physical
property, such as the voltage level of a particular circuit element. However, we also
have a clear idea of what the physical interpretation of addition must be when applied
to voltages: it requires producing an electrical potential of (x+ y) volts when given
two separate electrical potentials x and y as input. Similarly, the “multiplication” of
two voltages with potentials x volts and y volts produces a voltage of (x× y) volts.

This is another point worth belaboring. The ways that we map mathematical
operations to physical operations is often commonplace, which obscures some inter-
esting facts about them.10 For many physical phenomena, the mapping is more-or-
less obvious. In the case of length, “addition” amounts to physical concatenation:
“adding” two lengths just is the operation of putting one length next to the other.
“Multiplication” amounts to repeated addition of lengths. As such, it makes sense
to say of one length that it is the sum of two others, or that a length is three times
as long as another. For other physical properties, such mappings are less straight-

9 In real electronic analog computers, these values would sometimes need to be scaled by
a linear factor so as to keep the values within reasonable ranges for the machine in question:
dealing with millions of volts may well overload the system, not to mention pose a serious
danger for the operator.
10 A recurring theme!
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forward for certain mathematical operations. Temperatures (in degrees Fahrenheit,
say) can be added in a straightforward way; the temperature difference between 40°
and 35° is the same as the difference between 35° and 30°. However, temperature
does not admit of a straightforward multiplicative operation that can be physically
interpreted. It would be confused, for example, for one to understand 26° as the
temperature one produces when one heats up 2°by a factor of 13: in other words,
26° is not thirteen times as warm as 2°(which itself is not infinitely many times as
warm as 0°). In the electronic analog computer, the voltages used are like length
in that they admit of physical operations that can be straightforwardly mapped to
mathematical operations in the obvious way.11

Going back to the case of the EDA, the multipliers, integrators, and so on all
straddle the line between the IL and the RAL. This is not simply a fluke of this par-
ticular diagram or analysis; this is the defining feature of analog computation and
representation. It is only possible to characterize these components in terms that
are both implementational (i.e. they make essential reference to the relevant phys-
ical properties) and that are representational (i.e. those physical properties are the
very properties that do the representing). These are devices that traffic in electrical
properties, and the particular trafficking they are engaged in is understood in terms
that are already representational.

The point becomes clearer still when we examine the specifically algorithmic as-
pect of an RAL analysis. Consider the operation of definite mathematical integration.
In the case of a digital computer, a particular algorithm would have to be used for the
integration of the relevant function. Examples include a simple piecewise-trapezoidal
approximation, or (more likely) the Runge-Kutta algorithm. Each of these algorithms
gives a numerical approximation to the definite integral of a function f over time
for a given interval.12 Given an initial condition y0 at time t0 with step-size h, the
Runge-Kutta algorithm for the value of yn+1 for each consecutive time-step tn+1 is
given by:

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn + h

k1
2
)

k3 = f(tn +
h

2
, yn + h

k2
2
)

k4 = f(tn + h, yn + hk3)

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

Contrast this with integration that takes place in the analog computer. Here,
integration does not use an algorithm, at least not in anything like the usual sense.
11 In technical terms, voltages and lengths form a ratio scale, whereas temperature only

forms an interval scale (Stevens, 1946). Physically (and roughly) speaking, a length of zero
corresponds to a magnitude of zero, whereas a temperature of zero is arbitrary (hence the
different zero points in the Celsius and Fahrenheit scales). Much more on the metaphysics of
these issues can be found in (Wolff, 2020).
12 The independent variable need not be time, but by convention it is often used in the

explication of these algorithms.
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There is simply the manipulation of the voltages. Of course, this manipulation cor-
responds to the mathematical operation of integration. But the way in which the
component does this operation is not specifiable without reference to the physical
media of the device, namely, voltages in this case. The same point applies to the
other components, such as the multipliers and adders. They all manipulate voltages
in a way that corresponds to a natural mapping between mathematical operations
and physical manipulations (which is, after all, how the components are named).
This is in contrast to the components in a digital computer, where the algorithm
might operate similar to how children sometimes learn to add (and multiply) num-
bers in elementary school: first the least-significant (right-most) digits are added,
then the next-most-significant, etc.

Now, it may be tempting to think that the difference here is one of following
a rule versus acting in accordance with a rule. Specifically, one might think that
the digital computer performs its task by following a rule—in this case, the Runge-
Kutta algorithm for integration, which would be specifically programmed. At the
same time, one might think that the analog computer performs its task by merely
acting in accordance with a rule: there is no rule that the analog computer is following
explicitly, although what it happens to be doing is specifiable by a rule. However,
this thought misses exactly what is happening in the analog case. It is not just that
the analog computer is merely acting in accordance with a rule, like the Runge-Kutta
algorithm: there is no rule at all. Instead, there is just a physical transformation that
can be straightforwardly mapped to a mathematical operation, and mathematical
operations are not rules (even though that is how we very frequently perform those
operations).

The reason for this difference is that digital representation abstracts away from
its physical implementation, whereas analog representation takes advantage of it es-
sentially; we began to see this point in Section 2.3. Put another way, digital represen-
tation is medium-independent, whereas analog representation is medium-dependent.
In the digital case, the numbers are represented via a representation of their digits,
thus manipulation of the numbers requires the manipulation of the individual dig-
its. But in the analog case, numbers are represented via a representation of their
magnitudes, and manipulation of the numbers requires directly manipulating those
magnitudes. Different physical media will use different physical manipulations, even
if those manipulations can be mapped onto the same mathematical transformations.
An electronic analog adder, for example, could work by adding its voltages by having
its elements in a series: it is a physical law that voltages in a series are such that
the total voltage is the sum of the individual elements. A mechanical analog adder,
however, could work by an arrangement of spur and differential gears, where the
rotation of an output shaft is the sum of the rotations of input shafts. Again, these
are not algorithms, much less different algorithms: they are simply different physical
manipulations onto which the same mathematical operation can be mapped. Let us
look at these differences more closely, and how they support the Marrian collapse
thesis.

3.2 Collapsing the Representational/Algorithmic and the Implementational Levels

Given the considerations from the previous section, it may seem tempting to say that
analog computers do not have anything that would correspond to an RAL analysis
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at all, which, in turn, would be to deny that they have or manipulate representa-
tions. However, I argued earlier that they do have representations of a specific kind:
analog representations. Thus, it is not quite correct to say that they lack an RAL
altogether. Instead, the RAL and the IL are one and the same when it comes to
analog computers. We began to see what that means in the previous section, so here
we will approach this view from another angle.

In a typical Marrian analysis, the IL and the RAL are taken to be independent.
This is clear in the case of digital computers. One can understand, explain, and create
the electrical circuitry of a digital computer (or whatever the physical substrate of the
implementation happens to be) without any consideration of the possible programs
that will be run on that hardware. Alternatively, one can understand, explain, and
create complex software programs without any consideration of the hardware that
those programs will run on. In short, there is a hardware level (the IL), there is a
software (the RAL), there is a task level (the CL), and they are all independent from
one another.13

This independence, however, should be not overstated; the levels constrain and
influence one another, albeit loosely. The IL must have the right kinds of elements
and properties to implement the elements of the RAL level. A digital system typically
uses binary representations, for example, so it must have IL elements that can vary
along some dimension in a way that allows for two distinct states. Plus, the real-time
performance of a system will be constrained by the speed of the basic operations of
the IL level. Different algorithms implemented in the same hardware will result in
faster performance, but the same algorithm implemented in different hardware can
also result in faster performance. Nevertheless, an analysis at the IL is independent
of one at the RAL level, and the physical elements of the IL are not relevant to
elements of the RAL. Furthermore, CL considerations might constrain the kinds of
representations and algorithms the system uses, given the tasks the system is meant
to perform. If a task requires large lists of numbers, certain data structures will be
used; if it requires the manipulation of large quantities of text, others will be used.
Nevertheless, CL analyses are independent of those at the RAL and IL.

The Marrian analysis of an analog computational system (as well as neural sys-
tems, as I argue in the next section) proceeds differently than that of a digital system.
Before we look at differences, however, let us look at similarities, which can be found
at the CL. Consider a task that requires mathematical integration. Conceptually,
integration is much like calculating the running total of a function over time. For
example, if we can measure the speed of an object as it moves, we can integrate that
speed as the speed changes to determine the object’s overall position. This turns out
to be useful for a great many problems, both in real and artificial systems. Thus,
specifying that mathematical integration is required is an element of a CL. We are
not concerned at the CL with the kind of representations or algorithms used, nor how
they are implemented; we are only concerned with what is represented, the overall
computational task, and the appropriateness of the task and representations.

Things change when we look at the RAL level. As we already saw above, when
it comes to the digital system, we will have to specify that we are using digital
representations, and what particular algorithm to use for integration. Previously, we
used the Runge-Kutta algorithm as an example. However, this algorithm was given

13 Different researchers may want to characterize these levels differently (i.e. hardware, soft-
ware, and task), but that is beside the point here.
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in a rather low resolution RAL analysis. That algorithm did not specify how basic
operations like multiplication, division, and addition are accomplished; they were
taken for granted. But we may want a higher-resolution analysis which does specify
how these basic operations are accomplished. For example, it was mentioned that
addition is performed digit-by-digit in a manner nearly identical to how we normally
add numbers by hand. Multiplication and division are more complicated, but again,
they are performed by manipulating the individual digits of the digitally-represented
numbers. Thus, a higher-resolution RAL analysis would include details of how these
operations are performed on the digital representations in question (which will vary
depend on the type of digital representation, such as the number of digits stored,
whether the representation is in base 2, 10, or something else, etc.). And again, this
would still be an RAL analysis because we are not yet concerned with any of the
physical details of the implementing hardware.

As for an analog system, it is the physical properties of the system that do the
representing. We have seen this a couple times now, but the point bears repeating.
Consider again the elements from Figure 3. Here, the voltages represent the values of
this particular system, so the voltages are the representations. As for the algorithmic
aspect of the RAL, we have only treated the integrator as something of a black box,
so let us increase our resolution and look at this component in more detail.

Fig. 4 Electronic integrator, composed of an operational amplifier with feedback between the
output and input.

The electronic integrator produces an output that is a function of the starting
value of the output voltage, the input voltage, and how long the input voltage has
been present. It does this via the feedback loop between the output and the input,
modulated by a capacitor. This design is such that the output voltage just is the
definite integral of the input. The electrical theory of why this is true is beyond
the scope of this paper, but it is a basic consequence of this circuit design and its
elements. Notice that, as before, we did not move to a different Marrian level, but
only looked more closely at the RAL level. As before, the inputs and outputs of this
integrator are still representations.

Finally, let us look at the IL level, first of the digital system. This level includes
the specification of the physical circuitry involved in the implementation of the RAL
elements. For example, increasing the resolution of the RAL results in an analysis
that includes individual AND gates, which produce as output the logical conjunction
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Fig. 5 Left: Digital adder at the representational/algorithmic level. Right: Physical imple-
mentation of the digital adder.

of their two inputs.14 On the left side of Figure 5, we have an RAL analysis of this
component; the inputs and the output (labeled “A,” “B,” and “C”) all take the
numeric value 0 or 1, being the atomic elements (i.e. numerals) of the binary digital
representations the system uses. The right side of Figure 5 shows the IL analysis of
this same component. Here, the inputs and the output (labeled “U,” “V,” and “W”)
are no longer individual numerals, but physical quantities—specifically, voltages that
range from 0 volts to 5 volts. The individual components of the AND gate consists of
resistors and three transistors. The circuit of which this system is a part is designed
such that the circuits are generally bi-stable, meaning that most circuit elements
transition quickly between 0 volts and 5 volts, or from 5 volts to 0 volts. Thus, the
voltages of the implementational-level (0 and 5 volts) map to the numerals of the
representational/algorithmic level (0 and 1).

What does the IL level look like for the analog system? It is exactly the same as
the RAL level. Because the physical properties represent the values of the system in
a first-order manner (as discussed in Section 2.3), the RAL level and the IL level are
the same level. There are no further details that can be added to the RAL level we
just examined. As always, we can look at this level at a higher or lower resolution;
but we would still be looking at the implementational details, which are also the
representational/algorithmic details.

One might object at this point that we are relying too heavily on the particular
details of this analog electronic computer. After all, given the original set of equations
above, we could also design a purely mechanical analog computer that does not rely
on electronic components at all. We could instead use an analog computer like the
MONIAC, which uses fluid flow (Isaac, 2018). Why could we not specify RAL level
more abstract than that given in the circuit diagram of Figure 3, where we simply
have abstract values, rather than voltages in particular? Then, one might think, we
would have an RAL level that is not committed to any particular implementational
details, and thus could be implemented by any one of the different types of analog
computer just mentioned.

The problem with this objection is that it confuses the RAL level with what
the elements of that level represent; a point mentioned earlier. It is true that, for
example, 80volts represents 80. However, if we abstract away from this particular
way of representing 80, then we are simply no longer involved in providing an analysis
at the RAL level. Instead, we have moved to the CL, where the elements are the

14 In a binary digital computer we typically treat the two values as the numerals 0 and
1 instead of the logical values true and false, so strictly speaking the output is not logical
conjunction but Boolean addition. That detail is unnecessary here.



20 Corey J. Maley

things that are represented. Now, to be sure, a CL analysis is agnostic as to what kind
of system is being used or what kinds of representations it is using—we saw earlier
that an analog system and a digital system can have the exact same CL analysis.
Thus it is not surprising that two different types of analog system might have the
same computational-level analysis, too. In any case, an RAL analysis requires a
specification of the representations; in the analog case, that requires specifying the
physical properties that do the representing.

Once again, the reply to this objection is made clearer by looking at the algo-
rithmic aspect of the RAL. Different types of physical processes accomplish trans-
formations on representations in different ways for different types of analog systems.
The way integration is performed in the electronic analog computer is via the oper-
ational amplifier just mentioned. But in a mechanical analog computer, integration
might be performed by a disk integrator, shown in Figure 6 (adapted from Maley
(forthcoming)).

Fig. 6 A mechanical integrator. The left-right displacement of B is the input, and the output
is the running total number of rotations of the connected shaft.

This particular process for integrating a function relies on the physical displace-
ment of the disk B (the input) relative to the center of disk A, which rotates at
a constant speed; the output is the running total number of rotations of the shaft
drive by disk B (see Maley (forthcoming) for details). It does not at all rely on
electronic components, and is unlike the working of the electronic integrator in any
straightforward way (for example, the electronic operational amplifier has a feedback
component, whereas the disk integrator does not). The only thing that unites the
electronic and the mechanical integrators is that they perform mathematical inte-
gration, which is a computational-level specification. Thus, an RAL analysis of a
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mechanical analog computer and an electronic analog computer will have to specify
the different physical properties that are responsible for representations, and the
different physical processes that are responsible for the transformation of those rep-
resentations. However, because all of this necessarily requires reference to physical
properties and processes, this RAL level is also the IL level.

A final point must be made before concluding this section. We should be careful
not to overstate this necessary reference to the physical, however. After all, both of
the integrators—the mechanical and the electronic—can be multiply realized (Pic-
cinini and Maley, 2014; Polger and Shapiro, 2016). In other words, the mechanical
integrator can be made of many solid materials, such as steel, aluminum, or even
oak; the electronic integrator could use many conductive materials, such as copper,
steel, or gold; the MONIAC computer could use different types of fluids. The partic-
ular material does not matter so long as it is able to instantiate the relevant physical
mechanism. To be sure, some may well consider these differences to count as mul-
tiple realizations (e.g. (Aizawa and Gillett, 2009)). However, for our purposes, it is
enough to note that differences in material properties that do not have an effect on
the mechanistic properties of the IL do not count as multiple realizations of com-
putational types. After all, we do not distinguish different types of, say, and AND
logic gate by whether it uses germanium, silicon, or gallium arsenide as its primary
semiconductor material, but by the mechanistic design of the electrical circuit.

4 The Physicality of Neural Representation

So far, I have argued that analog representation and computation is fundamentally
different than digital representation and computation because it uses physical prop-
erties directly (what I called first-order physical representation) as opposed to indi-
rectly (what I called second-order physical representation). Then, I argued that, as a
consequence of this, the Marrian RAL and IL collapse into a single level, but a single
level that is simultaneously representational/algorithmic and implementational (in
other words, it is not the case that either of these Marrian levels is eliminated). In
this section, I will illustrate what this has to do with neural representations. I will
expand on some of the ideas already presented in (Maley, 2018), which argued that
at least some neural computation is best characterized as analog computation in the
sense argued for in this essay. However, I will also show that the idea that Marr’s
RAL and IL collapse into a single level is already present in some recent work in
neuroscience.

One thing worth making explicit at this point is that I do not claim that all
neural processes will (or must) fit into the analog computational framework I have
outlined here. After all, not all research in neuroscience fits into a computational
framework more generally. However, insofar as neuroscientists do understand neural
processes as computational, those computational processes are best understood as
analog, according to the framework offered here. Thus, if one does want to adopt the
Marrian framework, the inseparability of the RAL and IL applies.
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4.1 Neural Coding

Neuroscientists have discovered a number of ways that neurons represent stimuli.
There are more than can be covered here, but I will highlight a few that illustrate
the point of this essay, including rate (or frequency) coding, temporal coding, and
the operation of grid cells.

Rate coding is perhaps the most straightforward way in which neurons represent
stimuli. In this scheme, a neuron generates spikes, or action potentials, at a rate
that is a monotonic function of the intensity of the stimulus; in other words, the
greater the intensity of the stimulus, the more the neuron fires, although “more”
may not strictly linear. One seminal discovery was made by Adrian and Zotterman
(1926), who showed that stretch receptor neurons would increase their firing rate in
response to an increase in the mass attached to their innervated muscle. Another
example is the discovery that certain neurons in the visual cortex fire most rapidly
when presented with visual stimuli rotated at a certain angle (Hubel and Wiesel,
1959). A given neuron will fire most rapidly for stimuli at some fixed angle, and less
rapidly as the stimulus angle differs from that “preferred” angle. Thus, firing rate
decreases monotonically as stimulus angle decreases from the preferred angle.

Since these early studies, many neuroscientists have postulated that a simple
rate code may be too simplistic for many instances of stimulus encoding, so more
sophisticated variations of the idea have been proposed; those details do not concern
us here. What is important is that, in all of these variations, specific physical proper-
ties of neural firing directly represent properties of the relevant stimulus. These are
simply analog representations in the sense articulated earlier: the representation (the
neural process in question) represents what it does (the stimulus) by monotonically
covarying the physical property that does the representing (e.g. the neural firing rate,
or the spike density) with the relevant magnitude of the stimulus (muscle stretch, or
stimulus orientation). There is no intermediate representation independent of these
physical details: the RAL and the IL are the same level.

Temporal coding involves the representation of stimuli via differences in the tim-
ing between spikes. In some organisms, a temporal code is used to determine the
location of a sound relative to the head. This is represented via the difference in
the time it takes for neural spikes generated by one ear to reach a nucleus than for
neural spikes generated by the other ear. Roughly speaking, a sound that is closer
to say, the left ear, will generate spikes within the left ear sooner than spikes will be
generated by the right ear, simply because the right ear is farther from the sound
source. Thus, the nuclei compute angle of the sound via the temporal difference be-
tween the spikes, relative to the head. These representations are often done via a
combination of individual coincidence-detection neurons and their precise physical
location relative to one another; again, the details do not matter here, but one ex-
ample of this kind of representation is found in (van Hemmen, 2006). Again, this
representation is a straightforward monotonic one: larger inter-spike differences rep-
resent larger differences in arrival times, which then represent larger relative angles
of the source sound.

Finally, grid cells are an example of an altogether different—yet still clearly
analog—method of neural representation. Neurons in the entorhinal cortex, arranged
in a triangular grid-like manner, fire according to where the organism is located in
space (Moser et al., 2014). This part of the cortex thus creates a map in a quite
literal sense: as the organism moves in a particular direction, neurons will fire in
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succession along that direction. Figuratively, we can think of the entorhinal cortex
as a pixellated map, where the individual pixels are the firings of individual neurons.
Although the neurons themselves do not move, successive firings of neighboring neu-
rons represent movement (much the way that nothing on an LED screen literally
moves, but movement is suggested by patterns of stationary pixels turning on and
off). This pattern of firing, due to the structural layout of the entorhinal cortex,
represents the organism’s movement, direction, and speed, all via the same general
analog representational scheme we have encountered above: the physical properties of
the neurons and their activity directly represent the relevant features of the stimuli.

These are all examples of types of neural representation that fit into the analog
representational and computational scheme, and also demonstrate how this scheme
collapses the two Marrian levels we have been discussing. I take this to provide
some evidence for the plausibility of the thesis of this article. Next, however, I will
turn to somewhat more direct evidence, showing that when neuroscientists explicitly
invoke the Marrian framework, they often seem to have in mind exactly the collapse
I articulated above.

4.2 Neuroscientists on Marr

The first example comes from a recent paper by Barack and Krakauer (2021). The
thesis of this paper is to argue for the benefit of they call a Hopfieldian approach over
a Sherringtonian approach to understanding cognition. While interesting, of more
interest for present purposes is their view of the Marrian levels involved in analyzing
each of these approaches. Regarding the Sherringtonian approach, the authors state:

At the implementational level, the Sherringtonian view describes, in bio-
physical and physiological terms, the neurons and connections that realize
a cognitive phenomenon. These descriptions include specific neural transfer
functions: the transformations performed by single neurons over their inputs,
typically in the dendritic tree or the axonal hillock…At the algorithmic level,
the Sherringtonian view appeals to computations performed by networks of
nodes with weighted connections between them. In the brain, these nodes are
neurons and these connections are synapses. The neurons perform dedicated
computational transformations over signals received from other neurons in
the network. Explanations of cognition are described in terms of information
intake by individual cells, transformation of that information via neural trans-
fer functions and then output to other cells. (Barack and Krakauer, 2021, p.
361).

Note that the description of the implementational and algorithmic levels are nearly
identical. This is not to point out any flaws in their characterization: rather, this is
a common way of thinking about how Marr’s levels apply to neural processes. They
make a similar point regarding what they call the Hopfieldian approach:

Implementationally, massed activity of neurons is described by a neural space
that has a low-dimensional representational manifold embedded within it.
These neural spaces may be comprised of neural ensembles, brain regions, or
distributed representations across the brain. These representations and trans-
formations are realized by the aggregate action of neurons or their subcompo-
nents, but explanations of cognition do not need to include a biophysiologi-
cal description of neurons or their detailed interconnections…Algorithmically,
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Hopfieldian computation consists of representational spaces as the basic en-
tity and movement within these spaces or transformations from one space
to another as the basic operations. The representations are basins of attrac-
tion in a state space implemented by neural entities (be they single neurons,
neural populations or other neurophysiological entities) but agnostic to im-
plementational details. (Barack and Krakauer, 2021, p. 363).

Again, both the IL and the RAL level are described as composed of representational
spaces, which are abstractions from single or multiple neurons. And again, I take
this to be a feature of this kind of investigation, and not a bug. Despite the authors’
separation in their description, in both cases the Marrian IL and RAL levels are one
and the same.

Another example comes from (Grill-Spector and Weiner, 2014), in which the
authors explicitly adopt the Marrian framework in order to characterize current
understanding of the human ventral temporal cortex (VTC). The authors do not
describe the RAL and the IL levels in the same terms in the manner of Barack
and Krakauer (2021); rather, they characterize the RAL as an abstraction of the
implementational level. Before getting into the details of what that means, let us see
what they say.

In their discussion of the RAL level of the VTC, the authors describe that there
are:

Two types of category representations are evident in the VTC: clustered re-
gions that respond more strongly to stimuli of one category as compared to
stimuli of other categories (which we refer to as category-selective regions)
and distributed representations, that is, neural patterns of responses across
the VTC that are common to exemplars of a category. (Grill-Spector and
Weiner, 2014, p. 539)

These regions, which have been investigated primarily via fMRI, are then discussed
in further detail, which include analyses of their similarities, as well as a discussion of
how the stimuli that result in certain patterns of VTC activity can be manipulated
(via contrast, or orientation, for example) to result in similar activity patterns.

Interestingly, their discussion of the IL focuses on results about even finer-grained
areas of the VTC, again investigated by fMRI. They present evidence of the precise
locations in VTC where particular category representation activation occurs. Thus,
what (Grill-Spector and Weiner, 2014) characterize as the implementational level is
merely a higher-resolution analysis of their RAL level. This is not a bad thing, but
it is a thing worth pointing out. The representational properties (i.e. activation of
certain regions) is an abstraction of the physical properties (i.e. neural firings) of the
implementational level. And by “abstraction,” I mean the technical philosophical
explication mentioned above: in order to understand certain complex phenomena, it
is sometimes necessary to leave out particular details in order to focus on others.
But again, abstraction is not implementation.

In both of these instances, the descriptions given by the authors supports the
thesis I have argued for here: instead of the RAL and IL being cleanly separable, there
is a single representational/algorithmic/implementational level. Of course, analyses
at that level can happen with higher and lower resolution. However, as articulated
in Section 2.1, analyses at different resolutions take place within a single Marrian
level: zooming in does not give you an implementation-level analysis, and zooming
out does not give you a computational-level analysis.
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5 Conclusion

Analog computation and representation—properly understood—show that Marr’s
representational/algorithmic and implementational levels collapse into a single rep-
resentational/algorithmic/implementational level. Insofar as neural systems are ana-
log systems, Marr’s levels apply to them only in this collapsed form. The view of
neural systems as analog is implicit in how neuroscientists understand neural repre-
sentation, and the view that the representational/algorithmic levels are not distinct
from the implementation is implicit in how they appeal to Marr’s levels.

To be clear, I do not claim that every investigative project in neuroscience will
neatly fit into the Marrian framework in the first place. Perhaps a level schemata
other than Marr’s is better suited for certain research. Furthermore, the entire notion
of a “level,” if taken seriously, may be misguided: perhaps there are simply different
explanatory projects that do not have a leveled structure at all (Potochnik and
Sanches de Oliveira, 2020). But if the Marrian framework is applicable to neural
systems, it may only be so in the collapsed form articulated here.

Although I have focused on Marr’s levels for the purposes of exposition, the
collapse involved in analog computational systems generalizes beyond the particu-
larities of the Marrian framework. More generally, when we are clear about the kinds
of representations used by neural systems, and clear about the kinds of computations
performed on those representation, we may often find that there is no clear distinc-
tion between the implementational and representational properties of those systems.
This is not to say that it is incorrect or misleading to think of neural systems as
representational or computational: we simply need to acknowledge the legitimacy of
analog representation and computation.

Acknowledgements Thanks to Bryce Huebner, Angela Potochnik, Sarah Robins, and an
anonymous reviewer for very helpful comments and feedback on drafts of this paper.
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