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Abstract1

Theoretical and experimental studies on prey-predator systems where predator is supplied with alternate2

sources of food have received significant attention over the years due to their relevance in achieving biological3

conservation and biological control. Some of the outcomes of these studies suggest that with appropriate4

quality and quantity of additional food, the system can be steered towards any desired state eventually with5

time. One of the limitations of previous studies is that the desired state is reached asymptotically, which6

makes the outcomes not easily applicable in practical scenarios. To overcome this limitation, in this work,7

we formulate and study optimal control problems to achieve the desired outcomes in minimum (finite) time.8

We consider two different models of additional food provided prey-predator systems involving Holling type9

IV functional response (with inhibitory effect of prey). In the first scenario, additional food is incorporated10

implicitly into the predator’s functional response with a possibility of achieving biological conservation11

through co-existence of species and biological control by maintaining prey at a level that is least harmful12

to the system. In the second, the effect of additional food is incorporated explicitly into the predator’s13

compartment with the goal of pest management by maintaining prey density at a very minimal damaging14

level. For both cases, appropriate optimal control strategies are derived and the theoretical findings are15

illustrated by numerical simulations. We also discuss the ecological significance of the theoretical findings16

for both models.17
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lem; Bang-bang controls; Biological conservation; Pest management19
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1 Introduction22

Provision of additional food to the predators and its impact on predator-prey system dynamics has23

become one of the active and important areas of research for biologists, ecologists (both theoretical and exper-24

imental), statisticians, and mathematicians (Beltrà et al. (2017); Elkinton et al. (2004); Ghasemzadeh et al.25

(2017); Gurubilli et al. (2017); Harwood et al. (2004, 2005); Hik (1995); Kozak et al. (1994); Landis et al. (2000);26

Putman and Staines (2004); Redpath et al. (2001); Soltaniyan et al. (2020); Van Baalen et al. (2001)). This27

is because of the applicability of outcomes of these studies in achieving both biological conservation of species28

and biological control (bio-control) of harmful/invasive species. Provision of additional food to the generalist29

predators not only facilitates depredation on prey species by diverting the predator but also provides means to30

sustain the predator density when the target prey species are low in density (Beltrà et al. (2017); Elkinton et al.31

(2004); Harwood et al. (2005); Kozak et al. (1994, 1995); Redpath et al. (2001)). However, lack of adequate32

care while providing additional food could lead to undesired outcomes (Putman and Staines (2004); Robb et al.33

(2008)). On the other hand, to achieve bio-control of harmful pests in the ecosystem, habitat management and34

integrated pest management schemes (Landis et al. (2000)) provide additional food supplements to generalist35

natural enemies for increasing their survival, oviposition rate, longevity, fecundity and predation rate thereby36

resulting in effective control of the pests (Ghasemzadeh et al. (2017); Messelink et al. (2014); Sabelis et al.37

(2006); Urbaneja-Bernat et al. (2013); Vandekerkhove and De Clercq (2010); Wade et al. (2008)).38
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Some of the observations from field studies and greenhouse experiments by ecologists show that the quality39

of additional food plays a vital role in determining the eventual state of the system by affecting its global40

dynamics (Blackburn et al. (2016); Calixto et al. (2013); Magro and Parra (2004); Marcarelli et al. (2011);41

Putman and Staines (2004); Wakefield et al. (2010)). Quality of additional food is generally measured in terms42

of the nutritional value of the additional food item and the growth rate of the predator on consumption of the43

additional food relative to the consumption of prey. The mirid predator Macrolophus pygmaeus, which is a44

widely used natural enemy to control whiteflies and arthropod pests in Mediterranean Europe, is reared on eggs45

of Ephestia kuehniella for their production and development. Bee pollen was found to be nutritionally adequate46

for M. pygmaeus as an alternative source of food for improving its fitness (Vandekerkhove and De Clercq47

(2010)). On the other hand, results from (Magro and Parra (2004)) show that the additional food composed48

of holotissue of Diatraea saccharalis pupae, fetal bovine serum, egg yolk lactoalbumin hydrolysate etc. is a low49

quality food for rearing Bracon hebetor Say (Hymenoptera: Braconidae) because 60% of the larvae failed to50

produce a protective cocoon during pupal phase. The study on responses to sugar (additional food) by the51

parasitoid Diadegma semiclausum which is a natural enemy of Plutella xylostella showed that the predator52

showed response only to the nutritional content irrespective of the quantity of sugar in the solution (Winkler53

et al. (2005)). Also, it was seen that not all sugars were of high quality for the parasitoid. The effects of54

providing high quality and low quality additional food to predator species have been discussed in (Putman and55

Staines (2004); Kozak et al. (1994)) and the review articles (Blackburn et al. (2016) and Lu et al. (2014)) (and56

references therein).57

Some of the mathematical studies involving additional food provided prey-predator systems include (Das58

and Samanta (2018); Gurubilli et al. (2017); Ghosh et al. (2017); Prasad and Prasad (2018, 2019); Srinivasu59

et al. (2007)). One of the key features of these mathematical studies is the Functional response, defined as60

the rate at which the predator captures prey (Kot (2001)). Among various functional responses displayed by61

different taxa in nature, the Holling type IV functional response is one where the catchability of predator reduces62

at high densities of prey as a consequence of prey toxicity or interference. The prey species tend to exhibit63

group defense against their predator when in large numbers as a survival mechanism (Caro (2005); Collings64

(1997); Wilcox and Larsen (2008)). This is also called as inhibitory effect of the prey. For example, spider65

mites reduce the predation rate of their natural enemy (predatory mite) Euseius sojaensis by living in groups of66

large numbers and sharing the web rather than building new webs (Yano (2012)). Also, experimental outcomes67

of the work (McClure and Despland (2011)) show that the group defense exhibited by the caterpillar species68

Malacosoma disstria reduced the predation risk by their natural enemy parasitoids in spite of multiple attacks69

due to increasing difficulty of attacking defense groups.70

Recently, the authors in (Srinivasu et al. (2018a)) and (Vamsi et al. (2019)) have studied an additional71

food provided predator-prey system involving type IV functional response. Findings from these studies reveal72

that for an appropriate choice of quality and quantity of additional food, stable coexistence of both species can73

be achieved. It is also possible to eliminate either of the interacting species through provision of suitable choice74

of additional food. These findings are in accordance with the field outcomes presented in (Kozak et al. (1994,75

1995); Putman and Staines (2004)) and (Winkler et al. (2005)). Though the findings of (Srinivasu et al. (2018a))76

and (Vamsi et al. (2019)) are very helpful in the context of biological conservation and bio-control, they may77

not be of good help in practical scenarios owing to their asymptotic nature. To overcome these limitations, we78

wish to study the controllability aspects of the additional food system involving type IV response in order to79

achieve the desired outcomes in minimum (finite) time.80

Motivated by the aforementioned observations and limitations, in this paper, we study two optimal control81

problems dealing with additional food provided systems involving type IV functional response with quality of82

additional food as the control parameter keeping the quantity of additional food fixed. The objective of these83

studies is to reach the desired state of the system in minimum (finite) time. Since quantity of additional84

food consumed by the predator is constrained by the gut volume of the predator, it is relevant to study the85

controllabilty aspects of the additional food system with respect to the quality of additional food for a fixed86

quantity. The study of controllability of additional food system with respect quantity has its own significance87

and can be found in the author’s work (Ananth and Vamsi (2021)).88

In this paper, we consider two models of additional food provided systems involving type IV functional89

response: In the first scenario, we consider the additional food implicitly incorporated into the predator’s90

functional response with predator exhibiting type II response with respect to the additional food. With the91

quality as the control parameter, we formulate and study a time optimal control problem. We use Filippov’s92

Existence Theorem to prove the existence of optimal solution and Pontryagin’s Maximum Principle to obtain93

the characteristics of the optimal solutions. In the second scenario, we model the additional food provision by94

explicitly incorporating it into the predator’s compartment thereby directly influencing the rate of change of95
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predators. This makes the predator density vary linearly with respect to the additional food in contrast to the96

former case where additional food has a non-linear influence on the predator’s rate of change of population.97

This implies that in the second scenario, there is a possibility of obtaining linear feedback control which is98

very relevant in cases of inundative bio-control (Blackburn et al. (2016)). Thus we model an error system and99

formulate a feedback control problem in this case. Numerical illustrations validate the theoretical results for100

both these studies. The findings from both studies find applications in the context of biological conservation101

and pest management. The results from the study of implicit control system suggest a possibility of achieving102

biological conservation and bio-control (achieved by maintaining the prey at a minimal damaging level). On103

the other hand, results from explicit control system suggest strategies for only bio-control.104

The section-wise division of this article is as follows: In the next section, for the sake of providing clarity to105

the reader, we briefly discuss the type IV initial system and the corresponding additional food provided system.106

Later, in section 3, we discuss the role of quality of additional food in the dynamics of the system. The next107

section 4 is devoted to the time optimal control studies for the additional food provided system with quality as108

implicit control. Further, in section 5 we present the optimal control studies with quality as explicit control. We109

first define the error system and later formulate a linear feedback control optimal control problem and study its110

optimal solutions and factors that affect the optimal solutions. We briefly study the role of inhibitory effect of111

prey in a subsection at the end of this section. Finally, we present the discussion and conclusions in section 6.112

2 The Type IV Predator-Prey System113

The predator-prey systems involving type IV functional response in the absence of additional food (called114

as initial system) and in the presence of additional food have been derived in (Srinivasu et al. (2018a)). To115

make it easier for the reader to understand the later sections of this paper, in this section, we provide a glimpse116

of the dynamics of initial system and additional food provided system involving Type IV functional response117

as discussed in (Srinivasu et al. (2018a)). For detailed analysis of stability of the equilibria admitted by both118

the systems and details of the local and global dynamics of the systems, readers are requested to refer to the119

works (Srinivasu et al. (2018a); Vamsi et al. (2019))120

Consider the predator-prey system involving type IV functional response given by the system of equations121

(with the time variable here indicated by T )122

Ṅ = rN

(
1− N

k

)
− cN

a(bN2 + 1) +N
P (2.1)

Ṗ =
eN

a(bN2 + 1) +N
P −mP (2.2)

where N is the prey population and P the predator population. The biological meaning of the parameters123

have been provided in the table below:124

Parameters Biological Meaning

r Intrinsic Growth rate of the prey

k Prey carrying capacity

m Mortality rate of predators in the absence of prey

c Maximum rate of predation in the absence of inhibitory effect

a Half-saturation rate of predators in the absence of inhibitory effect

e Maximum growth rate of predators due to consumption of prey

b Inhibitory effect of the prey on predators’ foraging

Let N = ax; t = rT ; and P = y rac ; which implies, dN = adx; dt
r = dT ; dP = ra

c dy. Now, using the125

following transformations γ = k
a , ω = ba2, β = e

r , δ = m
r , we get the corresponding non-dimensionalized126

system as follows:127

ẋ = x

(
1− x

γ

)
−
(

xy

ωx2 + x+ 1

)
(2.3)

ẏ =

(
βxy

(ωx2 + 1) + x

)
− δy (2.4)
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In the non-dimensional system, γ and ω are parameters that represent the carrying capacity and inhibitory128

effect respectively. Now, consider the additional food of biomass A constantly supplied to the predators. The129

predator-prey system (2.1) - (2.2) now becomes130

Ṅ = rN

(
1− N

k

)
−
(

cN

(Aηα+ a)[bN2 + 1] +N

)
P, (2.5)

Ṗ = e

(
N + ηA(bN2 + 1)

(Aηα+ a)[bN2 + 1] +N

)
P −mP. (2.6)

Here, the parameter α is the ratio of the growth rate of predator when it consumes prey to the growth131

rate when it consumes additional food. In other words, α stands for the relative efficiency of the predator132

to convert either of the food available into predator biomass. α is inversely proportional to the nutritional133

value of the additional food and directly proportional to the handling time of the additional food. Since the134

conversion factor for prey can be treated as constant (obtained naturally from the ecosystem), we see that when135

the parameter α increases, handling time of additional food also increases. This does not favour bio-control and136

may also lead to prey outbreaks (Srinivasu et al. (2007, 2018b,a)). In this study, we use the parameter α to137

represent the Quality of additional food provided to the predators. Additional food is termed high quality if138

α < β
δ and low quality otherwise. The parameter η denotes the ratio of nutritional value of prey perceptible to139

the predator to that of the additional food.140

Now, using the same transformations as above and taking ξ = ηAa , the system (2.5) - (2.6) gets reduced141

to the non-dimensionalised system given below:142

dx

dt
= x

(
1− x

γ

)
−
[

xy

(1 + αξ)(ωx2 + 1) + x

]
(2.7)

dy

dt
= β

[
x+ ξ(ωx2 + 1)

(1 + αξ)(ωx2 + 1) + x

]
y − δy (2.8)

Let f(x) =
x

(1 + αξ)(ωx2 + 1) + x
and g(x) =

(
1− x

γ

)
((1 + αξ)(ωx2 + 1) + x). Then, the system (2.7) -143

(2.8) can be written as144

dx

dt
= (g(x)− y)f(x) (2.9)

dy

dt
=

(
βf(x)

[
1 +

ξ

x
(ωx2 + 1)

]
− δ
)
y (2.10)

In this study, the parameter ξ represents the Quantity of additional food provided to the predators.145

In the additional food system (2.7) - (2.8), the parameters β, δ, γ and ω are regarded as system parameters146

whereas the parameters α and ξ are considered control parameters. This is because the former are obtained147

from the ecosystem while the latter are under the control of eco-managers/experimental ecologists who supply148

additional food to the predators. (Note: The Control Parameters are not to be mistakenly treated as the control149

variables (functions) of an optimal control problem in the mathematical sense. We will formulate the optimal150

control problems in later sections).151

The system (2.7) - (2.8) admits four equilibrium points: the trivial equilibrium E∗0 = (0, 0), the axial152

equilibrium point E∗1 = (γ, 0), and two interior equilibria E∗2 = (x∗1(α, ξ), y∗1(α, ξ)) and E∗3 = (x∗2(α, ξ), y∗2(α, ξ))153

given by154

E∗2 = (x∗1, y
∗
1) =

(
(β − δ)−

√
(β − δ)2 − 4ω[δ(1 + αξ)− βξ]2
2ω[δ(1 + αξ)− βξ]

, g(x∗1)

)
,

E∗3 = (x∗2, y
∗
2) =

(
(β − δ)−

√
(β − δ)2 − 4ω[δ(1 + αξ)− βξ]2
2ω[δ(1 + αξ)− βξ]

, g(x∗2)

)
.

The interior equilibria are admitted only when x∗1 < γ and x∗2 < γ. The outcomes of the studies (Srinivasu155

et al. (2018a)) and (Vamsi et al. (2019)) show that the dynamics of the system (2.7) - (2.8) depend on the156

dynamics of the initial system (2.3) - (2.4) and nature of its isoclines. As in (Srinivasu et al. (2018a)), we too157

consider the additional food provided to the initial system under the Condition I where the initial system does158

not admit any interior equilibria. We provide the summary of global dynamics of the additional food system159

under condition I in Appendix - A.160
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3 Role of Quality in the Dynamics of the Additional Food System161

The stability analysis and global dynamics of the system (2.7) - (2.8) (refer to Appendix - A) can be applied162

to both biological conservation of species and bio-control (pest eradication) of harmful species. In this paper, we163

wish to reach these outcomes in finite time and to that end, we want to formulate and study an optimal control164

problem with quality of additional food (α) as the control parameter. With this as the objective, henceforth165

we shall assume that the quantity of additional food provided is a constant and keep it fixed (ξ > 0). Also, due166

to the saddle nature of the second interior equilibrium E∗3 = (x∗2, y
∗
2) throughout its existence, in this paper,167

we will focus only on reaching the first interior equilibrium E∗2 = (x∗1, y
∗
1) for achieving co-existence of species168

and this equilibrium point will be denoted by E∗2 = (x∗(α), y∗(α)). The dynamics of the system in terms of169

parameter α can be seen from the Table - 1. The terms P , Q and R in Table - 1 are obtained by solving the170

three bifurcation curves (PEC, TBC and HBC mentioned above) for α.171

Table 1: Global dynamics of the system (2.7 ) - (2.8) w.r.t. the parameter α

Range of α
Nature of Equilibria

Behavior of Trajectories
(0, 0) (γ, 0) (x∗(α), y∗(α))

0 < α < P Unstable Does not Exist Saddle Eventual Prey elimination
P < α < Q < R Saddle Unstable Saddle Globally Asymptotically Stable Limit cycle
α > Q, α < R Saddle Stable Saddle Towards Interior Equilibrium x∗(α), y∗(α)

R < α Saddle Does not Exist Stable Towards Axial Equilibrium (γ, 0)

where P =
βξ − δ
δξ

, Q =
−3ω(x∗)2 + 2(γω − 1)x∗ + γ − 1

ξ(3ω(x∗)2 − 2γωx∗ + 1)
and R =

(βξ − δ)(1 + ωγ2) + γ(β − δ)
δξ(1 + ωγ2)

Since this study is based on the quality of additional food, let us consider [αmin, αmax] to be the range of172

parameter α. Since α depends inversely on the nutritional values of the additional food, we see that αmin(αmax)173

represents the highest (lowest) quality of additional food. From the analysis presented above, we see that in174

order to eliminate the harmful species (pest which are in the form of prey) eventually with time, the additional175

food supplements provided to natural enemies must be of high quality. This implies that we need to have176

αmin <
βξ−δ
δξ , so that the trajectories which emerge from below the prey isocline curve move towards y-axis177

to the desired state sufficiently close to x = 0. Otherwise, there is no possibility of any trajectory that moves178

towards the predator axis (y-axis). The outcomes of a recent study (Parshad et al. (2020)) state that for179

predator-prey systems of the form (2.7) - (2.8), prey elimination (x∗ = 0) cannot be achieved in finite time T180

(with T < ∞). Thus, for achieving bio-control, we choose a terminal state such that x∗(T ) = ε < xd where181

xd denotes the prey density level below which the damage caused to the system is minimal. In some natural182

systems, to achieve bio-control, it is preferred that the prey (pest) continue to exist minimally exist and not183

get eliminated from the system because predator tends to damage the crops of the ecosystem after their target184

prey gets eliminated (Calvo et al. (2009); Urbaneja-Bernat et al. (2013)). Thus, maintaining the prey at low185

densities such that they do not damage crops is desirable.186

On the other hand, to achieve biological conservation, we need to achieve co-existence of species. Math-187

ematically, this means that we must drive the system to the interior equilibrium. To that end, we will now188

obtain the set of all admissible interior equilibria that could be reached, followed by control strategies to reach189

the same depending on the species to be conserved. If the objective is to conserve the prey (predator) species190

and maintain their density at a certain level x̃(ȳ), then we must reach the admissible equilibrium with the cor-191

responding prey (predator) component and possibly maintain the state at that level from then on by providing192

appropriate quality of additional food. From the practical view point, an adaptive approach is necessary to193

continue to maintain that state of co-existence. As the predators in such cases are usually generalists in nature,194

if need be, the eco-managers could alternate between feasible and low cost additional food of appropriate quality195

to maintain the state of the system as is done in cases of conservation bio-control (Blackburn et al. (2016)).196

Consider the interior equilibrium E∗2 = (x∗(α), y∗(α)) for a fixed ξ > 0. The prey and predator component197

are given by198

x∗(α) =
(β − δ)−

√
(β − δ)2 − 4ω[δ(1 + αξ)− βξ]2
2ω[δ(1 + αξ)− βξ]

(3.1)

y∗ =

(
1− x∗(α)

γ

)
(x∗(α) + (1 + αξ)(1 + ω(x∗(α))2)) (3.2)
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Now, solving (3.1) for α, we get199

α =
(βξ − δ)(1 + ω(x∗(α))2) + (β − δ)x∗(α)

δξ(1 + ω(x∗(α))2)
(3.3)

Now, substituting α from (3.3) in (3.2), we get200

y∗(α) =
β

δ

(
1− x∗(α)

γ

)
(x∗(α) + ξ(1 + ω(x∗(α))2)) (3.4)

Equation (3.4) gives the set of all admissible equilibrium points for the system (2.7) - (2.8). This curve201

intersects the y−axis at y = βξ
δ . To know if a given point (x∗(α), y∗(α)) on the curve of admissible equilibrium202

points is stable or not, we consider the analysis of the prey isocline curve of the system (2.7) - (2.8) as given in203

(Srinivasu et al. (2018a)). We provide the details of stability of an admissible equilibrium in Appendix - B. This204

analysis helps in determining the terminal state of the system to which we want to drive the state in minimum205

time. Depending on the terminal state, we obtain the admissible control using which we fix the range for the206

parameter α.207

4 Time Optimal Control Studies for Additional Food System with208

Quality as Implicit Control209

In this section, we formulate and study a time optimal control problem for the system (2.7) - (2.8) that210

drives the state trajectory from the initial state (x0, y0) to the desired terminal state (x̄, ȳ) in minimum time211

using optimal quality of additional food provided to the predator species, with quantity of additional food as212

constant.213

4.1 Formulation of the Time Optimal Control Problem and Existence of Optimal214

Control215

We assume ξ > 0 is fixed and the quality parameter α varies in the interval [αmin, αmax]. Then the time216

optimal control problem (a Mayer Problem of Optimal Control (Cesari (2012))) with respect to the system (2.7)217

- (2.8) is formulated as follows:218

min
αmin≤α(t)≤αmax

T

subject to:

ẋ = f1(x, y, α)

ẏ = f2(x, y, α)

(x(0), y(0)) = (x0, y0) and (x(T ), y(T )) = (x̄, ȳ).


Optimal Control Problem (4.1)

where f1(x, y, α) = x

(
1 − x

γ

)
−
(

xy
x+(1+αξ)(ωx2+1)

)
and f2(x, y, α) = β

(
x+ξ(ωx2+1)

x+(1+αξ)(ωx2+1)

)
y − δy. Using219

the equations (2.9) - (2.10), we have220

f1(x, y, α) = (g(x)− y)f(x)

f2(x, y, α) =

(
βf(x)

[
1 +

ξ

x
(ωx2 + 1)

]
− δ
)
y

where f(x) =
x

(1 + αξ)(ωx2 + 1) + x
and g(x) =

(
1− x

γ

)
((1 + αξ)(ωx2 + 1) + x).221

Comparing this problem with the general form of Mayer time optimal control problem, we have n = 2,222

m = 1 and x(t) = (x(t), y(t)), u(t) = α(t) with f(t,x(t),u(t)) = (f1(x, y, α), f2(x, y, α)). The boundary223

conditions are e[x] = (0, x0, y0, T, x̄, ȳ).224

The set A for the problem (4.1) is the subset of tx - space (R1+2), i.e., A ⊂ R1+2 from which we get225

the state variables. For the control problem (4.1), the set A can be represented as A = [0, T ] × B where B226

is the solution space for the system (2.7) - (2.8) to which all trajectories belong. We must note here that B227

depends on the terminal state that is chosen and the corresponding trajectory of the system. We see that228

whenever βξ−δ
δξ > 0, using the positivity and boundedness theorem (Vamsi et al. (2019)), we can define B as229

B =
{

(x, y) ∈ R2
+ : 0 ≤ x ≤ γ, 0 ≤ x+ 1

β y ≤
M
η , η > 0

}
with M = γ(1+η)2

4 .230
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On the other hand, we know that when α < βξ−δ
δξ the solution trajectories tend towards the predator axis231

asymptotically. From the discussion in previous sections, we see that the terminal state (0, y∗(T )) cannot be232

reached for T <∞ based on a recent study on additional food provided systems (Parshad et al. (2020)). Thus,233

choosing the terminal state as x∗(T ) = ε < xd, we can define the set234

B =
{

(x, y) ∈ R2
+ : 0 ≤ x ≤ γ, 0 ≤ y ≤ β

δ (ε+ ξ(1− ε)), 0 < ε < xd

}
where xd is a threshold pest level below235

which there is least damage to the system.236

Now, we define the set of all admissible solutions to the above problem (4.1) as

Ω :=
{

(x, α) = (x, y, α) : (x, y) is a solution of the system (2.7) - (2.8) ∀α ∈ [αmin, αmax]
}

We now wish to obtain a solution from the set Ω which minimizes the time to reach the terminal state237

(x(T ), y(T )) that in turn becomes the optimal solution for (4.1). We establish this in the next theorem by238

proving the existence of an optimal control using Filippov’s Existence Theorem (refer to Appendix - C).239

Theorem 1. If the desired terminal state of the system (x̄, ȳ) is admissible and satisfies the conditions in240

Proposition 2 (refer to Appendix - B), then there exists an optimal control α∗(t) that drives the system from an241

initial state (x0, y0) to the desired terminal state (x̄, ȳ) in minimum (finite) time for the time optimal control242

problem (4.1) provided the set of admissible solutions Ω is non-empty.243

Proof. We will use Filippov’s Existence Theorem to prove the existence of an optimal control by showing that244

all the conditions in the theorem are satisfied by the considered problem. Using that, it is enough to show that245

the considered problem satisfies the following conditions to prove the existence of optimal control.246

1. The set A is compact.247

2. The set of all controls [αmin, αmax] is compact.248

3. The set of boundary points ∂B = {0, x0, y0, T, x̄, ȳ} is compact and objective function is continuous on B.249

4. For every (x, y) ∈ A the sets Q(x, y) := {(z1, z2)|z1 = f1(x, y, α), z2 = f2(x, y, α), α ∈ [αmin, αmax]} are250

convex.251

We will now show that the considered control problem (4.1) satisfies all the properties above.252

(i) From the discussion above, we see that the set A can be written as A = [0, T ] ×B where the set B gets253

defined according to the terminal state and the inequality satisfied by the parameter α. We know that254

[0, T ] is compact by definition. We need to show that the set B is compact in both the following cases:255

Case (a): Whenever βξ−δ
δξ < 0, we know from the system analysis that the solution trajectories of256

the system (2.7 ) - (2.8) reach y − axis eventually with time. Since we have chosen the terminal257

state in this case as (x̄, ȳ) = (ε, y∗(T )) close to the predator axis, the solutions space defined by B =258 {
(x, y) ∈ R2

+ : 0 ≤ x ≤ γ, 0 ≤ y ≤ β
δ (ε+ ξ(1− ε))

}
with 0 < ε < xd becomes closed and bounded.259

Case (b): Whenever βξ−δ
δξ > 0, we have from the positivity and boundedness theorem (Vamsi et al. (2019))260

that the solutions belong to B =
{

(x, y) ∈ R2
+ : 0 ≤ x ≤ γ, 0 ≤ x+ 1

β y ≤
M
η , η > 0

}
with M = γ(1+η)2

4261

which is also closed and bounded. Thus, we can conclude that A is compact and this proves condition 1.262

(ii) Conditions 2 and 3 are satisfied from the definitions of the respective sets [αmin, αmax] and ∂B = {0, x0, y0, T, x̄, ȳ}263

and also by definition of the objective function J [α] = T264

(iii) To prove condition 4, we need to show that the sets Q(x, y) are convex. To that end, consider z1 =

f1(x, y, α) = x

(
1− x

γ

)
−
(

xy
x+(1+αξ)(ωx2+1)

)
. Rearranging the terms, we get

(
xy

x+ (1 + αξ)(ωx2 + 1)

)
= x

(
1− x

γ

)
− z1

Cancelling the extra terms, we get265 (
y

x+ (1 + αξ)(ωx2 + 1)

)
=

(
1− x

γ

)
− z1
x

(4.2)
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Now consider266

z2 = f2(x, y, α) = β

(
x+ ξ(ωx2 + 1)

x+ (1 + αξ)(ωx2 + 1)

)
y − δy

Replacing the term
y

x+ (1 + αξ)(ωx2 + 1)
in the above expression using equation (4.2), we get267

z2 = β(x+ ξ(ωx2 + 1))

((
1− x

γ

)
− z1
x

)
− δy

= −β
(

1 +
ξ

x
(ωx2 + 1)

)
z1 + β(x+ ξ(ωx2 + 1))

(
1− x

γ

)
− δy

By rearranging the last expression, we get268

β

(
1 +

ξ

x
(ωx2 + 1)

)
z1 + z2 = β(x+ ξ(ωx2 + 1))

(
1− x

γ

)
− δy (4.3)

From the equation (4.3), we see that the sets Q(x, y) are linear segments of its components which are269

convex. This proves Condition 4.270

Hence, the time optimal control problem (4.1) admits an optimal solution provided the set of admissible271

solutions Ω is non-empty.272

4.2 Characteristics of Optimal Control273

Let us assume that the optimal solution exists for the control problem (4.1) and obtain the characteristics274

of such a solution using the necessary conditions for optimal solutions given by the Pontryagin’s Maximum275

Principle (Liberzon (2011)).276

We first define the Hamiltonian Function associated with the Control Problem (4.1):277

H(x, y, α, λ, µ) := λ
dx

dt
+ µ

dy

dt

Here, λ and µ are called the Co-state variables or Adjoint variables. Using the expressions for dx
dt and dy

dt278

from the system (2.7) - (2.8), we get279

H(x, y, α, λ, µ) = λ

[
x

(
1− x

γ

)
−
(

xy

x+ (1 + αξ)(ωx2 + 1)

)]
+ µ

[
β

(
x+ ξ(ωx2 + 1)

x+ (1 + αξ)(ωx2 + 1)

)
y − δy

]
(4.4)

Rearranging the above expression, we get280

H(x, y, α, λ, µ) =

(
λx

(
1− x

γ

)
− µδy

)
− y

(x+ (1 + αξ)(ωx2 + 1))
(λx− µβ[x+ ξ(ωx2 + 1)]) (4.5)

Using the modified system (2.9) - (2.10), the Hamiltonian Function can also be written as281

H(x, y, α, λ, µ) = λ

[
(g(x, α, ξ)− y)f(x, α, ξ)

]
+ µ

[
βf(x, α, ξ)

(
1 +

ξ

x
(ωx2 + 1)

)
− δ
]
y (4.6)

According to the maximum principle, the Co-state variables satisfy the canonical equations (adjoint sys-282

tem) given by dλ
dt = −∂Hdx ,

dµ
dt = −∂Hdy . Using (4.6), the canonical equations become283

dλ

dt
=− λ{gx(x, α, ξ)f(x, α, ξ) + (g(x, α, ξ)− y)fx(x, α, ξ)}

− µ{βfx(x, α, ξ)(1 +
ξ

x
(ωx2 + 1)) +

βξ

x2
f(x, α, ξ)(ωx2 − 1)}y

(4.7)

dµ

dt
= λf(x, α, ξ)− µ{βf(x, α, ξ)(1 +

ξ

x
(ωx2 + 1))− δ} (4.8)
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Now, to obtain the characteristics of the optimal control, we differentiate the Hamiltonian function (4.5)284

with respect to the control parameter α. We see that285

∂H
∂α

=
yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2
(λx− µβ[x+ ξ(ωx2 + 1)]) (4.9)

We observe that the optimal control α∗(t) cannot be explicitly obtained from the above equation. Thus,286

differentiating the Hamiltonian function twice with respect to the control parameter α, we get287

∂2H
∂α2

=
−2yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))

∂H
∂α

(4.10)

From the above equation we see that the Hamiltonian function is a monotone with respect to the parameter288

α provided the quantity ∂H
∂α 6= 0. Using the Hamiltonian maximization condition of the maximum principle289

(which becomes a minimization condition in our problem owing to the objective function) (Liberzon (2011)),290

we see that291

H(x∗(t), y∗(t), α∗(t), λ∗(t), µ∗(t)) ≤ H(x∗(t), y∗(t), α, λ∗(t), µ∗(t)) (4.11)

∀α ∈ [αmin, αmax] and ∀t ∈ [0, T ]. Also, since (4.1) is a time optimal control problem, the Hamiltonian292

function turns out to be a constant along the optimal trajectory and in particular, it assumes value -1 (Clark293

(1974)). Hence,294

H(x(t), y(t), α, λ(t), µ(t)) = −1 (4.12)

Now, using equation (4.5), the condition (4.11), and the monotonicity property of Hamiltonian function295

with respect to α, we can conclude that the optimal control might be of bang-bang type provided singular296

solution does not exist. This means that optimal control function would assume the form:297

α∗(t) =



αmax, if ∂H
∂α < 0

αmin, if ∂H
∂α > 0

? if ∂H
∂α = 0

When ∂H
∂α = 0 for an interval in [0, T ], the optimal control function cannot be obtained using the Hamil-298

tonian maximization condition and the monotonicity property. This is the case of singularity. In order to299

show that the optimal solution is of bang-bang type only, we must prove that the the solution does not exhibit300

singular arc in some interval (t1, t2),⊆ [0, T ]. Thus, to know the exact nature of the optimal control, we assume301

that singular solution exists and analyse the optimal solution.302

Let us assume that the singular solution exists, that is, ∂H
∂α = 0 at some time t ∈ [0, T ]. This implies303

λ(t)x(t)− βµ(t)[x(t) + ξ(ωx2(t) + 1)] = 0 (4.13)

Rearranging the terms, we get304

λ(t)

µ(t)
=

(x(t) + ξ(ωx2(t) + 1))

x(t)

which means that when singularity occurs, the co-state variables λ and µ both have the same sign and305

cannot become zero simultaneously. Otherwise, (4.12) would not hold along the optimal trajectory. To obtain306

the characteristics of the singular solution, we differentiate equation (4.9) with respect to time along the singular307

solution. This gives308

d

dt

∂H
∂α

=
d

dt

[
yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2
(λx− µβ[x+ ξ(ωx2 + 1)])

]
= 0

=
d

dt

(
yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2

)
(λx− µβ[x+ ξ(ωx2 + 1)])

+
yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2
d

dt
[λx− µβ[x+ ξ(ωx2 + 1)]] = 0
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Since (4.13) holds along singular solution, the first term on the right hand side in the above expression309

vanishes and as a result we get310

d

dt

∂H
∂α

=
yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2
d

dt
[λx− µβ[x+ ξ(ωx2 + 1)]] = 0 (4.14)

Now consider311

d

dt
[λx− µβ[x+ ξ(ωx2 + 1)]] = x

dλ

dt
− β[x+ ξ(ωx2 + 1)]

dµ

dt
+ [λ− µβ(1 + 2ξωx)]

dx

dt
= 0 (4.15)

Using the canonical equations (4.7) - (4.8), the system (2.7 ) - (2.8), and equation (4.13) along singular312

solution, (4.15) becomes313

d

dt

∂H
∂α

=
µβyξ(ωx2 + 1)

γ(x+ (1 + αξ)(ωx2 + 1))2
{

3ωξx3 + (2− γξωδ)x2 + (ξ − δγ)x− ξγδ
}

= 0 (4.16)

which essentially means that314

3ωξx3 + (2− γξωδ)x2 + (ξ − δγ)x− ξγδ = 0 (4.17)

along the singular solution. The equation in (4.17) is a cubic equation with one real root x̂. This shows315

that singularity occurs at points which are the roots of the above equation (provided the roots are positive). To316

understand more, we differentiate (4.16) again with respect to time along the singular solution (by substituting317

x̂ and using (4.13)) and get318

d2

dt2
∂H
∂α

=
µβyξ(ωx̂2 + 1)

(x̂+ (1 + αξ)(ωx̂2 + 1))2

(
9ωξx̂2 + 2(2− γξωδ)x̂+ ξ − δγ

)
(g(x̂, α, ξ)− y)f(x̂, α, ξ) = 0 (4.18)

which implies that319

ŷ = g(x̂, α, ξ) (4.19)

and this means that the if singularity occurs, then it occurs at specific points (x̂, ŷ) on the prey isocline.320

Using the analysis and discussion presented above, we state the result321

Theorem 2. The optimal control solution for the problem (4.1) is a combination of bang-bang controls only,322

with possibility of switches occurring in the optimal trajectory. The Optimal control is given by323

α∗(t) =


αmax, if ∂H

∂α < 0

αmin, if ∂H
∂α > 0

(4.20)

Now, in order to understand the characteristics of the optimal trajectory and nature of the switches324

(assuming singularity occurs), we divide the phase plane into four regions based on the curve of admissible325

equilibrium points (3.4) and the line passing through the point x̂, which is the solution of the equation (4.17).326

The regions are given below and are depicted in the figure 1.327

Region I :=

{
(x, y)

∣∣∣∣ y < β

δ

(
1− x∗(α)

γ

)
(x∗(α) + ξ(1 + ω(x∗(α))2)) and x < x̂

}
Region II :=

{
(x, y)

∣∣∣∣ y < β

δ

(
1− x∗(α)

γ

)
(x∗(α) + ξ(1 + ω(x∗(α))2)) and x > x̂

}
Region III :=

{
(x, y)

∣∣∣∣ y > β

δ

(
1− x∗(α)

γ

)
(x∗(α) + ξ(1 + ω(x∗(α))2)) and x > x̂

}
Region IV :=

{
(x, y)

∣∣∣∣ y > β

δ

(
1− x∗(α)

γ

)
(x∗(α) + ξ(1 + ω(x∗(α))2)) and x < x̂

}

Since the optimal strategy is of bang-bang type, switches occur when the optimal control switches its328

values from αmin to αmax and vice-versa. We know that when such a switch occurs, the singular solution occurs329

at an instant of time where ∂H
∂α = 0. Thus, at that instant we have330
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Regions in Phase-Plane

Figure 1: This figure depicts the regions I, II, III, and IV based on the curve of admissible equilibria (3.4)
and the positive cubic root x̂ of equation (4.17)

yξ(ωx2 + 1)

(x+ (1 + αξ)(ωx2 + 1))2
(λx− µβ[x+ ξ(ωx2 + 1)]) = 0

Let us define the function σ(t) = λ(t)x(t)− µ(t)β(x(t) + ξ(ωx2(t) + 1)). Then, we see that σ(t) = 0 when331

switch occurs. Also, and being optimal solution, equation (4.12) holds. Thus, denoting the instant of time of332

switch to be τ and using (4.5), (4.12) and (4.13), we get the equations333

λ(τ)x(τ)− µ(τ)β[x(τ) + ξ(ωx2(τ) + 1)] = 0 (4.21)

λ(τ)x(τ)

(
1− x(τ)

γ

)
− µ(τ)δy(τ) = −1 (4.22)

Using both the equations above, we get334

µ(τ) =
−1(

1− x(τ)

γ

)
β [x(τ) + ξ(1 + ω(x(τ))2)]− δy(τ)

(4.23)

We know that the along the singular solutions, both λ(t) and µ(t) have the same sign. Thus, using the335

definitions of the Regions I, II, III and IV and from the equations (4.21) and (4.23), we conclude that both λ(τ)336

and µ(τ) are positive (negative) if the switch occurs in the regions I and II (III and IV).337

Now, differentiating σ(t) with respect to time and using state system (2.7) - (2.8) and adjoint system (4.7)338

- (4.8) at time t = τ , with σ(τ) = 0, we get339

dσ

dt

∣∣∣∣
t=τ

= βµ

[
3ωξx3 + (2− γξωδ)x2 + (ξ − δγ)x− ξγδ

]
t=τ

(4.24)

From the definition of σ(t) and using the optimal control strategy (4.20), we see that when the control340

switches from αmax to αmin (or αmin to αmax) at t = τ , then ∂H
∂α increases from negative to positive (positive to341

negative). Thus, dσdt > 0 (< 0) at t = τ for the switch αmax to αmin (or αmin to αmax).342

Also, we know that x̂ is the root of the equation (4.17). This is the same expression in (4.24). From343

this and the definitions of the regions, we conclude that the switch αmax to αmin (αmin to αmax) can happen in344

Regions I and III (II and IV) only. Summarizing the discussion above we have the following result that gives345

the characteristics of optimal control when switching occurs.346
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Proposition 1. The optimal solution of the time optimal control problem (4.1) switches from αmax to αmin347

(αmin to αmax) in the regions I and III (II and IV) only along the optimal trajectory. Moreover, the co-state348

variables λ and µ are negative (positive) at the switch points occurring in the regions I and II (III and IV).349

Note: The optimal control strategy is given by the equation (4.20) with the term ∂H
∂α given by (4.9). Also,350

since (4.1) is a time optimal control problem, the state and the co-state variables satisfy (4.12) along the351

optimal path. The trajectory of the state variables is given by the system (2.7 ) - (2.8) and that of the co-state352

variables is given by the system (4.7) - (4.8). Now, to construct the optimal path from the given initial state353

(x0, y0), we must choose appropriate initial values for the co-state variables, denoted by (λ0, µ0), so that the354

system with initial values (x0, y0, λ0, µ0) reaches the desired terminal state (x̄, ȳ) by implementing the optimal355

control strategy (4.20) in minimum time satisfying (4.12) all through the optimal path. Mathematically, we can356

conclude that with appropriate initial values for the co-state variables, we can reach any desired state from a357

given initial state. However, obtaining the initial values (λ0, µ0) that are suitable to the optimal control problem358

could involve a lot of trial and error work. The result 1 stated above indicates that if the terminal state is an359

interior equilibrium, then the optimal strategy could involve multiple switches between the extremum values360

αmin and αmax of the control α(t).361

4.3 Application of Optimal Strategy in the context of Pest Management362

In this section, we apply the results obtained on the characteristics of the optimal strategy in the context363

of pest management. Consider the predator-prey system where prey species denote the pests and the predators364

are their natural enemies that do not harm the crops. We aim to obtain ways of achieving the goal of pest365

eradication by controlling the quality of additional food supplied to the predators in order to eliminate the prey.366

As per the dynamics of the system (2.7 ) - (2.8), we want to achieve the prey elimination case as stated in367

table 4. In the context of the optimal control problem (4.1), we wish to reach the terminal state (0, y(T )) from368

a given initial state in minimum time by providing optimal quality of additional food to the predator species.369

The following result gives the existence of optimal solution and characteristics of the co-state variables and the370

optimal control at terminal time in the case of pest eradication.371

Lemma 1. The time optimal control problem (4.1) with x(T ) = ε < xd admits an optimal solution if αmin <372

βξ−δ
δξ and λ(T ) > −1

ε . Moreover, α∗(T ) = αmin with µ(T ) < 0.373

Proof. Let αmin <
βξ−δ
δξ . Then, we know from the dynamics of the system (2.7 ) - (2.8) as given in table 1374

that the prey get eliminated eventually as the trajectories move towards the y− axis. However, for the optimal375

control problem, we choose the terminal state with x(T ) = ε < xd such that there is least damage caused to the376

system. From the outcomes of the recent work (Parshad et al. (2020)), we see that for the systems of the form377

ẋ = f1(x, y, α), ẏ = f2(x, y, α)

the terminal state x∗(T ) = 0 cannot be reached in finite time T <∞. Thus, choosing x(T ) = ε < xd will378

make the terminal state admissible which could be reached in finite time.379

This implies that the admissible solution set Ω 6= φ and thus, we conclude from result on the existence of380

optimal solution that the control problem (4.1) with x(T ) = ε indeed admits an optimum if αmin <
βξ−δ
δξ and381

drives the system to minimal pest density (ε, y(T )) in minimum time T .382

From (4.13), we know that
H(ε, y(T ), α∗(T ), λ(T ), µ(T )) = −1

Substituting the terminal state values (ε, y(T )) in the above equation, using the fact that ε is close to 0383

and from (4.5), we get384

λ(T )ε+ µ(T )

(
βξ

1 + α∗ξ
− δ
)
y(T ) = −1

Rearranging the above equation, we get385

µ(T ) =
−1− λ(T )ε(
βξ

1 + α∗ξ
− δ
)
y(T )

(4.25)

From the hypothesis of the lemma, we have λ(T ) > −1
ε . This implies that (1 + λ(T )ε) > 0 Since386

α∗(T ) < βξ−δ
δξ , we get βξ

1+α∗(T )ξ − δ > 0. Thus, using (4.25), we conclude that µ(T ) < 0.387
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Also, since α∗(t) = αmin whenever ∂H
∂α > 0, using the fact that µ(T ) < 0, using (4.9), we see that388

∂H
∂α

∣∣
t=T

> 0 and thus we conclude that389

α∗(T ) = αmin (4.26)

This proves the lemma.390

The above result states that at the instant when the terminal state is reached, the optimal quantity is αmin391

and the co-state variable µ is negative for λ(T ) > −1
ε . The following theorem gives a more stronger property of392

the optimal strategy in the context of pest management.393

Theorem 3. If αmin <
βξ−δ
δξ , then the optimal solution of the time optimal control problem (4.1) with x(T ) =394

ε < xd is given by α∗(t) = αmin for all t ∈ [0, T ].395

Proof. Let us assume that αmin <
βξ−δ
δξ . Now we re-write the canonical equations (4.7) - (4.8) as396

dλ

dt
= −λ

(
1− 2x

γ
− (1 + αξ)(1− ωx2)y

[x+ (1 + αξ)(ωx2 + 1)]2

)
− µ

(
βy(1 + αξ − ξ)(ωx2 + 1)

[x+ (1 + αξ)(ωx2 + 1)]2

) (4.27)

and397

dµ

dt
=

(
λx

[x+ (1 + αξ)(ωx2 + 1)]

)
− µ

(
β (x+ ξ(ωx2 + 1))

[x+ (1 + αξ)(ωx2 + 1)]
− δ
)

(4.28)

To prove this theorem, we will use the zero solution of the linear system formed by the system of canonical398

equations (4.27) - (4.28) which can be expressed in a matrix form as given below:399 
dλ

dt

dµ

dt

 =

−a1(t) −b1(t)

a2(t) −b2(t)

λ(t)

µ(t)

 (4.29)

where400

a1(t) = 1− 2x

γ
− (1 + αξ)(1− ωx2)y

[x+ (1 + αξ)(ωx2 + 1)]2

b1(t) =
βy(1 + αξ − ξ)(ωx2 + 1)

[x+ (1 + αξ)(ωx2 + 1)]2

a2(t) =
x

[x+ (1 + αξ)(ωx2 + 1)]

b2(t) =
β (x+ ξ(ωx2 + 1))

[x+ (1 + αξ)(ωx2 + 1)]
− δ

From the above expressions, we observe that401

• a2(t) > 0.402

• The sign of b1(t) depends on the sign of the term 1 + αξ − ξ.403

• If α(t) = αmin, then b2(t) > 0 by the hypothesis of the theorem.404

• a1(t) can either be negative or positive given the values of the state variables and parameters.405

To know the nature of the zero solution of the system (4.29) qualitatively, we consider its characteristic406

equation given below:407

m2 + (a1(t) + b2(t))m+ (a1(t)b2(t) + a2(t)b1(t)) = 0 (4.30)

Since the system (4.29) admits (0, 0) as its equilibrium, it is sufficient to study the properties of the408

functions (a1(t) + b2(t)) and (a1(t)b2(t) + a2(t)b1(t)) to understand the nature of the zero solution (0, 0). If we409

assume that −1ε < 0 < λ(T ), then using the Lemma - 1 and from the continuity of the functions (a1(t) + b2(t))410

and (a1(t)b2(t) + a2(t)b1(t)), we see that there exists an interval [a, T ] ⊂ [0, T ] in which λ(t) > 0 and µ(t) < 0.411

The proof of this theorem is done if we can show that a = 0 because a = 0 will imply that ∂H
∂α > 0 throughout412

[0, T ] and this will result in α∗(t) = αmin ∀t ∈ [0, T ].413
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Using the qualitative behaviour of the zero solution of the system (4.29), we will now discuss below how414

to choose initial values for λ and µ such that they maintain their signs λ(t) > 0 and µ(t) < 0 throughout the415

interval [0, T ]. Let I = (a1(t) + b2(t)) and J = (a1(t)b2(t) + a2(t)b1(t)). Then the characteristic equation (4.30)416

becomes m2 +Im+J = 0, whose discriminant is given by D = I2−4J . J plays a major role in determining the417

sign of the discriminant. Now, let us consider two cases based on the sign of the function b1(t) that determines418

the nature of the J :419

Case 1: 1 + αξ − ξ ≥ 0420

In this case, b1(t) ≥ 0 in the system (4.29). On evaluating the discriminant of the characteristic equation421

(4.30), in this case it turns out to be positive for all t ∈ [0, T ]. This implies that the solution trajectories with422

initial values for λ and µ chosen such that λ(0) > 0 and µ(0) < 0 will remain in the fourth quadrant of the λµ−423

space and do not move to any other quadrant. This will ensure that the sign of the switching function remains424

the same throughout [0, T ] leading to the desired outcome.425

Case 2: 1 + αξ − ξ < 0426

In this case, b1(t) < 0. Thus, we observe that D can change its sign depending on a1(t). Consequently,427

we observe that if a trajectory (of the state (λ(t), µ(t))) starts from fourth quadrant of the λµ space, it may428

leave the quadrant as time progresses. Also, it is important to note that at the terminal time T , x(T ) = ε and429

as a result, using the curve of admissible equilibria (3.4) we get y(T ) > 1 + αminξ. This means that the zero430

solution of the system (4.27) - (4.28) behaves like a saddle as t nears T .431

Thus, we need to choose initial values (λ0, µ0) with µ0 far from the origin on the negative µ - axis and432

λ0 > 0, such that the Hamiltonian is −1 at t = 0. This will ensure at that as t increases, when the co-state433

trajectory approaches the positive λ - axis, then under the influence of the saddle nature of (0, 0) it does not434

leave the fourth quadrant. This will help achieve our objective.435

Therefore, by choosing initial values as suggested, we have σ(t) > 0 ∀ t ∈ [0, T ] and thus,

α∗(t) = αmin ∀ t ∈ [0, T ]

This completes the proof of the theorem.436

4.4 Numerical Illustrations437

In this section, we perform numerical simulations to validate the theory presented in the previous sub-438

sections and discuss the findings. We consider four examples depicting different cases. The numerical simulations439

were run on MATLAB software. The figures illustrating each example display the optimal trajectory of the440

state variables, the co-state variables, the optimal control function α(t) and the switching function ∂H
∂α . To441

obtain the optimal strategy, we first fixed the initial and terminal states. Using the parameter values and the442

terminal state of the system, we obtained the optimal control value at the terminal state α∗(T ) which is required443

to maintain the system at the terminal state for all future times. Using this, we fixed the range of the control444

parameter [αmin, αmax]. Then, using the equation (4.12) along with various combinations of trial-error guesses445

with the objective of reaching the terminal state, we obtained the initial values for the co-state variables. Then446

we used Runge-Kutta 4th order routine to simulate the systems (2.7) - (2.8) and (4.7) - (4.8) and switched the447

control accordingly as per (4.20) which finally gave us the desired trajectories. The Hamiltonian function was448

monitored throughout the process. The step size used for the simulations is h = 0.01 based on which the time449

units obtained at the end of simulations are re-scaled by multiplying T × 10−2.450

Example - 1: This example illustrates the possibility of steering the system (4.1) from the initial state451

(1.39, 3.62) to the terminal state (6.15, 1.17) with α∗(T ) = 1.76 with the initial values for co-states being452

(2,−0.75). The parameters values are taken to be γ = 6.5 β = 0.4, δ = 0.2, ξ = 1, ω = 0.2, αmin =453

1, and , αmax = 2. We see that this system takes T = 4222 × 10−2 = 42.2 units of time to reach the desired454

state. Once the system reaches the desired state, the quality of additional food is maintained at α∗(T ). Figure 2455

illustrates this example. This examples is a case with one switch. This is applicable in the context of biological456

conservation of the prey species and we see that prey density increases from x(0) = 1.38 to x(T ) = 6.15 by457

feeding the predators with high-quality additional food initially and then reducing the quality of additional food458

later.459

Example - 2: This example illustrates the possibility of steering the system (4.1) from the initial state460

(5.17, 4.78) to the terminal state (0.58, 4.8) with α∗(T ) = 1.76 and the initial values for co-states being461

(1,−3.90904). The parameters values are taken to be γ = 6 β = 0.4, δ = 0.2, ξ = 2, ω = 0.26, αmin =462

1, and , αmax = 3. We see that this system takes T = 1712 × 10−2 = 17.12 units of time to reach the desired463
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Figure 2: This figure depicts the optimal trajectory of the time optimal control problem (4.1) from the initial
state (1.39, 3.62) to the terminal state (6.15, 1.17) with the parameters values γ = 6.4 β = 0.4, δ = 0.2, ξ =
1, ω = 0.2, αmin = 1, and αmax = 2.

Figure 3: This figure depicts the optimal trajectory of the time optimal control problem (4.1) from the initial
state (5.17, 4.78) to the terminal state (0.58, 4.8). The parameters values are taken to be γ = 6 β = 0.4, δ =
0.2, ξ = 2, ω = 0.26, αmin = 1, and , αmax = 3.

state. Figure 3 illustrates this example. This examples is also a case with one switch. This is an illustration of464
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the case where there is reduction of the prey species from x(0) = 5.17 to x(T ) = 0.58 by feeding the predators465

with high-quality additional food initially and then low-quality additional food with the initial and terminal466

predator densities almost same.467

Figure 4: This figure depicts the optimal trajectory of the time optimal control problem (4.1) from the initial
state (5.17, 4.78) to the terminal state (0.04, 12.2). The parameters values are taken to be γ = 6 β = 0.4, δ =
0.2, ξ = 2, ω = 0.26, αmin = 1, and , αmax = 3.

Example - 3: This example illustrates the possibility of steering the system (4.1) from the initial state468

(5.17, 4.78) to the terminal state (0.04, 12.2) with the initial values for co-states being (0.56170,−6.80). The469

parameters values are taken to be are same as that of the previous example. We see that this system takes470

T = 1050 × 10−2 = 10.5 units of time to reach the desired state. Figure 4 illustrates this example. This471

examples is a case without any switch. This case is an illustration of pest management with minimal prey472

density. This is also an illustration of the Theorem 3 where λ(t) > 0 ∀t ∈ [0, T ] and µ(t) < 0 ∀t ∈ [0, T ] along473

with α∗(t) = αmin, ∀t ∈ [0, T ]. This example also shows that if the eco-manager or the experimental ecologist474

does not switch the additional food to low quality at the specified time, then the system could tend towards475

prey elimination eventually.476

Example - 4: This example illustrates the possibility of steering the system (4.1) from the initial state477

(0.2, 0.1) to the terminal state (0.4, 3.77) with α∗(T ) = 1.69 and the initial values for co-states being (7.07, 23).478

The parameters values are taken to be γ = 0.9 β = 0.2, δ = 0.1, ξ = 2, ω = 0.26, αmin = 1, and , αmax = 2.479

We see that this system takes T = 11477 × 10−2 = 114.77 units of time to reach the desired state. Figure480

5 illustrates this example. This examples is a case with multiple switches. This is an illustration of the case481

where there is an increase in the predator species from y(0) = 0.1 to y(T ) = 3.37 by feeding the predators with482

optimal quality additional food and with the initial and terminal prey densities almost same. This is applicable483

in the Biological conservation of the predator species.484

4.5 Ecological Significance485

It can be inferred from the above theoretical findings of the implicit control system that to achieve prey486

elimination, it is sufficient to provide the predator with high quality additional food (αmin). This is in line with487

the outcomes of the work (Toft (2005)) which states that the optimal availability of high quality of alternative488

food sources to the generalist predators maximize the control of the aphids that attack on cereal fields. This is489

also observed from the outcomes of experimental studies by (Calixto et al. (2013)), where the natural enemy490
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Figure 5: This figure depicts the optimal trajectory of the time optimal control problem (4.1) from the initial
state (0.2, 0.1) to the terminal state (0.4, 3.77). The parameters values are taken to be γ = 0.9 β = 0.2, δ =
0.1, ξ = 2, ω = 0.26, αmin = 1, and , αmax = 2.

Orius insidiosus is provided with various combinations of additional food supplements like pollen, Anagasta491

kuesniella eggs and nymphs of its target prey Frankliniella occidentalis. F. occidentalis are thrips whose adult492

stages damage agro-ecosystems. In this study, it is observed that A. kuehniella eggs are an excellent factitious493

food for rearing O. insidiosus were found to be of high nutritional value compared to both pollen and nymphs494

of the target prey. The predation on F. occidentalis thrips was found to be maximum when the predators O.495

insidiosus were supplemented with A. kuehniella eggs which increased their longevity and fecundity. This shows496

that the mathematical findings are in accordance with the experimental observations. Figure 4 illustrates this497

case of eliminating pest.498

One of the aims of providing additional food is to reduce depredation. From the illustrations above it499

can be observed from figure 2 that initially when additional food is provided, the predators consume both500

prey and additional food and hence increase in density with reduction in prey. But as the predators increase,501

competition among predators also increases. This demonstrates the case of apparent competition (Muller and502

Godfray (1997)) when high-quality of additional food is provided.503

5 Optimal Control Studies for Type IV System (2.3) - (2.4) with504

Quality as Explicit Control505

In this section, we will define another additional food provided system with Type IV functional response506

where the additional food is explicitly provided as a linear component added to the predator’s compartment of507

the initial system (2.1)-(2.2).508

5.1 Explicit Control System and the Error System509

Let U represent the additional food term with U = AB, where A represents the quality of additional510

food and B represents the quantity of additional food. Since our aim is to study the influence of quality of511

additional food, we assume the quantity to be fixed B > 0 and henceforth we shall consider U to represent the512

quality of additional food. When additional food is provided explicitly, the initial system (2.1) - (2.2) becomes513
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dN

dT
= rN

(
1− N

K

)
− cN

a(bN2 + 1) +N
P (5.1)

dP

dT
=

eN

a(bN2 + 1) +N
P −mP + U (5.2)

Using the same transformations as performed before, and letting u = U
r , the non-dimensionalised explicit514

additional food system is given by the system of equations515

ẋ = x

(
1− x

γ

)
−
(

xy

ωx2 + x+ 1

)
(5.3)

ẏ = β

(
βxy

(ωx2 + 1) + x

)
− δy + u (5.4)

The goal of this study is to maintain the prey (pest population) at the level x∗ = xc < xd by providing516

additional food to the predator which is of optimal quality u∗, where xd is the threshold level below which there517

is no damage by pests to the ecosystem. To ensure that the state (x∗, y(x∗)), is admissible, we consider the518

isoclines of the system (5.3) - (5.4) with x∗ = xc fixed and solve for y∗ and u∗. We must also ensure that x∗519

that is chosen satisfies the condition x∗ < γ. Choosing such an x∗, using equation (5.3), we get y∗ as follows:520

x∗
(

1− x∗

γ

)
−
(

x∗y∗

1 + x∗ + ω(x∗)2

)
= 0

y∗

1 + x∗ + ω(x∗)2
=

(
1− x∗

γ

)
521

Rearranging the above expression, we get522

y∗ =

(
1− x∗

γ

)
(1 + x∗ + ω(x∗)2) (5.5)

Now, using equations (5.4) and (5.5), we get523

βx∗y∗

1 + x∗ + ω(x∗)2
− δy∗ + u∗ = 0

Solving for u∗, we get524

u∗ =

(
δ − βx∗

1 + x∗ + ω(x∗)2

)
y∗

To obtain the expression using x∗, we substitute for y∗ and get525

u∗ =
δ(1 + x∗ + ω(x∗)2)− βx∗

1 + x∗ + ω(x∗)2

(
1− x∗

γ

)
(1 + x∗ + ω(x∗)2)

Cancelling and rearranging the terms in the above expression, we get526

u∗ =

(
1− x∗

γ

)
(1− (β − δ)x∗ + ω(x∗)2) (5.6)

The desired state is (x∗, y∗) controlled by u∗ may not be stable always because the value xd is chosen527

based on the damage caused to the ecosystem. Since the goal of the study is to drive the system (5.5) - (5.6)528

optimally to the state (x∗, y∗), we will carry out the following steps to that end:529

1. Define an error system (also called perturbed system) using linearization of the system (5.5) - (5.6) with530

respect to the desired terminal state (x∗, y∗).531

2. Formulate a linear feedback control optimal control problem with respect to the error system that drives532

the system to the origin.533

3. Once the running cost of the control problem is shown to be positive definite, then using the results of534

an infinite horizon LQR problem the optimal solution can be shown as a feedback control that minimizes535

the objective and also ensures the asymptotic stability of the terminal state of the error system.536

18



4. Using the feedback control, control for the system (5.5) - (5.6) can be obtained, which will make the537

terminal state stable.538

5. Translating back to the original system, the terminal state would be reached optimally.539

We will now implement the above mentioned procedure to reach the desired state optimally. We define540

the variables for the error system as follows:541

v =

[
v1
v2

]
=

[
x− x∗
y − y∗

]
, α = u− u∗ (5.7)

Using the isoclines of the system (5.5) - (5.6), the first order Taylor’s expansion of the state variables x542

and y around x∗ and y∗, and the new variables, we get the error system as543

v̇ = Mv + h(v) +Nα (5.8)

where544

M =

1− 2x∗

γ
− y∗(1− ω(x∗)2)

1 + x∗ + ω(x∗)2
− x∗

(1 + x∗ + ω(x∗)2)
βy∗(1− ω(x∗)2)

(1 + x∗ + ω(x∗)2)2
βx∗

1 + x∗ + ω(x∗)2
− δ

 , N =

[
0
1

]

and545

h(v) =

[
h1(v)
h2(v)

]
=

[
h1(v1, v2)
h2(v1, v2)

]
=


−v21
γ
− v21v2

1 + v1 + ωv21
βv1v2

1 + v1 + ωv21


5.2 The Linear Feedback Control Optimal Control Problem and Optimal Solution546

The linear feedback control optimal control problem involving error system (5.8) is defined as follows:547

Minimize:

J =
∫∞
0

(
l(v) + αTRα

)
dt

Subject to :

v̇ = Mv + h(v) +Nα

(v1(∞), v2(∞)) = (0, 0)


(5.9)

with l(v) defined as548

l(v) = [vTQv − hT (v)Pv − vTPh(v)] (5.10)

The control system (5.8) and the associated optimal control problem (5.9) is a special case of the general549

perturbed non-linear system dX
dt = A′X+g(X)+B′U and its associated control problem studied in (Rafikov and550

de Holanda Limeira (2012)), where A′ ∈ Rn×n is a constant matrix, g a vector whose elements are continuous551

non-linear functions, U ∈ Rm is the control vector, and B′ ∈ Rn×m is a constant matrix. Thus, the results552

proved for the general system in (Rafikov and de Holanda Limeira (2012)) can be applied to obtain the optimal553

solution. The l(v) of the objective function in (5.9) is a variation of the linear quadratic regulator defined for554

strictly linear systems (Liberzon (2011)). Since the error system (5.8) is based on feedback control, the objective555

function J in (5.9) makes the control problem similar to the infinite horizon LQR control problem.556

Theorem 4. For any matrix P and

Q =

[
q11 0
0 q22

]
, h(v) =


−v21
γ
− v21v2

1 + v1 + ωv21
βv1v2

1 + v1 + ωv21


the function l(v) defined in the equation (5.10) is positive definite in a neighbourhood Γ0 of the origin (0, 0).557
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Proof. Letting the matrix P to be

[
p11 p12
p21 p22

]
, using Q and h(v) from the hypothesis of the theorem, and558

expanding the function l(v) we get559

l(v) = l(v1, v2) = q11v
2
1 + q22v

2
2 +

2p11v
3
1

γ
+

2(p11 − βp12)v21v2
1 + v1 + ωv21

+
2p12v

2
1v2

γ
+

2(p12 − βp22)βv1v
2
2

1 + v1 + ωv21
(5.11)

The first partial derivatives of l(v) are given by560

∂l

∂v1
= 2q11v1 +

6p11v
2
1

γ
+

4p12v1v2
γ

+ 2(p11 − βp12)
2v1v2 + v21v2

(1 + v1 + ωv21)2
+ 2(p12 − βp22)

v22(1− ωv21)

(1 + v1 + ωv21)2

∂l

∂v2
= 2q22v2 +

2(p11 − βp12)v21
1 + v1 + ωv21

+
4(p12 − βp22)v1v2

1 + v1 + ωv21
+

2p12v
2
1

γ

It is obvious from the above equations that

∂l

∂v1
(0, 0) =

∂l

∂v2
(0, 0) = 0

and the Hessian of l(v) at the origin is given by561

H(0) =

[
2q11 0

0 2q22

]
which is clearly positive definite. This implies that the origin is the strict local minimum of function l(v)562

and that this function is positive definite at the neighbourhood Γ0 of the origin. This completes the proof of563

the theorem.564

The following theorem from (Rafikov and de Holanda Limeira (2012)) shows that the feedback control α565

for the error system (5.8) minimizes the objective functional defined above and also ensures that the desired566

terminal state is asymptotically stable.567

Theorem 5. If there exist constant matrices Q and R, positive definite, Q begin symmetric, such that the568

function l(v) as defined in (5.10) is positive definite, then the linear feedback control569

α = −R−1NTP (t)v (5.12)

is optimal, in order to drive the non-linear system (5.8) from an initial state to the final state570

(v1(∞), v2(∞)) = (0, 0) (5.13)

minimizing the functional571

J =

∫ ∞
0

(
l(v) + αTRα

)
dt (5.14)

where P the symmetric, positive definite matrix is the solution of the Algebraic Riccati Equation572

PM +MTP − PNR−1NTP +Q = 0 (5.15)

573

Moreover, with the feedback control given by (5.12), there exists a neighbourhood Γ0 ⊂ Γ ⊂ R2, of the574

origin such that if v0 = (v1(0), v2(0)) ∈ Γ0, then the solution v(t) = 0, t ≥ 0 of the controlled error system (5.8)575

is locally asymptotically stable, and Jmin = vT0 P (0)v0 (Liberzon (2011)). Finally, if Γ = R2, then the solution576

v(t) = 0, t ≥ 0 becomes globally asymptotically stable.577

From the theorems 4 and 5, we can now conclude that the optimal control problem (5.9) admits an578

optimal solution and the error system (5.8) controlled by linear feedback control α as given in (5.12) is locally579

asymptotically stable. Hence the system (5.5) - (5.6), controlled by580

u = u∗ + α (5.16)

tends to the desired equilibrium (x∗, y∗).581
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5.3 Numerical Simulations582

In this section, we numerically illustrate the application of the control strategy in equation (5.16). We583

apply this to the explicit control system (5.3) - (5.4) by defining the error system (5.8) for a specific desired584

terminal state (x∗, y∗) and implementing the feedback control (5.12) for the same, thereby obtaining the optimal585

strategy for pest management in finite time. The terminal state is obtained by choosing x∗ = xc < sd such that586

the prey (pest) population is no longer harmful to the ecosystem.587

We know from (Srinivasu et al. (2018a)) that the initial system (2.1) - (2.2) admits two interior equilibrium588

points E∗2 and E∗3 provided the parameters of the system satisfy certain conditions. The stability of these589

equilibria (if they exist) depend in the position of the prey component and the nature of the prey isocline curve,590

which is given by y = g(x), where591

g(x) =

(
1− x

γ

)
(1 + x+ ωx2) (5.17)

Since the system (5.3) - (5.4) is obtained by incorporating additional food explicitly to the predator592

component of the initial system (2.3 ) - (2.4), we see that the dynamics of the initial system could play a crucial593

role in the implementation of control strategy, depending on the choice of the terminal state with respect to the594

nature of the prey isocline. We want to quantitatively obtain this relation and also see how the control strategy595

is affected with the variation of inhibitory effect.596

5.3.1 Nature of the Prey Isocline597

Consider the prey isocline curve y = g(x). To obtain the nature of the curve, we consider the equation
g′(x) = 0:

d

dx

[(
1− x

γ

)
(1 + x+ ωx2)

]
= 0

Simplifying the above equation we get the quadratic equation

3ωx2 + (1 + ωγ)x+ (1− γ) = 0

Depending on the nature of roots of the above equation, which in turn is based on the values of the parameters598

β, δ, γ and ω, we obtain the following cases:599

(i) Case I: (1− ωγ)2 − 3ω(1− γ) > 0, 1− γ > 0 and 1− ωγ < 0600

(ii) Case II: (1− ωγ)2 − 3ω(1− γ) > 0, 1− γ < 0601

(iii) Case III: (1− ωγ)2 − 3ω(1− γ) > 0, 1− γ > 0 and 1− ωγ > 0602

(iv) Case IV:(1− ωγ)2 − 3ω(1− γ) < 0603

604

Table 2: Parameter Values and Equilibrium Points for Various Cases of Prey Isocline Behavior

Cases
Values of Parameters Prey Component of Equilibrium Points

Predator Density Corresponding to x∗ = 0.01
β δ γ ω E∗2 E∗3

I 4 1 0.9 0.2 0.5 1 0.99
II 4 1 1.1 1 0.38 2.61 1.00
III 4 1 0.8 0.4 0.35 7.16 0.99
IV 4 1 0.6 0.8 0.37 3.38 0.99

The figure 6 shows the various cases depicting the nature of prey isocline. E∗2 is the first interior equi-605

librium. Since γ < E∗3 , the second interior equilbrium is not admitted by the system. The values chosen for606

the parameters and resulting equilibrium points for all the cases of the prey isocline of initial system have been607

listed in the table 2.608

First, we numerically simulate the trajectory of the state variables in the absence of the control from the609

initial point (4.5, 3). This is depicted in figure 7. We observe that in all the cases, the system undergoes initial610

oscillations and tends to stabilize eventually. However, the desired state is not reached in the absence of the611

control.612
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Prey - Isoclines of the Initial System

Figure 6: This figure shows the nature of the curve y = g(x) given in the equation (5.17) under the four cases
mentioned above.

Trajectory of the System Without Application of Control

Figure 7: This figure shows the trajectory of the state variables from the initial state (4.5, 3) without application
of any control for all the four cases. The system undergoes oscillations initially but becomes stable over a period
of time in Case IV but in other cases oscillations persist. Also, in all the cases, the system does not reach the
desired terminal state.

Let us consider the desired prey (pest) population to be x∗ = 0.01 such that there is almost no harm613

caused to the ecosystem. Then, using equations (5.5) and (5.6), we obtain the values for y∗ and u∗ respectively.614

Using (x∗, y∗(x∗)) and u∗ we define the error system (5.8) and formulate the optimal control problem (5.9) for615

each case. Choosing the matrices616

Q =

[
0.01 0

0 0.01

]
, R = [1]
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Trajectory of the System with the Application of Control

Figure 8: This figure shows the optimal trajectory of the state variables from the initial state (4.5, 3) to the
desired terminal State with the application of control for all the four cases. In all the cases, the system reaches
the desired terminal state in finite time.

and solving the Algebraic Riccati Equation (5.15) using the LQR command of MATLAB, we get the solution617

matrix P for each case using which we obtain the feedback control for the error system. Then using equation618

(5.16), we get the optimal control for the explicit control system (5.3) - (5.4). The optimal trajectory of the619

state variables is depicted in figure 8. We observe that in all the cases, the optimal control drives the system620

from the same initial point (4.5, 3) to the desired terminal state in finite time.621

Local Definiteness of the Function l(v) around the origin

Figure 9: This figure shows the local definiteness of the function l(v) = l(v1, v2) around the origin (0, 0).

Figures 9 and 10 depict the local definiteness of the function l(v) and the trajectory of the optimal control622

u in each case. We see that the local definiteness of the function l(v) ensures the asymptotic stability of the623

terminal state of the system.624
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Trajectory of the Optimal Control Function

Figure 10: This figure shows the trajectory of the Optimal Control function (5.16) for all the four cases.

Terminal States chosen to depict Instability

Cases Prey Component of E∗2
Chosen Terminal State
x∗ y∗(x∗)

I 0.5 0.55 0.62
II 0.38 0.43 0.98
III 0.35 0.40 0.73
IV 0.37 0.42 0.46

Table 3: This tables shows the values of the chosen terminal states for all cases.

Now, we will simulate the trajectories of the state variables under the application of the control (5.16) for625

each case but with the terminal prey population chosen to be x∗ = E∗2 + 0.05, where E∗2 is the respective first626

interior equilibrium point for each case. The resulting terminal states for all cases have been listed in table 3.627

Under ideal circumstances, we will expect the system to reach the desired terminal state under the application628

of the control. However, we observe that does not happen in this case. We see from figure 11 that in none of629

the cases the system reaches the desired state. Moreover, the system becomes unstable with predator density630

becoming negative in all cases. This in feasibility is attributed to the chosen prey component of the terminal631

state x∗.632

We know from the dynamics of the initial system (2.3) - (2.4) that when the equilibria E∗2 alone exists, it633

is either stable or there is an asymptotically stable limit cycle which is formed and the axial equilibrium (γ, 0) is634

always saddle. Thus, when we choose x∗ > E∗2 , the resulting point on the prey isocline curve (x∗, y∗(x∗)) lies on635

the unstable manifold of (γ, 0). This results in the unexpected behavior of the system. Thus, we conclude that636

the control can drive the system only when the prey component of the terminal state x∗ is chosen sufficiently637

close to zero. Thus, the control strategy provided by the explicit control system is applicable only for the pest638

management applications with feedback optimal control mechanism.639

5.3.2 Inhibitory Effect of the System640

In this section, we consider the variation of inhibitory effect (represented by the parameter ω) in the641

optimal strategies by keeping other parameters fixed to β = 2.2, δ = 0.4, and γ = 0.9. By considering x∗ = 0.2,642

we consider 7 cases with ω varying from 0 to 8.643
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Trajectory of the State Variables with the Application of Control

Figure 11: This figure shows the trajectory of the state variables under the application of control when the prey
component of the terminal state is chosen to be greater than the equilibrium of the initial system x∗ > E∗2 for
all the four cases.

Figure 12: This figure shows the optimal trajectory of the prey (pest) with the application of feedback control
as the parameter ω varies.

Figures 12 and 13 represent the optimal trajectories of the prey and predator respectively with the644

application of feedback control as the parameter ω varies. For the cases where ω takes the values 0, 0.5645

and 1, we see that the system is driven by the control to the corresponding terminal state. However, as the646

parameter increases starting from from ω = 2 the states start oscillating instead of reaching the desired state647

and as ω further increases, oscillations also increase. When ω = 6, the prey population increases out of the648

range as compared to its desired level and correspondingly the predator population becomes too negative. When649

ω = 8, then prey start to grow exponentially and predators behavior becomes more unpredictable.650
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Figure 13: This figure shows the optimal trajectory of the predator with the application of feedback control as
the parameter ω varies.

5.4 Ecological Significance651

The theoretical findings of the explicit control system show that bio-control of species can be achieved652

using feedback control by maintaining the pest at minimal levels without causing damage to the systems. This653

type of control strategy is applicable when additional food needs to be provided at regular intervals as feed654

back apart from the usual optimally regulated supply (Wade et al. (2008)). In particular, when the goal is to655

achieve inundative bio-control (Blackburn et al. (2016)), the natural enemies are mass reared and released into656

eco-systems which are not natural for them. Thus, providing additional food in a feedback fashion helps them657

to sustain in the ecosystem.658

We also see from the numerical illustrations that the increase in inhibitory effect in the system can659

de-stabilize the system and even the controlled system need not be driven to the desired state. Ecological660

experimental findings from (McClure and Despland (2011)) reveal similar outcomes when the inhibitory effect661

of social caterpillar is studied against three of its natural enemies: spiders, parasitoids and stinkbugs. In all662

cases the results show that as the number of fourth instar caterpillars increase, the capture by the predator663

starts to drastically reduce. In particular, for a group of two fourth instar caterpillars, for 0.8 mean number664

of attacks by stinkbugs, 0.6 were captured where as for a group of 30 caterpillars, for every 0.8 mean number665

of attacks, only 0.2 were captured. Not just being together as a group, the caterpillars also used techniques666

such as jerking away, thrashing and even biting. It is stated in (McClure and Despland (2011)) that: “When667

stinkbugs were used as predators, evasive behaviours were the most efficient in creasing survival”. Similarly,668

when in large groups, caterpillars also employed head flicking and biting against parasitoids. The authors also669

state that: “In general. the fourth instar caterpillars showed more varied defensive responses, including falling670

off the bridge and biting the aggressor, and were more successful against all the three natural enemies”. These671

findings show that the mathematical results obtained are in line with the ecological field observations and that672

the inhibitory effect plays a major role in foraging of the predator especially in high prey densities.673

6 Discussion and Conclusions674

Studies on providing additional food to the predators have been receiving attention over the years by675

theoretical and experimental scientists (Harwood et al. (2004, 2005); Redpath et al. (2001); Sabelis et al. (2006);676

Soltaniyan et al. (2020); Van Baalen et al. (2001); van Rijn et al. (2002); Wade et al. (2008)) in the contexts677

of both biological conservation and bio-control. The role of quality of additional food to predators and its678

impact on the system is discussed in (Redpath et al. (2001); Sabelis et al. (2006); Wade et al. (2008); Winkler679

et al. (2005)). A detailed study involving qualitative properties and asymptotic controllability of the additional680

food provided system involving type IV response has been done in (Srinivasu et al. (2018a)) and (Vamsi et al.681

(2019)). The findings reveal that the system admits either an asymptotically stable equilibrium or a limit cycle682
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surrounding an unstable equilibrium. It is also observed that the system could be asymptotically driven to any683

of the two states under certain conditions. Most importantly, it is shown that providing additional food need not684

always result in successful achievement of biological conservation or bio-control. This, in fact, is supported by685

the experimental findings in (Harwood et al. (2004, 2005); Putman and Staines (2004); Toft (2005)). The extent686

of achieving the desired objective depends on the choice of quality and quantity of additional food provided687

(Marcarelli et al. (2011); Soltaniyan et al. (2020)).688

Though the findings of (Srinivasu et al. (2018a); Vamsi et al. (2019)) are useful, they cannot be practically689

implemented because of the asymptotic nature of the results. In practice, achieving the objective of reaching690

the terminal state in finite time is highly desirable. In that context, the focus of this article has been to use the691

available control parameters to optimally reach the desired terminal state in finite time. Two optimal control692

problems involving type IV functional response have been considered: one with the additional food system where693

quality of additional food is an implicit control and other, with the quality of additional food as explicit control.694

Mathematically, the rate of change of the predator density is linear with respect to the explicit control and695

non-linear with respect to the implicit control. Accordingly, in the first case, a time optimal control problem696

is formulated and studied using the Maximum Principle approach. In the second, a linear feedback control697

optimal control problem is formulated and studied using the Dynamic Programming approach. The outcomes698

of these studies are applicable in both biological conservation and bio-control.699

Study 1: Time Optimal Control Problem700

The objective of this study is to drive the system from a given initial state to the desired terminal state701

in minimum time by varying the quality of additional food. Using the characteristics of the optimal solution702

provided by Pontryagin’s Maximum Principle, the optimal strategy turned out to be of bang-bang type with703

possibility of multiple switches. One of the significant findings of this work is that both biological conservation704

and bio-control can be achieved in finite time. In the case of biological conservation, the terminal state is one of705

the points in the curve of admissible equilibria. Depending on the nature of the admissible curve and the prey706

component of the desired state, the terminal state is either stable or unstable. The advantage of this optimal707

strategy is that the system is driven to the terminal state even if it is unstable. Once the terminal state is708

reached, the optimal strategy suggests that the additional food of constant quality needs to be provided so709

as to maintain the system in the same state for all future times. However, there is a need to employ a cost710

effective technique to provide additional food especially on a long term basis. One such technique is to grow711

some suitable alternate sources of food to predator in the ecosystem itself (Landis et al. (2000)).712

On the other hand, if the objective of the study is to control the pest (prey) at a minimal level, then the713

results indicate that the predators must be constantly supplied with high-quality additional food. As a result,714

there would be no switches in the optimal strategy. This will lead to an increase in predator population and leads715

to a minimal level of the prey (pest) that exist in the ecosystem with the predator species feeding predominantly716

on additional food (Srinivasu et al. (2018a)). These results are in agreement with the experimental findings of717

(Calixto et al. (2013); Soltaniyan et al. (2020)). Numerical illustrations validate these theoretical results for718

specific examples.719

In the case of biological conservation, switching in optimal strategy (Proposition 1) is very pertinent720

because outcomes of ecological studies show that constant provision of high quality additional food not only721

leads to apparent competition (Holt (1977)) leading to reduction of prey but could also eventually eliminate722

prey (Srinivasu et al. (2018a); Vamsi et al. (2019)). On the other hand, providing predator constantly with723

low quality additional food leads to the reduction in survival, fecundity and predation capacity (Magro and724

Parra (2004); Putman and Staines (2004); Redpath et al. (2001)). If the predators are not optimal foraging725

species, then feeding low quality additional food could lead to adverse effects. The findings of (Putman and726

Staines (2004)) state that “the red deer Cervus elaphus may develop a reliance on the food supplement provided,727

reducing intake of natural forages to near zero; where feed provided is less than 100 percent of daily requirement,728

these animals may regularly lose, rather than gain condition. Also, it is stated that provision of low quality729

food supplements such as grain, root crops which are deficient in fiber may adversely affect the water balance of730

predators. It has been observed that winter feeding did not produce calves with greater birth weights than those731

reported for animals which are not given supplementary feed.”732

Study 2: Linear feedback control Optimal Control Problem733

For this study, additional food is explicitly incorporated into the functional response by linear addition734

into the predator compartment. Here, the desired terminal state is chosen based on the threshold pest density735

such that there is least or no damage to the ecosystem. This is motivated from the ecological findings that have736

shown that the predators could damage the ecosystem by feeding on the crops (Calvo et al. (2009); Urbaneja-737

Bernat et al. (2013)) in the absence of prey. In some of the ecological experiments by (Hamdi et al. (2013)), it738
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was seen that once the pest were eradicated from the system, the predators displayed cannibalistic behaviour739

when there was a reduction in the supply of high quality additional food. These results show that it is better740

to sometimes not eliminate the pest completely but sustain them at low densities such that there is no damage741

to the crops and at the same time predators also have their target prey.742

Using the steady states of the system, the corresponding predator density and the control are obtained.743

The disadvantage of this control is that the terminal state may not be asymptotically stable. Thus, to overcome744

this limitation, an error system is defined and an linear feedback control optimal control problem is formulated745

based on the error system to drive the state to the origin. This would drive the actual system to the desired746

state. The optimal control is shown to be a feedback control that ensures asymptotically stability of the terminal747

state. The optimal strategy obtained suggests to the experimental ecologists a way of maintaining the pest at748

the least harmful level without eradicating them completely. This is shown to be reached within finite time.749

Numerical illustrations validate the above results.750

The numerical simulations when performed by taking the terminal prey value greater than the prey751

component of the interior equilibrium of the initial system showed that the desired state could not be reached752

with the control strategy. This could be attributed to the inherent instability of the system. In fact, this is one753

major difference between both the studies undertaken in this work. While the time optimal control strategy can754

steer the system even to unstable interior equilibrium, the feedback control fails to do so. Similar simulations755

were also carried out by varying the inhibitory effect of the prey. The results showed that on increase of the756

inhibitory effect, the system could not be driven to prey control (pest management) state. These theoretical757

findings validate the experimental outcomes in (Collings (1997)) where spider mites display group defense when758

in large densities.759

The outcomes of the implicit control system studies are qualitatively similar to the findings of optimal760

control studies (Srinivasu and Prasad (2010)) involving the type II additional food provided system (Srinivasu761

et al. (2007)). Recently, it has been pointed out by (Parshad et al. (2020)) that some of the results of the work762

(Srinivasu et al. (2007)) have flaws pertaining to elimination of prey in finite time. Thus, in this work, we have763

modified the terminal state to a minimal prey density to achieve bio-control rather than eliminating prey from764

the system. This work can also be seen in a more general manner as we consider Holling type IV response which765

is a generalization of Holling type II response. In the present work we also model the control in the explicit766

fashion that helps us to have a feedback mechanism which is suited for adaptive studies. We also discuss the767

role and effect of inhibitory effect.768

In conclusion, the outcomes of these studies show that the additional food provided predator-prey systems769

involving type IV functional response can be driven to a desired state in finite time with quality of additional770

food as implicit and explicit control parameter. The analysis shows the vital role played by the quality of771

additional food provided to the predators, emphasizing the importance of switching the quality from high to772

low or vice-versa depending on the objective. Due care must be taken while doing so because arbitrary choice773

of quality could lead to adverse effects.774
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A Appendix910

Global Dynamics of the Additional Food System (2.7) - (2.8)911

We will now briefly describe the global dynamics of the additional food provided system (2.7) - (2.8).912

Let us consider the following condition holding true for the initial system (2.3) - (2.4):913

ω − (β − δ)2

4δ2
> 0

Under this condition, when additional food is provided to the initial system (2.3) - (2.4) we get three914

different cases depending on the behavior of the prey isocline of the initial system (2.3) - (2.4). The figure 14915

depicts the different types of the prey isocline that occur under the condition - I.916

Cases Under Condition - I

Figure 14: This figure shows the nature of prey isocline curve of the initial system under the three sub-cases
I-1, I-2 and I-3 of condition - I. These are plotted for the values of parameters β = 2.2 and δ = 0.4

Bifurcation Diagram for the Case I-1

Figure 15: This figure represents the division of control parameter space by the discriminant curve (DISC),
the prey elimination curve (PEC), the Hopf bifurcation curve (HBC), the transcritical bifurcation curve (TBC)
and the curve α = β

δ . The parameter values chosen are β = 2.2, δ = 0.4, γ = 1.2, and ω = 8, satisfying the
condition I-1
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Bifurcation Diagram for the Case I-2

Figure 16: This figure represents the division of control parameter space by the discriminant curve (DISC), the
prey elimination curve (PEC), the Hopf bifurcation curve (HBC), the transcritical bifurcation curve (TBC) and
the curve α = β

δ . The parameter values chosen are β = 2.2, δ = 0.4, γ = 0.63, and ω = 7, satisfying the
condition I-2

Bifurcation Diagram for the Case I-3

Figure 17: This figure represents the division of control parameter space by the discriminant curve (DISC), the
prey elimination curve (PEC), the transcritical bifurcation curve (TBC) and the curve α = β

δ . The parameter
values chosen are β = 2.2, δ = 0.4, γ = 0.42, and ω = 6.4, satisfying the condition I-3

Along with the nature of the prey isocline curve (as shown in figure 14), the dynamics of the additional917

food provided system (2.7) - (2.8) also depend on the values that the parameters α and ξ take with respect to918

the following four curves where the first three determine the stability of equilibria while the fourth determines919

the existence of interior equilibrium points (for the additional food system):920

The Prey Elimination Curve (PEC)

βξ − δ(1 + αξ) = 0

the Transcritical Bifurcation Curve (TBC)

β(γ + ξ(ωγ2 + 1))− δ((1 + αξ)(ωγ2 + 1) + γ) = 0
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Table 4: Global dynamics of the additional food provided system (2.7) - (2.8)

Figure Nature of the equilibria

Fig. 15 Fig. 16 Fig. 17 E∗0 E∗1 E∗2 E∗3
A1 B1 C1 Saddle Stable - -
- B2 C2 Saddle Stable Stable Saddle
A2 B3 - Saddle Stable Unstable Saddle

GAS Limit Cycle
Homoclinic Orbit

- B4 - Saddle Saddle Stable -
A3 B5 - Saddle Saddle Unstable -

GAS Limit Cycle
A4 B6 C3 Saddle Saddle Stable -
A5 B7 C4 Unstable Saddle - -
A6 B8 C5 Saddle Stable - -

the Hopf Bifurcation Curve (HBC)

3ω(1 + αξ)

[
(β − δ)−

√
(β − δ)2 − 4ω[δ(1 + αξ)− βξ]
2ω[δ(1 + αξ)− βξ]

]2
+ (2− 2ωγ(1 + αξ))

[
(β − δ)−

√
(β − δ)2 − 4ω[δ(1 + αξ)− βξ]
2ω[δ(1 + αξ)− βξ]

]
+ (1 + αξ)− γ = 0

and the Discriminant Curve (DISC)

(β − δ)2 − 4ω(−βω + δ(1 + αξ))2 = 0

The figures (15), (16), and (17) ( called bifurcation diagrams) show the division of the (α, ξ) - space921

based on the four curves mentioned above and the curve α = β
δ for each of the sub-conditions I-1, I-2 and I-3922

respectively. Table 4 summarizes the global dynamics of the system (2.7) - (2.8).923
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B Appendix924

Stability of the Admissible Equilibria (3.4)925

The study reveals that the possibility of instability in the interior equilibrium occurs only if one or more
positive critical points exist for the derivative of the prey isocline of the system (2.7) - (2.8). The quadratic
equation obtained by equating the derivative of the prey isocline to zero is given by

3ω(1 + αξ)x2 + 2(1− ωγ(1 + αξ))x+ (1 + αξ)− γ = 0

From the above equation we observe that for the prey isocline to have a positive real critical point, the926

sum of the roots of the equation, must satisfy the inequality − 2(1−ωγ(1+αξ))
3ω(1+αξ) ≥ 0 along with the discriminant927

being positive. This implies that we must have928

(ωγ(1 + αξ)− 1) ≤ 0

ωγ + ωγαξ ≤ 1

ωγαξ ≤ 1− ωγ

Rearranging the expression, we get929

α ≤ 1− ωγ
ωγξ

(B.1)

Now, we apply this result to the curve of admissible equilibrium points by substituting for α from equation930

(3.3). Then, the above inequality (B.1) becomes931

(βξ − δ)(1 + ω(x∗(α))2) + (β − δ)x∗(α)

δξ(1 + ω(x∗(α))2
≤ 1− ωγ

ωγξ

((βξ − δ)(1 + ω(x∗(α))2) + (β − δ)x∗(α))(ωγξ) ≤ (1− ωγ)δξ(1 + ω(x∗(α))2

The last expression contains a quadratic polynomial in x∗(α). Solving for x∗(α), we get932

(x∗(α)− x̂1)(x∗(α)− x̂2) ≤ 0 (B.2)

where x̂1 and x̂2 are the roots of the quadratic equation933

((βξ − δ)(1 + ω(x2)) + (β − δ)x)(ωγξ)− (1− ωγ)δξ(1 + ωx2) = 0

and they are given by934

x̂1 =
−(β − δ)γω −

√
(β − δ)2γ2ω2 − 4ω(δ − βξω)2

2ω(βγξω − δ)
(B.3)

x̂2 =
−(β − δ)γω +

√
(β − δ)2γ2ω2 − 4ω(δ − βξω)2

2ω(βγξω − δ)
(B.4)

Clearly, from the above expressions, x̂1 < x̂2 depending on the existence of these roots. If they exist, then935

using the inequalities (B.1) and (B.2), we conclude that instability occurs in the admissible equilibria only if936

the prey component x∗(α) lies between the two, i.e., if x̂1 < x∗(α) < x̂2. In other words, whenever x∗(α) < x̂1937

and x∗(α) > x̂2, the admissible equilibrium point (x∗(α), y∗(α)) is stable. Thus, the existence of the points x̂1938

and x̂2 determine the nature of the admissible equilibrium curve and thus the stability of the equilibrium point.939

The existence is determined by the sign of the discriminant D = (β − δ)2γ2ω2 − 4ω(δ − βξω)2. Based on this940

we have the following cases:941

• Case Ia: D ≥ 0, x̂1 < 0 and x̂2 > 0942

943

In this case, the admissible equilibrium has a positive local maximum and hence a crest. Thus for points944

between x∗(α) = 0 and x∗(α) = x̂2, the corresponding equilibrium points are unstable. The relationship945

between the admissible equilibria and the control parameter α for this case is depicted in two-quadrant946

plot in the figure 6. The dotted lines on the curve from A till ymax represent the unstable branch x∗y∗947

- plane. The point A = βξ
δ represents the curve touching the y − axis. We also see from the figure that948

whenever we choose predator density between 0 and A (represented by point B in the figure), there are949
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two choices of the prey component for admissible equilibria. The one that lies to the left of x̂2 on the950

x− axis would be unstable and the other would be stable. On the other hand, for the choice of predator951

population less than A = βξ
δ (represented by C in the figure) there exits a unique prey density and control952

and the resulting admissible equilibrium is stable.953

• Case Ib: D > 0, x̂1 > 0 and x̂2 > 0954

955

In this case, the admissible equilibrium curve has both local maximum and local minimum in the positive956

quadrant and hence there is both trough and crest. Here the admissible equilibria is unstable between the957

two points x̂1 and x̂2 as discussed before but stable elsewhere. The relationship between the admissible958

equilibria and the control parameter α for this case is depicted in two-quadrant plot in the figure 6. The959

dotted lines on the curve from ymin till ymax represent the unstable branch in the x∗y∗ - plane. The points960

B and C represent the same quantities as discussed in the above case.961

• Case II: D > 0, x̂1 < 0 and x̂2 < 0 or D < 0962

963

In this case, either the two points x̂1 and x̂2 exist and are negative or they are not real numbers. This964

means that there are no positive critical points for the admissible equilibrium curve and thus the admis-965

sible equilibrium curve is monotonically decreasing. As a result, any equilibrium point on the curve is966

stable. This case is depicted in two-quadrant plot in figure 6.967

Admissible Equilibria and Control - Case Ia
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Admissible Equilibria and Control - Case Ib

Admissible Equilibria and Control - Case II
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The following proposition summarizes the discussion above and can be applied to the case of biological968

conservation:969

Proposition 2. For Prey Species Conservation:970

971

For 0 < x̄ < γ, there exists a unique ᾱ such that (x̄, ȳ(ᾱ)) is an admissible interior equilibrium for the system972

(2.7) - (2.8). Further, this equilibrium is asymptotically stable provided x̂1 < x̄ < x̂2 and unstable otherwise973

(see figures 6, 6 and 6).974

For Predator Species Conservation:975

976

1. For every ỹ below the crest (in figure 6) and between the crest and trough (in figure 6), there exist two977

values of quality, α1 and α2 such that (x(α1), ỹ), (x(α2), ỹ) are admissible equilibria for the system (2.7)978

- (2.8). Moreover, (x(α1), ỹ) is unstable since x̂1 < x(α1) < x̂2 and (x(α2), ỹ) is stable since x̂2 < x(α2).979

2. For ỹ below the point A (see figures 6, 6 and 6) with ỹ < A, there exists a unique α̃ such that (x̃(α̃, ỹ) is980

an admissible equilibria for the system (2.7) - (2.8). Moreover this equilibrium is asymptotically stable.981

3. For ỹ above the crest with ỹ > ymax (see figures 6 and 6), there exists no admissible equilibrium point for982

the system (2.7) - (2.8).983
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C Appendix984

General form of Mayer Problem of Optimal Control985

We will present here the general form of Mayer Problem of Optimal Control as stated in (Cesari986

(2012)). Let A = [t1, t2] ×B be a subset of the tx - space R1+n, let U be a given subset of the u - space Rm.987

Let f(t,x,u) = (f1, f2, ..., fn) be a given function on A × U . For every (t,x) ∈ A, let Q(t,x) = f(t,x, U) ⊂ Rn988

be the set of all z = (z1, z2, ..., zn) with zi = fi(t,x,u), i = 1, 2, ..., n for some u ∈ U . Let E be a given subset989

of t1x1t2x2 - space R2n+2. The Mayer problem of optimal control is to find the optimal solution, usually to990

minimize the functional991

I[x,u] = g(t1,x(t1)t2x(t2)) (C.1)

for pairs of functions x(t) = (x1, x2, ..., xn), u(t) = (u1, u2, ..., um), t1 ≤ t ≤ t2, x absolutely continuous,992

u measurable satisfying993

dx

dt
= f(t,x(t),u(t)), t1 ≤ t ≤ t2 (C.2)

boundary conditions994

e[x] = (t1,x(t1)t2x(t2)) ∈ E (C.3)

and constraints995

(t,x(t)) ∈ A, t1 ≤ t ≤ t2, (C.4)

u(t) ∈ U t1 ≤ t ≤ t2. (C.5)

in the class Ω of all admissible pairs (x,u). By an admissible pair for the problem (C.1) - (C.5) we mean996

a pair (x(t),u(t)), t1 ≤ t ≤ t2, x absolutely continuous, u measurable, satisfying all the requirements (C.1) -997

(C.5). Here, x and u are also called an admissible trajectory and admissible control respectively.998

We will now state the Filippov’s Existence Theorem which is used to prove the existence of an optimal999

solution to the optimal control problem (C.1) - (C.5).1000

Theorem 6. (The Filippov Existence Theorem for Mayer Problem of Optimal Control) If A and U are compact,1001

E closed, f is continuous on A × U , g is continuous on E, Ω 6= Φ, and for every (t,x) ∈ A the set Q(t,x) =1002

f(t,x, U) ⊂ Rn is convex, then the objective functional I[x,u] has an absolute minimum in Ω.1003
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