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1 Introduction

In 1954, Max Born was awarded the Nobel prize for physics ‘for his fundamen-
tal research in quantum mechanics, especially for his statistical interpretation
of the wavefunction’.1 For the Nobel committee this presumably meant what
by then was the standard reading of the wavefunction: a state of a quantum
system that determines irreducible probabilities for the results of quantum
measurements, as arguably codified in the textbooks by Dirac (1930) and
von Neumann (1932). As the latter explicitly writes in his section on ‘The
statistical interpretation’ (1932, Section III.2, p. 109):

This conception of quantum mechanics, which recognises its statistical state-
ments as the true form of the laws of nature and gives up the principle of
causality, is the so-called statistical interpretation. It was formulated by
M. Born. It is the only interpretation of quantum mechanics consistently
implementable today [...]

Almost the same words recur in the conclusion of a little paper published by
Einstein in 1953 in the Festschrift for Born’s retirement from the University of
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1From https://www.nobelprize.org/prizes/physics/1954/summary/, consulted
13 August 2020.
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Edinburgh: ‘the only interpretation of the Schrödinger equation acceptable so
far is the statistical interpretation given by Born’ (Einstein 1953, pp. 39–40).
What Einstein had in mind, however, was something completely different. In
this paper Einstein took a macroscopic ball (say 1mm in diameter) bouncing
between the walls of a box. Quantum mechanically we can describe it using
a stationary wave, namely an equal-weight superposition of a wave travelling
from left to right and one travelling from right to left. Einstein noted that
this description yields the correct statistics, namely a uniform probability
distribution for the position of the particle in the box, and probability 1/2
each for momentum directed left or right. But it is clearly not a description
of an individual macroscopic ball.2 Hence (Einstein 1953, pp. 39–40):

the only interpretation of the Schrödinger equation acceptable so far is the
statistical interpretation given by Born. This, however, does not yield a
real description of the individual system, but only statistical statements for
ensembles of systems.

Presumably, Einstein was writing tongue-in-cheek, since Born and he heartily
disagreed about the issue of the completeness of quantum mechanics. But
Einstein’s understanding of the term ‘statistical interpretation’ is far closer
to Born’s original ideas as presented in 1926 than what von Neumann and
presumably the Nobel committee understood. As a matter of fact, the ‘statis-
tical interpretation’ underwent radical change in a very short time (1926–27)
– even though this change seems to have been subsequently largely forgotten
(among others by Born himself3).

This chapter will sketch this development. I shall distinguish three phases,
to be discussed respectively in Sections 2–4:

• June–October 1926: Born’s papers on collisions and on the adiabatic
theorem (as well as Dirac’s ‘On the theory of quantum mechanics’);

• October 1926–October 1927: Heisenberg’s and Jordan’s papers on fluc-
tuation phenomena, Dirac’s and Jordan’s transformation theory, Heisen-

2Einstein uses this example also as the basis for his criticism of Bohm’s (1952a,b) theory,
because although in the latter the individual ball does have a position and a momentum,
it is motionless until we open the box: this is not the macroscopic behaviour we wish to
recover. Cf. Myrvold (2003) and Bacciagaluppi (2016a) for discussions.

3See e.g. Beller (1990).
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berg’s uncertainty paper, and Born and Heisenberg’s joint report at the
1927 Solvay conference;

• October–November 1927: von Neumann’s ‘Wahrscheinlichkeitstheoreti-
scher Aufbau der Quantenmechanik’ [‘Probabilistic construction of quan-
tum mechanics’].

As we shall see, it is the first phase that makes intelligible why Einstein
could talk of ‘the statistical interpretation given by Born’ meaning that ψ
is an incomplete description of an individual quantum system. The second
phase is closer to what we now take to be standard quantum mechanics, in
particular with an increased emphasis on the role of measurements. (But
there were marked differences in the understanding of the theory among the
likes of Dirac, Jordan, and Born and Heisenberg.) By the time von Neumann
had finished with it (with Born’s blessing), the ‘statistical theory’ had essen-
tially become what we know from the later textbooks. Von Neumann had
also given a complete characterisation of the statistical ensembles in quan-
tum mechanics, in particular showing that there are no ensembles that are
dispersion-free for all quantum-mechanical quantities.4 This last result ap-
pears to establish that indeterminism in quantum mechanics is irreducible,
and contrasts starkly with what Einstein appears to understand under ‘the
statistical interpretation given by Born’. The final Section 5 will accordingly
review the relation between the statistical interpretation and indeterminism.5

2 Phase I: Born

The immediate background for Born’s introduction of the statistical interpre-
tation was the conflict between matrix mechanics and wave mechanics. As

4That is, for every ensemble there are quantities with a non-trivial distribution of values
(non-zero dispersion).

5This chapter is a much updated version of a lecture given at the 5th Tübingen Summer
School in the History and Philosophy of Science, August 2016. The lecture was itself based
on material in Bacciagaluppi and Valentini (2009) and Bacciagaluppi (2008), to which I
refer the reader for further details, and on my talk on ‘Von Neumann’s no-hidden-variables
theorem (and Hermann’s critique)’, given as a joint LogiCIC/LIRa seminar, University of
Amsterdam, May 2016. When not otherwise noted, all translations are by myself and all
emphases are original.

3



initially developed, the two theories shared some of the same successes, e.g.
the calculation of the hydrogen spectrum (Pauli 1926, Schrödinger 1926).
However, they were far from being ‘equivalent’.6 They also employed two
fundamentally different physical pictures, suggesting in fact the potential for
subsequent empirical disagreement.7

In today’s terminology, the wave mechanical understanding of the wavefunc-
tion ψ was as an ‘ontic state’, e.g. as literally representing a smeared-out
electron. Schrödinger was able to interpret quantisation of energy in terms
of the discreteness of eigenoscillations, and hoped to derive other quantum
phenomena as arising from his continuous and deterministic wave equation.
(For instance, he developed a treatment of radiation phenomena still used
today as a semiclassical approach.8)

The matrix mechanical picture instead assumed that systems were always in
stationary states, and randomly performed quantum jumps between them.9

Matrices described collectively the possible states and the possible transitions
(including selection rules), but there was no object providing a description
of the state of a system. Radiation intensities (transition probabilities) were
determined via correspondence arguments.10

Even its proponents, however, thought that there were open problems within
matrix mechanics. As Born and Heisenberg retrospectively put it in their
Solvay report (Bacciagaluppi and Valentini 2009, p. 383 [translation slightly
amended]):

6See the classic discussion by Muller (1997a,b, 1999).
7Cf. Bacciagaluppi and Valentini (2009, Section 4.6) and Bacciagaluppi and Crull (2021,

Section 3.3).
8Cf. e.g. Bacciagaluppi and Valentini (2009, Section 4.4).
9This is not in fact stated explicitly but has to be read between the lines. The closest to

a smoking gun is presumably Jordan’s derivation of the blackbody fluctuation formula at
the end of the ‘three-man paper’ by Born, Heisenberg and Jordan (1926). There Jordan
uses a Boltzmannian approach, and modifies the Lorentz–Ehrenfest calculation for an
element of a vibrating string. Specifically, he uses matrix variables instead of classical
variables, formally obtaining wave and particle terms in the fluctuation formula. In order
for this to be in fact a fluctuation formula, however, Jordan must believe that each string
element (a part of the system) is jumping between states of different energies. For details,
see Bacciagaluppi, Crull and Maroney (2017). Cf. also Duncan and Janssen (2008).

10It has recently been shown that the problem of intensities had been a driving concern
in the development of matrix mechanics; see the wonderful paper by Blum et al. (2017).
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The most noticeable defect of the original matrix mechanics consists in that
at first it appears to give information not about actual phenomena, but
rather only about possible states and processes. It allows one to calculate
the possible stationary states and processes. It allows one to calculate the
possible stationary states of a system; further it states the nature of the
harmonic oscillation that can manifest itself as a light wave in a quantum
jump. But it says nothing about when a given state is present, or when a
change is to be expected. The reason for this is clear: matrix mechanics deals
only with closed periodic systems, and in these there are indeed no changes.
In order to have true processes, as long as one remains in the domain of
matrix mechanics, one must direct one’s attention to a part of the system;
this is no longer closed and enters into interaction with the rest of the system.
The question is what matrix mechanics can tell us about this.

As discussed by Wessels (1980), aperiodic phenomena had been on Born’s
mind ever since he had started working on modifying Bohr’s theory of the
atom in 1921. In particular, Born and Franck (1925a,b) had written two
papers together on the dynamical interaction between two atoms leading ei-
ther to the atoms forming a molecule or coming apart again in a collision.
This was followed by the first of Born’s papers with Jordan,11 which among
other things contained a section on collisions in which they suggested inves-
tigating asymptotic motions, in particular in the context of the Ramsauer
effect (Born and Jordan 1925a). After the momentous introduction of the
new quantum kinematics by Heisenberg (1925), in their following paper Born
and Jordan (1925b) announced further work on aperiodic phenomena, and
Born noted the difficulties of doing so – involving something like continuous
matrices – in the third section of the ‘three-man paper’ (Born, Heisenberg
and Jordan 1926). His first concrete contribution to the problem was in fact
work with Norbert Wiener on an ‘operator formalism’ that generalised the
matrix formalism. They applied it to the free particle, obtaining in a rather
contrived way something that looked like classical inertial motion (Born and
Wiener 1926a,b).12

Born then turned to use wave mechanics to treat collisions in two fundamen-
tal papers (Born 1926a,b – the first of which was a ‘preliminary communi-
cation’). The scenario treated by Born is the collision between an electron

11Jordan was originally one of Franck’s assistants, with whom he co-authored the article
on scattering for the Handbuch der Physik (Franck and Jordan 1926).

12See also Bacciagaluppi and Valentini (2009, Section 3.4) and Bacciagaluppi (2008,
Section 2.2).
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initially described by a plane wave (i.e. a stationary state) and an atom ini-
tially also in a stationary state. Born determined the asymptotic behaviour
of the combined system solving the time-independent Schrödinger equation
by perturbative methods. For the case of an inelastic collision, the result is
what one now calls an entangled wavefunction that is the superposition of
a series of stationary states of the atom and a continuum of outgoing plane
waves. Born thought that these components must clearly be the possible
final states after the collision, and he identified the (mod-squared) expan-
sion coefficients as the corresponding probabilities.13 Since the initial state
is a stationary state of the atom and a ‘uniform rectilinear motion [sic]’ of
the electron, these probabilities are also equal to the transition probabilities,
i.e. the probabilities for quantum jumps from the initial state to one of the
possible final states.14 As also first emphasised by Wessels (1980),15 in these
papers Born’s ‘statistical interpretation’ concerns exclusively the distribution
of the stationary states of the atom and of the free electron.

Importantly, the corresponding probabilities are not probabilities for ‘finding’
a system in a certain stationary state upon measurement: the atom and
the electron (at least when the interaction is completed) are assumed to
be in a stationary state. Thus, in line with Einstein’s understanding, the
Schrödinger wavefunction is not a complete description of a physical system,
because in general it does not specify the actual state of a system. Note that
nowhere in these papers does Born use the word ‘state’ to refer to anything
but a stationary state. On the other hand, a description in terms of the
actual stationary states need not be causally complete. Indeed, Born himself
considers it plausible that the transition probabilities are an expression of

13The correct expression appears in the preliminary communication only in a footnote
added in proof. Presumably independently, Dirac (1926, Section 5) also identified squared
amplitudes in the energy basis expansion (the sum of which he noted was conserved) as
the frequencies of the various stationary states in an ensemble. The problem treated by
Dirac was that of an atom subject to an external perturbation, in particular an exter-
nal electromagnetic field, and he rederived the Einstein coefficients in a special case (cf.
Darrigol 1992, p. 333).

14For details, see e.g. Wessels (1980), Beller (1990) and Bacciagaluppi and Valentini
(2009, Section 3.4).

15About earlier work she notes: ‘Hund (1967, pp. 56–157) and Konno (1978, pp. 141–
144) provide the only historical accounts of Born’s work in which Born’s original statistical
interpretation is stated clearly enough to distinguish it from the interpretation now com-
monly attributed to Born’ (Wessels 1980, p. 197).
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genuine indeterminism, and he uses the picture of the wavefunction as a
deterministically evolving ‘guiding field’. But, as Beller (1990) emphasises,
at this stage Born is open-minded about determinism being still possible in
principle.

Born’s proposed interpretation appears fully explicitly in a later paper from
the same year, ‘Das Adiabatenprinzip in der Quantenmechanik’ [‘The adia-
batic principle in quantum mechanics’] (Born 1926c), in which he investigates
and discusses his approach further (much more so than in the better-known
collision papers). It turns out to be quite surprising:16

• Particles exist (at least when evolving freely).

• They are accompanied by de Broglie–Schrödinger waves.

• During free evolution, systems are always in stationary states.

• If at time t = 0 the wavefunction of a system is

ψ(x, 0) =
∑
m

cmψm(x) , (1)

where the ψm(x) are eigenfunctions of energy, then the expressions |cm|2
are the probabilities for the occurrence of the corresponding stationary
states. Born calls them ‘state probabilities’ (he again reserves the term
‘state’ for stationary states).

• Consider the application of an external force (or an interaction): no
‘anschaulich’ representation of what takes place may be possible, but

16For more details see Bacciagaluppi (2008, Section 2.1). This paper is not discussed
explicitly by Wessels (1980), but it is covered in Beller (1990). Despite Beller’s excellent
discussion of the wave and particle pictures in Born’s work, I find it difficult to assess in
what precise sense Born thinks of particles: it is quite possible that at least for the case of
free particles (or even stationary orbits?) he envisages a picture of well-defined geometric
trajectories, to be given up during collisions. Beller also points out how initially Born
appears to have been enthusiastic about Schrödinger’s idea of describing quantum jumps
as a continuous process. I would like to emphasise, however, that already in the first
collision paper the final (entangled) wavefunction is strictly incompatible with it. Born’s
views on quantum mechanics from this period are also presented informally in two near-
identical papers (Born 1927a,b), which were expanded versions of a talk given by Born in
August 1926.
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‘quantum jumps’ occur, in the sense that after the external intervention
ceases, the system will generally be in a different stationary state.

• The evolution of the state probabilities is nevertheless well-defined
and is determined for arbitrary times t = T by the solution of the
Schrödinger equation,

ψ(x, T ) =
∑
n

Cnψn(x) . (2)

• For the case that ψ(x, 0) = ψm(x) for some m, the solution can be
determined explicitly (in terms of the external potential). Writing for
this case

ψ(x, T ) =
∑
n

bmnψn(x) , (3)

the expressions |bmn|2 are then the transition probabilities for the quan-
tum jump from ψm(x) at t = 0 to ψn(x) at t = T . (In the ‘adiabatic
limit’ they tend to δmn, thus arguably recovering classical behaviour.)

• In the general case ψ(x, 0) =
∑

m cmψm(x), the state probabilities at
time t = T have the form

|Cn|2 = |
∑
m

cmbmn|2 . (4)

What Born says about this general case is intriguing (Born 1926c, p. 174):

The quantum jumps between two states labelled by m and n thus do not
occur as independent events; for in that case the above expansion should be
simply

∑
m |cm|2|bmn|2.

This suggests an inaccurate understanding of interference, as due to different
electrons not jumping independently (which seems only confirmed by Born’s
discussion of ‘natural light’ later in the paper).17 Understanding interfer-
ence was to play an important role in the next phase of development of the
statistical interpretation.

17In footnotes on pp. 174 and 180, Born references Dirac (1926) as also pointing out that
the quantum jumps are not independent (and become so if one averages over the phases),
and generally noting that their points of view are in agreement. Dirac writes explicitly:
‘One cannot take spontaneous emission into account without a more elaborate theory

8



3 Phase II: from Born to Born & Heisenberg

Born’s collision papers managed to make both Heisenberg and Schrödinger
furious. Heisenberg, because Born had successfully solved an open problem
in matrix mechanics using wave mechanics; Schrödinger, because at the same
time Born had reinterpreted wave mechanics ‘in Heisenberg’s sense’.18

Soon, however, Heisenberg (1927a) (following an idea suggested by Pauli in a
letter of 19 October 1926) as well as Jordan (1927a) translated Born’s results
into the language of matrix mechanics – precisely by looking at what matrix
mechanics could say about ‘parts of systems’. Specifically, Heisenberg and
Jordan considered two weakly coupled atoms with energy differences in com-
mon (all or one, respectively). Because of the coupling, the energy matrices
of the two atoms are no longer diagonal in the energy basis of the composite
system, and thus are time-dependent, exhibiting a slow ‘exchange of energy’.
The main aim of the papers is to demonstrate how this result is in fact equiv-
alent to the picture of matching quantum jumps in the two atoms. Born had
calculated the transition probabilities for the quantum jumps in terms of the
coefficients of the final wavefunction, and Heisenberg and Jordan now calcu-
lated them in terms of the elements of the transformation matrix between the
two energy bases. This arguably provided a rigorous calculation of the tran-
sition probabilities by purely matrix mechanical means. In the same letter of
19 October Pauli also suggested that the statistical interpretation be applied
to other quantities, specifically that the modulus squared of both ψ(x) and

involving the positions of the various atoms and the interference of their individual emis-
sions’ (Dirac 1926, p. 677, emphasis added). Further evidence for an early understanding
of interference as a many-particle effect can be taken from comments by Einstein at the
1927 Solvay conference, where he distinguishes between two conceptions of the wavefunc-
tion (both of which he finds problematic): one as pertaining to single electrons and one
in which ‘[t]he de Broglie–Schrödinger waves do not correspond to a single electron, but
to a cloud of electrons extended in space’ (Bacciagaluppi and Valentini 2009, p. 441).

18In Born’s own words: ‘the fundamental ideas of the matrix form of the theory initiated
by Heisenberg [...] have grown directly out of the natural description of atomic processes
in terms of “quantum jumps” and emphasise the classic-geometrically incomprehensible
nature of these phenomena. It is settled that both forms of the theory arrive at the same
results for stationary states; the question is only how one should treat non-stationary
processes. Here, Schrödinger’s formalism turns out to be substantially more convenient,
provided one interprets it in Heisenberg’s sense. I therefore wish to advocate a merging
of both points of view, in which each fulfils a very particular role’ (Born 1926c, p. 168).
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its Fourier transform ϕ(p) should be interpreted as probability densities for
position and momentum.19

The next step was the introduction of transition probabilities also between
quantities other than energy. The formal tools for this were developed, again
independently of each other, mainly by Dirac (1927) and by Jordan (1927b,c)
with the so-called transformation theory. In Dirac’s treatment, one considers
arbitrary conjugate quantities ξ and η and some arbitrary quantity g(ξ, η).
If one assumes an ensemble in which ξ has a definite value and η is uniformly
distributed, then Dirac’s results yield the frequency of the values of g in
the ensemble. The main tool that Dirac developed was the theory of the
transformation matrices between the energy representation of g and its ξ-
representation. Heisenberg’s paper on fluctuation phenomena (Heisenberg
1927a) was explicitly cited as a special example, as was Born’s work on
collisions. Jordan (1927b, pp. 810–811) credits Pauli with the suggestion
that there should be well-defined transition amplitudes between any two
physical quantities. His theory is developed along these lines, including an
axiomatisation of quantum mechanics using probability amplitudes as the
basic notion.20

Dirac’s paper was actually called ‘The physical interpretation of the quantum
dynamics’, and while this was not quite spelled out, Dirac (1927, p. 641)
concluded with the suggestion of

[...] a point of view for regarding quantum phenomena rather different from
the usual ones. One can suppose that the initial state of a system deter-

19Cf. Pauli to Heisenberg, 19 October 1926 (Pauli 1979, pp. 340–349). Heisenberg’s
paper was received shortly afterwards on 6 November 1926. For further details, see Bac-
ciagaluppi and Valentini (2009, Section 3.4.4). Pauli’s suggestion of |ψ(x)|2 as position
density also appeared in a footnote in a paper on gas theory and paramagnetism (Pauli
1927, p. 83), but of the further correspondence between Heisenberg and Pauli in this
period only Heisenberg’s letters have survived. Note that Heisenberg (1927a) talks about
the two atoms exchanging a ‘sound quantum’, which suggests a connection with Jordan’s
treatment of the vibrating string in Born, Heisenberg and Jordan (1926) and the related
discussion of the analogy between the radiation field and excitations of a lattice (see Bac-
ciagaluppi, Crull and Maroney 2017).

20For Dirac’s transformation theory, see Darrigol (1992, pp. 337–345). For a detailed
treatment of Jordan, including the involvement of Pauli, see Duncan and Janssen (2009).
London (1926), too, made contributions to transformation theory, as also acknowledged
by Jordan. On these see Lacki (2004) and again Duncan and Janssen (2009).
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mines definitely the state of the system at any subsequent time. If, however,
one describes the state of the system at an arbitrary time by giving numer-
ical values to the co-ordinates and momenta, then one cannot actually set
up a one-one correspondence between the values of these co-ordinates and
momenta initially and their values at a subsequent time. All the same one
can obtain a good deal of information (of the nature of averages) about the
values at the subsequent time considered as functions of the initial values.
The notion of probabilities does not enter into the ultimate description of
mechanical processes: only when one is given some information that involves
a probability (e.g., that all points in η-space are equally probable for repre-
senting the system) can one deduce results that involve probabilities.

Born was delighted with Jordan’s work, writing to Wentzel on 13 December
1926:21

Mr Jordan has now carried out a huge generalisation of the idea that the
amplitude of the Schrödinger function is related to the state probabilities.
Pauli had considered such a generalisation, but Jordan had the idea of the
mathematical trick it requires. It now seems to turn out that using this
conception quantum mechanics can manage with the usual space and usual
time, but that a general probabilistic kinematics takes the place of the causal
laws.

Similarly, Heisenberg was hugely impressed with Dirac’s results, but still
wondered about a satisfactory interpretation.22 And this is when Heisenberg
introduced uncertainty.

The uncertainty paper (Heisenberg 1927b) is often quite correctly read in
the context of the debate with Schrödinger about Anschaulichkeit (about
the applicability of spatiotemporal pictures in quantum mechanics). But it is
equally relevant to the development of the statistical interpretation. The idea
that physical quantities are well-defined under the appropriate measurement
conditions goes along with the idea that quantum probabilities refer to find-
ing certain values upon measurement. In this context, Heisenberg disagrees
with Jordan about the need to revise probabilistic notions to accommodate
interference: no such revision is required because the different probabilities
(in Born’s notation above, |

∑
m cmbmn|2 and

∑
m |cm|2|bmn|2) refer to differ-

ent measurements (Heisenberg 1927b, pp. 183–184). And what the statistical

21AHQP-66, Section 3-044, as mentioned by Wessels (1980, p. 197).
22See Heisenberg to Pauli, 23 November 1926 (Pauli 1979, pp. 357–360).
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interpretation allows us to do is ‘conclude through certain statistical rules
from one experiment to the possible results of another experiment’ (p. 184).
Now probabilities pertain to arbitrary quantum mechanical quantities and
stationary states are no longer privileged (pp. 190–191). Finally – adding a
twist to Dirac’s suggestion about how probabilities enter quantum mechanics
– Heisenberg takes uncertainty to be fundamental: the law of causality be-
comes inapplicable because it is impossible in principle to know the present
in all its determining data (p. 197). According to Beller this is ‘the be-
ginning of a real commitment to indeterministic philosophy, as opposed to
physicists’ earlier tentative employment of statistical considerations’ (Beller
1990, p. 583).23

These various strands were then brought together at the fifth Solvay confer-
ence of October 1927 in a joint report by Born and Heisenberg, where they
set out what for them was the definitive view of the statistical interpreta-
tion.24 Born and Heisenberg largely follow Born’s discussion in the adiabatic
paper, but give a significantly different treatment of the ‘theorem of the in-
terference of probabilities’, emphasising the use of ‘usual probabilities’ along
the lines of Heisenberg’s uncertainty paper.25 Much like Heisenberg’s take
on the law of causality in the uncertainty paper, the law of total probability

23Heisenberg’s fuller argument for excluding a deeper causal picture is briefly hinted at
on pp. 188–189, and was a version of the argument later made famous by Feynman using
the two-slit experiment. In that familiar version, interference shows that a particle cannot
have a trajectory through one slit, because it would have to know whether the other slit
is open or closed. More generally for Heisenberg any ‘hidden variables’ would suppress
interference effects. For details see e.g. Bacciagaluppi and Crull (2009, esp. Section 3.2)
and Bacciagaluppi and Crull (2021, Chapters 4 and 14). On the two-slit experiment,
see also the remarks by Weizsäcker in his letter to Grete Hermann of 17 December 1933
(Herrmann 2019, pp. 439–444).

24The report and ensuing discussion are translated in Bacciagaluppi and Valentini (2009,
pp. 372–401 and 402–405). For commentary, see Bacciagaluppi and Valentini (2009, Sec-
tions 3.4.6 and 6.1.2).

25I now see this reading of what Born and Heisenberg mean with ‘usual probabilities’ as
more natural than the one I suggested in Bacciagaluppi (2008, p. 274). The emphasis on
usual probabilities is also an implicit criticism of Jordan’s choice of probability amplitudes
as the basic notion for his axiomatisation of quantum mechanics. Explicitly, on p. 392 of
their report Born and Heisenberg note that amplitudes are not directly observable, and
point out that von Neumann’s recent work (Hilbert, von Neumann and Nordheim 1928,
von Neumann 1927a) suffers from no such drawbacks (nor from problems with Dirac’s
δ-functions).
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is not refuted but its antecedent is not satisfied.26

On this reading interference applies to individual systems just as well as to
ensembles. Furthermore, compared to Born’s case of collisions, an electron
is no longer assumed to always be in a stationary state, but only when its
energy has in fact been measured. Indeed, the analysis is generalised to any
observable that has been measured. In this sense, what Born and Heisenberg
present as the statistical interpretation is significantly closer to what we now
know as standard quantum mechanics.27

But close is no cigar. The physical picture in Born and Heisenberg’s report
seems to be that what is ‘out there’ are on the one hand values of measured
quantities, on the other transition probabilities; several aspects in the report
suggest that they still do not take ψ as the ‘state’ of the system. Indeed,
in Born and Heisenberg’s eyes, the work by Heisenberg, Jordan and Dirac
shows that matrix mechanics can stand on its own feet. Schrödinger waves
may be a useful tool for calculating transition probabilities, but the latter
can be defined directly in terms of transformation matrices. Note that, even
though the interpretational section of the report was drafted by Born, these
aspects suggest Heisenberg’s hand.28

While the report also includes the idea of uncertainty as grounding the statis-
tical aspects of the theory, it is remarkably silent on the ‘reduction of the wave
packet’, which had also been introduced in the uncertainty paper by Heisen-

26Again, if quantities had hidden values, they would perform the transitions and in-
terference would be destroyed. Such ideas also seem related to Heisenberg’s work on the
S-matrix of the 1940s, to his ideas on potentialities of the 1950s and to other scattered
remarks even later.

27Quirkily enough, some kind of intermediate position resurfaces in Born’s Waynflete
lectures of 1948. There Born states that systems are indeed in stationary states and
perform quantum jumps between them, but which systems this applies to depends on the
subjective choice of how we distinguish between a system and its environment (Born 1949,
pp. 99–101).

28Dirac’s position was very different. As emphasised by Darrigol (1992, p. 344), Dirac
(1927) does not yet contain any expression for quantum states, but we have seen that in
his conclusion Dirac does refer to the idea of a deterministically evolving ‘state’. Possibly,
by describing his point of view as ‘rather different from the usual ones’, he wishes to dis-
tance himself from both Heisenberg and Schrödinger. See also Dirac’s unusually extensive
remarks on the interpretation of the theory at the fifth Solvay conference (Bacciagaluppi
and Valentini 2009, pp. 446–448).
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berg (1927b, p. 186). Already in that paper Heisenberg (1927b, pp. 183–
184) had suggested that measuring the energy in an atomic beam passing
through successive Stern–Gerlach magnets would randomise the phases in a
superposition of energy states. This seems to suggest an unorthodox form
of the collapse postulate, in which superpositions are maintained but with
randomised phases. Such a form of the collapse is discussed explicitly in
Heisenberg’s Chicago lectures (Heisenberg 1930, p. 60), and would seem to
be inconsistent with the repeatability of measurements; but it is inconsistent
with the repeatability of measurements only if we assume that ψ is the ‘state’
of a quantum system and determines probabilities for measurement results.
It is unobjectionable if we assume that what determines the probabilities of
the results are actual values and transition probabilities, and that ψ is just
a bookkeeping device that can be changed if and when convenient.29

Additional support for this reading may perhaps be found in Born’s re-
marks on the reduction of the wave packet in the General Discussion at the
Solvay conference (Bacciagaluppi and Valentini 2009, pp. 437–439), where,
prompted by Einstein, Born gave a simplified treatment of α-particle tracks
in a cloud chamber. Born cites remarks by Pauli to the effect that reduction
can be dispensed with if one includes a description also of the apparatus (i.e.
the cloud chamber), but does not go into details, except perhaps with his
remark towards the end to the effect that

[t]o the reduction of the wave packet corresponds the choice of one of the
two directions of propagation +x0,−x0, which one must take as soon as it
is established that one of the two points 1 and 2 is hit, that is to say, that
the trajectory of the packet has received a kink.

If this is read as an alternative to the description in terms of reduction,
Born is saying that instead of collapsing the wavefunction, one can keep the
original wavefunction but take a definite value for the direction of propagation
of the α-particle. In his own remarks Heisenberg also objected to Dirac’s
suggestion that collapse was a natural process (Bacciagaluppi and Valentini
2009, pp. 449–450).

29For further details see Bacciagaluppi and Valentini (2009, Sections 3.2, 6.2, 6.3 and
11.3), and Bacciagaluppi (2008, Section 3).
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4 Phase III: von Neumann

In the very same General Discussion at the Solvay conference Born announced
a new paper by von Neumann (Bacciagaluppi and Valentini 2009, p. 448):30

I should like to point out, with regard to the considerations of Mr Dirac,
that they seem closely related to the ideas expressed in a paper by my col-
laborator J. von Neumann, which will appear shortly. The author of this
paper shows that quantum mechanics can be built up using the ordinary
probability calculus, starting from a small number of formal hypotheses; the
probability amplitudes and the law of their composition do not really play a
role there.

This paper is clearly ‘Wahrscheinlichkeitstheoretischer Aufbau der Quanten-
mechanik’ (von Neumann 1927b), which was presented by Born himself in
the session of 11 November 1927 of the Göttingen Academy of Sciences. It
had been preceded by two other papers, one by Hilbert, von Neumann and
Nordheim (1928), which still built on Jordan’s approach, and one by von
Neumann alone, in which he developed the Hilbert-space formalism of quan-
tum mechanics (von Neumann 1927a).31 Then in the November paper von
Neumann went on to treat explicitly the statistical aspects of quantum me-
chanics. The paper is of fundamental importance in the development of the
statistical interpretation and less well-known than it ought to be, so it is
useful to summarise it in some detail. But the main points can be stated
briefly as follows.

Von Neumann is concerned with ‘statistical theories’, i.e. theories about en-
sembles of systems. In such theories, measurements of physical quantities
generally lead to non-trivial distributions of values for any given ensemble,
and a theory makes predictions about values and their distributions. What
characterises a non-statistical theory are the algebraic relations between its
physical quantities; and the crucial difference between classical mechanics
and quantum mechanics as non-statistical theories is that the former has a
commutative algebra of observables and the latter a non-commutative one.
Von Neumann shows that the statistical aspects of quantum mechanics need

30The final remark again appears to favourably contrast von Neumann’s approach to
Jordan’s.

31Cf. also Lacki (2000), Duncan and Janssen (2012) and Mitsch (forthcoming).
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not be postulated ad hoc: quantum mechanics as a statistical theory can be
completely and rigorously derived purely by imposing ‘usual’ probabilistic
axioms on expectation values for ensembles of systems whose physical quan-
tities are characterised by the non-commutative algebra of matrix mechanics.
These probabilistic axioms are positivity and linearity (on the latter we shall
have much more to say). The resulting theory indeed completely determines
the possible values and value distributions for the physical quantities. Its
object are ensembles, characterised by (pure or mixed) states, which can be
specified by results of measurements. Thus von Neumann’s version of the
statistical interpretation now includes both the notion of a quantum state,
and that of the collapse of the state upon measurement. This is essentially
modern quantum mechanics. Furthermore, while in classical mechanics as a
statistical theory the pure states (those that can no longer be decomposed
into other states) are such that all physical quantities have ‘sharp’ distri-
butions (characterised by a single value), for each pure state in quantum
mechanics there are quantities that do not have a sharp distribution. Thus
the incompatibility of physical quantities leads inexorably to the indetermin-
istic character of quantum mechanics. Readers interested specifically in the
relation between statistical interpretation and indeterminism may skip di-
rectly to the final section of this chapter. The rest of this section spells out
the details of von Neumann’s paper (followed by a few brief comments).

In Section I, von Neumann distinguishes between the ‘wave theory’ of quan-
tum mechanics and the ‘statistical theory’ initiated by Born, Pauli and Lon-
don, by which he means the transformation theory of Jordan and Dirac. Von
Neumann’s topic is the statistical theory, which according to him typically
answers the following questions:

(i) what values can a physical quantity have?

(ii) what are the a priori probabilities for these values?

(iii) what are the probabilities given results of other measurements?

One can consider a statistical theory also in a classical context, in which how-
ever, non-trivial probabilities can be in principle eliminated by performing
sufficiently many measurements. This is not so in quantum mechanics, where
pairs of measurements are generally mutually incompatible, as emphasised
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by Dirac (1926) and by Heisenberg (1927b). On the other hand, according to
von Neumann, the usual presentation of the statistical quantum mechanics
‘rather dogmatically’ postulates certain quantities to be probabilities (in wave
mechanical language the weights in decompositions of the wavefunction), and
one then checks the empirical correctness of the predictions. Furthermore,
the relation between the theory as usually presented and the theory of prob-
ability remains at best unclear. So for instance Jordan (1927b) proposes
a theory based on probability amplitudes, but Heisenberg (1927b) dissents.
Von Neumann’s aim in this paper is to provide a systematic derivation of
statistical quantum mechanics from the usual theory of probability with a
few supplementary assumptions.

Section II describes the basic assumptions of the derivation. Von Neumann
considers a physical system S and quantities a, b, . . . on the system. A func-
tion f(a) of a quantity a is always well-defined, namely as the quantity that
for each value x of a takes the value f(x). A statistical theory concerns
ensembles of such systems, which are interpreted epistemically (or at least,
von Neumann says they represent ‘knowledge’ about a system – with in-
verted commas in the original). Measurements of physical quantities lead to
a distribution of results for each given ensemble. There should be a max-
imally disordered ensemble in which all ‘states’ of the system are equally
probable (no ‘knowledge’ about the system – yielding a priori distributions
for measurement results) and ensembles arising from it through measure-
ments (yielding distributions conditional on certain previous measurement
results). Each ensemble is in fact characterised by the expectation values for
all quantities. Von Neumann wishes to describe quantum mechanics as such
a statistical theory, keeping as close as possible to the ordinary notions of
probability and expectation value.32

One needs to make a crucial distinction between quantities that can or cannot
be measured simultaneously (von Neumann remarks that if two quantities
are compatible they are both functions of a third quantity33). A function
f(a, b) of two compatible quantities is always well-defined, while in general

32Two further assumptions – not needed to characterise ensembles and states – are
introduced later and make precise what von Neumann understands by ‘measurement’:
repeatabilty in Section VI and non-contextuality in Section VII.

33Strangely, he also states that this is a feature specific to quantum mechanics (cf. his
footnote 8 on p. 248).
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it is meaningless to talk of functions of incompatible quantities. On the other
hand, it is always possible to define the sum of two incompatible quantities
if one assumes expectation values to be additive: a + b is the quantity with

E(a + b) = E(a) + E(b) (5)

for all ensembles.34 The definition can be trivially extended to arbitrary
linear combinations of two quantities or even countably many quantities when
the corresponding series converges. Therefore, even in a case like that of
quantum mechanics, expectation functionals E(a) can be required to satisfy:

A. For any convergent real linear combination αa + βb + γc + . . . ,

E(αa + βb + γc + . . .) = αE(a) + βE(b) + γE(c) + . . .

Furthermore, it is clear that if a quantity a takes only positive values, its
expectation value in any ensemble will also be positive:

B. For a ≥ 0, E(a) ≥ 0 .

These are both features of expectation values in ordinary probability theory:
linearity (extended by continuity to countable linear combinations) and posi-
tivity. However, von Neumann explicitly leaves out normalisation (remarking
that it is more important to have well-defined ‘relative probabilities’).35

After these ‘conceptual’ assumptions, von Neumann then introduces a ‘for-
mal’ assumption: namely that physical quantities in quantum mechanics
correspond bijectively to diagonalisable (‘normal’) linear operators on a sep-
arable Hilbert space.36 For von Neumann’s purposes the relevant aspects of
this correspondence are the following:

34Note that von Neumann is thereby also taking physical quantities to be characterised
by their expectation values in all ensembles.

35Note that von Neumann was writing before the now standard axiomatisation of prob-
ability theory by Kolmogorov.

36The spectral theorem for self-adjoint operators was proved in full only in von Neumann
(1929), but von Neumann (1927a, Sections IX and X) already contained partial results.
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C. Let S, T, . . . , αS + βT + . . . be diagonalisable. If S, T, . . . correspond
to a, b . . . then αS + βT + . . . corresponds to αa + βb + . . .

D. Let S be diagonalisable, and f(x) be a real function. If S corresponds
to a, then f(S) corresponds to f(a).37

That is, the correspondence is such that the functional relations between
the physical quantities are represented by the functional relations between
the operators. In particular, the sum of two operators corresponds to the
sum defined via (5). This, von Neumann notes, conforms to actual practice,
but he is fully aware that it is a very radical feature of quantum mechanics.
In footnote 9 on p. 249 he takes the example of the mutually incompatible
quantities Q2, P2 and Q2 + P2: even though the first two can take continu-
ous values and Q2 + P2 takes only discrete values, the quantum-mechanical
expectation values are in fact linear.

Note that C. and D. are part and parcel of matrix mechanics (in Hilbert-
space formulation) seen as a non-statistical theory. They simply express the
algebraic structure of the physical quantities of the theory. A. and B. in-
stead are assumptions of the ‘usual probability theory’. On the basis of these
assumptions, von Neumann will answer questions (i), (ii) and (iii): what
values physical quantities take in quantum mechanics, what the maximally
disordered state is, and which other states arise from it through which mea-
surements – in particular recovering the usual probabilistic interpretation of
the wavefunction. The rest of the paper carries this out.

Sections III and IV are headed ‘General form of the expectation values.
States’. (They are the ones containing his characterisation of quantum me-
chanical ensembles and what later became known as von Neumann’s ‘impos-
sibility theorem’ for hidden variables.) In Section III von Neumann shows
from A.–D. that expectation functionals E(S) on the diagonalisable opera-
tors S are of the form

Tr(SU) (6)

for some positive linear symmetric operator U , and that any such operator
defines an expectation functional – a central result that is remarkably easy

37Such a function is to be understood along the lines of von Neumann (1927a, Section
XIV).
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to prove. In Section IV he then defines pure ensembles as ones for which
the operator U has no non-trivial decomposition ηU∗ + ϑU∗∗ (with η, ϑ >
0), and shows that (up to an overall positive factor) they are given by the
one-dimensional projection operators Pϕ with ϕ a normalised vector in the
Hilbert space. Any two ϕ related by a phase factor define the same pure
ensemble; the corresponding expectation values are normalised; the operator
S corresponding to a quantity a is simply the operator that yields E(a) for
all pure ensembles via (ϕ, Sϕ) (in von Neumann’s notation: Q(ϕ, Sϕ)); and
E(a) is dispersion-free if and only if ϕ is an eigenvector of S – in which
case the value of S is the corresponding eigenvalue. It follows that (unlike in
classical mechanics) for each pure ensemble there are physical quantities with
non-zero dispersion. Note that von Neumann equates ‘pure’ ensembles with
‘homogeneous’ ones (‘i.e. those in which all systems [...] are in the same state’,
p. 255). In this sense, while ensembles in general are arguably interpreted
epistemically, pure ensembles are ones in which all systems are in the same
ontic state (‘Thereby we shall have found all states in which the system S can
be’, p. 255). Von Neumann has thus recovered the statistical interpretation
of the wavefunction, as well as introduced the notion of a quantum state and
the eigenstate–eigenvalue link that defines which values observables have in
which states and thus answering question (i) above.

Sections V and VI are titled ‘Measurements and states’. Although von Neu-
mann has abstractly characterised ensembles and states in Section IV, oper-
ationally they are defined in terms of results of measurements, so he needs to
establish how they are related to measurements. In Section V he shows that
quantities a1, . . . , am are jointly measurable if and only if they correspond to
operators S1, . . . , Sm all elements of whose resolutions of the identity com-
mute.38 If the measurements only fix the value of some quantity aj to a
certain interval Ij, then only the corresponding projection operator Ej(Ij)
in the resolution of the identity of Sj needs to commute with the elements
of the resolutions of the identity of the other operators. Von Neumann also
shows that the product of two compatible quantities a1, a2 corresponds to the
product S1S2. Then in Section VI, he considers a measurement that fixes
the values of a1, . . . , am to within the intervals I1, . . . , Im from the (yet to be
determined) ‘maximally disordered’ ensemble. Assuming that measurements
are repeatable, he shows that the positive operator U characterising the re-

38Resolutions of the identity had been introduced in von Neumann (1927a, Section IX).
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sulting ensemble commutes with the projector E := E1(I1)E2(I2) . . . Em(Im)
and in fact U = EU = UE. In the special case in which E is one-dimensional,
U is thus the corresponding projection operator Pϕ. In modern terminology,
von Neumann has derived that in a maximal measurement the state collapses
to an eigenstate of the measured observable.

Finally, Sections VII and VIII are titled ‘Statistical relations between differ-
ent measurements’. Von Neumann returns to the question of what ensem-
bles arise from the maximally disordered ensemble through measurements
that fix values of physical quantities only to within given intervals. He now
makes a non-contextuality assumption: that the ensemble arising from such
a measurement is independent of which other measurements are carried out
compatibly with it. In other words (and in modern terminology), that such a
measurement of a non-maximal observable can be implemented by measuring
an arbitrary maximal observable compatible with it and then coarse-graining
over the finer results.39 Under this assumption, von Neumann shows that U is
a mixture of projections Pϕp for which {ϕp} spans the range of E and that the
corresponding weights are all equal, so that (up to a proportionality factor)
U = E.40 In Section VIII he then uses this result to answer questions (iii) and
(ii) above. Starting from an initial maximally disordered state, for two suc-
cessive measurements that fix the values of two sets of quantities a1, . . . , am
and b1, . . . , bn to certain intervals (defining two not necessarily commuting
projection operators E,F ), he expresses the (unnormalised) transition prob-
ability between the corresponding results as Tr(EF ) – an expression he had
proposed and discussed in von Neumann (1927a, Sections XII–XIV) as gen-
eralising the transition probabilities of the usual transformation theory. He
also determines the ‘maximally disordered ensemble’ as the identity operator

39From von Neumann’s book (1932, Chapter V.1) it is clear that this is in fact the
only way he conceptualises the measurement of a non-maximal observable. This was
later criticised by Lüders (1950), who introduced the now standard form of the collapse
postulate for the case of non-maximal observables.

40It may be surprising that while in Section III von Neumann characterises ensembles
as arbitrary unnormalised density matrices, here in Section VII he is claiming that ensem-
bles arising through non-maximal measurements are always (multi-dimensional) projection
operators. But note that he is attempting to characterise only ensembles that arise from
an initial state that is ‘maximally disordered’. Von Neumann does not have the general
notion of a measurement as a completely positive map, but he can certainly conceive of
preparing more general ensembles by mixing different ensembles of the form U = E. (He
explicitly mentions mixing in Section VIII.)
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U = 1, noting that it indeed assigns the same (relative) probability 1 to all
pure states (even though a notion of ‘volume’ on the unit sphere of a separa-
ble Hilbert space may be ill-defined41), and that it can be prepared also by
mixing in equal proportions the elements of an arbitrary complete orthonor-
mal system. Ensembles of the form U = E can be analogously prepared by
mixing in equal proportions the elements of an arbitrary orthonormal sys-
tem spanning the range of E, showing that decompositions of mixed states
are non-unique. (For von Neumann this shows that the only homogeneous
ensembles, i.e. the only true ‘states’, are pure.) Finally, if the range of E is
finite-dimensional, then the statistical distributions defined by U = E can be
normalised by dividing by the dimension, while if it is infinite-dimensional
one obtains indeed only relative distributions.

Section IX is a ‘Summary’. Von Neumann states that he has uniquely derived
the usual statistical quantum mechanics from the ‘usual probability theory’,
from the fundamental assumptions that measurements in general disturb a
system, that certain pairs of measurements are incompatible, and that never-
theless measurements are repeatable, and from the formal assumption that in
quantum mechanics physical quantities and their functional relations are rep-
resented by operators and their functional relations. He remarks that, since
states always evolve deterministically according to the Schrödinger equation,
the statistical and ‘acausal’ character of quantum mechanics arises specif-
ically through the in-principle limitations of measurements pointed out by
Heisenberg (1927b).

Von Neumann’s statistical quantum mechanics is now arguably the theory
as we know it, and not just because he uses a Hilbert-space formulation
(albeit only infinite-dimensional). Unlike the theory as presented by Born
and Heisenberg at the 1927 Solvay conference – which included recognisable
transition probabilities but no recognisable notions of states or collapse –
von Neumann’s statistical theory includes a characterisation of both pure
and mixed states, respectively as wavefunctions and (unnormalised) density
operators; it includes the general form of the Born rule for expectation values
Tr(US) and a generalised form of transition probabilities Tr(EF ); and it
includes a recognisable version of the collapse postulate for the general case of
maximal measurements and in a special case of non-maximal measurements.

41Cf. the note added in proof on p. 256, where von Neumann compares his approach
advantageously to that of Weyl (1927).
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The physical picture behind von Neumann’s formulation of the theory is also
fairly clear. He appears to believe that a physical system is always in some
pure state. These states are represented by Schrödinger’s wavefunctions,
but can be equivalently characterised in terms of the values of a maximal
set of commuting observables. Measurements are interventions on a system
that in general irreducibly disturb it, forcing the system into one of the eigen-
states of the measured observable (cf. von Neumann’s footnote 33 on p. 264).
Ensembles, represented by generally unnormalised density operators, are un-
derstood epistemically. A priori probabilities corresponding to no knowledge
are represented by the identity operator. Homogeneous ensembles are identi-
fied with pure states. Unlike the case of classical statistical mechanics, these
are not dispersion-free.

One could comment extensively on all of these points. Because of entan-
glement, quantum systems are not always in pure states.42 Measurements
are only given a phenomenological description.43 The requirement of a well-
defined notion of a priori probabilities resurfaces in von Neumann’s later
work on rings of operators.44 One should not identify homogeneous ensem-
bles and pure states.45 But we want to conclude by focusing on the last
point, the lack of dispersion-free states, and specifically on whether and how
von Neumann can be understood as having shown that ‘the statistical inter-
pretation [...] is the only interpretation of quantum mechanics consistently
implementable today’.

42The EPR state is an example where the subsystems are described by the maximally
mixed state, but – precisely if quantum mechanics is complete – not by any specific de-
composition into either position or momentum eigenstates.

43Not only is there no ‘measurement problem’ yet, but also no attempt to model the
process of measurement. Von Neumann was going to discuss the latter in Chapter VI of
his book, but it is arguably Pauli who did the most interesting early work on modelling
the process of measurement in Section A.9 of his 1933 handbook article (Pauli 1933).
On Pauli’s interest in the measurement process, cf. above Born’s remarks on the cloud
chamber, Pauli’s letter to Bohr of 17 October 1927 (Pauli 1979, pp. 411–413) and the
discussion in Bacciagaluppi and Crull (2021, Section 5.5).

44As discussed by Rédei (1996), it was a motivation for von Neumann in the mid-1930s
to think of type-II factors as a possible replacement for Hilbert space in the formulation
of quantum mechanics.

45If we define a homogeneous ensemble as one in which systems are all in the same state,
then subsystems of an EPR pair are indeed always in the same state, even though they
are described by the identity matrix which is non-uniquely decomposable into pure states.

23



5 Statistical interpretation and indetermin-

ism

The statistical interpretation of quantum mechanics was connected from the
start to the issue of indeterminism. We saw how Born had opted for a middle
course between the discontinuity of matrix mechanics and the continuity of
wave mechanics, with the latter determining the probabilities for the former.
As discussed in detail by Beller (1990), we also saw how Born nevertheless was
only tentatively taking the quantum probabilities as an expression of indeter-
minism, and that it was maybe Heisenberg in the uncertainty paper who first
claimed that the statistical interpretation was an expression of irreducible in-
determinism. The explicit references to Heisenberg in von Neumann’s paper
indicate that von Neumann understood his ‘probabilistic construction’ of
quantum mechanics as endorsing Heisenberg on this point. Specifically, I
would like to suggest that von Neumann saw himself as providing a rigorous
proof of Heisenberg’s intuition that irreducible probabilities follow from the
incompatibility of quantum mechanical quantities.46 Indeed, von Neumann’s
distinction between classical and quantum mechanics is precisely that at the
non-statistical level the former is commutative and the latter is not, and that
at the statistical level the probabilities in classical mechanics can always be
eliminated (which makes clear they are merely epistemic) but that this is
impossible in quantum mechanics.

The emergence of this crucial distinction can be seen implicitly also in the
previous development of the statistical interpretation. In Born’s 1926 papers,
the statistical distributions are over the stationary states of essentially non-
interacting systems, thus over the values of a set of commuting quantities.
In Heisenberg and Jordan’s fluctuation papers, we first explicitly see prob-
abilities arising through consideration of non-commuting matrices, namely

46Wigner (1970, note 1) states that von Neumann’s main argument against hidden vari-
ables was based on the impossibility of preparing dispersion-free states when considering
successive measurements of incompatible observables. This argument is in fact presented
in von Neumann’s book, but von Neumann nevertheless raises the question of whether
dispersion-free states exist at all (von Neumann 1932, Section IV.1). The argument and
Wigner’s remarks are briefly discussed by Jammer (1974, pp. 266–267). Thanks to Chris
Mitsch for correspondence on this point, and see Mitsch (forthcoming) for further discus-
sion.
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the Hamiltonians with and without an interaction term. This is generalised
in the transformation theory to arbitrary pairs of non-commuting quanti-
ties, and taken in the uncertainty paper as the very reason why probabilities
are needed. Finally, von Neumann proves that the non-commutative alge-
bra of matrix mechanics leads to pure states that always involve non-trivial
probabilities.

Should any of this rule out the very possibility of fundamental determin-
ism? Max Born appears to have been the first to explicitly draw stronger
conclusions from von Neumann’s result. In a little-known paper of 1929 he
wrote:47

Although the new theory seems thus well established in experience, one can
still pose the question of whether in the future, through extension or refine-
ment, it might not be made deterministic again. In this regard one must
note: it can be shown in a mathematically exact way that the established
formalism of quantum mechanics allows for no such completion. If thus
one wants to retain the hope that determinism will return someday, then
one must consider the present theory to be contentually false; specific state-
ments of this theory would have to be refuted experimentally. Therefore,
in order to convert the adherents of the statistical theory, the determinist
should not protest but rather test.

But it is von Neumann himself in his 1932 book who discusses the issue most
explicitly. In the ‘Introduction’ section he announces his purpose with these
words (von Neumann 1932, pp. 2–3):

In analysing the fundamental questions it will be shown in particular how
the statistical formulas of quantum mechanics can be derived from some
qualitative fundamental assumptions. Further, the question is discussed in
detail of whether it is possible to trace the statistical character of quantum
mechanics back to an ambiguity (i.e. incompleteness) in our description of na-
ture: this explanation would best fit the general principle according to which
all probabilistic statements arise from the incompleteness of our knowledge.
This explanation ‘by hidden parameters’, as well as another related one that
ascribes the ‘hidden parameters’ to the observer and not to the observed
system, has in fact been proposed several times. However, it turns out that
this cannot be achieved in a satisfactory way, or more precisely: such an
explanation is incompatible with certain qualitative fundamental postulates
of quantum mechanics.

47Born (1929, pp. 117–118), as translated in Crull and Bacciagaluppi (2017, p. 223).
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Von Neumann then sets up the question in Section III.2 (‘The statistical in-
terpretation’), discussing hidden parameters relating to the system in Section
IV.1 (‘Fundamental basis of the statistical theory’) and Section IV.2 (‘Proof
of the statistical formulas’), and hidden parameters relating to the apparatus
at the beginning of Section VI.3 (‘Discussion of the measurement process’).
In the later literature, these two discussions have become known respectively
as von Neumann’s ‘impossibility theorem’ for hidden variables (or some such
name) and his ‘insolubility theorem’ for the measurement problem of quan-
tum mechanics. The latter is the proof that measurement statistics cannot
be reproduced by assuming a mixed state for the apparatus and a unitary
interaction between system and apparatus (cf. Brown 1986). For von Neu-
mann, the two are parallel cases in the sense that they attempt to explain
the quantum mechanical statistics by assuming respectively that the state of
the system or the state of the apparatus are not homogeneous.48

Section IV.2 is the one that interests us most. After presenting his results of
1927, von Neumann returns to the question of whether the quantum statistics
could be explained by assuming that the homogeneous states are in fact
mixtures of dispersion-free states characterised by ‘hidden parameters’. He
states that this is impossible for two reasons that at first may seem to beg
the question: homogeneous states would not be homogeneous after all, and
dispersion-free states have just been shown not to exist. But then he adds
(von Neumann 1932, p. 171):

It should be noted that here we did not need to discuss the further details of
the mechanism of the ‘hidden parameters’: the established results of quantum
mechanics can in no way be rederived with their help, it is even impossible
that the same physical quantities with the same functional relations exist
(i.e. that [D.] and [C.] hold), if other variables (‘hidden parameters’) should
exist in addition to the wavefunction.

[...] the relations assumed by quantum mechanics [...] would have to fail
already for [...] known quantities. Thus it is not at all a question of inter-
pretation of quantum mechanics, as often assumed, rather the latter ought
to be objectively false in order for a behaviour of elementary processes to be
possible that is other than statistical.

48Mitsch (forthcoming) following Wigner (1970, note 1) suggests that Schrödinger was
in fact the originator of some of the proposals von Neumann is criticising (during the
years they spent together in Berlin). On measurements in quantum mechanics, see also
Schrödinger to von Neumann, 25 December 1929 (Meyenn 2011, pp. 474–476).
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Recall that the original purpose of von Neumann’s 1927 paper was to provide
a rigorous derivation of the statistical aspects of quantum mechanics from
its algebraic structure together with general assumptions from the theory of
probability. What von Neumann is saying here is that the existence of hidden
variables would imply that in quantum mechanics we have misidentified the
algebraic structure of the physical quantities. As Dieks (2017, Section 4) em-
phasises, von Neumann’s fundamental assumption is that classical kinematics
should be replaced by the new quantum kinematics. Now this assumption
may turn out to be false, but for von Neumann all the evidence was in favour
of it: the new kinematics had already been securely established through the
matrix mechanics of Heisenberg (1925), Born and Jordan (1925b) and Born,
Heisenberg and Jordan (1926), well before Born introduced the first elements
of the ‘statistical interpretation’ in his papers of 1926.

Compare this with Bohm’s (1952a,b) theory – which does what von Neumann
was reputed to have shown to be impossible: provide a deterministic under-
pinning (‘causal interpretation’) of quantum mechanics. It does so precisely
by rejecting the quantum kinematics. The true algebra of physical quanti-
ties of a system in Bohm’s theory is the commutative algebra generated by
the position operators, and for these quantities (and all ‘hidden states’) von
Neumann’s assumptions straightforwardly hold, including the assumption of
linearity. Other operators simply do not correspond to single physical quan-
tities. As Bohm himself remarked discussing von Neumann’s theorem, ‘the
so-called “observables” are [...] not properties belonging to the observed sys-
tem alone’ (1952b, p. 187). In any measurement one indeed measures some
physical quantity on the system – but (except for functions of position) that
quantity will depend on the details of the experimental context. Different
quantities are then mistakenly identified with each other because they happen
to have the same statistics in all ensembles characterised by quantum states.
According to Bub (2010), the significance of von Neumann’s theorem for the
hidden variables debate is that it establishes this kind of contextuality.49

49Bohm himself (1952b, pp. 187–188) inaccurately suggests that the experimental results
depend on the hidden variables of both system and measuring device, but no apparatus
hidden variables are needed. What is crucial is that the same hidden variables for the sys-
tem lead to different results depending on a measurement context – quantum observables
are ‘contextual observables’. For analyses of measurement contextuality in the Bohm the-
ory, see Pagonis and Clifton (1995) and Barrett (1999, Section 5.2). See also the analogy
between the Bohm theory and the ‘firefly box’ in Bacciagaluppi (2016b, Section 6).
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The significance of von Neumann’s result for the hidden variables debate
has been traditionally framed in the context of Bell’s (1966) criticism. Bell
pointed out that if one wishes to construct a theory in which hidden states
determine without dispersion the values of quantum mechanical observables,
then it is unreasonable to require of the hidden states that

E(αS + βT ) = αE(S) + βE(T ) (7)

(the conjunction of von Neumann’s assumptions A. and D.): dispersion-free
values of quantum observables must equal eigenvalues, and eigenvalues of
non-commuting operators in general do not behave additively.50

In recent years the criticism of von Neumann has become somewhat more
strident. In a later interview, Bell even characterised assumption (7) as ‘silly’
and ‘foolish’,51 with a number of authors following suit (e.g. Mermin 1993).
Recent work by Bub (2010), Dieks (2017) and Mitsch (forthcoming) instead
variously counters this assessment by restoring von Neumann’s work to its
historical context.52

50It has also been appreciated recently that Grete Hermann had already criticised
von Neumann’s reputed argument against hidden variables thirty years earlier (see e.g.
Seevinck 2017). Hermann’s criticism, too, centres on the linearity assumption, but unlike
Bell she is aware that von Neumann fully realises how non-trivial it is (recall von Neu-
mann’s own example of Q2, P2 and Q2 + P2). Instead she believes that von Neumann
smuggles it in illicitly. But her overall assessment of the significance of von Neumann’s re-
sult is precisely that the existence of hidden variables would imply that quantum mechanics
has misidentified the algebraic structure of the physical quantities it describes. For details
see Dieks (2017, Section 5). The criticism first appears in a manuscript from 1933 (Dirac
Archives, DRAC 3/11) in which Hermann defends the possibility of deterministically com-
pleting quantum mechanics (and which contains the above passage from Born (1929) as
an epigraph). Hermann’s criticism was then published as Section 7 (‘The circle in Neu-
mann’s proof’) in Hermann (1935), an extended analysis of quantum mechanics in which
instead Hermann provides an alternative neo-Kantian argument for the completeness of
the theory closely related to Bohr’s complementarity. Both Hermann’s 1933 manuscript
and her 1935 essay are translated in Crull and Bacciagaluppi (2017, Chapters 14 and 15) –
with extensive discussions – and have been (re-)published in German in Herrmann (2019,
pp. 185–203 and 205–258). See also the extremely interesting correspondence from 1968
between Hermann and Jammer (where Hermann retracts the specific claim of circularity)
published in Herrmann (2019, pp. 599–610).

51Omni magazine (May 1988, p. 88), quoted in Mermin (1993).
52As mentioned, Bub (2010) argues that von Neumann’s theorem shows that hidden

variables theories cannot be constructed on the model of classical statistical mechanics
but have to be contextual, and Dieks (2017) that von Neumann’s crucial assumption is
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Let us be clear. There are no mistakes in von Neumann’s mathematics:
taking self-adjoint operators and their functional relations as representing
physical quantities and their functional relations, it follows that expectation
values are represented by density operators, and that no such expectation val-
ues are dispersion-free for all physical quantities. And it is equally clear that
the result does not rule out deterministic hidden variables theories: Bohm’s
theory is an unequivocal example of such a theory. It is also presumably
the case that many physicists mistakenly did take von Neumann’s theorem
to rule out hidden variables theories (as many physicists nowadays mistak-
enly take Bell’s theorem to rule them out!).53 The question is whether von
Neumann’s theorem in fact establishes something interesting about hidden
variables and what von Neumann himself thought it established.54

In terms of the distinction standard today between the ‘completeness’ and
‘correctness’ of quantum mechanics, if one theoretically completes quantum
mechanics by assuming the existence of Bohmian corpuscles, quantum me-
chanics does nevertheless remain empirically correct. To insist that this
would make quantum mechanics ‘objectively wrong’ may seem disingenuous.
Knowledge of the Bohm theory, however, gives us the benefit of hindsight.

indeed the new quantum kinematics. Mitsch (forthcoming) argues that the ‘uniqueness’
of the statistical quantum mechanics is to be seen in the context of Hilbert’s axiomatic
method, which aimed in particular to define a unique formal apparatus capturing a given
physical content and was thus understood as both provisional and relative.

53Note that (with few exceptions, most notably Born), the other ‘founding fathers’
of quantum mechanics rarely referred to von Neumann’s theorem when arguing for the
completeness of quantum mechanics. This can seen for instance in their reactions to
the EPR paper (see Bacciagaluppi and Crull 2021). Bohr’s arguments were based on
complementarity, Heisenberg’s (as mentioned) were based on interference. Pauli did not
refer explicitly to von Neumann but (pace Bell’s later criticism) he did take the example
of Q2, P2 and Q2 + P2 as showing the impossibility of hidden variables: if Q and P had
continuously distributed dispersion-free values, so would Q2 + P2. As first discussed by
Fine (1994), in his first paper on entanglement Schrödinger (1935) took up this example,
and presented it as part of a dilemma: the EPR argument showed that all quantum
mechanical observables had (non-contextual!) values, but these could not obey any obvious
functional relations.

54Note that replying on Bohr’s behalf to Hermann’s 1933 manuscript, Weizsäcker in
his letter to Hermann of 17 December 1933 agrees that determinism is still viable, but
wishes to argue that the self-imposed restrictions of quantum theory are not arbitrary
(Herrmann 2019, p. 440). Also Jammer (1974, pp. 272–275, esp. fn 45) in discussing
Hermann’s criticism remarks perceptively on what von Neumann’s result does or does not
show.
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The historically accurate question may be too difficult ever to decide, but
it is whether the likes of Born and von Neumann considered the possibility
(however implausible) that a theory with a different algebraic structure might
be able to deliver the same empirical predictions as quantum mechanics, or
whether they tacitly assumed that any such theory would automatically con-
tradict also the empirical predictions of quantum mechanics. If the former,
they would have been mistaken in discounting that possibility, but perfectly
rational in judging it implausible. If the latter, they would indeed have been
drawing an unwarranted conclusion from von Neumann’s theorem.55

In later years, von Neumann does not seem to have returned much to the
issue of ‘hidden parameters’. He discusses it in print in discussion comments
on Bohr’s talk at the 1938 Warsaw conference – a rare occasion where Bohr
actually cites von Neumann’s theorem as clarifying how ‘the fundamental
principle of superposition of quantum mechanics [sic] logically excludes the
possibility of avoiding the non-causal character of the formalism by any kind
of conceivable introduction of additional variables’ (Bohr 1939, p. 17), before
going on to a more detailed discussion of complementarity as ‘providing a
direct generalisation of the very ideal of causality’ (p. 28). In his comments,
von Neumann characterises a physical system in terms of its measurable
physical quantities and their algebraic relations, he then considers ensem-

55Note that the situation is subtle even in the Bohm theory. If one considers ensembles
with arbitrary position distributions, then the theory will indeed violate the empirical pre-
dictions of quantum mechanics (for instance, it will violate the no-signalling theorem). A
theory with different algebraic structure does lead to different empirical predictions. But if
one considers special ‘equilibrium’ ensembles in which positions are distributed according
to the Born distribution |ψ(x)|2, the empirical predictions of the theory become the same
as those of standard quantum mechanics (in particular the self-adjoint operators emerge
as contextual observables). Not only, the theoretical regime defined by these ensembles is
stable in the sense that – whether they evolve freely or are subjected to any (quantum)
measurements – these ensembles will always remain ‘equilibrium’ ensembles. De Broglie in
1927 already knew that the |ψ(x)|2-distribution was stable under time evolution (Baccia-
galuppi and Valentini 2009, p. 70) but did not have Bohm’s (1952b) measurement theory
for quantum observables other than position. The only author before Bohm who seri-
ously considered the distinction between physical quantities and quantum operators – and
even the idea of hidden variables in ‘disequilibrium’ violating the empirical predictions
of quantum mechanics – appears to have been Grete Hermann; cf. Section 5 of her 1933
manuscript and her letter to Heisenberg of 9 February 1934 (Herrmann 2019, Letter 7,
pp. 457–461). For a detailed discussion of the Bohmian equilibrium regime see e.g. Dürr,
Goldstein and Zangh̀ı (1992). For Bohmian disequilibrium see e.g. Valentini (2002a,b).
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bles, and defines a ‘purely’ statistical theory as one in which pure states are
not dispersion-free (not ‘causal’). Given that measurable quantities in quan-
tum mechanics are given by self-adjoint operators, from the ‘obvious prop-
erties’ of expectation values one easily derives the general trace formula (6),
from which it follows that pure states in quantum mechanics are not causal.
Quantum mechanics is thus the first example of a ‘properly’ statistical the-
ory, unlike classical statistical mechanics (which can in fact be completed via
‘hidden parameters’). Von Neumann concludes that ‘no causal explanation
of quantum mechanics is possible unless one sacrifices some part of the the-
ory as it exists today’ (Bohr 1939, p. 38). Again, this short exposition can
be given the nuanced readings discussed above. Dieks (2017, Section 6) also
reports that after Bohm’s (1952a,b) papers appeared von Neumann seems to
have agreed that Bohm’s theory reproduced all the predictions of quantum
mechanics, without objecting to it on the basis of his earlier results.

A final remark that seems revealing about what von Neumann thought his
theorem showed was published after von Neumann’s death by Léon Van Hove
(who had worked for a few years at the Institute for Advanced Studies at
Princeton) in a short paper on ‘Von Neumann’s contributions to quantum
theory’ that was part of an issue of the Bulletin of the American Mathematical
Society in memory of von Neumann (Van Hove 1958, p. 98):

Von Neumann devoted in his book considerable attention to a point which
had not been discussed in the 1927 papers and which was later the subject
of much controversy. It is the question of the possible existence of ‘hidden
variables’, the consideration of which would eliminate the noncausal element
involved in the measuring process. Von Neumann could show that hidden
parameters with this property cannot exist if the basic structure of quantum
theory is retained. Although he mentioned the latter restriction explicitly, his
result was often quoted without due reference to it, a fact which sometimes
gave rise to unjustified criticism in the many discussions devoted through the
years to the possibility of an entirely deterministic reformulation of quantum
theory.

I wish to conclude by suggesting a more dispassionate assessment of von Neu-
mann’s result in the light of another theme in the foundations of quantum
mechanics, namely the difference between classical and quantum probability.
Von Neumann’s choice of linearity of expectation values as a probabilistic
axiom may strike a modern reader as relying on superfluous algebraic struc-
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ture (as opposed to Boolean structure), but von Neumann’s paper is a for-
malisation of quantum mechanics as a probability theory for incompatible
quantities, and his impossibility theorem is the first proof establishing the
fundamental difference between classical and quantum probability.56
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tenmechanik’, Mathematische Annalen 98, 1–30.

Hund, F. (1967), Geschichte der Quantentheorie (Mannheim: Bibliographisches Institut).

Jammer, M. (1974), The Philosophy of Quantum Mechanics: The Interpretations of Quan-
tum Mechanics in Historical Perspective (New York: John Wiley and Sons).
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Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon (Heidelberg:
Springer).

Mitsch, C. (forthcoming), ‘The (not so) hidden contextuality of von Neumann’s “no hidden
variables” proof’.

Muller, F. A. (1997a), ‘The equivalence myth of quantum mechanics. Part I’, Studies in

36



History and Philosophy of Modern Physics 28, 35–61.

Muller, F. A. (1997b), ‘The equivalence myth of quantum mechanics. Part II’, Studies in
History and Philosophy of Modern Physics 28, 219–247.

Muller, F. A. (1999), ‘The equivalence myth of quantum mechanics (addendum)’, Studies
in History and Philosophy of Modern Physics 30, 543–545.

Myrvold, W. (2003), ‘On some early objections to Bohm’s theory’, International Studies
in the Philosophy of Science 17(1), 7–24.

Neumann, J. von (1927a), ‘Mathematische Begründung der Quantenmechanik’, Nachrichten
der Akademie der Wissenschaften in Göttingen. II., Mathematisch-Physikalische Klasse
1927(20 May), 1–57.

Neumann, J. von (1927b), ‘Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik’,
Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen. Mathematisch-Physi-
kalische Klasse 1927(11 November), 245–272.

Neumann, J. von (1929), ‘Allgemeine Eigenwerttheorie Hermitischer Funktionalopera-
toren’, Mathematische Annalen 102, 49–131.

Neumann, J. von (1932), Mathematische Grundlagen der Quantenmechanik (Berlin: Spring-
er).

Pagonis, C., and Clifton, R. (1995), ‘Unremarkable contextualism: dispositions in the
Bohm theory’, Foundations of Physics 25(2), 281–296.
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