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Abstract

The Received View of particles in quantum mechanics is that they are indis-
tinguishable entities within their kinds and that, as a consequence, they are
not individuals in the metaphysical sense and self-identity does not meaning-
fully apply to them. Nevertheless cardinality does apply, in that one can have
n > 1 such particles. A number of authors have recently argued that this
cluster of claims is internally contradictory: roughly, that having more than
one such particle requires that the concepts of distinctness and identity must
apply after all. A common thread here is that the notion of identity is too fun-
damental to forego in any metaphysical account. I argue that this argument
fails. I then argue that the failure of individuality and identity applies also
to macroscopic physical objects, that the problems cannot be constrained to
apply only within the microscopic realm.

In the mid-1920s it was discovered that statistical ensembles of bosons and fermi-
ons obey a different statistics than that which Boltzmann had found for classical
ensembles, with the implication that these bosons and fermions were indistinguish-
able entities within their kinds. This was then fine-tuned by the discovery of the
Pauli exclusion principle in 1925. Pauli’s original formulation of the principle
was then supplanted in 1926 by Heisenberg and Dirac, independently, with the
statement that the state space for bosons was a symmetric tensor space and that
of fermions was an antisymmetric space. From this the Pauli exclusion principle
follows (Dirac (1926)). 1 Despite this one can have a number of such particles,
fermions and bosons — for example two, three, or n , indistinguishable electrons,
or n indistinguishable photons. This is often called the Received View of quantum

1 For fermions this means that the many-particle wave function is antisymmetric in the exchange
of the spin-spatial coordinates for any pair of particles. ‘An antisymmetrical eigenfunction vanishes
identically when two of the electrons are in the same orbit. This means that in the solution of the
problem with antisymmetrical eigenfunctions there can be no stationary states with two or more
electrons in the same orbit, which is just Pauli’s exclusion principle.’ Dirac (1926) 669-70.
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mechanics (henceforth QM), or, within physics, the orthodox view. 2 But if one can
have indistinguishable particles that are not numerically the same, then the Leib-
niz principle of the identity of indiscernibles (henceforth PII) cannot apply to them
and, it is argued, the particles are not ‘individuals’. ‘Self-identity’ seems then also
to be in doubt, for if PII is not available to guarantee self-identity, by sameness of
properties, then what can guarantee it? (Haecceities can’t guarantee it unless we
can independently guarantee that haecceities exist. 3)

We can summarise the main aspects of the Received View in the following
claims:

1. Particles within their kinds are indistinguishable entities.

2. One can have n such particles, i.e. a collection of them can have a cardinality.

3. They cannot be enumerated, i.e. paired with ordinals, since that would con-
tradict 1. For the same reason they cannot be given distinct labels. This can
be put in general terms: there can be no bijection from any sequence of n
ordinals to n indistinguishable particles.

From the Received View the claim that they are not individuals and do not have
self-identity is claimed to follow.

The Received View was first articulated by Hermann Weyl in his 1930 work
Gruppentheorie und Quantenmechanik, translated as Weyl (1931), with additional
ideas presented in Weyl (1949). In particular it was Weyl who first showed how
to fully decompose a tensor space into ‘representation spaces’ such as the sym-
metric and antisymmetric spaces (see Heathcote (2020)). The next most import-
ant contribution was made by Schrödinger in his (1950), (1952). Since then the
Received View has been defended and discussed by many: for example Parker-
Rhodes (1981), Toraldo di Francia (1975), Dalla Chiara (1985), van Fraassen
(1991), Dieks (2020), and many others. 4 But central to any such discussion must
be that of Stephen French and Décio Krause, in particular French and Krause
(2006) and (2010). 5 The view of particle indistinguishability in the technical part

2 It has to be stressed that this aspect of QM is independent of interpretational issues. It was
not deduced from ideas about ‘superposition’, or entanglement, which came later, contra a remark in
Lowe (1998).

3 If it is to be a property of a quantum system what Hermitean operator is there to measure it?
What are its eigenstates?

4 See also Dieks and Versteegh (2008), Dalla Chiara and Toraldo di Francia (1995) and Heathcote
(2020).

5 Strictly speaking French and Krause hold to an underdetermination thesis in (2006), but sub-
sequent publications of Krause suggest a firmer adherence to the Received View. I don’t follow them
in this underdetermination thesis. My defence here concerns the Received View.
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of French and Krause (2006) was mostly focussed on finding a set of alternate
mathematical tools for understanding indistinguishable entities, particularly the use
of multisets (see Blizzard (1989)), an idea which had been sketched by Weyl as a
notion of aggregates (for bosons) and monomial aggregates (for fermions) in his
(1949). 6 (Krause has adapted these to his purpose and has called the resulting
entities quasi-sets.) However, as the title of their book makes clear their overall
focus is on the idea of identity in QM. Since indistinguishability renders Leibniz’s
PII inapplicable there is no property that these particles have that can serve as a
basis for any self-identity. In contrast, for French and Krause the situation for clas-
sical individuals — tables, chairs, people — was very different: for these things
distinguishability, Leibniz’s PII, and thus self-identity were taken to hold. They
say:

. . . the existence of the individual and the establishment of self-identity
are conceptually on a par in that we cannot envisage the possibility of
one without the other. An individual is thus conceptually tied to its
identity with itself in a manner in which it is not with other relations
(and it is for this reason, perhaps, that identity is dismissed as unprob-
lematic). (French and Krause (2006) p.14)

Their account of the Received View therefore sets up a two-sorted ontology of
objects with a sharp difference between quantum non-individuals and macroscopic
objects, with only the latter treated in line with orthodox metaphysics.

Here two problems loom for the Received View. One goes back to the three
characteristics listed earlier: surely, someone might say — and several philosoph-
ers have said — the Received View involves a contradiction, for if one can have
n such particles then surely they must be different from one another and also not
different from themselves, and thus identical with themselves. This argument has
been made by Dorato and Morganti (2013) and Berto (2017). If this argument is
right then the Received View collapses.

The second argument also focusses on the issue of self-identity: identity, it is
claimed, is a fundamental concept and it must apply to everything, i.e. it must be
universal. Its fundamentality is seen in that it cannot be defined in any terms that
don’t involve itself. Its universality is held to be contained in the very notion of an
entity. Moreover self-identity requires the unity of the object, in some sense, and
where is unity better exemplified than in elementary particles, which are by defini-
tion indivisible? As a corollary we might ask: how does it happen that macroscopic

6 Such monomials had appeared earlier in Weyl (1931) ch IV. These monomials are such that the
exponents are integers mod 2, i.e. occupation numbers are either 1 or 0. It is in this sense that, as
Weyl says, they encapsulate the Pauli exclusion principle. See Weyl (1949) p. 247.
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objects that are both individuals and have self-identity, are composed entirely of
particles that are not individuals, according to French and Krause, and that lack
self-identity? Surely if the macroscopic objects are individuals then so should be
what constitutes them; or conversely, if each and every constituent particle is not an
individual and lacks self-identity then so should the whole. Using a combination
of these claims one can form an argument to the effect that elementary particles
must be individuals and must have self-identity.

Thus there are now a number of papers that push back against the Received
View, in particular Dorato and Morganti (2013), Jantzen (2011) (2017), Bueno
(2014), and Berto (2017). A unifying theme of these criticisms is the importance
of the concept of identity. As Otávio Bueno puts it: ‘Identity is arguably one of
the most fundamental concepts in metaphysics.’ And concludes ‘ . . . it is very
difficult to see how one can avoid it’ (Bueno (2014) p. 41). And this is because
identity is an essential condition of individuality. Identity it is said, is required to
characterise an individual: nothing can be an individual unless it has well-specified
identity conditions (see Lowe (1998) ch. 3 for an extended defence of this view).
Here I will be mostly, but not exclusively, concerned with arguments in the last of
these papers, Berto (2017), which has so far not received attention. 7

A general worry with these criticisms is that, to a large extent, they are plainly
directed against a theory in which elementary particles are assumed to be individu-
als — as on the Received View they are not. One suspicion must be that these
authors are unconvinced by the arguments for the Received View and think that
a little reminder of the ‘importance of identity’ will be enough to restore us to
a healthy metaphysics. But if this is so for a good numbers of authors then it
suggests that something has gone wrong in the articulation and defence of the Re-
ceived View to leave so many unconvinced. I attempt to rectify this problem in §3.
A second purpose here is to extend aspects of the Received View to macroscopic
objects, using additional features of quantum mechanics. Thus, I claim, people,
tables, chairs, planets, are not individuals and also lack self-identity. This was
once an accepted metaphysical position (for example it was held by F. H. Bradley
in his (1916)), but has not been heard much lately. We might call this the extended
Received View. For those who are already alarmed by the Received View this will
be an unwelcome turn, but I hope that it will come to be seen as a solution to a
great many problems about identity that have long looked hopeless. At the very
least a gauntlet is thereby thrown down.

7 Much of my argument will also apply to that in Dorati and Morganti (2013). There is a com-
prehensive response to Bueno (2014) in Krause and Arenhart (2018b). There is a different line of
argument against the Received View in the work of Simon Saunders and Fred Muller, either sep-
arately or together, but I’ve discussed their view elsewhere, as have many others, and so will only
briefly touch on it here.

4



To avoid confusion, I should note that I am not arguing for a closely related
position, namely that the binary concept of Identity is fully eliminable from our
metaphysics. This has been argued recently in Wehmeier (2012) (2014) with a
reply by Trueman (2014). This is not the position I am seeking to defend. 8 I am
happy to agree that a two-place predicate is definable in model theory and that it
can be given the properties that are characteristic of our notion of identity. I am
also happy to agree that identity claims are rife in mathematics and mathematical
physics and even in that part of QM that pertains to particle indistinguishability.
But acknowledging this does not entail that everything is an individual and has
self-identity, and it is the latter that I deny.

I start by examining the claim that the concept of identity is both fundamental
and universal. Then I move onto the idea that there must be a contradiction between
the claim of the indistinguishability of elementary particles and the assertion that
one can nevertheless have some number of them. In the course of this it is neces-
sary to confront the idea that problems with referring to elementary particles can
be overcome using the idea of arbitrary reference contained in Breckenridge and
Magidor (2012). I then set out the reasons for extending the Received View to
macroscopic objects.

1. UNIVERSALITY AND CARDINALITY

Let us consider the claim of the universality of self-identity, a view to which many
philosophers appear to subscribe. One can get no more trenchant statement of the
view than the following from Colin McGinn. ‘What I want to suggest now is that
identity has a universality and basicness that is hard to overstate; concepts don’t get
more basic than this — or more indispensable. Every object (or any other entity
— property, function, you name it) is self-identical; identity is not a relation an
entity can fail to stand in to something.’ McGinn (2000) p. 9–10. And then also
‘The law of identity is banality itself: “everything is identical to itself”, or “for all
x , x = x”.’ Many of those who oppose the notion of indistinguishability share
this idea. For example: ‘Whatever a is, “a = a” has been taken as a trivial truth
if there is any’ (Berto (2017) p. 1). And on the question as to what a thing is,
he quotes van Inwagen: ‘An object is anything that can be the value of a variable,
that is, anything we can talk about using pronouns, that is, anything (Van Inwagen
2002, 180)’.

We have then the claim that self-identity applies to everything — thus, presum-
ably, waves, elementary particles, sets, and quantities. But a problem immediately

8 There are additional reasons why this dispute is tangential to my present concerns. Wehmeier
treats self-identity as unproblematic — his focus is on the eliminability of the binary relation of
identity.
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suggests itself: the extension of the self-identity predicate would then be a set that
includes all things, and since there is no restriction placed on what a thing is, it
would have to be a set that contains all sets. So the predicate of self-identity would
have as its extension a universal set, a set of all sets. This is impossible.

A way around this problem, called plural quantification, has been described by
George Boolos (Boolos (1984) (1985a) (1985b)), Richard Cartwright (Cartwright
(1994) (2001)), and Timothy Williamson (Williamson (2003)). 9 On this view
quantifiers can range over everything, without giving rise to paradox. What is re-
quired is that the predicate ‘non-self-membered’ not have an extension that is a set.
As Cartwright put it, also reminding us that this was Russell’s own first reaction to
his paradox :

There is no set that has as members all and only those things that are
not members of themselves. But the things that are not members of
themselves can simultaneously be the values of the variables of a first-
order language . . . (Cartwright (1994) p. 3)

and Boolos:

We cannot always pass from a predicate to an extension of a predicate,
a set of things satisfying a predicate. We can, however, always pass to
the things satisfying the predicate (if there is at least one), and there-
fore we cannot always pass from the things to a set of them. (Boolos
(1985b))

This is a view that appears to be held by Berto as well for he says ‘So understood,
terms like “object” or “thing” stand for blanket notions: they provide no restriction
to our quantifiers. Every x is such that, if x is a thing, then x is F ” means nothing
more and nothing less than “Every x is F ”.’ (Berto (2017) p. 4)

Let us then allow that we can have our quantifiers range over everything; can
we say of everything that it is self-identical? Well we can take the previous quotes
to be the answer: the predicate ‘is self-identical’ cannot determine a set of self-
identical things, though there may be things satisfying the predicate. On the plur-
alist view of quantification we are already saying this of ‘is non-self-membered’
and ‘is quantifiable over’. However, once we break the connection between a plur-
ality and that plurality as determining the membership of a set we also break the

9 A large literature has grown up on plural quantification, as can be seen from the collection Rayo
and Uzquiano (2006) and the references given therein. An early criticism of the idea is Linnebo
(2003). The more recent Linnebo and Rayo (2012) gives a guide to further issues. The Stanford
Encyclopaedia entry on Plural Quantification was updated in 2017. My thanks to a reader of the
journal for suggesting the inclusion of this issue.

6



connection between the plurality and cardinality as a bijective function on that set
to the cardinal numbers.

But the connection between cardinality and self-identity (or individuation) is
precisely what is at issue in the arguments of Berto (2017) and Dorato and Morganti
(2013) against the Received View. These authors hold that if we have a plurality of
entities that are countable (i.e. have a cardinality > 1) then they must be different
from one another, i.e. non-identical. Here is the argument as expressed in Berto
(2017):

That a sentence of the form “a = b” is true, under this reading
of “=”, means that we need to count one thing: the thing named “a”,
which happens to be the thing named “b” (flag again the naming issue,
to be addressed below). That we, instead, count two things, means that
that sentence is false. But then its negation, “¬ (a = b)”, is true. So
a and b are different. And if the concept of difference meaningfully
applies to a and b , the one of identity does as well. “a = b” is mean-
ingful together with its negation: adding or removing a negation in
front of such a meaningful sentence cannot turn it into a meaningless
one. The concept of identity cannot but apply to whatever the concept
of difference applies to: if — to use Ryle’s jargon — we have no cat-
egory mistake in the latter case, we have no such mistake in the former.
(Berto (2017) p. 10)

Clearly most of the work here is done in the first sentence, and in most of the paper
this is what I will be focussing on, in particular the use of names in the argument.

We can find a similar argument in Dorato and Morganti, but without using
names, instead relying on Saunders’ use of Quine’s weak discernibility relation.
They say: ‘Quantum particles can and should be regarded as primitively individu-
ated, simply because they are countable at the level of the formalism (a fact used in
the extant proofs of their weak discernibility) . . . ’ (Dorato and Morganti (2013)
p. 606). So, in short, countability implies primitive individuation, via weak dis-
cernibility. 10

Here I will put an argument to show that weak discernibility fails when one at-
tempts to apply it to quantum particles, fermions or bosons. 11 Here is the statement
of weak discernibility:

10 A referee has argued that Dorato and Morganti’s ‘can and should’ should be taken in a prag-
matic sense. Since I confess I don’t know how to do this consistent with Weyl’s argument I leave it
to the judgement of the reader.

11 I’ve given this argument elsewhere (Heathcote 2021) and applied it also to Black’s spheres.
Here I focus on its application to quantum particles.
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W-D Two objects are weakly discernible in L if they satisfy an irreflexive L -
formula in two free variables. (Saunders (2006) p. 57)

The problem comes when we look at how satisfaction is intended to work in this
case. Since this comes from Quine we may use the most recent of Quine’s defin-
itions of satisfaction, in Quine (1986). Open sentences are satisfied by infinite
sequences s of objects drawn from the domain. 12 Since weak discernibility is a
dyadic relation we only need be concerned with ordered pairs: the sequence can
be continued indefinitely just by repeating the second item in the sequence, as
recommended by Quine (Quine (1986) p. 38). His favoured way of construct-
ing such sequences from sets is to take singleton sets of objects from the domain,
paired with ordinals. Thus ‘Fxy ’ is satisfied by pairs < x, y > which are the sets
{{{x}, 1}, {{y}, 2}} (Quine (1986) 36 ff). Thus, again following Quine, if the
predicate ‘F’ is to be understood as conquered, the open sentence ‘Fxy ’ is satis-
fied by the ordered pair < Caesar,Gaul >, where the latter is to be understood as
{{{Caesar}, 1}, {{Gaul}, 2}}. Of course the sequence is to consist of the things
themselves, not the names of those things, since it would be nonsense to say that
‘Caesar’ conquered ‘Gaul’.

But now how are we to apply this to electrons or photons? If we could form
the needed ordered pairs then the elements of the domain would be absolutely dis-
tinguishable, since we would then have a bijection from the particles to the first
two ordinals. Indeed if there were such a bijection then these could be taken to be
names: as in electron1 and electron2. But if this were the case then the particles
would be absolutely discernible, not merely weakly discernible — as per point (3)
of the Received View on p. 2 above. The relation of weak discernibility can only
be applied to entities that are absolutely discernible — and in fact this will apply
also to Black’s spheres. Satisfaction is in this case not an easy thing to get. Thus
the argument given by Saunders (and also Muller and Saunders (2008), Muller and
Seevinck (2009) and Muller (2015)) which Dorato and Morganti rely on is unavail-
able to them. Particles that are in a singlet state and anticorrelated cannot have this
anticorrelation interpreted as a relation between two ‘weakly discernible’ particles.
There is nothing intrinsic in the non-product quantum state that is a ‘relation’, any
more than there is something intrinsic in the state that is a property. 13 (This is in

12 It should be noted that the argument to follow does not depend on the details of the translation
of the sequence into set theory. It is the pairing with ordinals that is the crux. Also the details of
the satisfaction of open sentences does not change in moving to plural quantification. See Boolos
(1985).

13 The idea that there is a property ‘behind the veil’ of the quantum state is what we know of as a
hidden variable theory; it seems that those who are trying to think of relations as lying contained in
the quantum state are engaged in an extension of this same project. In QM relations get inferred from
the probability statistics of the actions of Hermitian operators acting on spatially separated systems.
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line with previous criticisms in Dieks and Versteegh (2008), van Fraassen (2007),
van Fraassen and Peschard (2008), and Bigaj (2015) among others.)

We may wonder if we can somehow bypass the formalities of satisfaction, at
least in the non-quantal case of Black’s spheres. Ladyman’s (2007a), Ladyman and
Ross (2007b), use of basic unlabelled graphs to represent a symmetric, irreflexive
relation may suggest such a way. If we say that there is a sphere that bears an
irreflexive symmetric relation to something, then we can immediately infer from
this that there must be more than one thing: since no thing can bear an irreflexive
relation to itself. How many things may be so related? All we know is that it is
two or more; we cannot infer that it is limited to just two. Elsewhere it is argued
(Heathcote 2020) that there can be up to four Black spheres — arranged in space in
a tetrahedral formation (a Platonic solid) — with the same distance between them
all. Five would be impossible. In this case a 4-graph (unlabelled nodes) suggests
itself. However, this use of graph theory simply assumes the existence of relations
— for which see Dipert (1997) — and it is not clear that it is adding anything by
way of logically perspicuous explanatory content to the quantum description, nor
that it can be added consistently to that formalism. (This takes us into considera-
tions of structuralism that are best dealt with separately: see Heathcote (2013) for
some initial reactions.)

What about Berto’s argument, which by-passes weak discernibility and goes
straight to a claim of non-identity? As an implication we might summarise it as

Countability −→ non-identity.

We can agree that if we are dealing with individuals contained in a set, that the
implication is very plausible. Being a little abstract about naming we could even
take the name of any element of a set to be the singleton containing it, given the
well-foundedness of the set. Then a set that has a cardinality of 3 has three in-
dividuals named by the singletons containing the three elements. Then the claim
about non-identity will follow trivially.

But what if the entities are not individuals, and so are not elements of a set?
Absent such a relation between cardinality and naming the argument cannot get off
the ground. So the assertion of the implication is baseless and question-begging.
The main problem, of course, is that if we are concerned with indistinguishable
entities that we cannot apply labels to them, for labelling requires a bijection, as

Post-measurement descriptions of what has become a product state cannot be read back into the pre-
measurement non-product states. Since all we have in QM are states of composites, it is very hard
to see where this definite relation might lie. If one wants to base one’s metaphysics on relations then
there are some high hurdles in QM yet to clear. The issue of entanglement is discussed again in
section 4.
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we saw on p. 2 (based on French and Krause (2006) ch. 5). But Berto does just
this.

Of course we might wonder if Berto has not forestalled this response with
his claim (made in the first sentence of the quoted passage) that he will resolve
this naming issue, invoking the argument of the paper Breckenridge and Magidor
(2012). Since that paper contains an audacious view on the use of some names,
and since it hasn’t hitherto been brought into this debate, it is worth seeing how it
might figure in the case in question.

2. ARBRITRARY REFERENCE

Arbitrary reference is needed, it is claimed, in instantial reasoning involving univer-
sal and existential generalisation. The theory that Breckenridge and Magidor offer
is that when we say: ‘let “Jean” designate an arbitrary person’ we may conclude
something about all people: say that they are mortal, or have a DNA autosome. In
instantial reasoning the name is used to pick out an arbitrary object of the domain,
but which object is picked out, we do not know. So we have no idea who ‘Jean’ is.
(It is worth noting at the outset that Breckenridge and Magidor are working within
conventional first order logic, so issues of plural quantification do no enter in.)

Note that when we are dealing with instantial reasoning the things to be named
are members of a domain and so we already have an assurance, given that they are
thus members of a set, that we are dealing with individuals, and therefore that these
individuals are able to receive names. In the case of ‘Jean’ it is assumed that the
domain consists of persons, or in the following case, that it contains numbers.

What, for example, does ‘n’ refer to following the stipulation that n
be an arbitrary number? In this paper, we argue that ‘n’ refers to a
number — an ordinary, particular number such as 58 or 2,345,043.
Which one? We do not and cannot know, because the reference of ‘n’
is fixed arbitrarily. (Breckenridge and Magidor (2012) p. 378.)

One might protest that there is a semantic oddity here: if the reference of ‘n’ is
arbitrary then how can it also be said to be fixed? What is it fixed by? Aren’t these
contradictory characteristics? And also note that we ‘cannot know’, thus it is im-
possible to know, which number has been so referred to, indicating that whatever
means there are for fixing a reference on an arbitrary object it can have no features
that are able to be consciously or unconsciously deployed by us, no intentional-
ity. Furthermore, note that in the case of ‘n’ denoting an arbitrary number, the
reference-mechanism, whatever that might be, has an infinite number of natural
numbers to choose from. We may begin to wonder if ‘reference’ is the right name
for this relation. (If you aren’t impressed with it choosing from a countable set of
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numbers then just switch the example to the real numbers.) Also, with the arbit-
rary reference idea we can never know whether we have referred to the same thing
twice, or whether we haven’t. So any statement of the form ‘a = b’, with a and
b arbitrary names, could never be known to be true or false. These are problems,
but, with the exception of the last, not problems I am essentially concerned with
here. For the sake of the argument I am prepared to go along with the central cases
that Breckenridge and Magidor cover. The issue I want to focus on is whether their
account, even if it is able to do what they want it to do in standard cases, is able to
apply names to arbitrary indistinguishable particles such as are held to exist in the
Received View.

In fact Breckenridge and Magidor do briefly discuss the issue of indiscernible
entities in a closing section of their paper (§3.2) as Berto notes. 14 But though they
mention elementary particles in a footnote (fn 44) their account is only applied to
two cases: Max Black’s two iron spheres, and the two imaginary roots of x2+1 =
0. Let us take the second case first. The issues are much easier for them here as
these roots are conjugate to one another. So we can arbitrarily name one of the
roots i and this will, at the same time, ensure that the other root is −i — because
of their conjugate character we must have i + (−i) = 0. So in this case we
can say that we have named the two roots simultaneously, in a single act. So we
could call it arbitrary pair-reference. We don’t have to worry in this case whether
we can name the imaginary roots because we have long done so — all the while
acknowledging that which of the roots was said to be positive is entirely arbitrary.
Even God couldn’t say which one is really the positive root! 15

Score one, we might say, for Breckenridge and Magidor.
For a less abstract example that makes for a harder case imagine a ball set

spinning on a table. There are two points on the ball that are not in motion, which
we call the poles. If we want to arbitrarily name one of the poles ‘+’ then we
can, but we have no reason to name the other pole ‘−’ at the same time, because
they are not ‘opposites’ in the way the conjugate roots were. Of course the other
pole must exist if the first one does, but one is not the additive inverse of the other.
(This completely changes if the poles are also the poles of a magnet — now, once
again, the arbitrary choice of one to be ‘+’ forces the other to be ‘−’.) Note that
in this case the table ‘breaks the symmetry’ of this situation: one pole is touching
the table, the other isn’t. So in this case when we arbitrarily name one pole it is

14 He says: ‘Arbitrary reference so understood, as Breckenridge and Magidor (2012, 398) high-
light, is especially suitable to explain what goes on when we refer to indiscernible objects.’ Berto
(2017) p. 18. This rather exaggerates what Breckenridge and Magidor claim.

15 The fact that we can and do name the roots, albeit in an arbitrary fashion, as positive and
negative, suggests that Ladyman’s idea in Ladyman (2007) of representing then by an unlabelled
irreflexive symmetric graph must be open to doubt.
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distinguished — though we can’t know how it is distinguished — from the other
by an extrinsic fact: contact or not with the table. If it were spinning alone in
empty space there would be no such symmetry breaking and the case would be
more difficult: ‘north’ and ‘south’ would then simply be arbitrary names.

Now let’s consider the Max Black case of the two iron spheres, from Black
(1952).

Suppose we choose the name ‘iron-one’ to denote an arbitrary sphere. Fine, but
how can we denote the other sphere? Remember we don’t and can’t know which
sphere was picked out by our first act of arbitrary reference. So we can’t know
which is the ‘other’ sphere, and we cannot refer to it either. A second act of issuing
an arbitrary name might be referring again to the sphere we have already named.
We would never know whether it was or not. Of course we might agree that on the
Breckenridge and Magidor theory there is a sphere that is the ‘other’ sphere, but
much good does it do us. And note that if there were three or four such iron spheres
— such as was suggested in the previous section —then even this vestigial use of
‘other’ will fail — and in fact this provides a better analogy with indistinguishable
particles in physics where there is no cap on the number: we aren’t just dealing
with two (for more on this see Heathcote (2021)). The upshot is that even if we
agree that the arbitrary reference to a sphere is a genuine case of reference — and
it is a big if — that we still don’t have the means to guarantee a reference to the
other sphere. Here is their own judgement on this case.

Given AR we can easily explain how we successfully fix the reference
of ‘A’: ‘A’ arbitrary (sic) refers to one of the spheres. One might worry,
though, that this is not a particularly impressive achievement on the
part of AR. Why not simply accept that ‘A’ does not successfully refer
in this case? (Breckenridge and Magidor (2012) p. 398)

This can be read as an acknowledgement of defeat in this case. (Incidentally the
two spheres case seems to be identical to the case of the two poles of a single sphere
spinning in empty space. 16)

But Max Black’s twin spheres example is not even the most difficult case and it
does not properly capture the scope of the problem of indistinguishable particles —
nor it has to be said, did Black claim that it did (his goal was to show that Leibniz’s
PII was false).

It was Schrödinger who gave the best analogy for the situation with indistin-
guishable particles (Schrödinger (1950)), though it is better known through the use
of it in a book by Mary Hesse (Hesse (1962)).

16 If we accept this then it blocks some of the responses to Black’s case, for example that of
Hacking (1975).
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Suppose one has 100 dollars in the bank and we attempt to use the arbitrary
reference idea to refer to one of these dollars. How will it work? Ordinary reference
seems to get no foothold. I can’t ask which of the $100 is the last that I put in,
which is the one that is the accumulated interest. I cannot ask the bank for details
of the historical trajectory of one of these dollars and how that trajectory might
have intersected with that of another dollar. All of this would make no sense. So
it is natural to ask whether the arbitrary reference idea has any applicability in this
case. Remember that arbitrary reference was meant to attach — by some means,
never specified — to a particular thing in the domain, a particular natural number,
person, etc, even though we can’t know which one. But the idea of a ‘particular
dollar’ looks very dubious in the current situation. A dollar in the bank is not like
a person, a finite set of sets, or like one number in an infinity of numbers. A dollar
in the bank lacks individuality: identity conditions don’t obtain. If the bank robs
me at midnight of my entire $100 but repents and replaces it with $100 at 12.01
then I have the same now as I lost. There is no difference. It would be absurd to
protest ‘But where is my $100?’ Neither self-identity nor individuality exist here,
so arbitrary reference doesn’t work either.

Of course this example shows in addition, contra Berto’s central claim, that
one can have a number of indistinguishable entities — that is that they can have
a cardinality (there are, after all, 100 dollars) even if no ordinality, for there is no
way that we can count them in the ordinal sense while they are simply dollars in a
bank. (Of course we can count bank notes, but that represents the dollars by entities
that are not indistinguishable.) We can (following Schrödinger) model the idea of
bosons by thinking of different accounts, let us say five, at the same bank. Then
if we have a thousand dollars there are many ways those thousand dollars can be
distributed over the five accounts — while the dollars so distributed are otherwise
indistinguishable: they are simply occupation numbers for the accounts/states.

The case of the money in the bank makes for a good analogy with bosons,
but is not correct for fermions since it does not incorporate the Pauli exclusion
principle. 17 Schrödinger gave an analogy for fermions in his (1950) that does so.
We give this as a final example. Suppose we have a newly-founded chess club that
has 10 vacancies, all of the same kind. These vacancies, or better said, positions
in the club, can be filled only by a person not already a club member. No one can
join twice. If Mary joins the club she fills one of these vacancies, but then she
is not eligible to fill another vacancy — and this is the crux of the matter, all of
the positions are indistinguishable. It makes no sense to think of vacancies being
rearranged, or of Mary as having filled one vacancy as opposed to some other, or

17 Hesse claimed that it did in Hesse’s (1962), and this was a mistake. Unfortunately many have
followed her lead. But Schrödinger had gotten the matter right in his (1950).
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of her moving from one vacancy to another: if she’s in, she’s in. It is because of
this that we have an analogy with the Pauli exclusion principle, in the form that
Pauli formulated in 1925, in that Mary is only able to join the club once. Only one
vacancy can be filled by any person. 18. Note that in this analogy to fermions it is
the positions that correspond to the particles; the people represent the states. As
already noted: the particles are indistinguishable and so are the club positions: it
makes no sense to think of vacancies as being swapped, interchanged or permuted;
it makes no sense to count the vacancies by ordinals, as in the 4th and the 9th —
and yet they have a cardinality: there are 10 vacancies. Here it is in Schrödinger’s
own words:

The example may seem odd and inverted. One might think, “Why
cannot the people be the electrons and various clubs [this should be
‘vacancies in clubs’] their states? That would be so much more nat-
ural.” The physicist regrets, but he cannot oblige. And this is just
the salient point: the actual statistical behaviour of electrons cannot
be illustrated by any simile that represents them by identifiable things.
That is why it follows from their actual statistical behaviour that they
are not identifiable things. Schrödinger (1950) p. 207

A logic of such vacancies would be a logic of particles. 19 Are the vacancies able to
be arbitrarily named, as per the theory of Breckenridge and Magidor? No, the posi-
tions are indistinguishable and so can’t be named at all, let alone arbitrarily named.
The Breckenridge and Magidor position may have some plausibility in the case of
individuals in a set-theoretic domain but it can get no purchase on indistinguish-
able particles. As Schrödinger said in 1961: ‘The fact that the individual particle
is not a well-defined permanent object of determinable identity or individuality is
probably admitted by most theoreticians just as they admit the reasons described
here for the complete inadequacy of the representation.’ (1961) p. 62.

If, after this digression, we return to Berto’s argument cited on p. 7 — with its
reliance on the arbitrary names idea of Breckenridge and Magidor — we can see
that it breaks down at the first step: the naming of an indistinguishable entity. The
claim made by Berto (and also Dorato and Morganti) that there can’t be entities
that are indistinguishable which yet have a cardinality has been shown to be false.

Thus far we have dealt only in analogies to indistinguishable particles in QM
—but this only takes us so far. In the next section we confront the problem by
giving a direct argument.

18 It would not be difficult to adapt this to the antisymmetric subspace idea of Dirac and Weyl.
19 Can a single vacancy be a vacancy for two clubs — say a maths club, that has to have one

member in the chess club? In other words an intersection of members and vacancies? I see no reason
why not.
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3. THE ARGUMENT FOR INDISTINGUISHABILITY

In Weyl (1931) we find the following paragraph: (I’ve given a more technical dis-
cussion of this paragraph and how it fits into Weyl’s larger discussion in Heathcote
(2020). But the main point can be made quite simply and it is worth doing so.)

The only characteristic numbers associated with the system space
{R2} are those of the type E1 + E2 , each of which appears exactly
once, but the sub-space [R2] has simple characteristic numbers of
the type 2E1 in addition to these. Hence if Nature decides in favour
of {R2} both individuals can never be simultaneously in the same
quantum state with energy E1 — assuming this energy level for the
individual system is non-degenerate. That E1 + E2 occurs only once
in {R2} and only once in [R2] means : the possibility that one of the
identical twins Mike and Ike is in the quantum state E1 and the other in
the quantum state E2 does not include two differentiable cases which
are permuted on permuting Mike and Ike; it is impossible for either of
these individuals to retain his identity so that one of them will always
be able to say “I’m Mike” and the other “I’m Ike”. Even in principle
one cannot demand an alibi of an electron! In this way the Leibnizian
principle of coincidentia indiscernibilium holds in quantum mechan-
ics. (Weyl (1931) p. 241.)

This requires some explanation. The full Hilbert space for two particles is denoted
as R2 . But as noted at the beginning of this paper we are only interested in two
sub-spaces, the symmetric, for bosons, denoted here as [R2] , and the antisym-
metric, for fermions, denoted {R2} . Weyl has simplified the discussion to the
eigenvalues of only one operator, the energy. (The phrase ‘characteristic numbers’
in the above passage is due to the translator: it means eigenvalues.) The crucial
point is stated in the opening sentence: the only energy eigenvalues for a pair of
electrons in a Helium atom would be of the kind E1 + E2 . If we were looking at the
eigenvalues for a pair of bosons, however, we would have the possibility of them
both being in the same eigenstate with eigenvalues given as 2E1, or 2E2. But for
electrons this is not possible. Thus there are more eigenvalues available to bosons,
more possibilities. For fermions in {R2} there is here only one possibility: the
eigenvalue sum E1 + E2 , and it ‘appears exactly once’. So there is only one way
of realising this eigenvalue: one electron must be in E1 and the other in E2. This
represents the only possibility. There are not two copies of the eigenvalue sum, as
there was in the unreduced space R2 : one configuration with the individuals in
one set of eigenstates and another with them permuted. There are not two copies
of the eigenvalue sum E1 + E2 that electrons could be permuted in, and thus they
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are indistinguishable particles: an electron is in E1 another is in E2. The same
argument applies to bosons in [R2] , since E1 + E2 appears in [R2] just once, they
also are indistinguishable. Two possibilities have been collapsed to one, mean-
ing that the particles are not distinguishable. This is what Weyl means in saying
that ‘In this way the Leibnizian principle of coincidentia indiscernibilium holds in
quantum mechanics.’ It holds not of the electrons themselves, but of the available
eigenstates and eigenvalues, the possibilities: two have been collapsed to one.

When French and Krause quoted this paragraph they truncated it severely so
that it began mid-sentence and didn’t include the final sentence. It was quoted as:

. . . the possibility that one of the identical twins Mike and Ike is
in the quantum state E1 and the other in the quantum state E2 does
not include two differentiable cases which are permuted on permuting
Mike and Ike; it is impossible for either of these individuals to retain
his identity so that one of them will always be able to say “I’m Mike”
and the other “I’m Ike”. Even in principle one cannot demand an alibi
of an electron! (French and Krause (2006) p. 105) 20

This misses out the crucial point that the eigenvalue sum E1 + E2 only appears
once — and it gives the impression that the central argument is something to do
with permuting Ike and Mike — rather than the impossibility of doing this when
they are electrons! 21 It also creates a mystery as to why Weyl says that the Leibniz
principle is maintained — a point that appears to have created a second level of
confusion (see Heathcote (2020)). French and Krause focus their attention on what
Weyl says later in Weyl (1949), which, though important, does not give an argu-
ment for indistinguishability. Thus French and Krause (2006) contains no coherent
argument for indistinguishability.

The reduction to the antisymmetric space implies the Pauli exclusion principle
(the converse implication does not hold). If we confine ourselves just to pure states
then the states of any system, fermion or boson, are distinguishable: states are dis-
tinguishable even though particles are not (as Schrödinger and Weyl emphasised).

It is worth noting also, since our subject here is identity, that the antisymmetry
that determines the fermion space is itself an identity:

ψ(i j) = −ψ(j i).
20 Berto (2017) p. 4 gives the same truncated quote but introduces five punctuation errors into the

quotation, which further serve to distort the meaning.
21 In the German the names were Hans and Karl. This was changed to Mike and Ike by the

translator after a popular cartoon by Rube Goldberg ‘Mike and Ike (They look alike)’. In 1927 this
cartoon was turned into a number of feature films starting with Dancing Fools — ironically starring
two actors who did not look alike! This change ensured that the idea would be conveyed to audiences
in 1930’s America.
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Thus there is no immediate prospect of getting rid of identity relations.

4. ORDINARY OBJECTS

Can we now go further? What about ordinary middle-sized objects: tables, chairs,
people, galaxies? Do they have self-identity? The first thing to say is that one moral
from a century of discussions on identity, Theseus’ ship, disagreements about con-
stitution as identity, etc, is that such objects appear to have no precise identity
conditions. We don’t really know where person A ends and the environment for
A begins; we don’t know where or when A turns into not-A. Is the air inhaled and
exhaled a part of A ? What about the many trillions of neutrinos that pass through
the body every second? What about the cells that die and are passed out of the
body? Which of those, if any, are part of A ? Similar problems exist for inanimate
objects.

Quantum mechanics tells us that objects, or the small parts of objects, will
be entangled with their environments with which they have interacted. What is
the object and what is the environment? Is there a meaningful difference? The
identity of indiscernibles will not really help here, since we first have to answer the
question as to what are A ’s properties, which is precisely the problem. Suppose
we bypass all of these questions and simply agree for the sake of argument that
identity for ordinary middle-sized objects — the objects that we call classical — is
not determinate. In fact, Breckenridge and Magidor attempt to apply their theory
to objects that are indeterminate, namely those that are vague. So can their view be
made to work here? According to them arbitrary reference resolves the vagueness
of whether something is tall in an arbitrary way by simply picking an arbitrary
height and labelling it as ‘tall’. As they say :

Consider the predicate ‘tall’ and the range of admissible precisfica-
tions for it. The proposal is that ‘tall’ had its reference fixed arbitrarily
to one of these properties. This means, that ‘tall’ refers to a partic-
ular sharp property (so it does not make for any failures of classical
logic). But the fact that we do not and cannot know which property
‘tall’ denotes has nothing in particular to do with vagueness: it has to
do with the ignorance associated with applications of AR more gener-
ally . . . (Breckenridge and Magidor (2012) p. 399)

Of course this suggestion faces problems. For example the height arbitrarily picked
out may be a height that no one would regard as tall, such as the Planck length. But
since we can’t know what height has been picked we may let this pass. Suppose
that we attempt to apply this solution to the problem of the vagueness of middle-
sized objects: where do I end and where does not-me begin? Suppose that that
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is arbitrarily fixed in the way we’ve already seen. We can’t know what has been
precisely fixed as me, either spatially or temporally, but, apart from this, does it
give us all we need? Well suppose that arbitrary reference is used a second time,
by someone else, or by the ‘same’ person (and we quickly pass over the problem
that this induces) at another time or place, so as to form a sentence of the kind
‘a = b’ : is such a sentence true or false? Well we can’t actually know, because
we can’t know what precisifications have been induced by either of these invoca-
tions of arbitrary reference. But if we reckon the possible precisifications to have
the cardinality of the continuum then the probability of the precisification asso-
ciated with ‘a’ and the precisification associated with ‘b’ coinciding would be 0
— because the set in the event space has measure 0. So statements of the form
‘a = b’ will have a probability of 0 of being true. One precisification of what is
me will have zero probability of coinciding with another precisification of what is
me. This applies both synchronically and diachronically — and it applies also to
any other middle-sized objects.

But before we move on it is worth looking at the application of the Arbitrary
Reference idea to the Geach-Unger Problem of the Many (Unger’s term, from Un-
ger (1980)). 22

The argument was put succinctly in Geach (1980) and at length in Unger (1979)
and (1980). The argument, in Geach’s version, concerns a cat, Tibbles, and 1,000
of his hairs. Let c be the name for the ‘largest continuous mass of feline tissue on
the mat’, and let hn be the name for the n-th hair of the 1000. Let cn be the proper
part of c , namely c − hn; repeat for each of the 1,000 hairs. He reasons:

Moreover, fuzzy as the concept cat may be, it is clear that not only is
c a cat, but also any part cn is a cat: cn would clearly be a cat were
the hair hn to be plucked out, and we cannot reasonably suppose that
plucking out a hair generates a cat, so cn must already have been a cat.
So, contrary to our story, there was not just one cat called “Tibbles”
sitting on the mat; there were at least 1,001 sitting there! Geach (1980)
p. 215

Of course Geach takes that conclusion to be absurd. So what to say instead? The
right thing to say, he says, is that there is one cat on the mat, but many continuous
lumps of feline tissue. “Tibbles” is a name for the cat. He says: ‘Everything falls
into place if we realize that the number of cats on the mat is the number of different
cats on the mat; and c13 and c279 and c are not three different cats, they are one
and the same cat. Though none of these 1,001 lumps of feline tissue is the same
lump of feline tissue as another, each is the same cat as any other; . . . ’

22 This application was not considered in Breckenridge and Magidor (2012). My thanks to a
reader for the journal for suggesting the inclusion of this work.
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Unger has a very different response to this kind of problem. For him the con-
clusion must be that there is either no cat on the mat (nor any mat), or that there
are a myriad of cats on a myriad of mats. He inclines to the first of these solutions,
which he calls Parmenidean. If one inclines to the standard view that neither of
these are true and that there is only one cat he suggests that one has to come up
with a selection principle.

A selection principle, one that is both applicable and correct, will
single out, or select, from among the entities in a situation, those that
satisfy a certain description or possess a certain property (or, in partic-
ular, that are of a certain kind). Unger (1980) p. 449.

Unger takes such a selection principle as needing to offer a reason for favouring
one particular candidate (for being the cat, for example). When no such reason
presents itself he declares that there cannot be one thing present: one cat, one
stone, or one cloud. But Breckenridge and Magidor could offer a different kind
of solution: the selection is arbitrary. Arbitrary reference picks out one lump of
continuous feline flesh as Tibbles — or, rather, picks out one particular such lump
by using the name ‘Tibbles’. Someone else may pick out another such lump, plus
or minus this or that hair. In neither case can we know what precisely is picked out.
But both will agree that there is only one cat on the mat. This looks like a distinct
victory for arbitrary reference. 23

But note what it does not give us. It does not, as previously noted, give us the
identities we require for individuality. If I use arbitrary reference at some time t1
to give a referent to the name ‘Tibbles’, then as we saw, a second use at time t2 will
have probability 0 of being the same precisification. And so we will have: Tibbles1
̸= Tibbles2. And we will have the same lack of identity if the first precisification is
done by person A at a given time t1 and a second person B also at t1.

To this it may be objected that we are not interested in a Tibbles subscripted but
simply Tibbles. Surely, it may be said that Tibbles = Tibbles? Surely that is clear?
The problem though is that it is not clear; it is ambiguous depending on what the
precisifications are, since they determine the reference.

What if we stipulate that it is the same precisification? The problem then be-
comes the identity conditions for precisifications. Geach does not provide much of
a guide here but Unger is much more forthcoming and, though Unger avoids math-
ematical terminology, the mathematical idea is clear: for a normal object, such as

23 Unger thinks that the myriad precisifications may lead us to conclude that there are a myriad
of cats but overlooks the fact that no given precisification would have it that there are even two cats
on the mat, let alone many. What is plural (as noted by Geach) are the possible precisifications, not
the cats. The myriad of possible precisifications creates a disjunction of possibilities that can qualify
as the cat, not a conjunctive sum of many cats.
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a cat (or cloud or stone), a precisification is a two dimensional compact surface, an
envelope, that has the ‘object’, and nothing else, as its interior. We might call it a
precisification envelope. 24

The problem is how to make this mesh with quantum mechanics. Can we have
a compact surface that disconnects the space into an interior and an exterior that is
consistent with what we have seen so far of quantum mechanics?

One problem is the issue of localizability, which arises from the nature of even
a single wave function, its support on the space (the part of the space on which the
function is non-zero), and is connected with the Heisenberg uncertainty relation.
This support can be non-compact (see Hughes (1989) ch. IX for a summary).

But I want to focus on two problem that arise from matters closer to the subject
of this paper: particle indistinguishability and inseparability, or entanglement. The
definition of the latter in its usual formulation is that a mixed state of a composite
quantum system is entangled, or inseparable, if it cannot be written as a convex
combination of product states. (See Bengtsson and Życzkowski (2017) for a mod-
ern account.)

Schrödinger highlighted the entanglement problem with his cat paradox, in
which the cat, the box, and the measurement device become entangled.

As soon as the systems begin to influence each other, the combined
function ceases to be a product and moreover does not again divide
up, after they have again become separated, into factors that can be
assigned individually to the systems. Thus one disposes provisionally
(until the entanglement is resolved by an actual observation) of only a
common description of the two in that space of higher dimension. This
is the reason that knowledge of the individual systems can decline to
the scantiest, even to zero, while knowledge of the combined system
remains continually maximal. Best possible knowledge of a whole
does not include best possible knowledge of its parts — and that is
what keeps coming back to haunt us. (Schrödinger (1935) p. 167)

To put this in the terms of the Geach-Unger precisification: any precisification
envelope that contains the cat must also, in virtue of their inseparability, contain
the apparatus as well. We can then further ask, as Schrödinger doesn’t in this
passage, whether the apparatus is also connected to other elements in the world,
and thus the cat also. The process can be iterated.

Much of the discussion of this issue in the past sixty years has been conducted
with only two entangled particles (i.e. bipartite systems) where the entanglement

24 ‘Compactness’ is a topological term roughly meaning a bounded, closed space. The surface of
a 2-sphere is a good example.
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is limited by the Tsirel’son bound. But the current evidence is that as the num-
ber of particles increases (i.e. multipartite systems) the nature of entanglement be-
comes much more complex and is able to exceed such a bound (Pérez-García et
al (2008)). 25 Moreover, the nature of the entanglement itself can change as the
dimensions of the tensor (Hilbert) space rises. The phenomenon in higher dimen-
sions is called ‘bound entanglement’ (bound as opposed to free, the familiar form):
in this the entangled state cannot be ‘distilled’ to a singlet state — i.e. reducing the
‘noise’ in the state, using local operations and classical communication (LOCC),
does not turn it into the familiar EPR state. 26 An author of the idea says:

However, when we considered more complicated systems [than bi-
partite systems], we obtained surprising results. Paradoxically, nature
subject to a purely mathematical treatment revealed the physical pecu-
liarity of entanglement: namely, that the environment may “pollute”
the pure entanglement in such a way that it will not be possible to
cleanse it with the help of LOCC [local operations and classical com-
munications]. 27 (Horodecki (2010) p. 23)

This implies that we can have mixed states (pure states subject to a noisy environ-
ment) that are entangled but are such that the effect of the noise cannot be reduced
by local means. If a system contains only two qubits then it can be distilled, but
there are 4-qubit states that cannot be. There are 4-qubit systems where the com-
ponents are far from one another such that the entanglement cannot be distilled in
any pair. Thus for more complex systems the effect of the environment cannot be
removed. (For the additional complexity that takes place with just three particles
see Bengtsson and Życzkowski 2017, ch. 17.)

Put in the language of Geach-Unger: there is no precisification envelope that
can go around any component that does not go around all.

We end on the matter that has taken up most of this paper: the indistinguishab-
ility of particles. We have already spent some time on arguments and analogies
here so it is possible to make the point briefly. Suppose we have an electron that is
part of an atom in a body — by which we mean that there is a state of this complex
system that is occupied by an electron. We cannot distinguish this electron from an
electron that occupies a state that is not within the body. It is meaningful to speak

25 Tsirel’son’s bound is equivalent to Grothendieck’s constant used in the paper. The complexity
of multipartite entanglement is well discussed in the review Horodecki et al (2009). This discovery
was initiated by Peres (1996).

26 This notion was introduced in Horodecki et al (1998). See also and Smolin (2001). Bounded
entanglement was confirmed in the laboratory in 2010, see Barreiro et al (2010).

27 They continue: ‘This result astonished the physicists. It transpired that the structure of entan-
glement is not uniform!’
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of there being two electrons, but not meaningful to speak of them as having an
identity, of one as opposed to the other. (To repeat a point already made: the (pure)
states may be spoken of as distinguishable, but not the occupants of the states.)
But then it is meaningless to speak of particular electrons as being part of the body.
Thus there is no precisification envelope that can go around a body that has one
electron on the inside and the other on the outside. If we could do it then we could
tighten the envelope and distinguish the electrons as finely as one likes — but we
already know that this is impossible.

All of this makes the issue of separating any macroscopic object, such as a per-
son, from the environment an impossible task. Neither states nor particles can be
regarded as determining a body as lying entirely within a precisification envelope.
Therefore they cannot be individuated. 28 This failure is a failure of synchronic
identity conditions. But if synchronic identity can’t be made determinate, then it
can’t be determinate across time either, since if an entity is indeterminate at t1 then
whatever it is at t2 cannot be determined to be the same as it was at t1. (This point
was made earlier but it bears repeating.) Thus diachronic identity is indeterminate
as well.

The moral is that individuality is a Procrustean bed for middle-sized objects.
They simply can’t fit it, synchronically or diachronically.

It may seem as though we are on the way to embracing the notion that self-
identity is vague — a view argued against by Evans in his (1978). But this is
not the conclusion that I want to draw. I want to suggest that these middle-sized
objects simply do not have identity conditions, vague or otherwise, and therefore
no self-identity. They are not individuals. 29 This was the view of F. H. Bradley
who said: ‘It is hard to say what, as a matter of fact, is generally understood when
we use the word “thing.” But, whatever that might be, it seems now undermined
and ruined. . . . For a thing to exist it must possess identity ; and identity seems a
possession with a character at best doubtful.’ (Bradley (1916) ch. VIII)

This does not mean that there are no individuals of any kind — and Bradley we
can be sure was only concerned with ordinary middle-sized objects. Whether there
are or not has to be considered for each class of objects. So we may ask: what
might self-identity apply to? Numbers would be a good candidate for things that
are individuals, as would pure sets, anything that can be precisely specified. But a
discussion of this is beyond the scope of this paper. 30

28 For the interaction between entanglement and indistinguishability see Wiseman and Vaccaro
(2003) or Tóth and Gühne (2009). This is an area of ongoing research.

29 There is a persuasive refutation of Evans argument in Lowe (1998). The view I am suggesting
is one of the possible counterarguments that Lowe considers.

30 People are not suitable to be members of sets. As Groucho Marx (almost) said: You wouldn’t
want to be a member of any set that would have you as a member.
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The conclusion we have reached is of a physical world of non-individuals,
both at the micro- and macro- level. Weyl touched on this idea; ‘Hence these
real symmetry operators represent physical quantities of the physical system of f
equivalent individuals, whose total system space is Rf ; quantities of this kind are
unknown in classical physics and cannot be pictured in terms of the usual spatial
and temporal models.’ (Weyl (1931) p. 287 31)

5. CONCLUSION

If x has self-identity, so that x = x is meaningful and true, then x has a property
that no other entity has, namely that of being identical with x . So it is individu-
ated by that property. Thus in a set that includes x there will be the singleton that
contains just x . The singletons are bijectively mapped to their members and so,
in an abstract sense can count as names of those things, thus x is nameable. But
we have presented an argument from Schrödinger that there are entities that are
not individuals (e.g. amounts of money in the bank, positions in a team, quantum
particles) and that therefore do not have self-identity (by contraposition on the
above) and are unnameable. Nevertheless these things can have a cardinality — we
can have 100 dollars in the bank, there can be three vacant positions, two electrons
are in a Helium atom. This is sufficient to show that the mere fact of having a car-
dinality does not imply self-identity or individuality. Therefore Berto’s argument is
refuted. Berto’s argument relied on a naming strategy, described in Breckenridge
and Magidor (2012), and so we were led to consider this theory. We found that
it could not serve the purpose that Berto intends. In fact, as we can see from the
above, nameability implies individuality. Thus Berto’s argument was circular.

That quantum particles are entities lacking self-identity, individuality and name-
ability is called the Received View of Quantum Mechanics. We have extended the
Received View to the macroscopic objects that they make up. Particles are indis-
tinguishable within their kinds, as physicists have maintained for nearly 100 years.
They are not individuals: but in this they take middle-sized objects down with
them.

31 In a footnote to this Weyl cites Dirac’s (1929) paper on many electron systems.
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