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Abstract. A theorem on the partitioning of a randomly selected large population
into stationary and non-stationary components by using a property of the stationary
population identity is stated and proved. The methods of partitioning demonstrated
are original and these are helpful in real-world situations where age-wise data is avail-
able. Applications of this theorem for practical purposes are summarized at the end.
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1. Stationary Population

Stationary population assumptions and related mathematical formulations were of
interest to Edmond Halley, an astronomer who also published in demography (in 1693,
[1]), to influential mathematician Leonard Euler in the eighteenth century [2, 3, 4],
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as well as to twentieth-century famous theoretical population biologist Alfred Lotka
[20, 21]. A population is said to be stationary if it has a zero growth rate and a constant
population age-structure, and if not the population is said to be non-stationary. Lotka
associated his theory of stationary populations with the average rate at which a woman
in her lifetime will be replaced by a girl (which we call the net reproduction rate). In
fact, Lotka [20, 21] logically argued that the rate of natural growth, r, of a population
will be zero in (1.1) when the net reproduction rate of the population, R0, will be equal
to one (the notation R0 was introduced by Lotka). The relation between r and R0 is
given by

(1.1) r =
ln(R0)

L
,

where L is the length of the generation of a population, which is expressed as,

(1.2) L =
1

R0

∞̂

0

xa(x)s(x)dx,

where a(x) is the age-specific fertility rate of women of age x to give births to girl
babies, and s(x) is the survival probability function for women to live up to the age
x. Although R0 is a popular demographic measure, its practical applicability in timely
measuring the stationary status of a population is questioned. See, for example, [5].

We define below the stationary population identity (SPI) or the Life Table Identity
for a discrete population as given in [17].

Definition 1. Stationary Population identity (SPI) or the Life Table Identity: Let, for
each age between 0 and a maximum age present in a discrete stationary population or
discrete stationary life table population, X denote the set of elements representing the
proportions of individuals present in the population for these ages. Furthermore, let Y
denote the set of elements representing the proportions of individuals in the population
whose remaining times to live are equal to these ages. We say that the SPI holds if
X = Y .

Let, for a discrete stationary population with maximum age ω, A denote the set of
all integers from 0 to (and including) ω: A = {0, a1, a2, ..., ω}. So, A equals the set of
discrete ages in a discrete stationary population or discrete stationary life table. The
statement that the SPI holds for a discrete stationary population or discrete stationary
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life table means that the proportion f1(x) of individuals with age x ∈ A in the popula-
tion is equal to the proportion f2(x) of individuals in the population who will life for x
years. i.e., f1(x) = f2(x) ∀ x ∈ A.

This identity was theoretically demonstrated by means of partitioning large popula-
tions [17]. This is frequently referred to also as the life table identity in mathematical
population biology and demography literature. Such identities are found in various pub-
lished literature, for example, see [6, 7, 8, 9, 10, 11]. There are other related equalities
in stationary populations which suggest that the average age in a stationary popula-
tion is equal to the average expectation of remaining life time (for continuous versions)
[18, 19]. Although Lotka and Cox in their respective works have chosen continuous
frameworks, in this article the population ages are treated in a discrete framework.

In this article, we state and prove a novel theorem that states a criterion to parti-
tion a randomly selected large discrete population into stationary and non-stationary
components. The procedure consists of comparing f1(x) and f2(x) and see if they are
identical. Instead of the life table population, the theorem suggests comparing the
fractions of the population for each age of the actual population at a time point with
the fractions of the population that have remaining ages in the corresponding life table
population constructed at the same time.

In general, we do not often see stationary populations, except in life tables. But
a careful investigation of any large population data suggests that a sub-population
of a population could obey the properties of a stationary population. Now, through
the partition theorem that is proved in this article, it becomes easier to understand
the stationary component of large populations instantly, without being dependent on
measures like NRR (net reproduction rate). Moreover, the theorem guarantees with
certainty if a component of a large population is stationary.

2. Partition Theorem and Proof

Theorem 2. Stationary Population Identity (SPI) partitions a randomly selected large
population into stationary and non-stationary components (if such components are non-
empty).

Proof. Let a randomly selected large population be given, and let the maximum age
present in the population be denoted by ω. Let P (t) denote the size of the population
at time t, and for x ∈ A, where A = {0, a1, a2, ..., ω}. For x ∈ A, let Px(t) denote the
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number of individuals with age x in the population at time t. In the current proof, we
considere P as a summation over discrete ages. Then

(2.1) P (t) = Σω
x=0Px(t).

Let g1(x, t) = Px(t)
P (t)

for all x ∈ A. We define the stationary component of P (t), denoted
by M(t), as the size of the sub-population of all (variously aged) individuals for which
there exists a value y ∈ A such that g1(y, t) = f2(y, t) holds, where f2(y, t) denotes the
proportion of individuals in the population at time t who will have y remaining years
to live. The non-stationary component of P (t), denoted by N(t), is defined as the size
of the sub-collection of individuals for which g1(z, t) 6= f2(z, t) for any z ∈A. It will be
clear that at any t the equality

(2.2) P (t) = M(t) + N(t)

holds. Let us choose all individuals at age y in P (t) and consider

(2.3) g1(y, t) =
Py(t)

P (t)
.

From the life table constructed for the population P (t) (assumably for the single
ages of the set A), we can obtain the proportion of the population who have expected
remaining years within A, and compare this with the proportion of the population at
each age x ∈ A in P (t). Note that a life table is a mathematical model to synthetically
demonstrate the age-specific death rates of a population and to compute remaining
average years to live at each age in A. There are several books available to understand
details of life table constructions, for example, see [13, 14, 15, 12, 16]. We will compare
g1(y, t) with another proportion f2(x, t) ∀x ∈ A, where

(2.4) f2(x, t) =
Lx(t)

L(t)
.

Here Lx(t) is the life table population at time t whose remaining years to live is x

and L(t) is total life table population at t. First, we match Py1 (t)

P (t)
for a given y1 ∈ A

in (2.3) with Lx(t)
L(t)

for each x ∈ A. If Py1 (t)

P (t)
is equal to Lx(t)

L(t)
for some x, then we call

the corresponding life table proportion of the population as Ly1 (t)

L(t)
(say,f2(y1, t)). That
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is, Ly1 (t)

L(t)
is the proportion of life table sub-population who have y1 years to live. This

follows,

(2.5) g1(y1, t) =
Py1(t)

P (t)
=

Ly1(t)

L(t)
= f2(y1, t).

Suppose Py1 (t)

P (t)
does not equal to any of the proportions Lx(t)

L(t)
for x ∈ [0, ω), then we

denote y1 in (2.5) by z1 and write this situation as g1(z1, t) 6= f2(z1, t). That is, for any
of the proportions Lx(t)

L(t)
for x ∈ [0, ω), the remaining years to live is not equal to y1.

We will continue matching Py2 (t)

P (t)
for some y2 6= y1 and y2 ∈ [0, ω) with Lx(t)

L(t)
for each

x ∈ A except for x = y1. If there is a value of Lx(t)
L(t)

that equals Py2 (t)

P (t)
, we call the

corresponding proportion in the life table population as Ly2 (t)

L(t)
(say, f2(y, t)).

Ly2 (t)

L(t)
is

the proportion of the life table sub-population who have y2 years to live. That is,

(2.6) g1(y2, t) =
Py2(t)

P (t)
=

Ly2(t)

L(t)
= f2(y2, t).

Suppose Py2 (t)

P (t)
is not equal to any of the proportions Lx(t)

L(t)
for x ∈ A, then we denote y2

in (2.6) by z2 (if z1 already arises in an earlier situation such that g1(z1, t) 6= f2(z1, t)),
and we write g1(z2, t) 6= f2(z2, t). However, if g1(y1, t) = f2(y1, t) exists but

Py2 (t)

P (t)
6= Lx(t)

L(t)

∀x ∈ A, then we denote y2 as z1 and write g1(z1, t) 6= f2(z1, t).

Similarly, for a randomly selected age yi ∈ A, the proportion Pyi (t)

P (t)
(i.e. g1(yi, t)) is

matched with the proportions Lx(t)
L(t)

∀x ∈ A. If there is a value of Pyi (t)

P (t)
that matches with

Lx(t)
L(t)

then we denote it by f2(yi, t), otherwise we denote it by f2(zi, t) (if the previous
z value in the order of unmatched proportions was denoted as zi−1 for i = 2, 3, ...).
Through this procedure we will match for all the values of yi ∈ A, and decide whether
or not g1(yi, t) is equal to the f2(yi, t). The criteria is: of for any age yi in a randomly
selected large population (actual population) the, if the value of the proportion Pyi (t)

P (t)
is

equal to any of the life table sub-population proportions Lx(t)
L(t)

∀x ∈ A whose remaining
years to live is exactly yi, then g1(yi, t) = f2(yi, t).

Existence of two sets {ykj} and {zkj} :

In general, at each age x ∈ A we can check whether
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Figure 2.1. Proportions of sub-population in an actual population and
in a life table. Pykj

(t) denotes the size of sub-population whose individuals
are of age ykj at time t, and P (t) is the total actual population at time
t. Lykj

(t) is the life table population at time t of these individuals whose
remaining years to live at time t is equals ykj and L(t) is the total life
table population at t. Here time is not to be measured on a continuous
scale.

Figure 2.2. Stationary component of a randomly selected large popula-
tion. Proportional sub-populations at ages yk1 , yk2 , ... in the actual total
population are identical with the proportional life table sub-populations
whose individuals have remaining years yk1 , yk2 , ... to live.
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Figure 2.3. Non-stationary component of a randomly selected large
population. Proportional sub-populations at ages zk1 , zk2 , ... in the actual
total population are not identical with any of the life table proportional
sub-populations whose individuals have remaining years to live equal to
zk1 , zk2 , ...

(2.7)
Px(t)

P (t)
=

Lx(t)

L(t)

holds, or

(2.8)
Px(t)

P (t)
6= Lx(t)

L(t)

holds. See Figure 2.1 for application of (2.7), Figure (2.2) for the stationary component,
and Figure (2.3) for the non-stationary component.

Suppose we start this procedure from age 0. At x = 0, either (2.7) holds or (2.8)
holds, but not both. If (2.7) holds, then let us denote yk1 for 0, or, if (2.8) holds, then
let us denote zk1 for 0. Hence, at age 0 one of the yk1 or zk1 exists, and

(2.9) {yk1} ∪ {zk1} = {0}

Now, let us consider age a1 > 0 for a1 ∈ A. At age x = a1, either (2.7) holds or (2.8)
holds, but not both. If (2.7) holds at x = a1, and yk1 exists, then let us denote yk2 for
a1. If (2.7) holds at x = a1 and zk1 exists, then let us denote yk1 for a1. If (2.8) holds
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at x = a1 and yk1 exist, then let us denote zk1 for a1. If (2.8) is true at x = a1 and zk1

exists, then let us denote zk2 for a1. From the arguments constructed so far, we have
shown the existence of one of the following sets:

(2.10) {{yk1 , yk2}, {zk1 , yk1}, {yk1 , zk1}, {zk1 , zk2}}

The union of all the elements of the set (2.10) is

(2.11) {{yk1 , yk2} ∪ {zk1 , yk1} ∪ {yk1 , zk1} ∪ {zk1 , zk2}} = {0, a1} .

Now, let us consider age a2 for a2 > a1 > 0 and a2 ∈ A. At age x = a2, either (2.7)
holds or (2.8) holds, but not both.

Suppose (2.7) holds at x = a2. For x = 0 and x = a1, there is a possibility of
occurrence of one of the four sets of (2.10) . For x = a2 exactly one of the following
four possibilities then will occur:

(i) (2.7) holds at x = a2 and {yk1 , yk2} exists; then let us denote yk3 for a2.
(ii) (2.7) holds at x = a2 and {zk1 , yk1} exists; then let us denote yk2 for a2.
(iii) (2.7) holds at x = a2 and {yk1 , zk1} exists; then let us denote yk2 for a2.
(iv) (2.7) holds at x = a2 and {zk1 , zk2} exists; then let us denote yk1 for a2.

Suppose (2.8) holds at x = a2. For x = 0 and x = a1, there is a possibility of
occurrence of one of the four sets of (2.10). Also here one of the following possibilities
will occur:

(v) (2.8) holds at x = a2 and {yk1 , yk2} exists; then let us denote zk1 for a2.
(vi) (2.8) holds at x = a2 and {zk1 , yk1} exists; then let us denote zk2 for a2.
(vii) (2.8) holds at x = a2 and {yk1 , zk1} exists; then let us denote zk2 for a2.
(viii) (2.8) holds at x = a2 and {zk1 , zk2} exists; then let us denote zk3 for a2.

Through (i) to (viii) we have shown the existence of one of the following sets:

(2.12)

{
{yk1 , yk2 , yk3}, {zk1 , yk1 , yk2}, {yk1 , zk1 , yk2}, {zk1 , zk2 , yk1}
{yk1 , yk2 , zk1}, {zk1 , yk1 , zk2}, {yk1 , zk1 , zk2}, {zk1 , zk2 , zk3}

}
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The union of 23 number of sets is

(2.13) {0, a1, a2} .

Continuing in a similar manner with x = a3 we construct the following 24 number of
sets:

(2.14)


{yk1 , yk2 , yk3 , yk4}, {zk1 , yk1 , yk2 , yk3}, {yk1 , zk1 , yk2 , yk3}, {zk1 , zk2 , yk1 , yk2}
{yk1 , yk2 , zk1 , yk3}, {zk1 , yk1 , zk2 , yk2}, {yk1 , zk1 , zk2 , yk2}, {zk1 , zk2 , zk3 , yk1}
{yk1 , yk2 , yk3 , zk1}, {zk1 , yk1 , yk2 , zk2}, {yk1 , zk1 , yk2 , zk2}, {zk1 , zk2 , yk1 , zk3}
{yk1 , yk2 , zk1 , zk2}, {zk1 , yk1 , zk2 , zk3}, {yk1 , zk1 , zk2 , zk3}, {zk1 , zk2 , zk3 , zk4}


The union of the 24 sets in (2.14) is

{0, a1, a2, a3} .

Note that the elements of each of the sets in (2.14) are drawn from the set

{yk1 , yk2 , yk3 , yk4 , zk1 , zk2 , zk3 , zk4}

which is of size 2.4 = 8.

In a similar way, by induction, the number of possible sets at age x = aj for aj >

aj−1 > ... > a1 > a0 would be 2j+1. Each of these 2j+1 sets will be of size j + 1, and the
j + 1 elements for each set are drawn from the following unique combinations of set of
2j + 2 elements:

(2.15)
{
yk1 , yk2 , ..., ykj+1

, zk1 , zk2 , ..., zkj+1

}
.

The union of the 2j+1 sets would be

(2.16) {0, a1, a2, ..., aj} .

When aj = ω in (2.16), this union becomes the set A. The elements of A are drawn
from

{yk1 , yk2 , ..., ω, zk1 , zk2 , ..., ω} .
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Figure 2.4. Partitions into stationary and non-stationary components
of a randomly selected large population. All the populations within the
dotted lines on the left hand side form the stationary component and
others make the non-stationary component of the total population, as
shown in the right side of the Figure. Note that partitioning is not about
geographical partitioning.

Here,

(2.17)
j⋃

p=1

{
ykp
}
∪
{
zkp
}

= A,

and the corresponding sub-populations’ totals for the individuals who are all at ages{
ykj
}

and {zkl} are Pykj
(t) and Pzkl (t)

, respectively. See Figure (2.4) for partitioned
components. Due to (2.17), we can write,

(2.18) Σω
j=1Pykj

(t) + Σω
l=1Pzkl (t)

= P (t),

where Σ∞j=1Pykj
(t) isM(t) formed by satisfying the SPI at the ages

{
ykj
}
, and Σ∞l=1Pzkl (t)

is N(t) formed by not satisfying the SPI at the ages {zkl}. Hence, the proof.
�

Example 3. Suppose for an arbitrary age am ∈ A, we have

Pam(t)

P (t)
=

Lam(t)

L(t)
,
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then the population at am belongs to the stationary component, and for an arbitrary
age an ∈ A, suppose

Pan(t)

P (t)
6= Lan(t)

L(t)
,

then the population at the age an belongs to the non-stationary component.

Remark 4. If (2.7) is satisfied for all the ages in A then the entire randomly selected
population is stationary. If (2.7) is not satisfied for all the ages in A then the entire
randomly selected population is non-stationary.

Remark 5. Since we are calculating the proportions of sub-populations at each age of
the actual population, we might come across values of these proportions calculated at
two or more ages that could be identical. All the ages with identical proportions would
fall within the same component of the population, i.e. stationary or non-stationary by
the construction explained in the proof of the Theorem 2.

Remark 6. The partition theorem can be extended to more than two partitions if there
are multiple decrement life tables available for a randomly selected large population.

3. Conclusions

The main theorem stated and proved is the first such observation in the literature.
Moreover, we have not come across in the literature where the life table identity was
being used to relate to actual populations and applied to decide on stationary and non-
stationary components of a large randomly selected actual population. The partitioning
procedure described in this work can be used to decide what proportion of the popu-
lation is stationary and what proportion is not by considering the world population as
a whole as one unit, individual countries, continents and groups of countries, etc, We
can also apply this procedure to test the stationary and non-stationary status of all
sub-regions of a large country.

The partition theorem stated and proved is not an improvement of any previously
shown results in stationary populations. The statement of the partition theorem in
the article is original and the method demonstrates whether a component of a large
population is stationary or non-stationary did not exist previously. Cases of a given
large population or subpopulation showing oscillatory behaviour of transitioning from a
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stationary to a non-stationary state or vice versa were earlier given in [17]. The theory
and partition methods described could be used in insect demography [22, 23, 24], plant
sciences [25, 26], or other research areas where age- and aging-based stratification is
done, for example [27, 28, 29].

With many countries in the world approaching or at replacement levels but often
with widely varying if not unstable age distributions, the partitioning theory outlined
here has the potential to provide new metrics on age structure in particular, and on
overall population dynamics in general. Metrics to measure population stability status
between two populations were proposed in [30]. Both of these can be used for both
between-country comparisons as well as for projections into the future at both regional,
national and global levels.
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