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Troubles with mathematical contents

Abstract:

The deflationary account of representations purports to capture the explanatory role representations
play  in  computational  cognitive  science.  To  this  end,  the  account  distinguishes  between
mathematical contents, representing the values and arguments of the functions cognitive devices
compute, and cognitive contents, which represent the distal states of affairs cognitive systems relate
to.  Armed  with  this  distinction,  the  deflationary  account  contends  that  computational  cognitive
science is committed only to mathematical contents, which are sufficient to provide satisfactory
cognitive explanations. Here, I scrutinize the deflationary account, arguing that, as things stand, it
faces two important challenges deeply connected with mathematical contents. The first depends on
the fact that the deflationary account accepts that a satisfactory account of representations must
deliver naturalized contents. Yet, mathematical contents have not been naturalized, and I claim that
it is very doubtful that they ever will.  The second challenge concerns the explanatory power of
mathematical contents. The deflationary account holds that they are always sufficient to provide
satisfactory  explanations  of  cognitive  phenomena.  I  will  contend  that  this  is  not  the  case,  as
mathematical contents alone are not sufficient  to explain why deep neural networks misclassify
adversarial examples.

Keywords:  Representation,  Content,  Mathematical  contents,  Computation,  Implementation,
Adversarial examples.

1 - Introduction

Philosophers of cognitive science have long aimed at accounting for content in non-semantic,

non-intentional terms (e.g. Cummins 1989; Shea 2018). In spite of their best efforts, the objective

has not been met yet (see Ryder 2019 for a review).

Egan (2014;  2019;  2020a)  claims  this  sad state  of  affairs  motivates  a  different  agenda.  Her

deflationary account mainly aims at capturing the explanatory role representations play in cognitive

science.1 To  this  end,  she  distinguishes  two  kinds  of  contents:  cognitive  and  mathematical.

Cognitive contents are contents usually understood, which, on Egan’s account, are just a facultative

gloss on cognitive-scientific explanations proper. Conversely, mathematical contents represent the

argument and values of the functions cognitive systems compute,  and thus are essential  to, and

sufficient for, cognitive-scientific explanations.

1 More precisely, in computational cognitive science. Yet, since non-computational cognitive science is typically also
non-representational cognitive science (e.g. Kelso 1995), I drop the “computational” qualifier for ease of exposition.
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Here, I examine Egan’s proposal, arguing that mathematical contents do not satisfy the adequacy

conditions on content Egan accepts, and that they are not always sufficient to provide satisfactory

cognitive-scientific explanations.

To do so, I first sketch the adequacy condition Egan imposes, as well as her deflationary account

(§2). I then argue that mathematical  contents do not satisfy the adequacy conditions previously

sketched  (§3).  In  §4  I  articulate  my  second  claim,  introducing  adversarial  examples  to  deep

classifiers  and showing that  mathematical  contents  seem unable  to  account  for  them.  A quick

conclusion follows (§5).

2 - Egan’s deflationary account of representations

Here, I first introduce the adequacy conditions on a theory of representation Egan accepts (§2.1),

then sketch her account (§2.2) and present Egan’s arguments to the effect her account satisfies the

adequacy conditions (§2.3).

2.1 - The adequacy conditions

Egan (2019: 248-249; 2020a: 28-29) argues that any theory of representations must satisfy at

least2 the following desiderata in conjunction:

(1)  Misrepresentation:  A  successful  account  of  content  allows  for
misrepresentation to occur

(2) Determinacy: A successful account of content assigns determinate contents
to representational vehicles

(3) Empirical adequacy: A successful account of content conforms to the actual
practice of cognitive science

(4) Naturalism: A successful account of content specifies, using non-intentional
and non-semantic terms, at least sufficient conditions for a state or structure to
bear a determinate content

2 Egan (2020) actually lists more. But they won’t play any role in my argument, hence the omission.
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(5)  No  pan-representationalism:  A  successful  account  of  content  and
representations does not imply that many clearly non-representational things
count as representations

These requirements are both minimal and well-known, hence their discussion will be brief.

Note  first  (1)  and  (2)  are  constitutively connected.  The  ability  to  misrepresent  identifies

representations,  setting  them  apart  from  mere  states  or  objects  (e.g.  Dretske  1986).  But

misrepresentation  requires  determinate  contents:  open-endedly  disjunctive  contents  make

misrepresentation, if not impossible, at least problematic. (3) seems a desideratum in its own right -

at least insofar modern theories of content aims at capture how representational content figures in

cognitive-scientific explanations (e.g. Shea 2018; Rupert 2018). (4) captures the widespread idea

that content is not fundamental: it supervenes on more basic facts and features of the world. Hence,

it should be explainable in terms of these more fundamental facts and features. Lastly, (5) is weakly

connected to (3), at least insofar cognitive scientists do not label every behavior-producing structure

a  representation  (e.g.  Webb  2006).  Moreover,  it  safeguards  the  explanatory  power  of

representations:  pan-representationalism  trivializes  the  explanatory  power  of  content,  equating

representations to mere causal mediators (see Ramsey 2007; Orlandi 2020).

According to Egan (2019: 249-250; 2020a: 29-31), no naturalistic account of representation thus

far proposed satisfies (1) to (5), mainly because they fail to satisfy (1) and (2). She claims that

causal-informational  theories  all  fall  prey to  the  disjunction  problem (see  Artiga and Sebastian

2018; Rosche and Sober 2019), that teleological theories deliver indeterminate contents, due to the

indeterminacy of functions (see Fodor 1990) or quinean indeterminacy (see Cao 2020), and that

similarity-based approaches fail because similarity has not the logical properties of representations,

and  similarities  fail  to  deliver  sufficiently  determinate  contents  (see  Segundo-Ortin  and  Hutto

2019).

In Egan's view, this state of affairs calls for a different approach to representation and content,

which I sketch below.
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2.2 - The deflationary account 

As the deflationary account aims just at accounting for the role of representations in cognitive-

scientific explanations (Egan 2020a: 43), these provide a natural starting point.

Egan  (2010;  2014;  2017;  2020)  argues  that  cognitive-scientific  explanations  are  function-

theoretic: they unveil the function F computed by a cognitive device S. Egan’s favorite example is

Marr’s (1982) account of early vision, according to which the retina (S) computes a smoothing

function (F) convolving a Laplacian operator with a Gaussian operator.

Function-theoretic  explanations  are  environment  neutral:  they  make  no  reference  to

environmental states of affairs (Egan 2010; 2014). Notice that this form of environment neutrality

reaches into the agent, to the other computational systems S is connected to (if any). As a matter of

fact, retinas take light intensities as inputs. But, were their inputs sound waves (or signals from

another  computational  system)  their  function-theoretic  characterization  would  not  change:  they

would  still  be  convolving  Laplacian  and  Gaussian  operators.  Relatedly,  function-theoretic

characterizations are domain general: retinical computations (partially) constitute vision only when

retinas are “wired up” to visual cortices in a certain way.  Weren’t  retinas “wired up” to visual

cortices that way, their computations wouldn’t partially constitute vision - but they would still be

the same computations.

Thus, the function-theoretic characterization of S tells only what function F it computes. Yet, it is

genuinely explanatory: it deepens our understanding of S by specifying what it does in terms of a

mathematical  function  we  already understand.  Plus,  by  being  environment  neural  and  domain

general,  it  allows  us  to  predict  how S will  behave in  a  wide  range  of  circumstances,  thereby

boasting a significant counterfactual depth (Egan 1999; 2010; 2014; 2017; 2020a).

But what does it mean to say S computes F? According to Egan (2010; 2014; 2020a), it means

that:
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(i) There is a realization function fR mapping the microphysical states of S onto
vehicle-types; & 

(ii) There is an interpretation function fI mapping one-to-one the vehicle types
identified by fR onto the values and arguments of F, &

(iii) For all argument - value pairs of F, if S is in a state (as identified by fR) that
fi maps on a specific argument of F, then S is caused to enter in a state (as
identified by fR) that fi maps on the corresponding value of F

Egan (2014; 2020) provides this simple example. Suppose S computes the addition function F. This

means that (i): there is a way fR to group S’s states together in well defined vehicle types; & (ii)

there is a mapping fI from these vehicle types onto numbers, such that; (iii) if S is in a state s’ (as

identified by fR) and fI(s’)=n, and then receives an input causing it to occupy state s’’ and  fI(s’’)=m,

then S is caused to enter a state s’’’ and  fI(s’’’)=n + m.

The  values  and  arguments  of  F  onto  which  fI maps  the  vehicle  types  fR identifies  are  the

mathematical  contents represented  by  S.  Notice  that  since  function-theoretic  explanations  are

environment neutral, mathematical contents are narrow; so narrow they are independent from the

other  computational  devices  S  interacts  with.  Notice  further  mathematical  contents  need  not

represent numbers. They represent the arguments and values of F whatever they are. For example, if

F  is  a  function  from  vector  to  labels,  then  they  represent  vectors  and  labels.  Notice  lastly,

mathematical contents are essential in function-theoretic explanations (Egan 2014: 122-123), and

they determine the truth of such explanations: if S does not represent the mathematical contents

needed to compute F, then a function-theoretic explanation suggesting that S computes F is false.

Hence, we should be committed to them - they are essential  to the truth of our best  cognitive-

scientific explanations.

As  said  above,  Egan  construes  function-theoretic  explanations  as  environment-neutral.  Yet,

computing a given function F  won’t contribute to cognition in all  possible environments.  Thus,

cognitive-scientific  explanations  need to  supplement  the function-theoretic  characterization of S

with  an  ecological  component (Egan  2019:  253-255).3 Were  the  world  different,  a  device

3 Which is a part of cognitive-scientific explanations proper.
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convolving Laplacian and Gaussians operators wouldn’t  contribute to vision,  but to some other

cognitive capacity (or no capacity at all). Hence, the ecological component clarifies how computing

F (partially) constitutes cognitive processing intentionally understood; that is, how it contributes to

the cognitive capacity under investigation described in a familiar intentional lexicon (e.g. vision

described as seeing what is where)

On Egan’s (2014; 2019: 254; 2020a) view, the information the ecological component conveyes

is often perspicuously “summarized” ascribing  cognitive contents to the vehicles identified by  fR;

that  is,  by saying they represent  distal  (environment-related)  states  of affairs.  This is  done,  for

instance, when we say that retinal outputs represent edges, rather than the result of the convolution

of Laplacian and Gaussian operators. This relates the inner operations of S to the environment,

thereby  clarifying  in  a  perspicuous  manner  how  computing  F  contributes  to  cognition  pre-

theoretically understood:

“cognitive  content  is  the  ‘connective  tissue’  linking  the  sub-personal
mathematical capacities posited in the theory and the manifest personal-level
capacity that is the theory’s explanatory target” (Egan 2019: 253)

Yet,  in  spite  of  their  “connective”  role,  cognitive  contents  are  not  part  of  cognitive-scientific

explanations  proper:  they  are  only  a  strictly  speaking  facultative  gloss  layered  over  them  to

perspicuously summarize their ecological component (Egan 2014; 2020a).

In Egan’s view, this means that we shouldn’t be committed to cognitive contents: they are only

ascribed to vehicles to simplify our understanding of S’s operations. Cognitive contents are not the

upshot of some privileged vehicle-target naturalistic relation, and are not really represented within

S. This also entails that there’s not fact of the matter concerning which cognitive contents S really

represents - we are free to ascribe them as we see fit,  based on our explanatory and pragmatic

concerns; for instance, to minimize the effort required to understand how a computational system

works  (Egan 2014; 2019; 2020a; Mollo 2020). They might also play a role in orienting the early

stages  of  cognitive-scientific  research,  so  as  to  discover  the  relevant  function-theoretic

characterization of a device (Egan 2020a: 45-48). 
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Thus,  we  shouldn’t  endorse  any  strong  commitment  regarding  cognitive  contents  and  their

existence: they are just a nice linguistic ploy to track the inner goings-on of a computational system

in a perspicuous and easy to understand manner.

2.3 - Satisfying the adequacy conditions

Egan (2020a; 2014) claims her account is ideally poised to satisfy (1) to (5). The pragmatic and

heuristic nature of cognitive contents allows us to ascribe determinate cognitive contents to each

vehicle. And once such content is fixed, misrepresentation can easily occur: if we ascribe to a state

s’ (identified by fR) a cognitive content x, and s’ is tokened when x is not the case, then that token of

s’ misrepresents. Thus, (1) and (2) are easily satisfied. (3) is satisfied too: the account is prima facie

empirically accurate; and indeed Egan (2010; 2014; 2020a) amply refers to the empirical practice of

cognitive science. (4) seems satisfied too. Sure, cognitive contents are non-natural (in the relevant

sense), as they are partially determined by our epistemic/pragmatic concerns. But they are not part

of cognitive science proper, hence they pose no threat to the naturalistic credentials of the latter

(Egan 2020a:35). Lastly, as Egan writes:

“Pan-representationalism is not a worry for the deflationary account, because it
does not purport to offer a metaphysical theory of representation. It does not
specify  a  general  representation  relation  that  holds  independently  of
explanatory practice in cognitive neuroscience. ” (Egan 2020a: 43)

Hence, (5) seems satisfied too.

I find this idyllic picture unpersuasive.

3 - Whence mathematical contents?

Egan’s deflationary account takes mathematical contents to be  essential to cognitive-scientific

explanations: cognitive science really is committed to them. But, to the best of my knowledge, the

deflationary account does not say how they are determined, leaving us wondering why the vehicles

identified by fR bear the mathematical contents they bear, and whether they satisfy (1) to (5).
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So,  what  determines  mathematical  contents?  Egan  (2014:  213)  seems  to  suggest  that  no

naturalistic relation determines them. But then it seems that mathematical contents violate (4), and

Egan’s account wouldn’t be adequate  given her own standards of adequacy. Notice that, unlike

cognitive  contents,  mathematical  contents  are  taken  to  be  essential  to  cognitive-scientific

explanations.  Hence their  violation  of  (4)  does threaten  the naturalistic  credentials  of cognitive

science.

Surely mathematical contents cannot be naturalized by means of causal/informational semantics:

the arguments and values of F are  prima facie mathematical objects, which cannot enter in any

causal/informational relation with the vehicles identified by fR. Perhaps it could be argued that these

vehicles are structurally similar to the values and arguments of F or that they have the teleological

function  of  representing  them.  The move  is  technically  viable,  but  it  forces  a  dilemma  on the

deflationary account. Recall that the deflationary account is motivated by the fact that “standard”

theories of content fail  to meet (1) and (2). If the deflationary account is correct on this point,

resorting to such theories to determine mathematical contents will yield mathematical contents that

violate (1) and (2). But if the deflationary account is wrong on that matter, then there is at least one

perfectly naturalistic theory of content yielding determinate contents capable of misrepresenting,

and it is not clear why the deflationary account should be preferred over that theory.

As far  as  I  can see,  the  only naturalistic  way to  determine  mathematical  contents  left  is  to

endorse  a  realistic  (non  observer-dependent)  form of  interpretational  semantics  (e.g.  Cummins

1989; cfr. Egan 2014 117, 119). Roughly, the idea would be that of claiming that the vehicles in S

(identified by fR) carry the mathematical contents they carry because the causal transitions in S are

interpretable under F; that is, the states of S are such that they can be interpreted4 as standing for

the arguments and values of F. Notice how this seems to be only a baroque unpacking of point (ii)

above: to say that S satisfies F in that sense just is to say that there exists an interpretation function

4 Notice that what matters here is only that the states of S would support the ascription, if made. So there needs to be no
actual ascriber - indeed, were an actual ascriber necessary, (4) would fail to obtain.
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fI mapping the relevant states of S onto the arguments and values of F, in a way such that the

computational  state  transitions  in  S  and  the  argument-value  pairings  of  F  march  “in  step”.5

Although  this  move  could  perhaps  allow  mathematical  contents  to  satisfy  (4),  it  exposes  the

deflationary account to numerous objections.

To start, every physical system satisfies at least a function F - namely the function that describes

the system’s internal dynamics (cfr. Scheutz 1999). Were satisfying a function F sufficient to bear

mathematical contents, every physical system would bear some mathematical contents. But this is a

form of pan-representationalism, which violates (5).

 A  similar  result  is  obtained  when  noticing  that,  given  an  appropriately  ad  hoc  and

gendermarried fR, each physical system can be cast as an inputless finite state automaton (Putnam

1988; Copeland 1996). This means that every physical system is interpretable under at least the

transition function of that finite state automaton, thereby representing its arguments and values.

Worse still, given a specific fR, certain systems can satisfy more than one function F. To see why,

consider a system S under a specific  fR. Suppose that  fR identifies a set of vehicle types such that

their relations satisfy (according to a specific interpretation function fI) a function F: a finite version

of addition in the range 1-9; i.e. a finite version of addition that takes a pair of numbers in the range

1-9 as arguments and yields a single number (in the range 2-18) as value. Now, if S satisfies F

under fI, it equally satisfies a function F* under fI*, where F* is a function taking as arguments two

members of the set of the first nine USA presidents and returning as value a member of the set of

USA  presidents  from  Adams  (2nd president)  to  Grant  (18th president).6 If  this  is  correct,  and

satisfying a function is sufficient for a vehicle to have a content, then the vehicles of S identified by

5 Yet,  there’s  an important  difference  between Egan’s  account  and interpretational  semantics.  On the deflationary
account, the fact that the vehicles in S (as identified by fR) represent (via fI) the values and arguments of F constitutes the
computational  status  of  S:  S  computes  F  because it  represents  the appropriate  values  and  arguments.  Conversely,
according  to  Cummins  (1989:  91-91),  S  represents  the  values  and  arguments  of  F  because S  computes  F:  S’s
computational status is thus constitutive of its representational status. Thus, simply adding Cummins’s interpretational
semantics to the deflationary account might make it viciously circular (cfr. Piccinini 2004).
6 Just to give and example, if F* takes as arguments Jackson (7th president) and Harrison (9th president), it will yield
Lincoln as value (16th president).
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fR seem to have multiple mathematical contents. Hence it seems that their mathematical content is

not well-determined, marring (1) and (2).7

How could the deflationary account (conjoined with an interpretational semantics) be defended

from these attacks? For starters, notice that, at least in this case, the problems concerning (5) cannot

be dismissed by claiming that the deflationary account does not purport to single out a privileged

metaphysical relation (or, for that matter, property) endowing vehicles with mathematical contents

(cfr. Egan 2020a: 43). This is because, on the one hand, interpretational semantics does purport to

identify such a relation or property (in terms of interpretability); and, ond the other had, weren’t

interpretational semantics in the business of identifying such a relation or property, mathematical

contents would not be naturalized, and so it wouldn’t be able to solve the problem with (4).

Restricting the scope of the deflationary account to the structures typically studied by cognitive

science won’t help with (5) either.  First,  it  is presently not clear what these structures include:

whilst  certainly  not  mainstream,  bacterial  (e.g.  Lyon  2015)  and plant  (e.g.  Calvo  et  al.  2020)

cognition have their advocates. Secondly, some structures studied by mainstream cognitive science

which are typically taken to  be non-representational  are  assigned some contents  by the present

account.For example, early subsumption architectures largely utilized finite state machines (Brooks

1999); hence, according to the present account, subsumption architectures turn out to represent the

arguments and values of the transition functions fueling them. But subsumption architectures are

paradigmatic examples of non-representational architectures. Hence the account does not seem to

be empirically accurate as required by (3).

Cummins (1989: 101-102) claimed that the multiplicity and indeterminacy of contents poses no

challenge as long as the explanatory relevant contents are provided. But this claim will not rescue

the account. Indeed, claiming so  amounts to earsing (2), and thus (1), from the list of adequacy

7 Recently, Papayannopoulos et al. (forthcoming) have described the two problems mentioned above as two different
kinds of computational indeterminacy:  functional and interpretative. Functional indeterminacy concerns how to carve
the physical states of a device so that they correspond to the relevant computational states (i.e. which fRs are admissible
for each device S). Interpretative indeterminacy concerns how to pair the computational states to their meanings (i.e.
which fIs are admissible for each device S).
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conditions (see §2.1). But once these points have been erased, it is not clear why one should prefer

the deflationary account over “standard” naturalistic accounts of representations - after all, the fact

that such accounts fail to satisfy (1) and (2) is what motivates the deflationary account. Moreover, if

representations really are identified by their ability to misrepresent it seems that we simply cannot

erase point (1). But then, if misrepresentation really requires determinate contents, we cannot erase

point (2) either.

It seems to me that what the deflationary account needs to face the problem sketched above is a

way to restrict (i) the number of systems that compute and (ii) the number of functions F computed

by each system.  The account  needs  to  find a  way to  restrict  the  number  of  systems  rightfully

interpretable under  a F8,  as  well  as  the number  of Fs under  which a  system can be  rightfully

interpreted. Only if few systems compute few well-selected Fs (ideally one) the account can satisfy

(1), (2) and (5).

The only way I see to do this is by invoking a strong (naturalistic and independently motivated)

account of computational implementation. Such an account could restrict the number of computing

systems to a selected few, thereby solving (or at least allaying) the problem with (5). Moreover,

such an account would presumably impose some constraints on the number of functions computed,

thereby solving (or at least allaying) the problems with (1) and (2). Notice that such a move imposes

a further modification of the deflationary account (other than it being merged with interpretational

semantics):  in order to use an account of computational  implementation to place constraints  on

mathematical  contents,  one  must  abandon  the  idea  that  computation  is  explained  in  terms  of

mathematical contents (as in Egan 2014; 2020a). But this seems a fairly small price to pay, and in

previous incarnations of the deflationary account (Egan 1992; 1995) computation was not analyzed

8  Notice that this is exactly what Cummins (1989: 91-92) did by claiming that S computes F only if S runs a program
to compute F. Although this restriction could be merged in the deflationary account, it would create a problem for (3):
many systems  playing  a  key  role  in  the  current  empirical  practice  of  cognitive  science,  such  as  artificial  neural
networks, do not appear to execute programs. Hence I will not discuss it further.
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in  terms  of  mathematical  contents  -  which  suggests  that  the  deflationary  has  the  conceptual

resources to pay the price without risking bankruptcy.

Now, the natural question concerns which account of computational implementation can perform

the desired task. Since I cannot consider every account of implementation here, I follow (Piccinini

2015) and distinguish three coarse-grained approaches to computational implementation, namely (a)

“mapping” approaches, (b) semantic approaches and (c) mechanistic approaches. I now examine

them in turn.

(a) “Mapping” approaches. The general idea behind “mapping” approaches to computational

implementation  is  this:  a  system  S  implements  a  computational  device  C  only  if  their  state

transitions “march in step”, meaning that there is a one-to-one mapping I from a relevant subset of

states of S onto the states of C, and, for all state transitions c’ → c’’ of C, S transitions for s’ to s’’

only if I(s’)=c’ and  I(s’’)=c’’.

Notice this is just a  necessary condition. If one takes it also to be  sufficient, one lands on the

“simple  mapping  account”  of  implementation  (see  Godfrey-Smith  2009).  Otherwise,  one  could

impose some further limitation on the implementation relation, for instance requiring that, when S

transitions from s’ to s’’, s’ causes S to enter in s’’, or that such transitions must be counterfactual-

supporting (see Piccinini and Maley 2021).

There are reasons to doubt that “mapping approaches” can provide the required constraints. It is

well accepted that “mapping approaches” entail a form of limited pan-computationalism: that is,

they all entail that each physical system implements at least a finite state automaton computing the

identity function (Chalmers 1995; 2011). 

Whilst  not necessarily fatal for “mapping approaches” (crf. Sprevak 2019; Schweitzer 2019),

limited pan-computationalism  is necessarily fatal  for the deflationary account, at least  given the

adequacy conditions in (§2.1). For, if every physical system implements a computational device,

then, for every physical system S there is a realization function fR grouping  S’s physical states in a
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way such that they will “march in step” with the state transitions of a computational device C. And,

if this is the case, it is then trivial to build an interpretation function fI such that the vehicle types

identified  by  fR represent  the  argument  and  values  of  the  function  C  computes  (minimally,  a

function states of C to states of C). Hence, every physical system represents some mathematical

content (i.e. the relevant states of C), and pan-representationalism is not avoided.

(b) Semantic approaches. Semantic approaches to computational implementation cluster together

because they all endorse the idea that physical computation essentially consists in the manipulation

of representations. The relevant kinds of representations and how they should be manipulated varies

from account to account (cfr. Fodor 1975 with O’Brien and Opie 2008); but, in all cases, the idea

that  only  representational systems  can  be  computational  systems  seems  to  enable  semantic

accounts  to  allay,  or  even  solve,  the  problem with  (5).  Surely  not  every  physical  system is  a

representational system.

Now,  semantic  approaches  to  computational  implementation  presuppose a  solid  notion  of

representation and, thus, of content. The deflationary account offers two distinct notions of content:

mathematical and cognitive. None of the two allows the deflationary account of representations to

merge with a semantic approach to computation successfully.

If  a  semantic  account  of  computational  implementation  requires  the  notion  of  mathematical

content, then clearly such an account cannot be mobilitated to constrain the way an interpretational

semantics assigns mathematical contents - that would be circular. But a semantic account leveraging

cognitive contents to spell out the notion of computational implementation is clearly incompatible

with the deflationary account, for it would plunge cognitive contents at the heart of computational

cognitive  science.  And  that  is  antithetical  to  the  stance  on  cognitive  contents  the  deflationary

account recommends.

(c) Mechanistic approaches. These approaches cluster together because they apply insight from

(neo-)mechanist philosophy of science to unravel the nature of computational implementation.  On
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these views, a physical system implements a computational device only if it is a  mechanism with

the function9 to compute (see Miłkowski 2013; Piccinini 2015). Roughly put, a mechanism (in the

relevant sense) responsible for a phenomenon is a set of spatiotemporal components performing

certain  functions  and  having  certain  spatiotemporal  relations,  such  that  they  constitute the

phenomenon under investigation (cfr. Piccinini 2010: 285). “Computing” is here understood as the

manipulation of digits according to rules. The rule according to which a mechanism yields digits as

output when “feed” some digit determines the mechanism’s computational identity.  Importantly,

such a rule must be  medium-independent: it must be sensitive only to the degrees of freedom of

digit types, while ignoring any other feature of their tokens.

Adopting a mechanistic approach to implementation allows the deflationary account to satisfy

(5). According to mechanistic approaches, few physical systems compute. Not all physical systems

are mechanisms (e.g.  the system composed by me and my left  shoe isn’t),  not all  mechanisms

operate according to rules (e.g. a random number generator doesn’t, see Piccinini 2010: 293), and

not all mechanisms operating according to rules have the function to compute10 or manipulate their

inputs and outputs according to medium independent rules (e.g. my stomach systematically pairs

the “input” it receives to the “output” it produces, but the physical stuff these inputs and outputs are

made of matters a lot to the stomach rule-following behavior). Thus, by limiting the set of systems

that  can  rightfully  be  seen  as  satisfying  Fs  to  the  ones  a  mechanistic  approach  recognizes  as

genuinely implementing a computation, the deflationary account can avoid pan-representationalism,

thereby satisfying (5).11 This is progress.

9 I will leave the relevant notion of function unspecified for two reasons. First, it is not relevant for my argument.
Secondly, it changes across accounts of mechanistic implementation (cfr. Miłkowski 2013; Piccinini 2015), and I do not
need to take a stance on which is the best mechanistic account.
10 The set of systems having such function varies as the relevant definition of function varies. I will stay neutral on the
issue here.
11 Although it should be noted Egan (2017) has important reservations concerning mechanistic approaches, and so
perhaps the overall picture might not be as rosy as I just suggested.



Submitted, Pre peer-review manuscript. 15/31

But it is not progress enough, for at least some such mechanisms can be interpreted under two

Fs; hence they can be assigned multiple mathematical contents (cfr Piccinini 2015: 36-39; 127-130;

Dewhurst 2018, Fresco et al. 2021). An example taken from (Sprevak 2010) illustrates the point.

Suppose S is a computing mechanism able to manipulate two input digits to produce one output

digit. Both input and output digits belong to one of two types: “@”s and “#”s. S manipulates them

as follows: when both inputs are “@”s, it outputs a “@”, otherwise, it outputs “#”. This is a clear

rule a mechanism can follow, which systematically pairs the inputs and outputs of the mechanism.

Yet, this input/output pairing is interpretable under two different argument/value pairings, hence

under  two  different  Fs.  So,  it  is  compatible  with  two  different  assignments  of  mathematical

contents. According to an interpretation  fI, “@”s represent the truth-value  true and “#”s represent

the truth value  false.  Conversely,  according to  fI
-1 “#”s represent the truth-value  true and “@”s

represent the truth value false. Thus, according to fI, S computes the conjunction function, whereas

according to  fI
-1 it computes the inclusive disjunction function. According to both  fI and  fI

-1 the

vehicles processed by S have mathematical contents: in both cases, they represent the truth-values

that are arguments and values of two simple logical functions. So, it seems that the contents of

“@”s and “#”s are not well determined: they are interpretable under two different mathematical

functions, and thus they represent both “true” and “false”. But then (2) fails to obtain. Given that (2)

and (1) are constitutively connected, (1) fails to obtain too.

Notice that I’m not claiming that the computational identity of the mechanism is indeterminate

(cfr. Sprevak 2010; Fresco et al. forthcoming). I’m persuaded that the computational identity of the

device is determinate, and in fact it can be easily expressed as a pairing of input and output digits as

in table 112:

12 Using the useful distinction of Papayannopoulos et al. (forthcoming) we can say that here S is interpretatively, but
not functionally, indeterminate: in this example, S does compute a well determinate function, if by function we mean
only a determinate input-output digit pairing. But that input-output digit pairing is interpretable under too many Fs;
hence the mathematical contents are still indeterminate. Notice also that taking the relevant F to be the well determined
function pairing input  and output  digits  will  not yield  determinate  mathematical  contents.  Indeed,  it  will  yield  no
contents  at  all.  For  that  function  is  defined  over  digits.  And digits  are  not  represented  by the mechanism during
computation; rather, they are instantiated in the mechanism during computation. Another way to see the point is this:
according to the mechanistic account, these digits are causally efficacious. But, according to the deflationary account,
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Input1 Input2 output
@ @ @
@ # #
# @ #
# # #

Table 1: The input-output table of S

What I’m claiming is that a mechanism pairing inputs and outputs in this way can be interpreted

under two logical functions: conjunction and disjunction. Notice that the same holds true even for a

computational device whose computational identity is not considered uncertain in the same way

(Fresco et al. 2021: 6). Consider a device exhibiting the input-output behavior described in table 2

Input Output
@ #
# @

Table 2:  a  device with a well  defined computational  identity can still  have indeterminate
mathematical contents

The computational  identity of this  device is not indeterminate:  the device computes  the logical

negation function (Sprevak 2010; Fresco et al. 2021). But both “@” and “#” can be interpreted as

both truth values.13

At this  point,  it  seems natural  to  think that  we can  “discover”  the  correct interpretation  by

looking around the computational device, to see how it cooperates with other such devices. By so

doing, it  could be established whether it  computes  the conjunction or disjunction function,  and

which truth value “@”s and “#”s respectively represent (cfr. Dewhurst 2018; Fresco and Miłkowski

2021; Fresco et al. 2021). For example, were the device found to cooperate with a second device S’

computing as in table 3:

Input1 Input2 output
@ @ @
@ # #
# @ @
# # @

Table 3: the input-output behavior of S’

content is not causally efficacious (Egan 2014; 2020). Ergo, these digits are not contents.
13 Again, using the distinction of Papayannopoulos et al. (forthcoming), the device is interpretationally, but not 
functionally, indeterminate.
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Knowing that S operates together with S’, it would be natural to interpret “@”s as “true” and “#”s

as “false”; after all, S’ really seems to be computing the “if… then” function.

Yet,  this  way of  proceeding  does  not  solve  the  problem,  and runs  against  the  spirit  of  the

deflationary  account.  It  runs  against  the  spirit  of  the  deflationary  account  because  it  makes

mathematical contents  too wide to be the denizens of function theoretic explanations: they would

partially depend on the internal environment of a computational device. And it does not solve the

problem because although S’ is surely naturally interpreted as computing the “if...then” function, it

is also interpretable under the opposite assignment of truth value. Surely, under such assignment of

truth values  S’  does  not  compute  an  interesting  or  useful function,  and this  is  why we would

naturally interpret it as computing “if...then”. But unless mathematical contents are determined by

our observations and interests (which would make them non natural), S’ remains interpretable under

the opposite assignment of truth values. Thus, even if the mechanistic account of computation can

allay the problems with (5), it cannot ally the problems with (1) and (2).

It  thus  seems  right  to  conclude  no  account  of  computational  implementation  can  constrain

mathematical contents enough to allow them to meet (1) to (5) in conjunction.

Perhaps, then, the deflationary account is best served leaving interpretational semantics behind.

Yet, it is not clear what could substitute for it. The only open option I see remaining to naturalize

mathematical contents is to endorse a form of semantic primitivism, claiming that there are basic

semantic  facts  concerning mathematical  contents,  and that  these facts  are unanalyzable and yet

perfectly naturalistic (cfr. Burge 2010).

But this option is  extremely  unappealing.  For one thing,  unless some satisfactory account  of

these  primitive  semantic  facts  is  provided,  the  move  sounds  like  a  bluff  allowing  one  to  use

mathematical contents without providing an account for them (cfr. Piccinini 2015: 35). Secondly,

and relatedly, it is not clear why one shouldn’t also endorse a form of primitivism about cognitive
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contents. I can see no principled reason as to why one should hold that there are primitive semantic

facts about mathematical contents but no primitive semantic facts about cognitive contents.

In conclusion, it seems correct to say that, as things stand, mathematical contents do not appear

naturalizable. Hence they violate (4), and Egan’s account violates her own standard of adequacy.

4 - Are mathematical contents explanatory powerful?

According  to  the  deflationary  account,  the  mathematical  contents  posited  by  the  function-

theoretic characterization of a device, together with the ecological component of the theory,  are

sufficient to fully explain cognitive phenomena.

I’m unpersuaded.

To start, how should mathematical contents explain? Contents can be said to explain in various

ways. Some (e.g. Dretske 1988; O’Brien 2015) think that contents explain by acting as causes of a

specific kind. But the deflationary account denies this, suggesting that only vehicle tokens have

causal powers (Egan 2014; 2020a).

Others  suggest  that  contents  are  explanatory  powerful  because  they  allow  us  to  find

generalizations that we wouldn’t be able to find considering only the physical features of vehicles

and vehicle types (Dennett 1991; Cao 2012). To explain why I react in the same way to a physical

letter and an e-mail, the relevant thing to do is to appeal to the content of these mails, rather than

seeking for some physical  property shared by their  vehicles.  Yet,  according to  the deflationary

account,  fI establishes a one-to-one correspondence between vehicle types and contents (see point

(ii)  above).  Hence,  there’s  no  generalization  based  on  content  which  is  not  captured  in  a

generalization based on vehicle types, as Egan (2020b) concedes.

Others  (e.g.  Gładziejewski  and  Miłkowski  2017;  Shea  2018)  suggest  contents  explain  by

accounting for the  success or failures of systems. The deflationary account seems to endorse this

view too. For instance, Egan writes:
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“In  attributing  a  competence  to  a  physical  system—to  add,  to  compute  a
displacement vector, and so on—function-theoretic models support attributions
of correctness and mistakes. Just as the normal functioning of the system—
correctly  computing  the  specified  mathematical  function—explains  the
subject’s  success  at  a  cognitive  task  in  its  normal  environment,  so  a
malfunction explains its occasional failure. [...] One’s hand overshooting the
cup because the motor control system miscalculated the difference vector is a
perfectly good explanation of  motor control failure” (Egan 2017: 158)

Notice that, on this view, contents do not just explain mistakes, but also patterns of mistakes (cfr

Shea 2018). To elaborate on Egan’s example: suppose the mathematical content of the difference

vector orcentrating motor control should be  x. Suppose that, instead of  x, the system represents a

different value x’, such that x < x’. The fact that x’ is larger than x explains why the hand overshoot.

And the magnitude of the mismatch between x and x’ explains the magnitude of the overshooting -

had the system tokened a vehicle representing a value x’’ > x’, the overshooting would have been

larger.

Notice that for contents to explain  patterns of successes and failures, there needs to be some

intelligible correlation between the mathematical contents and the successes and failures. In the

motor control toy-example given above, the correlation is simple and linear: the higher the value of

x’, the larger the overshoot. In more realistic cases, the correlation can be way more complex (e.g.

highly non-linear). And yet, if mathematical contents are to explain patterns of failure, it seems that

there must be some correlation between the mathematical contents represented and the failures of

the system in which they are represented.

Now, there seem to be some cases in which mathematical contents and the ecological component

alone seem to be insufficient to yield this kind of explanation. Thus, consider adversarial examples

to deep classifiers.

Deep classifiers are a class of artificial neural network performing classification. Roughly put,

their task is that of outputting a probability distribution over labels, given an input (Skansi 2018).14

Just as the “classic” artificial neural networks of the 80’s, deep classifiers consist of a finite set of

14 Notice this is a coarse-grained function-theoretic characterization of these networks.
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hierarchically  arranged  processing  units  (“neurons”)  systematically  connected  by  means  of

weighted  connections  (“axons”).  Each  “neuron”  is  a  computational  device  in  its  own  right,

computing an activation function, pairing the input received by each neuron with the output each

neuron produces. Importantly, the activation function is an hyperparameter of the machine learning

model: a variable in the model whose value cannot be extracted from the data, and must thus be

handcrafted by the network’s creator.15 “Axons”, in contrast, are less computationally active: they

just weigh the signals traversing them (amplifying or dampening it), so as to provide each “neuron”

the right sort of input. These weights are the parameters of the machine learning model: variables

whose value can be extracted from the data, and that “tell” the model where the boundaries between

labels lie in the network’s activation space. Hence notice that deep classifiers (and artificial neural

networks more generally) richly trade in mathematical contents: each neuron computes an activation

function, and the weights are the parameters of the function the network computes.

What sets apart deep classifiers from “classic” artificial neural networks is that deep classifiers

are  deep, meaning that they have more than a single hidden layer of processing units. Moreover,

they are not internally homogeneous: they include different kinds of “neurons” computing different

activation functions. Lastly, they are not uniformly connected: each “neuron” does not receive input

from all the other “neurons” in the previous layer, but only from a selected few of them. Without

entering in too much mathematical detail (which are not needed for the argument)16, these features

make  deep  classifiers  significantly  more  computationally  powerful  than  their  “shallow”

counterparts. 

Adversarial examples  to deep classifiers (see Yuan et al. 2019 for a survey) are either slightly

altered input patterns which a well trained classifier misclassifies with high confidence (e.g. Su et

al.  2019)  or   images  unrecognizable  to  humans  that  well  trained  networks  classify  with  high

confidence (e.g. Nguyen  et al. 2015). Adversarial examples are puzzling because they reveal an

15 Other hyperparameters include the learning rate, the topology of the network and the number of processing units.
16 For non-mathematical introductions to deep classifiers, see (Buckner 2019; Mitchell 2019). See also (Skansi 2018)
for an easily accessible mathematical introduction to the subject.
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unexpected  weakness  of  the  (currently)  best  machine  learning  model.  They  are  also  puzzling

because, albeit some deep neural networks accurately model some aspects of human discrimination

(see Yamins and DiCarlo 2016; Rajalingham et al. 2018), humans do not seem to be susceptible to

adversarial examples - indeed, sometimes adversarial examples are often defined as data that “fool”

state-of-the-art deep classifiers but not humans.17 It is thus clear that adversarial examples call for

an explanation: why does a machine capable of human-level performance commit such mistakes?

Why don’t we commit them? Answering these questions is important both to build better machines

and to better understand the human cognitive system. Yet, it is very hard to see how these questions

could be answered using mathematical contents (and ecological facts) alone. 

First, consider the following question: why are deep classifiers fooled by adversarial examples?

If  mathematical  contents  (and ecological  component)  do indeed explain success  and failures,  it

should be relatively easy to answer this question - after all, we do know the relevant mathematical

contents deep classifiers trade in:  we know which loss function they minimize,  what activation

function  each  neuron  computes,  their  learning  rate,  and  there  are  various  network  analysis

techniques that can be used to further finesse this knowledge of a trained network. The fact that,

knowing  all  this,  we  still  are  unsure  as  to  why  deep  classifiers  are  susceptible  to  adversarial

examples suggests that mathematical contents are not so explanatory powerful after all.

Moreover, it  is hard to see how mathematical contents could explain the  patterns of failures

when  it  comes  to  classifying  adversarial  examples.  This  is  because  adversarial  examples  are

transferable: if an example E “fools” a classifier C, then E is also likely to “fool” in the same way a

second classifier  C’, even if  C and  C’ have different parameters and hyperparameters (e.g. they

have a  different  network topology,  use  different  activation  functions  and have been trained on

different datasets, see Szegedy et al 2013: 5).

17 There is some experimental evidence suggesting that time-pressured humans are susceptible to adversarial examples
too (Elsayed et al. 2018), and so perhaps a definition of adversarial examples in terms of “they fool machines, but not
humans” is not entirely accurate. At any rate, it seems safe to say that, even if adversarial examples can fool humans,
they do not fool us as catastrophically as they fool deep classifiers.



Submitted, Pre peer-review manuscript. 22/31

The  fact  that  adversarial  examples  are  transferable  seems  to  prevent  the  obtaining  of  any

correlation  between mathematical  contents  and success/failure  in  classification.  If  two different

clarifiers C and C’ are fooled in the same way by the same adversarial examples in spite of the fact

that the mathematical contents they represent can be radically different (as a result of the fact that

e.g.  C and C’ have different  learning rate,  deploy different  activation  functions,  have different

architectures, different connectivity or a different number of weights/parameters), then the chances

of finding any discernible correlation between mathematical contents and successes/failures appears

to be vanishingly slim.

Moreover,  even  if  C  and  C’  were  two  identical  architectures,  some  of  their  mathematical

contents would still be different, for their weights/parameters would still be randomly initialized

prior to training; and even if training forces the weights to converge, it does not force them to be

identical (Churchland 1992: 177-178). Yet, C and C’ would still be “fooled” in the same way by the

same adversarial example, in spite of this difference in mathematical content. If these reflections are

on the right track, mathematical contents can vary without thereby varying the way in which deep

classifiers react to adversarial examples. But this means that variations of mathematical contents

are not reflected in variations of successes and failures, and so the two appear to be uncorrelated.

To account for patterns of successes and failures, mathematical contents and successes and failures

must  be correlated.  Hence,  it  appears that mathematical  contents cannot  explain in the relevant

sense of the term.

Notice, further, that according to the deflationary account, the tokening of a vehicle bearing an

incorrect  mathematical  content  should  explain  miscomputation (Egan  2017).  Misclassification

induced by adversarial examples surely qualifies as a case of miscomputation: a network “fooled”

by an adversarial example returns an incorrect probability distribution over labels, and so it seems

correct to say that it has miscomputed such a distribution. But it seems to me far less clear that such

a miscomputation is a result of the tokening of a vehicle bearing an incorrect mathematical content.
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As far as I can see, when a network misclassifies an adversarial examples it is not the case that

some of its neurons enter in a state that does not agree with (i.e. it is wrong in respect to) their

activation  function.  Nor  the  blame  can  be  easily  shifted  to  the  values  of  weights  or  the

hyperparameters of the network, as the notion of a weight or hyperparameters carrying an incorrect

mathematical content seems a bit mysterious. As pointed out before, different networks will have

weights carrying slightly different numerical values, and (assuming parity of performance), I see no

good reason to consider one of these value assignments as the correct one. And it seems to me that a

similar point holds for the hyperparameters: their value can change across architectures, but, if the

various architectures  are equally (or comparably)  good at  the classification task,  I see no good

reason to consider a set of hyperparameters as the one carrying the “true” mathematical contents.

Now,  perhaps  the  reflections  articulated  above  are  a  bit  unfair.  After  all,  according  to  the

deflationary account, what provides a complete explanation of a system’s success and failures are

mathematical contents  together with the ecological component of the theory. And, thus far, I’ve

been silent on the ecological component. So, one could legitimately contend that considering the

ecological  component  would  allow  us  to  see  how mathematical  contents  explain  adversarial-

examples induced misclassification.

Whilst entirely legitimate, I find it hard to make sense of the contention above, for it is far from

clear what is the ecology of an artificial neural network. For the most part, artificial neural networks

“live” within our computers, and the only access to the external world they are provided with is

given by the input patterns they are administered. But that input pattern simply is the input vector,

which is part of the mathematical contents networks need to represent. So, it seems that, in the case

at hand, there is no ecological component over and above mathematical contents.

A defender of the deflationary account might then perhaps answer by claiming that since there is

no ecological component over and above mathematical contents, the case of adversarial examples-

induced misclassification fails to be a compelling counterexample against the deflationary account.
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The idea would be that of claiming that since in the case at hand there is no separate ecological

component, it does not fall within the explanatory scope of the deflationary account. This move

strikes me as technically  legitimate  but practically suicidal,  as would significantly diminish the

explanatory power of the deflationary account. Indeed, making such an argument just is admitting

that  the  deflationary  account  cannot  explain  how artificial  neural  networks  (and other  systems

“inhabiting” only computers such as software agents) work. This seems a too high price to pay.

Thus far, I have argued that adversarial examples-induced misclassification cannot be explained

by mathematical contents and ecological component (if present) alone. Observing how adversarial

examples-induced misclassification is currently explained seems to back up my claim. Here, I will

look  at  two  proposed  explanations  to  substantiate  my  claim.  Notice  that  I’m  using  these

explanations only as illustrative examples. I do not wish to imply that they are the best, or correct,

or  only possible  explanations.18 I wish only to claim that they are possible explanations, and that

they do not rely on mathematical contents and ecological component (if at all present) alone.

The first explanation is provided by Ilyas et al. (2019).19 Their explanation requires a bit of set

up. First, they carefully define features mathematically, and then they define a subclass of features

(useful features) as the features that reliably correlate with the true label of the input. Having done

so, they divide useful features into two subclasses: robust and non-robust. Robust features remain

invariant under adversarial perturbation (i.e. still correlate with the right label), whereas non-robust

ones “flip” their label under perturbation.  On the view Ilyas and colleagues suggest, adversarial

misclassification  is  due  to  the  networks’  reliance  on  such  non-robust  features  to  carry  out

classification tasks.

Although  thus  far  the  explanation  proposed  is  mainly  mathematical,  Ilyas  and  colleagues

(2019:2) are clear in stating that their mathematical definition of features is intended to capture the

“folk” definition of features as representations of salient distal properties (cfr Hinton 2014; Olah et

18 Indeed, I chose two hardly compatible explanations to remain as neutral as possible on the matter.
19 See also (Engstrom et al. 2019; Bucker 2020) for discussion of this proposal.
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al. 2018), and they state, in an equally clear manner, that non-robust features are non-robust only

under  a  human-selected  notion  of  similarity  (Ilyias  et  al.  2019:  10).  This,  they  claim,  makes

adversarial  examples-induced misclassification  an human-centric  phenomenon:  we  see networks

being “fooled”  because  they  rely  on  different  (and non-robust,  given  our  notion  of  similarity)

properties to carry out the classification task. They also argue that adversarial examples-induced

misclassification could be avoided endowing networks with human priors. Notice how all of this is

presented (and naturally interpreted) in terms of cognitive contents: features are representations of

distal properties, the human-selected notion of similarity holds among distal objects, and priors are

representations of subjective assignments of probabilities to distal events.

As the second example, consider the experimental work described in (Zhou and Firestone 2019).

They tested human subjects in a variety of classification tasks using adversarially perturbed images,

asking the human participants to pick up the label they think a machine would assign to the image.

Strikingly, they found that in all the experiments (using a variety of adversarially perturbed images

in a variety of experimental paradigms) participants were able to choose “like a deep classifier”

with  a  percentage  of  success  well  above  chance.  This  led  Zhou and Firestone  to  suggest  that

adversarial  examples  induce  misclassifications  because  networks  do  not  discriminate  between

appearing like something and appealing like being something  (e.g. a plush toy might appear like a

tiger, but it does not appear  to be a tiger) - an explanation clearly based on cognitive, rather than

mathematical, contents.

Hence,  it  seems  that,  contra the  deflationary  account,  currently  available  explanations  of

adversarial-induced  misclassification  do  not rely  exclusively  on  mathematical  contents  and  the

ecological component of cognitive theories.

Perhaps a defender of the deflationary account might contend that these appeals to cognitive

content are just “loose talk” deployed to make the real, purely mathematical, easier to grasp. But

this surely does not seem to be the case: both publications appear to be aimed at experts, which can
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easily grasp a purely mathematical  explanation.  Moreover,  Zhou and Firestone’s paper contains

very little mathematics, and only in the “methods” section. Their explanation is provided in purely

informal, and cognitive content-involving, terms

A defender of the deflationary account might further contend that cognitive contents appear in

these  explanations  only  because  the  empirical  research  on  adversarial-example-induced

misclassification  is  still  young,  and  we  do  not  yet  possess  a  complete  function-theoretic

understanding of these cases (cfr. Egan 2020a: 45-47). Yet, although adversarial examples have

been discovered only recently (Szegedy et al. 2013), we do possess a complete function-theoretic

characterization  of  artificial  neural  networks.  Unlike  natural neural  networks,  artificial  neural

networks are models  we build. We determine their hyperparameters (such as activation function,

network topology, learning rate and the like). And, after training, we can access their parameters

and know their mathematical values. So, we do not have to reverse-engineer them, and we do not

have to  guess  which  function  they compute  from behavioral  data.  Hence,  when describing  the

operations of artificial neural networks, cognitive contents cannot be only: “a temporary placeholder

for an incompletely developed computational theory” (Egan 2020a: 34).

Lastly,  a  defender  of  the  deflationary  account  might  contend  that  these  explanations  are

incorrect,  and  that  the  correct  explanation  will  resort  only  to  mathematical  content  (and  the

ecological component, if any). But in order for this argument to have some bite, it seems we need

some positive reasons to think the explanations sketched above are misguided, and/or at least a

sketch of a purely mathematical explanation. Lacking these, the objection seems only the assertion

of one’s faith in the explanatory prowess of the deflationary account.

5 - Concluding remarks

Here, I have scrutinized Egan’s deflationary account of representations. I have argued that the

mathematical contents that constitute its explanatory core fail to meet the relevant  desiderata the
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account accepts, and that they do not always appear able to provide satisfactory cognitive-scientific

explanations. 

I wish to conclude, however, by stating that this essay shouldn’t be read as providing reasons to

endorse “standard'' naturalistic and reductionist theories of representation. These have monopolized

the discussion on cognitive representations from the 80’s on (e.g. Cummins 1989; Shea 2018), and

the  persistent  uncertainty  about  their  fortunes  (Ryder  2019)  really  motivates  the  search  for

alternative  approaches.  Sadly,  the  discussion  of  these  alternative  approaches  has  thus  far  been

aimed either at dismissing them in favor of “standard” ones, or at showing that such approaches end

up collapsing onto “standard” ones (e.g. Sprevak 2013; Ramsey 2020).20 This, I think, prevented

further  exploration  of  the  theoretical  space  lying  between  “standard”  representationalism  and

straightforward eliminativism  of cognitive representations. Here, I have tried to explore this space,

by assessing Egan’s deflationary account on its own terms. Although the results of my explorations

have been  mostly  negative,  the  deflationary  account  most  likely  covers  only  a fraction of  the

conceptual space separating “standard” representationalism from anti-representationalism. It is thus

still possible that a thorough exploration of such a space will deliver us a workable, “non-standard”

account of representations.
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