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Abstract

From the Hilbert space formalism we note that five simple conditions
are satisfied by the orthogonality relation between the (pure) states of a
quantum system. We argue, by proving a mathematical theorem, that
they capture the essentials of this relation. Based on this, we investi-
gate the rationale behind these conditions in the form of six physical
hypotheses. Along the way, we reveal an implicit theoretical assumption
in theories of physics and prove a theorem which formalizes the idea that
the Superposition Principle makes quantum physics different from classi-
cal physics. The work follows the paradigm of mathematical foundations
of quantum theory, which I will argue by methodological reflection that
it exemplifies a formal approach to analysing concepts in theories.

Keywords: Orthogonality relation, Mathematical foundations of quan-
tum theory , Quantum logic, Concept analysis

1 Background and Introduction

1.1 Mathematical Foundations of Quantum Theory

Developed since the beginning of the 20th century, quantum theory is a new
theoretical framework in physics which has proved to be able to describe micro-
scopic physical phenomena with amazing accuracy. Along with its development
in theory and success in application, quantum theory has been observed to have
many novel characters which make it quite different from classical physics. In
1936, G. Birkhoff and J. von Neumann [10] pointed out a novel character of
quantum theory from the perspective of logic. They showed that, while, as had
been well known, the properties of a classical system form a Boolean algebra,
those of a quantum system do not.
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This observation leads to a lot of attention and interest in the lattice formed
by the (testable) properties1 of a quantum system, although this happened many
years after the publication of the paper. Researches about such lattices form a
field called quantum logic. References include [12, 26, 29]. Quantum logic has
now been widely acknowledged as an important kind of non-classical logic.

The paper [10] also inspires another line of research, which shares some
technical results with quantum logic but has a slightly different objective. It
is carried out by G. Mackey, J.M. Jauch, D.J. Foulis, C. Piron, C.H. Randall,
D. Aerts, A. Wilce, etc. This field of research is usually called mathematical
foundations of quantum theory (MFQT)2, but other names are also used by
different authors according to their understanding of the subject. For example,
it is called ‘quantum axiomatics’ in [2] and ‘rational reconstruction of quantum
mechanics’ in [30]. Sometimes it is also called ‘the logic of quantum mechanics’
([6]) or ‘quantum logic’, when ‘quantum logic’ is used in a sense more general
than a kind of non-classical logic.

The consideration behind MFQT is the following: Roughly speaking, quan-
tum theory was first built by manipulating some sophisticated mathematical
objects, like complex-valued functions, so that the numbers coming out of cal-
culations matched those from experiments. Then von Neumann summarized it
into a theory in which the mathematical structures called Hilbert spaces over
C3 are used in a particular way4 as mathematical models of quantum systems
([36]). This is called the Hilbert space formalism of quantum theory and has
become the standard form of quantum theory ([21, 33]). However, all of this is
developed with more mathematical skills than physical intuitions. The math-
ematical model of a quantum system, a Hilbert space over C, has complicated
algebraic, geometric and topological structure. Hence the contents of this the-
ory are hard to discover, and, even if discovered, are hard to apprehend. In
my understanding, the basic question of MFQT can be asked from two dif-
ferent but complementary perspectives. From the perspective of mathematics,
the question is why Hilbert spaces over C are used in such a particular way as
mathematical models of quantum systems. From the perspective of physics, the
question is what are the characteristics in quantum physics of some basic phys-
ical concepts, which force us to use mathematical models different from those in
classical physics.

To answer this question, the paradigm of research in MFQT mainly consists
of four steps: First, choose and start from some basic concepts in physics. This
guarantees that the study is transparent in physics and will not be submerged
by mathematical details. Second, find axioms, as simple and natural as possible,
to characterize the features of these concepts in quantum theory. This helps us
to understand these concepts, but at this step we do not know how much we

1The term ‘(testable) property’ in quantum logic means the physical concept represented
by subspaces of Hilbert spaces over C according to quantum theory. It is called ‘experimental
proposition’ in [10].

2This acronym is not common in the literature. It may only be used in this paper, because
the full term is a bit long.

3C denotes the field of complex numbers.
4The way how a Hilbert space is used to model a quantum system is worth attention.

The reason is that differential manifolds in classical physics and Hilbert spaces in quantum
physics can both be considered as generalizations or enrichments of vector spaces. However,
in classical physics each state is represented by a unique vector, while in quantum physics a
state can be represented by two different vectors.
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have understood and whether our understanding is complete. Third, use simple5

mathematical structures to model these concepts. This sets the stage for the
following last step. Fourth, prove representation theorems of the mathematical
structures satisfying the axioms via Hilbert spaces over C. A theorem of this
kind will separate the simple mathematical structures into two classes, ones
that can be abstracted from Hilbert spaces and ones that can not. Once such a
theorem is proved, we learn that the axioms obtained in the second step form
a complete description of the quantum features of the concepts. Note that it
is not the case that every approach in MFQT consists of all of the above four
steps. Especially, the fourth step may involve very hard mathematical problems
that take years to solve.

The works of Mackey, Piron, Solèr, Holland, etc. collectively and typically
exemplify this paradigm. The starting point is the concept of a property in
physics. Then axioms governing conjunction, negation, etc. of properties are
found in quantum theory. Lattices are the mathematical structures used to
model the structure formed by properties of quantum systems, and nowadays
lattices satisfying these axioms are usually called Piron lattices. Finally, Piron’s
Theorem ([32]) is a representation theorem of Piron lattices via generalized
Hilbert spaces, which are a kind of mild algebraic generalizations of Hilbert
spaces over C. In further research ([24, 27]), lattice-theoretic conditions are
found which finally characterize the lattices that can be abstracted from Hilbert
spaces over C.

The approach mentioned above is the first and among the most successful
in MFQT. From my point of view, in the literature, there are many other works
that could be considered of this kind. For example, algebras are used to model
the structure formed by effects of quantum systems ([12]); Kripke frames ([17]),
labelled transition systems ([5]) and probabilistic transition systems ([28]) are
used to model different aspects of the structure formed by the (pure) states
of quantum systems. If I may, the work of categorical quantum mechanics
([1, 13]) can be considered as using categories to model compositions of quantum
systems, and the work in the book [14] as reconstructing quantum theory from
the concept of information.

It is worth mentioning that MFQT is related to Hilbert’s Sixth Problem, i.e.
mathematical treatment of the axioms of physics. Quantum theory is the guide
instead of the opponent or rival of MFQT, and thus, as models of quantum
systems, many mathematical structures in MFQT are not as sophisticated as
Hilbert spaces. However, an advantage of the mathematical structures in MFQT
is that they are tailored to highlight the features in quantum theory of the
chosen physical concepts so that such features are not obscured by mathematical
complexity. This is similar to the case that in synthetic geometry the axioms,
the theorems and their proofs can be plainly and directly about important
geometric objects like points and lines, while in analytic geometry the study of
these geometric objects always has to be carried out by calculating numbers.
In some sense, each approach in MFQT axiomatizes a part of quantum theory
sectioned from the perspective of some physical concepts. In a word, MFQT
can be considered as exemplifying a formal method in analysing concepts in
theories, and thus is very helpful for the conceptual understanding of quantum

5Here the word ‘simple’ is used in an intuitive sense and mainly concerns the number and
the complexity of primitives.
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theory.
As a by-product, MFQT may provide ways to discuss about quantum theory

which are simple but still mathematically rigorous. This is because, to model
and study some features of quantum theory, some simple mathematical struc-
tures may be sufficient according to MFQT. Moreover, studying the logics of the
simple mathematical structures in MFQT may lead to sound, maybe even au-
tomatic, methods of reasoning about some quantum phenomena. Finally, most
concepts focused on in MFQT are quite generic, and they are used in many
other fields. The abstract study of quantum theory in MFQT facilitates finding
applications of the Hilbert space formalism outside physics. This will deepen
our understanding of this formalism and, in turn, quantum theory for which
this formalism is originally devised.

1.2 Background of this Paper

The work in this paper belongs to MFQT. The starting concept is that of a
(pure) state, which is widely used in the theoretical description of quantum
systems as well as classical systems and computational systems. We will study
the structure formed by the states of a quantum system under just one binary
relation. This binary relation is such that, for any two states s and t of a
quantum system, the relation holds for the pair (s, t), if and only if they can
be (perfectly) discriminated6 by one measurement of some observable of the
system. To be precise,

the relation holds for the pair (s, t), if and only if there is an observ-
able of the system and two possible values i and j of the observable
such that, if we know that the system is in either the state s or the
state t, then after a measurement of this observable we will know
which is the case: the state is s if and only if the outcome is i, and
the state is t if and only if the outcome is j.

Mathematically speaking, in the Hilbert space formalism of quantum theory,
two states having this relation are called orthogonal.

The idea of this approach is not new at all. The orthogonality relation has
been playing an important role in the proofs of theorems about Hilbert spaces
and in the study of quantum physics. Since the 1970s, with the development
of relational semantics for intentional logic, many researchers paid attention to
the connection between the orthogonality relation and lattices arising in the
study of quantum logic. Typical examples are [15, 17, 18, 19, 23, 31]. However,
most of these works appear to be motivated by interest in lattice theory or logic
instead of physics, though possibly [31] is an exception.

The work of this paper is a continuation of my works [41, 42]. In [41]
a mathematical model of the orthogonality relation called a quantum Kripke
frame is proposed; and, a duality, between a category formed by Piron lattices
and one formed by quantum Kripke frames, is presented as a formalization of
the state-property duality in quantum theory. In [42] quantum Kripke frames
are studied from the perspective of geometry and proved to be able to model
the projective geometry formed by the states of a quantum system. These

6There are different notions of discrimination between states in physics. For example, two
are discussed in [39], and one of them called perfect discrimination is the one used here.
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results suggest that quantum Kripke frames could be good qualitative models
of quantum systems. It is worth noting that quantum Kripke frames are defined
by five conditions on a binary relation which are simpler than most conditions
discussed in [23].

A main difference between this paper and the literature is that here the con-
ceptual and physical significance, instead of mathematical properties, of quan-
tum Kripke frames is the focus and is studied in two ways. On the one hand, I
prove a mathematical theorem (Theorem 2.13) which makes precise and explicit
the close connection between quantum Kripke frames and Hilbert spaces. On
the other hand, I reflect on the definition of quantum Kripke frames and give
physical hypotheses that support it. This brings some interesting insights into
quantum theory and physical theories in general. Our conclusion is that just a
few simple conditions satisfied by the orthogonality relation turn out to deter-
mine a large proportion of the structure formed by the states that is physically
significant, and thus quantum Kripke frames are able to model a surprisingly
large qualitative part of quantum theory.7

The rest of this paper is organized as follows. In Section 2 I will abstract the
notion of quantum Kripke frames from quantum theory and prove the theorem
(Theorem 2.13) that relates quantum Kripke frames to Hilbert spaces. Section
3 is an intermezzo, which tackles some technical issues so that the following sec-
tion goes more fluently. In Section 4, I will give six hypotheses in physics which
reveal the rationale behind the definition of quantum Kripke frames. Especially,
I will reveal an implicit assumption in theories of classical and quantum physics
(Remark 4.1), and I will prove a theorem (Proposition 4.8) which formalizes the
idea that the Superposition Principle is sufficient for explaining all differences
between quantum theory and classical physics. Moreover, I will present a qual-
itative version of quantum theory in which quantum Kripke frames are used
as mathematical models of quantum systems. This highlights some qualitative
features of measurements in quantum theory. Section 5 contains the conclusion
and some discussion about future work. Finally, in the Appendix I develop the
technicalities used in the proof of Proposition 4.5 in Section 4.

2 Quantum Kripke Frame

2.1 The Non-Orthogonality Relation

According to quantum theory, a quantum system is described by a Hilbert
space8 H over C in such a way that the states of the system are modelled by
the one-dimensional subspaces9 of H.10

Denote by ΣH the set of one-dimensional subspaces ofH; and define a binary
relation →H on ΣH, called the non-orthogonal relation, such that, for any s, t ∈
ΣH, s→H t, if and only if there are s ∈ s and t ∈ t such that (s, t) 6= 0.

7Note that this point is non-trivial. For example, if we start from the concept of mixed
states, it is not clear from the literature that a theory with similar nice features can be built.

8In this paper, all vector spaces, including Hilbert spaces, are assumed not to be {0}.
9In this paper, a subspace of H means a closed linear subspace, i.e. it forms a Hilbert space

with the addition, the scalar multiplication and the inner product inherited from H.
10In many textbooks, e.g. [33], it is usually written that the states of the system are mod-

elled by unit vectors of H. However, according to the measurement postulate, in predicting
experimental results there is no difference between a unit vector v and a non-zero scalar
multiplication cv of it. Hence the statement here is more precise.
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In the literature, it is more common to focus on the complement of →H in
ΣH × ΣH, i.e. the orthogonality relation. Following [42] it is more convenient
to focus on →H, which is reflexive.

Mathematical as the definition is, the non-orthogonality relation has a clear
physical meaning. s→H t can be interpreted in two ways, which are equivalent
according to quantum theory: on the one hand, s and t cannot be discriminated
by one measurement of an observable, as is mentioned in Subsection 1.2; on
the other hand, there is a measurement such that one performance of it could
trigger the system to change from one state to the other.

The following definitions from [42] are abstracted from a structure of the
form (ΣH,→H):

Definition 2.1. A Kripke frame F is an ordered pair (Σ,→) in which Σ is a
non-empty set and → is a binary relation on Σ.

Definition 2.2. Let F = (Σ,→) be a Kripke frame.

• s 6→ t means that s→ t does not hold.

• For each P ⊆ Σ, the orthocomplement of P , denoted by ∼P , is the set
{s ∈ Σ | s 6→ t, for each t ∈ P}.

• P ⊆ Σ is closed, if P = ∼∼P .

• LF denotes the set of closed subsets of Σ.

• s, t ∈ Σ are indistinguishable with respect to P ⊆ Σ, denoted by s ≈P t, if
s→ w ⇔ t→ w holds for each w ∈ P .

• For each P ⊆ Σ and s ∈ Σ, s′ ∈ Σ is called a representative of s in P , if
s′ ∈ P and s ≈P s′.

Definition 2.3. A quantum Kripke frame is a Kripke frame F = (Σ,→) satis-
fying all of the following five conditions:

1. Reflexivity: for each s ∈ Σ, s→ s.

2. Symmetry: for any s, t ∈ Σ, if s→ t, then t→ s.

3. Separation: for any s, t ∈ Σ, if s 6= t, then there is a w ∈ Σ such that
w → s but w 6→ t.

4. Superposition: for any s, t ∈ Σ, there is a w ∈ Σ such that w → s and
w → t.

5. Representation: for any P ⊆ Σ and s ∈ Σ, if P = ∼∼P and s 6∈ ∼P ,
then there is a representative of s in P .

Reflexivity and Symmetry are well-known conditions satisfied by the non-
orthogonality relation, and their logical properties have been studied in [15,
18, 19], etc. Separation is from [31]. It intuitively means that, for any two
distinct states, there is always a state which can distinguish between, and in
this sense separate, them by being non-orthogonal to one of them but not the
other. Superposition is from [5]. It is a manifestation of the famous Superpo-
sition Principle in quantum theory. Representation is the counterpart of the
Orthogonal Decomposition Theorem at the level of one-dimensional subspaces.

6



Now we show that quantum Kripke frames are indeed abstracted from Hilbert
spaces by mathematical results.

Proposition 2.4. For each Hilbert space H over C, FH = (ΣH,→H) satisfies
Reflexivity, Symmetry, Separation and Superposition.

Proof. Reflexivity and Symmetry follow from definite positiveness and conjugate
symmetry of the inner product, respectively.

For Separation, let s, t ∈ ΣH be arbitrary. Assume that s 6= t. Take s ∈
s \ {0} and t ∈ t \ {0}. Since s 6= t, s and t are linearly independent, so

w = s− (t,s)
(t,t)t 6= 0. Consider the one-dimensional subspace w generated by w. In

fact, this is the orthogonal projection of the subspace s on the orthocomplement
of the subspace t. Note that

(w, s) =

(
s− (t, s)

(t, t)
t, s

)
=

(s, s)(t, t)− (s, t)(t, s)

(t, t)

(w, t) =

(
s− (t, s)

(t, t)
t, t

)
=

(s, t)(t, t)− (s, t)(t, t)

(t, t)
= 0

On the one hand, because s and t are linearly independent, by Cauchy-Schwarz
inequality (s, s)(t, t) − (s, t)(t, s) > 0, so w →H s. On the other hand, for any
w′ ∈ w and t′ ∈ t, there are a, b ∈ C such that w′ = aw and t′ = bt, so
(w′, t′) = (aw, bt) = a∗b(w, t) = 0. Hence w 6→H t.

For Superposition, let s, t ∈ ΣH be arbitrary. If s→H t, let w = s, and thus
w →H t. Moreover, by Reflexivity w →H s. If s 6→H t, then take s ∈ s \ {0}
and t ∈ t \ {0}. Since s 6→H t, (s, t) = 0 and (t, s) = (s, t)∗ = 0∗ = 0. Hence

(s + t, s + t) =(s, s) + (s, t) + (t, s) + (t, t) = (s, s) + (t, t) > 0

By definite positiveness of the inner product s + t 6= 0. Consider the one-
dimensional subspace w generated by s + t. Note that

(s + t, s) =(s, s) + (t, s) = (s, s) > 0

(s + t, t) =(s, t) + (t, t) = (t, t) > 0

Therefore, by definition w →H s and w →H t.

To prove Representation we introduce a simple lemma.

Lemma 2.5. Let H be a Hilbert space over C. For each P ⊆ ΣH, if P 6= ∅ and
P = ∼H∼HP , then

⋃
P is a subspace of H.

Proof. By Theorem 3 in Section 6 of Chapter III in [8] (p.71) (
⋃
P )⊥⊥ is a

subspace of H, where, for each W ⊆ H,

W⊥
def
= {s ∈ H | (s, t) = 0 holds for each t ∈W}

Hence, to show that
⋃
P is a subspace of H, it suffices to show that

⋃
P =

(
⋃
P )⊥⊥. In the following, we prove this.
First,

⋃
P ⊆ (

⋃
P )⊥⊥ follows from the definition of (·)⊥.

Second, let s ∈ (
⋃
P )⊥⊥ be arbitrary. If s = 0, since P 6= ∅, we have

s ∈
⋃
P . If s 6= 0, denote by s the one-dimensional subspace generated by s.
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Let t ∈ ∼HP be arbitrary. It follows that t ∈ (
⋃
P )⊥ holds for each t ∈ t.

Since s ∈ (
⋃
P )⊥⊥, (s, t) = 0 holds for each t ∈ t. It follows that s 6→H t.

Since t is arbitrary, s ∈ ∼H∼HP = P , and thus s ∈ s ⊆
⋃
P . Therefore,

(
⋃
P )⊥⊥ ⊆

⋃
P .

Proposition 2.6. Let H be a Hilbert space over C. (ΣH,→H) satisfies Repre-
sentation.

Proof. Assume that P ⊆ ΣH and s ∈ ΣH satisfy P = ∼H∼HP and s 6∈ ∼HP .
Note that P 6= ∅; otherwise, it can be shown that s 6∈ ∼HP = ∼H∅ = ΣH,
contradicting s ∈ ΣH. Since P = ∼H∼HP , by the previous lemma

⋃
P is

a subspace of H. Take an s ∈ s \ {0}. By the Orthogonal Decomposition
Theorem (see e.g. Theorem 3.6.2 in [8]) there are s‖ ∈

⋃
P and s⊥ ∈ (

⋃
P )⊥

such that s = s‖ + s⊥. Note that s‖ 6= 0; otherwise s = s⊥, and it follows that
s ∈ ∼HP , contradicting the assumption. Denote by s‖ the one-dimensional
subspace generated by s‖. Since s‖ ∈

⋃
P , s‖ ∈ P . Moreover, for any t ∈

⋃
P ,

(s, t) = (s‖, t). Hence, for each t ∈ P , s→H t if and only if s‖ →H t.

As a result, we have the following:

Proposition 2.7. For each Hilbert space H over C, FH = (ΣH,→H) is a
quantum Kripke frame, called the quantum Kripke frame induced by H.

We end this subsection by a simple but useful lemma.

Lemma 2.8. Let F = (Σ,→) be a quantum Kripke frame.

1. ∼∅ = Σ and ∼Σ = ∅, and thus ∼∼∅ = ∅ and ∼∼Σ = Σ, i.e. ∅,Σ ∈ LF.

2. For any P,Q ⊆ Σ, P ⊆ Q implies that ∼Q ⊆ ∼P .

3. For each P ⊆ Σ, P ⊆ ∼∼P .

4. For each P ⊆ Σ, ∼P is closed.

5.
⋂

i∈I Pi ∈ LF, if Pi ∈ LF holds for each i ∈ I.

6. For each s ∈ Σ, {s} is closed.

7. For any P ⊆ Σ and s, t, t′ ∈ Σ, if P is closed and both t and t′ are
representatives of s in P , then t = t′.

Proof. Items 1 to 6 are Lemma 3.6 in [42] and Lemma 8 in [41].
For Item 7, assume that both t and t′ are representatives of s in P . Suppose

(towards a contradiction) that t 6= t′. By Separation there is a w ∈ Σ such that
w → t and w 6→ t′. Since t is a representative of s in P , t ∈ P . From w → t and
t ∈ P we know that w 6∈ ∼P . Since P is closed, by Representation there is a
representative w′ of w in P . On the one hand, since w → t and t ∈ P , w′ → t.
Since w′ ∈ P , s → w′. On the other hand, since w 6→ t′ and t′ ∈ P , w′ 6→ t′.
Since w′ ∈ P , s 6→ w′. We have got a contradiction.
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2.2 Quantum Kripke Frames and Hilbert Spaces

In this subsection we study the connection between quantum Kripke frames
and Hilbert spaces via some representation theorems between quantum Kripke
frames and special kinds of vector spaces. It will shed light on how abstract
quantum Kripke frames are, compared to Hilbert spaces.

We start from briefly reviewing the definition of generalized Hilbert spaces
([32, 35]), which are mild algebraic generalizations of Hilbert spaces over C.

Definition 2.9. A division ring is a ring in which every non-zero element has
a multiplicative inverse (and the multiplication may not be commutative.)

An involution on a division ring K = (K,+, ·, 0, 1) is a function µ : K → K
satisfying all of the following:

1. µ is bijective;

2. µ(x+ y) = µ(x) + µ(y) and µ(x · y) = µ(y) · µ(x), for any x, y ∈ K;

3. (µ ◦ µ)(x) = x, for every x ∈ K;

An Hermitian form on a vector space V over a division ringK = (K,+, ·, 0, 1)
is a function Φ : V × V → K satisfying all of the following:

1. Φ(u + v,w) = Φ(u,w) + Φ(v,w), for any u,v,w ∈ V ;

2. Φ(xv,w) = x · Φ(v,w), for any v,w ∈ V and x ∈ K;

3. there is an involution µ on K such that Φ(v,w) = µ(Φ(w,v)) holds for
any v,w ∈ V .

µ is called the accompanying involution of Φ.
A generalized Hilbert space is a vector space V over some division ring K

equipped with an Hermitian form Φ satisfying the following condition:

(∗) for every E ⊆ V , if E = (E⊥)⊥, then V = {u + v | u ∈ E and v ∈ E⊥};

where E⊥
def
= {u ∈ V | Φ(u,v) = 0 holds for each v ∈ E}.

In this definition, the division ring, the involution and the Hermitian form
are generalizations of the field of complex numbers, the complex conjugate and
the inner product, respectively. The condition (∗), which is purely algebraic
and is equivalent to the Orthogonal Decomposition Theorem in a Hilbert space,
replaces the condition of metric completeness.

An idea from Amemiya and Araki shows that a generalized Hilbert space
V is a Hilbert space over C, if its underlying division ring is C and the ac-
companying involution of the Hermitian form is the complex conjugate. In this
situation, the Hermitian form with which V is equipped is an inner product by
definition11, so V is a pre-Hilbert space, i.e. a vector space over C equipped with
an inner product. Then the result of Step 1 in the proof of the Theorem in [4]
(p.425) is given plainly by the condition (∗) above, where in [4] it follows from
orthomodularity of L(V ). The remaining steps in the proof of the Theorem in
[4] (pp.426-427) shows that V is complete and thus is a Hilbert space.

We cite a result in the literature and use it to prove the representation
theorem of quantum Kripke frames via generalized Hilbert spaces.

11In fact, there is a minor conventional difference: an inner product is conjugate on the first
argument, while an Hermitian form is conjugate on the second argument.
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Theorem 2.10.

1. For every quantum Kripke frame F = (Σ,→), G(F) = (Σ,∼∼{·, ·}, 6→) is
an irreducible Hilbertian geometry12.

2. For every irreducible Hilbertian geometry G = (G, ?,⊥), F(G) = (G, 6⊥)
is a quantum Kripke frame.

3. G is a class function13 from the class of quantum Kripke frames to that
of irreducible Hilbertian geometries.

F is a class function from the class of irreducible Hilbertian geometries to
that of quantum Kripke frames.

For any quantum Kripke frame F and irreducible Hilbertian geometry G,

(F ◦G)(F) = F (G ◦ F)(G) = G

Proof. It follows from Theorem 4.22 in [42].

Theorem 2.11. For each Kripke frame F = (Σ,→), the following are equiva-
lent:

(i) F is a quantum Kripke frame, and there are {s1, s2, s3, s4} ∈ Σ such that
si 6→ sj for any distinct i, j ∈ {1, 2, 3, 4};

(ii) there is a generalized Hilbert space V of dimension at least 4 such that
F ∼= FV , where FV = (ΣV ,→V ) is such that

1. ΣV is the set of all one-dimensional subspaces of V ;

2. for any s, t ∈ ΣV , s →V t, if Φ(s, t) 6= 0 for some s ∈ s and t ∈ t;
here Φ is the Hermitian form of V .

Moreover, if they exist, both V and its underlying division ring are unique up
to isomorphism, and Φ is unique up to a constant multiple.

Proof. From (ii) to (i): The proof of that FV is a quantum Kripke frame is
similar to that of Proposition 2.7, noting that the latter only uses the Orthogonal
Decomposition Theorem instead of the full power of metric completeness.

Since V is of dimension at least 4, by the Gram-Schmidt process we can get
four pairwise orthogonal elements in ΣV .

Since F ∼= FV , (i) holds.
From (i) to (ii): Since F is a quantum Kripke frame, by Theorem 2.10

G(F) = (Σ,∼∼{·, ·}, 6→) is an irreducible Hilbertian geometry. Since there
are four pairwise orthogonal elements in Σ, it can be shown that G(F) is of
dimension at least 3. By Theorem 8.4.6 in [16] or Theorem 2.7.1 in [9] G(F)
is arguesian. By Theorem 82 in [35]14 there is a generalized Hilbert space V
such that (ΣV , ?V ,⊥V ) ∼= (Σ,∼∼{·, ·}, 6→) = G(F). Therefore, F = (Σ,→) ∼=

12Here the term ‘Hilbertian geometry’ is used in the sense of Definition 14.5.4 in [16] and
Definition 2.4 in [42].

13The term ‘class function’ emphasizes that G is defined on a proper class. Though it
behaves like a function, G is not a set and thus is not a function in the sense of ZFC.

14Note that what is called an ‘arguesian irreducible Hilbertian geometry’ in this paper is
called an ‘arguesian Hilbert geometry’ in [35].
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(ΣV , 6⊥V ) = (ΣV ,→V ) = FV . Moreover, V is of dimension at least 4, for G(F)
is of dimension at least 3.

Uniqueness: The uniqueness of V and its underlying division ring follows
from Proposition 9.4.4 in [16], which is a result about arguesian projective ge-
ometry in general. The uniqueness of Φ follows from Proposition 83 in [35].

The conceptual significance of this theorem is that the five conditions in
the definition of quantum Kripke frames capture the essential properties of the
non-orthogonality relation between states of quantum systems.

To make a step further, we can characterize quantum Kripke frames isomor-
phic to those induced by infinite-dimensional Hilbert spaces over R, C or H15

using the following theorem:

Theorem 2.12 (Solèr’s Theorem [34]). Let V be a generalized Hilbert space
with K as the underlying division ring and Φ as the Hermitian form. V is
isomorphic to a Hilbert space over R, C or H, if there is a non-zero element k
in K and a set {vi | i ∈ N} ⊆ V such that

for any i, j ∈ N, Φ(vi,vj) =

{
k, if i = j
0, if i 6= j

(1)

The condition in this theorem has been studied in frameworks that are more
abstract ([3, 24]). Here we use a modified version of Aert’s Axiom of Plane
Transitivity ([3]). This condition is in terms of the automorphisms on a quan-
tum Kripke frame, which by Wigner’s Theorem ([37]) correspond to unitary
or antiunitary operators, if the quantum Kripke frame is induced by a Hilbert
space over C. According to this condition, quantum Kripke frames induced by
Hilbert spaces are the highly symmetric ones.

Theorem 2.13. Let F = (Σ,→) be a Kripke frame. The following are equiva-
lent:

(i) there is an infinite-dimensional Hilbert space V over R, C or H such that
F ∼= FV ;

(ii) F is a quantum Kripke frame such that: (a) there is a set {vi | i ∈ N} ⊆ Σ
such that vi 6→ vj holds for any distinct i, j ∈ N; and (b) for any s, t ∈ Σ
with s 6→ t, there is an automorphism F of F such that F (s) = t, F (t) = s
and F restricted to ∼{s, t} is the identity.

Proof. From (i) to (ii): Assume (i). Without loss of generality, we identify F
with FV , where V is the infinite-dimensional Hilbert space over R, C or H and
Φ is the Hermitian form of V . By Theorem 2.11 FV is a quantum Kripke frame.

For (a), since V is infinite-dimensional, from an orthonormal basis of V we
can find {vi | i ∈ N} ⊆ V \{0} such that, for any distinct i, j ∈ N, Φ(vi,vj) = 0.
For each i ∈ N, let vi be the one-dimensional subspace generated by vi. It can
be verified that {vi | i ∈ N} ⊆ ΣV has the required property.

For (b), let s, t ∈ ΣV be such that s 6→V t. Since V is a Hilbert space over R,
C or H, we can find s ∈ s and t ∈ t such that Φ(s, t) = 0, Φ(s, s) = Φ(t, t) = 1
and can extend the set {s, t} to an orthonormal basis B of V by Theorem 2.2.10
in [25]. Let f be the bijection on B such that f(s) = t, f(t) = s and f maps each

15H denotes the division ring of quaternions.
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of other elements in B to itself. Following the idea in the proof of Theorem 3 in
Section 16 of Chapter I in [22] (p.30), we can extend f to an automorphism f on
V by mapping a vector v =

∑
b∈B(b,v)b to the vector

∑
b∈B(b,v)f(b). Define

that F (s) = f [s]16 for each s ∈ ΣV . It can be shown that F is an automorphism
of FV such that F (s) = t, F (t) = s and F restricted to ∼V {s, t} is the identity.

From (ii) to (i): Assume (ii). By Theorem 2.11 F ∼= FV for some gen-
eralized Hilbert space V equipped with an Hermitian form Φ. We make the
following claim:

Claim: For any s, t ∈ V \ {0}, Φ(s, t) = 0 implies that there is an
x in K such that Φ(s, s) = Φ(xt, xt).

This claim is crucial in the following sense. By (ii) there is a set {vi | i ∈
N} ⊆ ΣV such that vi 6→V vj holds for any distinct i, j ∈ N. We can find
a v′i ∈ vi \ {0} for each i ∈ N such that Φ(v′i,v

′
j) = 0 holds for any distinct

i, j ∈ N. Moreover, for each i ∈ N\{0}, by the claim there is an xi in K such that
Φ(v′0,v

′
0) = Φ(xiv

′
i, xiv

′
i). Let v0 = v′0 and vi = xiv

′
i for each i ∈ N \ {0}. It

follows that {vi | i ∈ N} satisfies (1) in Theorem 2.12, and thus V is isomorphic
to an infinite-dimensional Hilbert space over R, C or H, so (i) follows.

It remains to prove the claim. Let s, t ∈ V \ {0} be arbitrary such that
Φ(s, t) = 0. Denote by s and t the one-dimensional subspaces generated by
s and t, respectively. Then s 6→V t. By (ii) there is an automorphism F of
FV such that F (s) = t, F (t) = s and F restricted to ∼V {s, t} is the identity.
Since F is an automorphism, (F, F−1) is an adjunction between G(FV ) and
itself (Definition 14.4.1 in [16]), and thus F is a continuous homomorphism
by Proposition 14.4.4 in [16]. Moreover, it is also an orthogonal morphism on
G(FV ) (Definition 14.3.1 in [16]). By Proposition 13.5.3 and Theorem 14.3.4 in
[16] there is a quasi-linear map f on V 17 and a k in K such that F (s) = f [s]
holds for each s ∈ ΣV and Φ(f(u), f(v)) = σ(Φ(u,v) ·k) holds for any u,v ∈ V .

It follows from (ii) that V is infinite-dimensional. Hence there are linearly
independent u,v ∈ V \ {0} such that u, v ∈ ∼V {s, t}, where u and v are the
one-dimensional subspaces generated by u and v, respectively.

Note that there is a non-zero z in K such that σ(y) = z · y · z−1 holds for
every y in K: Since F restricted to ∼V {s, t} is the identity, f(w) is in the
one-dimensional subspace generated by id(w), for every w ∈ L({u,v}) \ {0},
where L({u,v}) is the subspace generated by u and v and id is the identity
map on L({u,v}). Since u and v are linearly independent, L({u,v}), as the
image of id, is two-dimensional. By Lemma 6.3.4 in [16] there is a unique
non-zero z in K such that f(w) = zid(w) = zw for every w ∈ L({u,v}).
Now let y in K be arbitrary. Consider yu ∈ L({u,v}). On the one hand,
f(yu) = σ(y)f(u) = (σ(y) · z)u. On the other hand, f(yu) = z(yu) = (z · y)u.
Therefore, (σ(y) · z)u = (z · y)u; and thus σ(y) = z · y · z−1, for z is non-zero.

Also note that k = z∗ · z, where (·)∗ is the accompanying involution of
Φ: On the one hand, Φ(f(u), f(u)) = σ(Φ(u,u) · k) = z · Φ(u,u) · k · z−1.
On the other hand, Φ(f(u), f(u)) = Φ(zu, zu) = z · Φ(u,u) · z∗. Therefore,
z · Φ(u,u) · z∗ = z · Φ(u,u) · k · z−1, and so k = z∗ · z.

Now since f [s] = F (s) = t, there is a non-zero l in K satisfying f(s) = lt.

16f [s] is the image of s under f . It makes sense, for f is a function from V to V and s ⊆ V .
17This means that there is a division ring isomorphism σ on K such that, for any u,v ∈ V

and x in K, f(u + v) = f(u) + f(v) and f(xu) = σ(x)f(u). (Definition 6.6.10 in [16])
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Thus Φ(lt, lt) = Φ(f(s), f(s)) = σ(Φ(s, s)·k) = z·Φ(s, s)·z∗·z·z−1 = z·Φ(s, s)·z∗
Therefore, taking x to be z−1 · l, we have Φ(s, s) = Φ(xt, xt).

Finally, note that R, C and H can be distinguished by first-order conditions
on division rings. Also note that every line in the projective geometry induced
by a vector space V (of dimension at least 3) over a division ring K can be made
into a division ring isomorphic to K with addition and multiplication defined via
geometric constructions. Therefore, quantum Kripke frames induced by Hilbert
spaces over R, C and H can be distinguished by first-order conditions on Kripke
frames. However, although this idea is straightforward in mathematics, I have
to confess that the physical significance of these first-order conditions is obscure.
A promising alternative is to distinguish these three kinds of quantum Kripke
frames by the structure formed by the automorphisms on a quantum Kripke
frame, as is hinted by Mayet’s paper [27].

3 Technical Intermezzo: Opposite Family

In this section, we introduce the notion of opposite families and prove some
results about them, all of which will be used in Section 4.

We fix a Kripke frame F = (Σ,→) satisfying Reflexivity and Symmetry
throughout this section for convenience.

Note that Items 1 to 5 in Lemma 2.8 only need Reflexivity and Symmetry
in their proofs, so they hold in F.

First, we give the definition of opposite families.

Definition 3.1. An opposite family in F is a set {Pi | i ∈ I} ⊆ ℘(Σ) \ {∅} for
some I 6= ∅ such that s 6→ t holds for any i, j ∈ I with i 6= j, s ∈ Pi and t ∈ Pj .

An opposite family {Pi | i ∈ I} in F is maximal, if, for each opposite family
{Qi | i ∈ I} in F, that Pi ⊆ Qi holds for each i ∈ I implies that Pi = Qi holds
for each i ∈ I.

Remark 3.2. Intuitively, an opposite family {Pi | i ∈ I} is maximal, if no Pi

can be properly extended while keeping the resulting subset of ℘(Σ) \ {∅} being
an opposite family.

When I is a singleton, an opposite family {Pi | i ∈ I} is maximal, if and
only if {Pi | i ∈ I} = {Σ}.

Second, we prove a result relating opposite families and closed subsets.

Proposition 3.3. For each P ⊆ Σ, the following are equivalent:

(i) P is closed;

(ii) there is a non-empty set I, a maximal opposite family {Pi | i ∈ I} and a
j ∈ I such that P = Pj.

Moreover, for each closed P & Σ, {P,∼P} is the unique bipartite maximal
opposite family in F that contains P .

Proof. When P = Σ, the result follows from Remark 3.2 and Lemma 2.8. Hence
it remains to prove the case when P 6= Σ.
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From (ii) to (i): Assume that (ii) holds. Define, for each i ∈ I,

P ′i =

{
∼∼Pi, if i = j
Pi, if i 6= j

It can be verified that it is an opposite family. Since both {Pi | i ∈ I} and
{P ′i | i ∈ I} are opposite families, Pj ⊆ ∼∼Pj = P ′j by Lemma 2.8 and Pi ⊆ P ′i
holds for each i ∈ I \ {j}, we get Pj = ∼∼Pj , because {Pi | i ∈ I} is maximal.

From (i) to (ii): By definition {P,∼P} is an opposite family.
To prove that {P,∼P} is maximal, assume that P ′ ⊆ Σ and Q′ ⊆ Σ are

such that P ⊆ P ′, ∼P ⊆ Q′ and {P ′, Q′} is an opposite family in F. Combining
this assumption with Lemma 2.8 and (i), we have

P ′ ⊆ ∼Q′ ⊆ ∼∼P = P ⊆ P ′ and Q′ ⊆ ∼P ′ ⊆ ∼P ⊆ Q′

Therefore, P = P ′ and ∼P = Q′, so {P,∼P} is maximal.
For Uniqueness: Let P & Σ be closed. Assume that {P,Q} is a maximal

opposite family. By definition Q ⊆ ∼P and P ⊆ P . Since {P,∼P} is an
opposite family, by the assumption Q = ∼P , and thus {P,Q} = {P,∼P}.

Third, we prove a useful characterization of maximal opposite families.

Lemma 3.4. Let {Pi | i ∈ I} be an opposite family in F. The following are
equivalent:

(i) {Pi | i ∈ I} is maximal;

(ii) for each i∗ ∈ I, Pi∗ =
⋂{
∼Pi | i ∈ I \ {i∗}

}
.

Proof. If I is a singleton, the result holds by Remark 3.2, where the convention⋂
{Qj | j ∈ ∅} = Σ is used. If I is not a singleton, the proof goes as follows:

From (i) to (ii): Let i∗ ∈ I be arbitrary. Define, for each i ∈ I,

Qi =

{ ⋂{
∼Pi | i ∈ I \ {i∗}

}
, if i = i∗

Pi, if i 6= i∗

It can be verified to be an opposite family, for {Pi | i ∈ I} is an opposite family.
Moreover, by definition Pi ⊆ Qi holds for each i ∈ I \ {i∗}. For i∗, because
Pi∗ ⊆ ∼Pi holds for each i ∈ I \ {i∗}, Pi∗ ⊆

⋂{
∼Pi | i ∈ I \ {i∗}

}
= Qi∗ . By

(i) Pi∗ = Qi∗ =
⋂{
∼Pi | i ∈ I \ {i∗}

}
.

From (ii) to (i): Assume that {Qi | i ∈ I} is an opposite family such that
Pi ⊆ Qi holds for each i ∈ I. Let i∗ ∈ I be arbitrary. Since {Qi | i ∈ I} is an
opposite family, by definition Qi∗ ⊆

⋂{
∼Qi | i ∈ I \ {i∗}

}
. Moreover, since

Pi ⊆ Qi holds for each i ∈ I,
⋂{
∼Qi | i ∈ I \ {i∗}

}
⊆
⋂{
∼Pi | i ∈ I \ {i∗}

}
.

As a result, Qi∗ ⊆
⋂{
∼Qi | i ∈ I \ {i∗}

}
⊆
⋂{
∼Pi | i ∈ I \ {i∗}

}
. By (ii)

Qi∗ ⊆ Pi∗ , and thus Pi∗ = Qi∗ . Since i∗ ∈ I is arbitrary, (i) holds.

4 Quantum Kripke Frames as Models for Quan-
tum Systems

In Section 2, starting from the standard models for quantum systems, we define
quantum Kripke frames and discuss how they relate to Hilbert spaces.
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In this section, we will study the rationale behind the definition of quantum
Kripke frames in the form of six intuitive and physically significant hypotheses
about the indiscriminability-by-one-measurement relation. From this we see
how a quantum Kripke frame can be a qualitative model for a quantum system
and what insight about quantum theory we can get from the perspective of
states and the indiscriminability relation between states.

4.1 Discussion on Reflexivity and Symmetry

In the context of this paper, the intuition behind the abstract relation in a
Kripke frame is the indiscriminability-by-one-measurement relation between the
states of a physical system (Subsection 1.2); and the naive notion of indiscrim-
inability gives rise to the following two hypotheses:

Hypothesis 1: A state can never be discriminated from itself.

Hypothesis 2: That a state s is indiscriminable from a state t
means the same as that a state t is indiscriminable from a state s.

These two hypotheses support Reflexivity and Symmetry in the definition
of quantum Kripke frames.

In the remaining part of this section, for convenience, we fix an arbitrary
physical system, classical or quantum, and consider a Kripke frame F = (Σ,→)
that models its set of states and the indiscriminability relation between the
states. As is discussed above, F satisfies Reflexivity and Symmetry.

4.2 Discussion on Representation (I): Closed Set

In this subsection, we discuss about the antecedent of Representation.
We start from considering how to describe a measurement of an observable.

Let I be the non-empty set of all (mutually exclusive) possible values of an
arbitrary observable P and, for each i ∈ I, Pi ⊆ Σ be the set of states each of
which certainly yields the value i in a measurement of P.

We propose the following hypothesis, which is based on what we find in
experiments:

Hypothesis 3: A measurement of an observable must yield a value
as an outcome. Once a measurement yields a value, any immediate
repeat of this measurement will yield the same value.

According to this hypothesis, after a measurement of P yields a value i ∈ I,
the state of the system will be an element of Pi.

As the model of an observable, {Pi | i ∈ I} should satisfy two conditions.
First, s 6→ t, for any distinct i, j ∈ I, s ∈ Pi and t ∈ Pj . The reason is as

follows: if we know that the state of the system is either s or t, then the possible
outcomes of a measurement of P will only be i and j; moreover, the state is s
if and only if the outcome is i; and the state is t if and only if the outcome is j.
Hence s and t can be discriminated by one measurement of P.

Note that this condition means that {Pi | i ∈ I} is an opposite family. Also
note that by Reflexivity Pi ∩ Pj = ∅ holds for any distinct i, j ∈ I. With
Hypothesis 3 this implies that no state can simultaneously yield two different
values of an observable in one measurement, which is intuitive.
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Second, since I is the set of all possible values of P and, for each i ∈ I, Pi is
the set of states each of which certainly yields the value i in a measurement of
P, it makes sense to require that the opposite family {Pi | i ∈ I} is maximal.

Remark 4.1. This mathematical condition of maximality is inherited from
theories in physics, both classical and quantum, and I’m afraid that I do not
have a very convincing argument for it. The following discussion may reveal a
bit of its physical significance.

Consider the following statement:

(Max) An opposite family in F describes an observable, if and only
if it is maximal.

The ‘if’ part is a theoretical idealization about our experimental power which
is arguably fine; the ‘only if’ part is in question.

For an opposite family {Pi | i ∈ I} in F that models an observable, i∗ ∈ I
and s ∈ Σ, we consider the following two statements:

(i) s ∈ ∼Pi∗ , i.e., for each t ∈ Pi∗ , there is an observable such that one
measurement of it can discriminate between s and t;

(ii) a measurement of the observable modelled by {Pi | i ∈ I} on the system
in state s never yields the value i∗.18

I argue for 3 points.
First, I argue that, for any {Pi | i ∈ I}, i∗ ∈ I and s ∈ Σ, (ii) implies (i).

Assume that s 6∈ ∼Pi∗ , then s → t for some t ∈ Pi∗ . Thus a measurement of
the observable modelled by {Pi | i ∈ I} can not discriminate between s and t.
Since by t ∈ Pi∗ a measurement in state t certainly yields the value i∗, it must
be possible for a measurement in state s to yield the value i∗. In other words,
a measurement in state s may yield the value i∗.

Second, I argue that (Max) is sufficient for that, for any {Pi | i ∈ I}, i∗ ∈ I
and s ∈ Σ, (i) implies (ii). Since {Pi | i ∈ I} models an observable, by the ‘only
if’ part of (Max) {Pi | i ∈ I} is maximal, thus by Proposition 3.3 Pi∗ is closed.
A measurement of the observable modelled by {Pi | i ∈ I} can be considered
as a measurement of another observable which has exactly two possible values,
‘i∗’ and ‘not i∗’, just by recording the results in a coarser way. By Proposition
3.3 {Pi∗ ,∼Pi∗} is a maximal opposite family in F. It follows from the ‘if’ part
of (Max) that {Pi∗ ,∼Pi∗} models this coarse observable, and from the ‘only if’
part of (Max) that {Pi∗ ,∼Pi∗} is the unique opposite family that models this
observable. Therefore, when s ∈ ∼Pi∗ , it means that a measurement, which
measures both of the observables, in state s will certainly yield the value ‘not
i∗’; in other words, the outcome i∗ never occurs in such a measurement.

Third, I argue that the ‘only if’ part of (Max) is necessary for that, for any
{Pi | i ∈ I}, i∗ ∈ I and s ∈ Σ, (i) implies (ii). Suppose that an opposite
family {Pi | i ∈ I} in F models an observable. I use Lemma 3.4. Let i∗ ∈ I be
arbitrary. On the one hand, since {Pi | i ∈ I} is an opposite family, by definition
Pi∗ ⊆ ∼Pi holds for each i ∈ I \ {i∗}, thus Pi∗ ⊆

⋂{
∼Pi | i ∈ I \ {i∗}

}
. On

the other hand, for each s ∈ Σ, if s ∈
⋂{
∼Pi | i ∈ I \ {i∗}

}
, then by the

implication from (i) to (ii) a measurement in state s never yields any value in

18This means that, for each t ∈ Pi∗ , a measurement of the observable modelled by {Pi | i ∈
I} can discriminate between s and t.
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I \ {i∗}. Since a measurement always yields a value in I, such a value will
certainly be i∗, so s ∈ Pi∗ . Therefore,

⋂{
∼Pi | i ∈ I \ {i∗}

}
⊆ Pi∗ . As a result,

Pi∗ =
⋂{
∼Pi | i ∈ I \ {i∗}

}
. By Lemma 3.4 {Pi | i ∈ I} is maximal.

These three points together mean: (Max) is sufficient and necessary for
that, for any observable with a set I of possible values, i∗ ∈ I and s ∈ Σ, s
can be discriminated from each state which certainly yields the value i∗ in a
measurement of the observable, if and only if a measurement of the observable
on the state s never yields the outcome i∗.

(Max), or the above condition equivalent to it, is an implicit theoretical
assumption in physical theories.

We have seen that maximal opposite families in F correspond to observables.
When applied to quantum theory, this is quite restrictive, because such observ-
ables are modelled by compact self-adjoint operators. However, this is the core
idea and can be generalized, as will be presented in Subsection 4.6.

Remark 4.2. In some cases, e.g. classical physics, it is reasonable to assume
that any two distinct states can be discriminated. Then the binary relation
→ boils down to the graph of the identity map on Σ. In such cases, maximal
opposite families in F coincide with partitions of Σ. Therefore, the way how
an observable is modelled here is a generalization of the way how a question is
modelled in various logics of questions [7, 20].

Moreover, each Pi in a maximal opposite family {Pi | i ∈ I} of F can be
considered as a property of the system from the extensional view on properties,
thus by Proposition 3.3 closed sets in F correspond to properties of the system.
This explains why such sets appear in Representation.

With the above discussion, we understand the antecedent of Representation:
it is about a situation when a closed set P contains exactly the states each
of which will certainly yield the same particular value of an observable in a
measurement, and the system is in such a state s that a measurement of this
observable is possible to yield this value.

4.3 Discussion on Representation (II): Representative

In this subsection, we discuss about the consequent of Representation.
By Hypothesis 3, if an observable modelled by {Pi | i ∈ I} is measured on

the system in a state s ∈ Σ and the outcome is i ∈ I, then the state after
this measurement is in Pi. Here we make an assumption of modelling that
{Pi | i ∈ I}, s and i determine a unique state after measurement. In the
following, I will argue that this state should be a representative of s in Pi.

I need the notion of refinements of an observable:

Definition 4.3. Let P and Q be two observables with the sets of possible values
I and J , respectively. Q is a refinement of P, if there is a surjection f : J → I
such that, whenever a measurement of Q yields a value j ∈ J , an immediate
measurement of P will certainly yield the value f(j).

Correspondingly, we define refinements of a maximal opposite family:

Definition 4.4. A maximal opposite family {Qj | j ∈ J} in F is a refinement
of a maximal opposite family {Pi | i ∈ I} in F, if there is a surjection f : J → I
such that, for each j ∈ J , Qj ⊆ Pf(j).
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For two observables denoted by P and Q, respectively, we denote by P;Q
the experiment in which we first measure P and then measure Q, and Q;P the
experiment where the order is reversed. Consider the following hypothesis:

Hypothesis 4: For any two observables P and Q with the sets of
possible values I and J , respectively, such that Q is a refinement of
P, for any i ∈ I and j ∈ J , for the system prepared in any state s,
the result (i, j) is possible in the experiment P;Q, if and only if the
result (j, i) is possible in the experiment Q;P.

This hypothesis is plausible, because P and Q can be measured by the same
experimental apparatus but only different in the ways of recording the results.

We can argue that, to accord with Hypothesis 4, the following condition is
sufficient:

(>) the state of the system after a measurement is a representative of the state
before the measurement in the closed set corresponding to the outcome of
the measurement.

Denote by t the state after a measurement of the observable P modelled by
{Pi | i ∈ I} in the state s with outcome i∗ ∈ I. By Hypothesis 3 t ∈ Pi∗ .

Assume that t is a representative of s in Pi∗ . LetQ be an observable modelled
by {Qj | j ∈ J} which is a refinement of {Pi | i ∈ I} witnessed by a surjection
f and j∗ ∈ J satisfying f(j∗) = i∗. If the result (i∗, j∗) is possible in the
experiment P;Q, then by Remark 4.1 t 6∈ ∼Qj∗ . Since Qj∗ ⊆ Pi∗ and s ≈Pi∗ t,
s 6∈ ∼Qj∗ . Hence in the experiment Q;P j∗ is a possible outcome of measuring
Q and i∗ is certain to be the outcome of the measurement of P. Therefore,
the result (j∗, i∗) is also possible in the experiment Q;P. If the result (j∗, i∗) is
possible in the experiment Q;P, then by Remark 4.1 s 6∈ ∼Qj∗ . Since Qj∗ ⊆ Pi∗

and s ≈Pi∗ t, s 6∈ ∼Pi∗ and t 6∈ ∼Qj∗ . Hence in the experiment P;Q i∗ is a
possible outcome of measuring P and j∗ is a possible outcome of measuring Q.
Therefore, the result (i∗, j∗) is also possible in the experiment P;Q. In a word,
a result is possible in one of the two experiments, if and only if it is possible in
the other.

In fact, if F satisfies Representation and Separation, to accord with Hypoth-
esis 4, the condition (>) is also necessary. This is similar to the justification of
the Projection Postulate, and the idea here is similar to that of Bub in [11].

Our argument needs the following proposition, whose proof needs some def-
initions and results in the Appendix.

Proposition 4.5. Suppose that F = (Σ,→) satisfies Separation and Represen-
tation (in addition to Reflexivity and Symmetry). Let s, t ∈ Σ, {Pi | i ∈ I} be a
maximal opposite family in F and i∗ ∈ I. The following are equivalent:

(i) s ≈Pi∗ t;

(ii) for any refinement {Qj | j ∈ J} of {Pi | i ∈ I} witnessed by a surjection
f : J → I and j ∈ J satisfying f(j) = i∗, s ∈ ∼Qj if and only if t ∈ ∼Qj.

Proof. From (i) to (ii): Let {Qj | j ∈ J} be a maximal opposite family which
is a refinement of {Pi | i ∈ I} witnessed by a surjection f : J → I, and j ∈ J
satisfying f(j) = i∗. Then by definition Qj ⊆ Pi∗ . It follows from s ≈Pi∗ t that
s ∈ ∼Qj if and only if t ∈ ∼Qj .
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From (ii) to (i): Assume that (i) does not hold. Without loss of generality
we assume that I ∩ {0, 1} = ∅. We consider two cases.

Case 1: There is a w ∈ Pi∗ such that s → w but t 6→ w. Consider the set
{Qj | j ∈ J} with J = (I \ {i∗}) ∪ {0, 1} defined as follows:

Qj =

 {w}, if j = 0
∼{w} ∩ Pi∗ , if j = 1
Pj , if j ∈ I \ {i∗}

By Lemma 2.8 {w} is closed in F. By Lemma A.3 {w} is closed in the subframe
(Pi∗ ,→) of F. Then ({w},∼{w}∩Pi∗) = ({w},∼Pi∗{w}) is a maximal opposite
family in the subframe (Pi∗ ,→) of F by Proposition 3.3 and Lemma A.3. Since
{Pi | i ∈ I} is a maximal opposite family in F, by Lemma A.7 {Qj | j ∈ J} is a
maximal opposite family in F. It is obvious that {w} ⊆ Pi∗ and ∼{w} ∩ Pi∗ ⊆
Pi∗ , so {Qj | j ∈ J} is a refinement of {Pi | i ∈ I} witnessed by the surjection
f = {(0, i∗), (1, i∗)} ∪ {(i, i) | i ∈ I \ {i∗}}. Then f(0) = i∗, s 6∈ ∼Q0 but
t ∈ ∼Q0, so (ii) fails.

Case 2: There is a w ∈ Pi∗ such that s 6→ w but t → w. Construct a
refinement {Qj | j ∈ J} of {Pi | i ∈ I} and a witnessing surjection f in the
same way as the above case. Then f(0) = i∗, s ∈ ∼Q0 but t 6∈ ∼Q0, so (ii)
fails.

With this proposition, we can argue for the necessity of the condition (>),
when F satisfies Representation and Separation in addition.

Denote by t the state after a measurement of the observable P modelled by
{Pi | i ∈ I} in a state s with outcome i∗ ∈ I. By Hypothesis 3 t ∈ Pi∗ .

Assume that t is not the representative of s in Pi∗ . Then by the direction
from (ii) to (i) in the above proposition we can find an observable Q modelled
by {Qj | j ∈ J} which is a refinement of {Pi | i ∈ I} witnessed by a surjection f
and a j∗ ∈ J satisfying f(j∗) = i∗ such that either (1) s ∈ ∼Qj∗ and t 6∈ ∼Qj∗

or (2) s 6∈ ∼Qj∗ and t ∈ ∼Qj∗ . In Case (1), by Remark 4.1 the result (i∗, j∗) is
possible in the experiment P;Q because t 6∈ ∼Qj∗ ; but the result (j∗, i∗) is not
possible in the experiment Q;P because s ∈ ∼Qj∗ . In Case (2), by Remark 4.1
the result (i∗, j∗) is not possible in the experiment P;Q because t ∈ ∼Qj∗ ; but
the result (j∗, i∗) is possible in the experiment Q;P because s 6∈ ∼Qj∗ . In both
cases, reversing the order affects the set of possible results of the experiment.

Through the above discussion, we understand the consequent of Represen-
tation: in the situation described by the antecedent, Representation guarantees
that there is an element in the Kripke frame that can reasonably describe the
state after the measurement.

The conclusion of this subsection is that Representation gives us a way that
makes sense in physics to describe measurements of observables.

4.4 Discussion on Separation

Separation is a theoretical idealization. It means that the indiscriminability
relation has enough power to separate any two distinct states. From the proof
of Item 6 in Lemma 2.8 we see that, in a Kripke frame satisfying Reflexivity
and Symmetry, Separation is equivalent to that every singleton is closed. Con-
sidering Proposition 3.3 and Remark 4.1, we propose the following hypothesis:
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Hypothesis 5: For each state s, there is an observable and a pos-
sible value of it such that s is the unique state that certainly yields
this value in a measurement of this observable.

Relaxing Separation may enable our relational framework to model situa-
tions that are more general. For example, Mr. Fangjun Hu (personal commu-
nication, April 2019) proves that, in a quantum system modelled by a finite-
dimensional Hilbert space over C, the non-orthogonality relation between the
mixed states satisfies Reflexivity, Symmetry, Representation and Superposition,
but not Separation; where two mixed states, modelled by two density operators
ρ and ρ′, respectively, are said to be non-orthogonal if Tr(ρρ′) 6= 0.

4.5 Discussion on Superposition

Superposition is an abstraction of the Superposition Principle in quantum the-
ory, which we propose as a hypothesis here:

Hypothesis 6: For any two states, there is a state which can not
be discriminated with any one of them in a measurement of any
observable.

For example, the state in which an electron has a particular value of spin in
the x-direction can not be discriminated with either the state of spin-up or the
state of spin-down in the z-direction, no matter what observable we measure.

In this subsection, I will argue that Superposition is the only condition with
characteristic from quantum physics; in other words, a Kripke frame satisfying
Reflexivity, Symmetry, Separation and Representation can be used to model a
classical system.

In classical physics it is a plausible physical idealization that any two distinct
states can be discriminated by one measurement of some observable. Based on
this intuition, I define classical frames as follows:

Definition 4.6. A classical frame is a Kripke frame F = (Σ,→) such that →
is (the graph of) the identity map on Σ, i.e.→ = IdΣ = {(s, t) ∈ Σ×Σ | s = t}.

The following are some basic properties of classical frames.

Lemma 4.7. Let F = (Σ,→) be a classical frame.

1. ∼P = Σ \ P , for every P ⊆ Σ.

2. P = ∼∼P , for every P ⊆ Σ.

3. F satisfies Reflexivity, Symmetry, Separation and Representation.

The following proposition shows the difference between quantum Kripke
frames and classical frames.

Proposition 4.8. Let F = (Σ,→) be a Kripke frame satisfying Reflexivity,
Symmetry, Separation and Representation.

1. F is a quantum Kripke frame, if and only if Superposition holds.

2. F is a classical frame, if and only if Transitivity holds, i.e. s → t and
t→ u imply that s→ u, for any s, t, u ∈ Σ.
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3. Both Superposition and Transitivity hold, if and only if Σ has exactly one
element.

Proof. For Item 1 : It follows directly from the definition.
For Item 2 : The ‘only if’ part is obvious from the definition of classical

frames. For the ‘if’ part, assume that Transitivity holds. Let s, t ∈ Σ be
arbitrary such that s → t. Then, for each w ∈ Σ, s → w if and only if t → w
by Symmetry and Transitivity. It follows from the contrapositive of Separation
that s = t. Combining this with Reflexivity, I conclude that → = {(s, t) ∈
Σ× Σ | s = t}. Therefore, F is a classical frame.

For Item 3 : The ‘If ’ Part: Assume that Σ has exactly one element, namely
s. Then it can be verified that F = ({s}, {(s, s)}), and thus both Superposition
and Transitivity hold.

The ‘Only If ’ Part: Assume that both Superposition and Transitivity hold.
Let s, t ∈ Σ be arbitrary. By Superposition there is a w ∈ Σ such that w → s
and w → t. By Transitivity and 2 F is a classical frame. It follows that s = w
and t = w, and thus s = t. Since Σ cannot be empty by definition, Σ has exactly
one element.

This proposition formally captures the idea that quantum theory is different
from classical physics only because of the Superposition Principle.

4.6 A Qualitative Quantum Theory

The discussion above shows how the structure of a quantum Kripke frame can
be used in modelling physical concepts. By replacing the structure in a Hilbert
space with its counterpart in a quantum Kripke frame, we obtain the following
qualitative version of quantum theory:

1. A quantum system is modelled by a quantum Kripke frame F = (Σ,→)
in such a way that (pure) states of the systems correspond to elements of
Σ.

2. An observable is modelled by a function ν : σ → LF, where σ is an algebra
of measurable subsets of R, such that:

(a) ν(∅) = ∅ and ν(R) = Σ;

(b) for each {Ei | i ∈ N} ⊆ σ, if Ei ∩ Ej = ∅ holds for any two dis-
tinct i, j ∈ N, then {ν(Ei) | i ∈ N} is a maximal opposite family in
ν(
⋃
{Ei | i ∈ N});

(c) for any E,E′ ∈ σ, ν(E ∩ E′) = ν(E) ∩ ν(E′).

In a measurement of this observable, if the system is prepared in the state
s ∈ Σ and the result lies in E ∈ σ, then the state after the measurement
is the representative of s in ν(E) (Item 7 in Lemma 2.8).

3. Evolutions are described by isomorphisms on F: if a process of evolution is
described by an isomorphism F and the state before the process is s ∈ Σ,
then after the process the state is F (s).
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Now a quantum test measures an observable which has exactly two distinct
possible values. We denote them by 0 and 1. In this special case, the function
ν essentially boils down to a maximal opposite family {P0, P1} in F in such a
way that, for each E ∈ σ,

ν(E) =


Σ if 0 ∈ E and 1 ∈ E
P0 if 0 ∈ E and 1 6∈ E
P1 if 0 6∈ E and 1 ∈ E
∅ if 0 6∈ E and 1 6∈ E

If the quantum system is prepared in the state s ∈ Σ, the possible outcomes
and the states after the test in different cases are shown in the following table:

Cases Possible Outcome(s) State after the Test

s ∈ P0 0 the representative of s in P0, i.e. s
s ∈ P1 1 the representative of s in P1, i.e. s

s 6∈ P0 ∪ P1
0 the representative of s in P0

1 the representative of s in P1

This gives a clear, qualitative description of a quantum test, and it could be
easily generalized to the case of a measurement of any observable.

5 Conclusion

In this paper we argue that quantum Kripke frames are able to model a large
part of the qualitative aspect of the structure formed by the states of quantum
systems. There are two main evidences. One is Theorem 2.13 which character-
izes the quantum Kripke frames induced by infinite-dimensional Hilbert spaces.
The other are six hypotheses in physics that reveal the rationale behind the defi-
nition and a qualitative version of quantum theory which describes the character
of measurements in quantum physics. Along the way, an implicit theoretical as-
sumption in theories of physics is revealed (Remark 4.1); and the Superposition
Principle is argued, in terms of a theorem (Proposition 4.8), to be sufficient for
explaining the difference between quantum theory and classical physics.

There are many topics for further investigation. Here I briefly mention two.
First, the qualitative framework of quantum Kripke frames can be naturally
extended to a quantitative one by replacing the non-orthogonality relation with
transition probabilities. This approach is intuitive and has been investigated in
the literature ([28, 38]). Second, we can find for two quantum Kripke frames
the counterpart of the tensor product of two Hilbert spaces to describe the
entanglement of two quantum systems. This involves a lot of technical work,
so I defer to a separate paper the details and the physical intuition of this
description.
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A Appendix

In this appendix, I will develop the technicalities used in the proof of Proposition
4.5 in Subsection 4.3.

We fix a Kripke frame F = (Σ,→) satisfying Reflexivity and Symmetry
throughout this appendix for convenience.

Note that Items 1 to 5 in Lemma 2.8 only need Reflexivity and Symmetry
in their proofs, so they hold in F.
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A.1 Subframe

In this subsection, we introduce and discuss the notion of a subframe.

Definition A.1. A subframe of F is an ordered pair (P,→P ) such that

1. P ⊆ Σ is non-empty and closed in F;

2. →P is the restriction of → to P , i.e. →P =→∩ (P × P ).

Remark A.2. Let (P,→P ) be a subframe of F.

1. For any s, t ∈ P , s→ t if and only if s→P t.

2. For any A ⊆ P and s, t ∈ P , s and t are indistinguishable with respect to
A in (P,→P ) if and only if they are indistinguishable with respect to A
in F.

3. (P,→P ) is a Kripke frame satisfying Reflexivity and Symmetry, so the
results in this appendix apply to it as well.

Given this remark, in the following, I denote the restriction of → in F to
P by → instead of →P . I also use the same symbol ≈A indexed by A ⊆ P to
denote the indistinguishability relation with respect to A in (P,→) and that in
F. On the contrary, I denote the orthocomplement of A ⊆ P in (P,→) by ∼PA,
because the orthocomplements in the subframe are different from those in F.

I start from some simple facts about the orthocomplements and the closed
subsets in a subframe.

Lemma A.3. Let (P,→) be a subframe of F.

1. ∼PA = ∼A ∩ P , for every A ⊆ P .

2. For each A ⊆ P , if ∼P∼PA = A, then ∼∼A = A.

3. If F satisfies Representation, then, for each A ⊆ P , ∼∼A = A implies
that ∼P∼PA = A.

Proof. For Item 1 : Easy verification.
For Item 2 : Assume that ∼P∼PA = A. By Lemma 2.8 A ⊆ ∼∼A. It

remains to show that ∼∼A ⊆ A. Assume that s 6∈ A. By the assumption
s 6∈ ∼P∼PA. Then there is a t ∈ ∼PA such that s → t. By 1 t ∈ ∼A ∩ P .
Hence t ∈ ∼A is such that s→ t, and thus s 6∈ ∼∼A.

For Item 3 : Assume that F satisfies Representation and ∼∼A = A. By 1
∼P∼PA = ∼(∼A ∩ P ) ∩ P , so it amounts to show that ∼(∼A ∩ P ) ∩ P = A.

On the one hand, since A ⊆ P and A = ∼∼A ⊆ ∼(∼A ∩ P ) by Lemma 2.8,
A ⊆ ∼(∼A ∩ P ) ∩ P .

On the other hand, let s ∈ ∼(∼A ∩ P ) ∩ P be arbitrary. Then s ∈ P and
s ∈ ∼(∼A ∩ P ). To show that s ∈ A, by the assumption it suffices to show
that s ∈ ∼∼A. Hence we let t ∈ ∼A be arbitrary and try to show that s 6→ t.
Consider two cases.

• Case 1: t ∈ ∼P .

Since s ∈ P , it follows that s 6→ t.
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• Case 2: t 6∈ ∼P .

By Representation there is a t‖ ∈ P such that t ≈P t‖. Since A ⊆ P and
t ∈ ∼A, t‖ ∈ ∼A. Hence t‖ ∈ P ∩ ∼A. Since s ∈ ∼(∼A ∩ P ), t‖ 6→ s.
Since s ∈ P , by t ≈P t‖ we have t 6→ s, so s 6→ t.

Proposition A.4. Let (P,→) be a subframe of F. If F satisfies both Separation
and Representation, then so is (P,→).

Proof. For Representation, let A ⊆ P and s ∈ P be such that A = ∼P∼PA and
s 6∈ ∼PA. By Lemma A.3 A = ∼∼A. Moreover, since s 6∈ ∼PA and s ∈ P , by
Lemma A.3 s 6∈ ∼A. By Representation there is an s′ ∈ A such that s ≈A s′.

For Separation, assume that s, t ∈ P are such that s 6= t. Since F satisfies
Separation, there is a w ∈ Σ such that w → s and w 6→ t. Since w → s, w 6∈ ∼P .
By Representation there is a w′ ∈ P such that w ≈P w′. Hence w′ ∈ P is such
that w′ → s and w′ 6→ t.

A.2 Maximal Opposite Family

Here we prove some useful results about maximal opposite families.

Corollary A.5. Let {Pi | i ∈ I} be a maximal opposite family in F. ∅ =⋂
{∼Pi | i ∈ I}.

Proof. If I is a singleton, the result holds by Lemma 2.8 and Remark 3.2. In
the following we focus on the case when I has at least two elements.

Take an i∗ ∈ I. By Lemma 3.4 Pi∗ =
⋂{
∼Pi | i ∈ I \ {i∗}

}
. Hence⋂

{∼Pi | i ∈ I} = ∼Pi∗ ∩
⋂{
∼Pi | i ∈ I \ {i∗}

}
= ∼Pi∗ ∩ Pi∗ = ∅.

Lemma A.6. If F satisfies Separation and Representation, then, for any closed
P & Σ and s 6∈ ∼P , there are s‖ ∈ P and s⊥ ∈ ∼P such that s‖ ∈ ∼∼{s, s⊥}.

Proof. Assume that P & Σ is closed and s 6∈ ∼P . Note that ∼P 6= ∅ for P 6= Σ.
If s ∈ P , then by just letting s‖ = s and picking an arbitrary s⊥ ∈ ∼P we will
have s‖ ∈ ∼∼{s, s⊥}. In the following, we focus on the case when s 6∈ P .

Since P is closed, s 6∈ ∼∼P . By Representation there is an s⊥ ∈ ∼P such
that s ≈∼P s⊥. Since s 6∈ ∼P , s 6= s⊥, so s 6∈ ∼∼{s⊥} by Separation and
Lemma 2.8. By Representation there is an s‖ ∈ ∼{s⊥} such that s ≈∼{s⊥} s‖.
It follows that s‖ ∈ ∼∼{s, s⊥}.

It remains to show that s‖ ∈ P . Suppose (towards a contradiction) that
s‖ 6∈ P . Then s‖ 6∈ ∼∼P . By Representation there is an s′‖ ∈ ∼P such that

s‖ ≈∼P s′‖. One the one hand, since s′‖ → s′‖, s‖ → s′‖. On the other hand,

since s‖ 6→ s⊥ and s⊥ ∈ ∼P , s′‖ 6→ s⊥. Since s ≈∼P s⊥ and s′‖ ∈ ∼P , s 6→ s′‖.

Therefore, s′‖ ∈ ∼{s, s⊥}. Since s‖ ∈ ∼∼{s, s⊥}, s‖ 6→ s′‖. As a result, we have
got a contradiction.

Finally, we prove a lemma for building maximal opposite families used in
the proof of Proposition 4.5.
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Lemma A.7. Suppose that F satisfies Separation and Representation. Let I
and J be two disjoint, non-empty sets, {Pi | i ∈ I} a maximal opposite family in
F, i∗ ∈ I, {Qj | j ∈ J} a maximal opposite family in the subframe (Pi∗ ,→) of
F and K = (I \ {i∗})∪ J . The following element in ℘(℘(Σ) \ {∅}) is a maximal
opposite family in F: for each k ∈ K,

Ok =

{
Pk, if k ∈ I \ {i∗}
Qk, if k ∈ J

Proof. The case when I = {i∗} follows from Remark 3.2. It remains to consider
the case when I is not a singleton.

In this case, it can be verified that {Ok | k ∈ K} is an opposite family.
Before showing maximality, I claim that ∼Pi∗ =

⋂
{∼Qj | j ∈ J}: For

one direction, for each j ∈ J , Qj ⊆ Pi∗ , so ∼Pi∗ ⊆ ∼Qj . Hence ∼Pi∗ ⊆⋂
{∼Qj | j ∈ J}. For the other direction, suppose (towards a contradiction)

that
⋂
{∼Qj | j ∈ J} 6⊆ ∼Pi∗ . On the one hand, there is an s ∈

⋂
{∼Qj | j ∈ J}

but s 6∈ ∼Pi∗ . By Lemma A.6 there are s‖ ∈ Pi∗ and s⊥ ∈ ∼Pi∗ such that
s‖ ∈ ∼∼{s, s⊥}. Since s ∈

⋂
{∼Qj | j ∈ J} and s⊥ ∈ ∼Pi∗ ⊆

⋂
{∼Qj | j ∈ J},

s‖ ∈
⋂
{∼Qj | j ∈ J}. Thus s‖ ∈ Pi∗ ∩

⋂
{∼Qj | j ∈ J}. On the other hand,

since {Qj | j ∈ J} is a maximal opposite family in the subframe (Pi∗ ,→) of F,
by Lemma A.3 and Corollary A.5 ∅ =

⋂
{∼Pi∗Qj | j ∈ J} =

⋂
{Pi∗ ∩∼Qj | j ∈

J} = Pi∗ ∩
⋂
{∼Qj | j ∈ J}, which contradicts that s‖ ∈ Pi∗ ∩

⋂
{∼Qj | j ∈ J}.

As a result, ∼Pi∗ =
⋂
{∼Qj | j ∈ J}.

Now we prove maximality. By Lemma 3.4 it suffices to show that, for each
k∗ ∈ K, Ok∗ =

⋂{
∼Ok | k ∈ K \ {k∗}

}
. We consider 2 cases.

• Case 1: k∗ ∈ I \ {i∗}.

Ok∗ = Pk∗ =
⋂
{∼Pi | i ∈ I \ {k∗}} (Lemma 3.4)

= ∼Pi∗ ∩
⋂
{∼Pi | i ∈ I \ {k∗, i∗}}

=
⋂
{∼Qj | j ∈ J} ∩

⋂
{∼Pi | i ∈ I \ {k∗, i∗}} (the claim)

=
⋂{
∼Ok | k ∈ K \ {k∗}

}
• Case 2: k∗ ∈ J .

Ok∗ = Qk∗ =
⋂
{∼Pi∗Qj | j ∈ J \ {k∗}} (Lemma 3.4)

=
⋂
{∼Qj ∩ Pi∗ | j ∈ J \ {k∗}} (Lemma A.3)

= Pi∗ ∩
⋂
{∼Qj | j ∈ J \ {k∗}}

=
⋂
{∼Pi | i ∈ I \ {i∗}} ∩

⋂
{∼Qj | j ∈ J \ {k∗}}

(Lemma 3.4)

=
⋂{
∼Ok | k ∈ K \ {k∗}

}
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