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Abstract The susceptible-transmissible-removed (STR) model is a determin-
istic compartment model, based on the susceptible-infected-removed (SIR)
prototype. The STR replaces 2 SIR assumptions. SIR assumes that the emi-
gration rate (due to death or recovery) is directly proportional to the infected
compartment’s size. The STR replaces this assumption with the biologically
appropriate assumption that the emigration rate is the same as the immigra-
tion rate one infected period ago. This results in a unique delay differential
equation epidemic model with the delay equal to the infected period.

Hamer’s mass action law for epidemiology is modified to resemble its chem-
istry precursor – the law of mass action. Constructing the model for an isolated
population that exists on a surface bounded by the extent of the population’s
movements permits compartment density to replace compartment size.

The STR reduces to a SIR model in a timescale that negates the delay –
the transmissible timescale. This establishes that the SIR model applies to an
isolated population in the disease’s transmissible timescale.

Cyclical social interactions will define a rhythmic timescale. It is demon-
strated that the geometric mean maps transmissible timescale properties to
their rhythmic timescale equivalents. This mapping defines the hybrid inci-
dence (HI). The model validation demonstrates that the HI-STR can be con-
structed directly from the disease’s transmission dynamics.

The basic reproduction number (R0) is an epidemic impact property. The
HI-STR model predicts that R0 ∝ B

√
ρn where ρn is the population den-
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sity, and B is the ratio of time increments in the transmissible- and rhythmic
timescales. The model is validated by experimentally verifying the relationship.

R0’s dependence on ρn is demonstrated for droplet-spread SARS in Asian
cities, aerosol-spread measles in Europe and non-airborne Ebola in Africa.

Keywords susceptible-transmissible-removed (STR) · basic reproduction
number · hybrid incidence · delay differential equation · rhythmic timescale ·
transmissible timescale

1 Introduction

The modelling of infectious disease dates from Bernoulli’s 18th century sta-
tistical model and En’ko’s compartment-model in the 19th century [1]. In
this manuscript, the models will arbitrarily be introduced as deterministic or
stochastic. The deterministic models will either be ordinary differential equa-
tion (ODE), partial differential equation (PDE) or delay differential equation
(DDE) compartment models. These deterministic compartment models’ nu-
merical simulation will not be discussed. Under stochastic models, Cellular
automata (CA) are introduced as a subcategory of stochastic models because
the distinction between the model and the numerical method is not obvious.

The ODE deterministic theory describing the propagation of an infectious
disease as presented by Kermack and McKendrick [2–5] is the convergence
of the basic reproduction number (R0) concepts of Böckh [6, 7], Dublin and
Lotka [8–10], and Kuczynski [11] in demography; Hamer’s [5, 12, 13] mass ac-
tion incidence from chemistry [14]; and the compartment models of Ross and
Hudson [11,15], and En’ko [16,17]. The 2 ODE compartment model prototypes
classify all individuals in a closed population as either susceptible, infected or
removed. Removed can either mean recovered (assumed immune) or dead. In
the susceptible-infected-removed (SIR) model, all three compartments are used
and individuals move in one direction only – from susceptible to infected to
removed. The susceptible-infected-susceptible (SIS) model only uses 2 of these
compartments and individuals are able to return to the susceptible compart-
ment upon resolution of infection. Since then, an analytic solution for the SIR
model has been found [18], standard incidence introduced [19, 20] and prag-
matic problems like herd immunity [21] and vaccination threshold [22] solved.

At least 2 layers of complexity have since been added. The basic ODE
models assume an homogenous population – every infected-susceptible pair
has the same probability of successful pathogen transmission over a fixed in-
teraction period. Diekmann et al define a next generation matrix (NGM) on
a heterogenous population [23–25]. This NGM predicts the secondary infec-
tions due to the current infected population. They then show that R0 is the
dominant eigenvalue of this NGM. Van den Driessche et al propose that an
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heterogenous population can be approximated as the superposition of N ho-
mogenous population compartments [26,27]. The NGM calculates R0 for this
system of equations.

Secondly, additional compartments allow more realistic simulation of the
dynamics of each disease [19,28–32]. One such model is the susceptible-exposed-
infective-removed (SEIR) model [33–35]. The incubation period effectively sub-
divides the infected compartment into an asymptomatic, non-infectious, ex-
posed compartment and an infectious compartment [36].

Conventional DDE compartment models are an alternative to the exposed
compartment of ODE models [37, 38]. These DDE compartment models sim-
ulate a biologically appropriate constant incubation period. In contrast, the
exposed compartment in the SEIR and SEIRS models implies an exponential
distribution of incubation time [37, 39]. The delay from infection to infec-
tious is typically included with the force of infection term as βI(t− τ)S(t) or
βI(t)S(t− τ). Hethcote et al introduced alternative delay models [39–44].

The homogenous mixing and large population assumptions reduce epidemic
simulation to ODE models [25,45]. The assumption that the rate at which mi-
grants enter a compartment is directly proportional to the size of compartment
they exit is inconsistent with the biology [46–49].

PDE models allow the simulation of spatial spread. The spatial spread
model commonly used is diffusion [24, 27, 50, 51]. Although diffusions models
are described for rabies in foxes [27, 52] and the mosquito-vector West Nile
fever in birds [27, 53], the statistical mechanical derivation of Fick’s law of
diffusion requires random movement [54]. Given non-random human-vector
movement [55–57], the conditions under which the diffusion model is appro-
priate are not obvious. Furthermore, the diffusion model is not the only spatial
spread model [56,58–61] nor the most general [25,60,62].

The large number of discrete events assumed by the deterministic mod-
els result in continuous differentiable functions [45]. Stochastic models are a
complement able to simulate small populations (e.g. early in the epidemic)
and assign probabilities to outlier events [20,63–65]. In 1760, Bernoulli used a
statistical model to predict the effect of vaccination [66, 67]. Farr fitted bell-
shaped curves to epidemics – attempting to identify empiric laws that de-
scribe their episodic nature [67]. McKendrick constructed a spatial stochastic
model on a two dimensional lattice [68, 69] but it was the Reed-Frost and
Greenwood [70] binomial chain models that became popular [65, 67]. Both of
these models assume long incubation periods with comparatively negligible
infectious periods. A time increment equates to the incubation period and all
infections occur at the end of this period. These assumptions result in asyn-
chronous generations of pathogen hosts. Biologically, the model is consistent
with seasonal procreation where the female dies after producing multiple off-
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spring at that time (e.g. spawning salmon). The conditions under which these
models simulate epidemics most appropriately are not obvious. Gani and Jer-
wood [71] recognised these binomial chain models as examples of discrete time
Markov chains [72,73]. Continuous time Markov chains extrapolate the model
to continuous time, discrete state variables [65, 73, 74]. This also represents a
long latent period, branching process but the latent period is variable. Finally,
continuous time, continuous state variables are simulated with stochastic dif-
ferential equations [65,73–76] with the variance of a Gaussian distribution [77].

Cellular automata (CA) arose to study the complex phenomena that evolve
when simple rules are applied on a regular lattice [78–82]. CA has been applied
to computational fluid dynamics (CFD), economics, biology, ecology, physics
and chemistry [83, 84]. Schneckenreither et al classify epidemic CA as lattice
gas cellular automata (LGCA) or stochastic cellular automata (SCA) [59]. The
terms LGCA and the lattice Boltzmann method (LBM) are from CFD [85,86]
where the appropriate 2-step rules of stream and redistribute are shown to sim-
ulate the macroscopic, incompressible Navier-Stokes (NS) equations [87, 88].
Similarly, Boccara and Cheong applied LGCA to epidemics by constructing
a 2-step rule of streaming and redistribution of states S,I and R on a regular
lattice [89–91]. Schneckenreither et al describe the LGCA spatial spread model
as diffusion and classically simulates individuals occupying a cell. Mansilla and
Gutierrez construct a spatial spread CA that can be tuned between the LGCA
extreme of diffusion and perfect mixing [57].

In contrast, SCA redistributes cell states based on that cell’s previous state
and adjacent cells’ proximity and previous states [92,93]. The simulation does
not model migration between cells but is intended to allow individuals within
a cell to make contact with individuals in adjacent cells. States are represented
as a ratio. Schneckenreither et al refers to this spatial spread model as con-
tact spread [59]. Redistribution of compartments is based on the probabilities
of changing compartment upon contact. The probabilistic cellular automata
(PCA) model combines the contact spread of the SCA model with the LGCA’s
integer cell occupants [94,95]. In the PCA model, the integer is 1. Holka et al ’s
PCA model simulates a whole country and superimposes daily commutes [96]
– migration is a LGCA feature. The SCA model has been extended to include
uncertainty using a Markov chain Monte Carlo method with coupled Beta and
Dirichlet distributions [77,97,98].

Of note, in the CFD CA analogy, a Chapman-Enskog expansion is per-
formed on the LGCA and LBM to derive the PDEs that describe the macro-
scopic phenomena [87,88,99]. In contrast, the mean field approximation used
on epidemic CAs necessarily describe population level ODEs [89–91,100]. Thus
the population level spatial spread models described by the epidemic CAs are
not obvious. In the CFD analogy, the CAs’ time- and space increments are
tuned to achieve the appropriate viscocity – given that the viscocity in the CA-
derived NS equations is a function of the time and space increments [87, 88].
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Without epidemiology CA derived PDEs, it is not obvious whether similar
constraints pertain to the discretisation of these CAs.

This manuscript derives a DDE model where the delay is not due to the
incubation period and is not an alternative to the exposed compartment. The
delay addresses the assumption that the rate at which individuals leave the
infectious compartment is proportional to the size of that compartment.

The conventional, ODE model concepts and properties are explored before
deriving the susceptible-transmissible-removed (STR) model. The determin-
istic SIR model [2–5] assumes that individuals move between three compart-
ments – susceptible (S), infected-infectious (I) and removed-recovered (R) –
during an epidemic. S(t), I(t) and R(t) refer to the size of their respective
compartments. There is no delay from infection to being infectious in the SIR
model. R’s individuals can either be dead or recovered (assumed immune).
The ODE model describing the movement between these compartments is [64]

Ṡ(t) = −ξ(t)
N

S(t)I(t)

İ(t) =
ξ(t)

N
S(t)I(t)− αI(t) (1)

Ṙ(t) = αI(t)

where S(t) + I(t) +R(t) = N – the constant population size. The rate of new
infection is proportional to S(t)I(t). This corresponds to the rate at which
individuals leave S. The rate of recovery is directly proportional to I(t).

In Model (1), the rate of recovery is directly proportional to I(t). This has
no biological interpretation. Biologically, an infection lasts for a fixed period
(TI). Individuals leave I at the same rate at which they entered it one TI ago.

Hethcote [101], refers to ξ(t) as the horizontal transmission incidence and it
is usually treated as a constant (ξ). Epidemiologically, incidence is the num-
ber of new cases of a disease per unit time as a proportion of the susceptible
population. At t ' t0, when S ≈ N and no individuals leave I,

ξ(t0) =
İ(t0)

S(t0)
= − Ṡ(t0)

S(t0)
=
İ(t0)

N
. (2)

There are two ξs in epidemiology. The conventional mass action ξ assumes
that interactions are completely random. Further, N is so large that, early in
the epidemic, all interactions are with susceptible individuals. Here, ξ = βN .

Hethcote [19, 20] argues that individuals have regular close contacts that
are of similar count whether in a tribe, a village or a metropolis. Further-
more, as a generalisation, interactions only occur with these close contacts.
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This second ξ is the standard incidence. ξ = βsi is a constant for standard in-
cidence. Although standard incidence is usually used for sexually transmitted
diseases; Anderson demonstrates experimentally that, for airborne diseases,
0.03 ≤ ν ≤ 0.07 in ξ = βNν [102,103].

The basic reproduction number (R0) is a demographic concept [6, 7] that
has been repurposed as an epidemic impact property. It represents the number
of new infections produced by an infected individual directly. A straightforward
R0 [20] derivation exists for the SIR model. Consider I of Model (1).

İ(t) =

(
ξS(t)

N
− α

)
I(t) > 0 ⇐⇒ ξS(t)

N
− α > 0 ⇐⇒ ξ

α

S(t)

N
> 1.

Define

R0 :=
ξ

α
. (3)

For a completely susceptible population (at t = 0), S(0) ≈ N . Then

R0 > 1 ⇐⇒ İ(t) > 0 (4)

implies that I grows indefinitely when R0 > 1. Biologically, α is interpreted
as the infection frequency.

2 A boundaried, delayed differential equation, SIR-like model

Define a host as an individual harbouring a pathogen that has the capacity to
cause a disease. If the pathogen can be transmitted to a new host, the disease
is infectious. The disease can only be transmitted to a new host if the host
makes sufficient contact with a susceptible individual or potential host.

There is a delay from becoming infected to being infectious. Thus the infec-
tious period (Ti) is shorter than TI . In the SIR model this delay is negligible.
Ti and TI are biologically defined and limited by either recovery or death.
Interventions like vaccination or medication either shorten TI or reduce the
case fatality rate (CFR). The CFR is the ratio of those infected that die.

A host’s ability to transmit a disease can also be limited behaviourally and
technologically. An example of the former is isolation in chicken pox. When
the vesicular rash appears, the diagnosis is obvious and the caregiver isolates
the host. The pharmacological treatment of tuberculosis (TB) is an example of
technological transmission restriction. TB treatment results in non-infectious
hosts. The transmissible period (∆τ) will therefore be defined as the weighted
average of the biological, behavioural and technological restrictions that limit
the period during which a host has the opportunity to transmit a disease.
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Define an isolated community as a subset of individuals that only interact
with other members of that subset. The isolation can be due to a physical
boundary like a mountain range or a wall; a cultural barrier like a tribal taboo
or language; or a legal barrier prohibiting social interaction.

Let an isolated community of large population size (N(x, t)) exist on a
boundaried surface δA(x), where x is a central measure of δA, at time t.
Natural births and deaths are neglected. Let the susceptible population in this
community be S(x, t). Let the density of susceptible individuals be s(x, t) =
S(x,t)
δA . Similarly, let population density be ρn(x) = N(x)

δA at x, ∀ t. Then for
N(x) =

´
δA
ρn(x)dA,

S(x, t) =

ˆ
δA

s(x, t)dA ⇐⇒ S(x, t)

N(x, t)
=

´
δA
s(x, t)dA´

δA
ρn(x, t)dA

⇐⇒
ˆ
δA

s(x, t)dA = S(x, t)

ˆ
δA

ρn(x, t)

N(x, t)
dA (5)

where N(x, t) and ρn(x, t) are assumed positive constants in time because
natural births and deaths are not significant in this time frame. Let

M :=
1

N(x)

ˆ
δA

ρn(x)dA = 1, (6)

by the definition of properties of ρn and N above. For arbitrary scalar variable
ϕ, (5) is ˆ

δA

s(x, t)dA =MS =

ˆ
∂S

∂ϕ
Mdϕ (7)

because M is a constant. Substituting (6) back into (7),
ˆ
δA

s(x, t)dA =

ˆ ˆ
δA

∂S

∂ϕ

ρn
N
dA dϕ =

ˆ
δA

ρn
N

ˆ
∂S

∂ϕ
dϕdA

=

ˆ
δA

S(x, t)
ρn(x)

N(x)
dA (8)

⇐⇒ s(x, t) =
S(x, t)

N(x, t)
ρn(x, t). (9)

Similarly, for the transmissible compartment (T ) and trasmission-capable host
population density (τ(x, t)),

T (x, t) =

ˆ
δA

τ(x, t)dA ⇐⇒ τ(x, t) =
T (x, t)

N(x)
ρn(x). (10)

Define sufficient contact between two individuals as sufficient proximity, and
duration of that proximity, to allow pathogens to be transmitted from host to
potential host within that period. An interaction is necessarily spatial and of
sufficient contact.
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The position vector will be omitted because only one community is consid-
ered further. Let the probability density function, P (t), of an interaction at t
be proportional to the product of the transmission-capable host density and
the potential host density as for the law of mass action [104]. Then

P (t) = ηµκ(x) s(t)τ(t) (11)

where η is an infectious disease-specific variable that reflects avidity (cumula-
tive binding strength), µ is a function of mode of transmission (aerosol spread
has a higher µ than droplet spread) and κ(x) is a function of social behaviour
(higher for a culture that greets by kissing compared to bowing). By definition,

0 ≤
ˆ
∆t

P (t)dt ≤ 1.

An example of increased η resulting in higher probability of transmission has
been demonstrated for the α and β variants of SARS-CoV2 in reference [105].
In coronavirus disease 2019 (COVID19), it is necessary that the SARS-CoV2
spike protein binds to the luminal angiotensin converting enzyme 2 (ACE2)
receptor for transmission. The authors propose that the increased transmissi-
bility of the α and β variants may be due to increased spike protein density,
increased furin cleavage accessibility or increased spike protein-ACE2 receptor
binding affinity. Affinity is the binding strength of one spike protein-ACE2
receptor combination. Avidity is the cumulative binding effect. In this case,
avidity would be a function of the spike protein density, affinity and the con-
centration of virus particles. The authors demonstrate that the greater affinity
of the α and β variants are consistent with the increased transmissibility (prob-
ability of transmission) of these variants.

The 4 recognised respiratory virus modes of transmission are direct contact,
indirect contact (fomite), droplet and aerosol [106]. Although the distinction
between droplet and aerosol spread is recognised, a consensus metric for distin-
guishing between them does not exist. In principle droplets are larger, heavier
and travel a shorter distance. Aerosols form a suspension in the air and are
displaced, dispersed and diluted by ventilation and convection currents [107].
Influenza is an airborne disease (droplet and aerosol). Nguyen-Van-Tam et
al expose a control group and an intervention group to influenza. Droplet-
and direct contact spread are negated in the intervention group. They demon-
strate that, for influenza, droplet- and direct contact spread make negligible
contributions to disease propogation. This and a proof of concept study were
conducted in closed rooms. The infection rate (secondary attack rate) between
this study and the proof of concept study differed significantly. The difference
is ascribed to the ventilation rate of 4L/s per person confined to the rooms of
the main study diluting the aerosol [108]. Given that both aerosol and droplet
spread occur in influenza, they have demonstrated (at least for influenza and
barring an additional mode of spread) that aerosol spread has a higher trans-
mission probability than droplet spread. This is the effect of µ in (11).



The hybrid incidence susceptible-transmissible-removed model for pandemics 9

It is assumed that cultures are location specific. κ(x) can be interpreted as
culture-specific, short-term, socially-acceptable, casual proximity – to distin-
guish it from population density. Casual contact is the collection of interaction
types that exclude the intimate interactions typically occurring within fam-
ilies. For example, an acceptable distance from a stranger in Hong Kong is
' 1, 1m while in the USA this distance is / 1m [109]. Hong Kong has a much
higher population density at 6677 per km2 compared to the USA at 34 per
km2. Despite this difference in population density, R0 for 2009 influenza epi-
demic is consistently higher for the USA [110]. The difference in culturally
acceptable personal space may explain part of the anomaly.

In a population of size N , the possible unique interactions are the sum of

an arithmetic series
(
N(N−1)

2

)
. For N � 1, this approximates to N2

2 . Each

interaction represents a transmission opportunity. Then the maximum trans-
mission opportunities

(
ψ(N)

)
approximate as

ψ(N) /
N2

2
. (12)

The maximum possible direct secondary transmissions due to a single host is
N − 1 but this is limited by ∆τ . Similarly, the maximum possible secondary
transmissions over ∆τ are

ψ(N)

ˆ
∆τ

P (t)dt /
N2

2

ˆ
∆τ

P (t)dt. (13)

Substituting (9), (10) and (11) into (13), the transmissions produced over a
primary host’s ∆τ are

ˆ t0+∆τ

t0

Ṫ (t0)dt =

ˆ t0+∆τ

t0

ηµκ
N2

2
s(t0)τ(t0)dt

=

ˆ t0+∆τ

t0

ηµκ

2
ρ2nS(t0)T (t0)dt (14)

=

ˆ t0+∆τ

t0

βAρ
2
nS(t0)T (t0)dt

where βA = 1
2ηµκ.

For interval ∆t > ∆τ , the Heaviside step function is used and emphasises
the discrete underlying processes. The equivalent of (14) over this ∆t is

ˆ
∆t

Ṫ (t0) dt =

ˆ
∆t

[u(t0)− u(t0 +∆τ)] βAρ
2
n S(t0)T (t0) dt. (15)

Thus (14) is formulated over interval ∆τ or an arbitrary period ∆t > ∆τ (15).
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As for the SIR model, the rate at which individuals leave S is the same as
the rate at which they enter T . Restated, Ṡ(t) = −Ṫ (t). Then from (14)

Ṡ(t) = −βAρ2nS(t)T (t). (16)

For an interval greater than ∆τ (15), the Heaviside version of (14), is required.

Redefine the removed compartment as consisting of hosts no longer trans-
mission capable by virtue of recovery, death, behavioural adaptation or tech-
nological intervention. An individual is infected at t0. That host remains
transmission-capable for ∆τ . Thus the rate at which hosts enter R is the
same as the rate at which they entered T one ∆τ ago [20]. Restated,

Ṙ(t) = Ṫ (t−∆τ). (17)

The SIR model proposes that İ(t) is the difference between S’s rate of decrease
and R’s rate of increase. Similarly, substituting (16) and (17) to determine
Ṫ (t), the system of DDEs describing the movement between compartments
S, T and R are

Ṡ(t) = −βAρ2n(x) S(t)T (t)

Ṫ (t) = βAρ
2
n(x) S(t)T (t)− Ṫ (t−∆τ) (18)

Ṙ(t) = Ṫ (t−∆τ).

Model (18) is the boundaried DDE version of Model (1) and is designated the
susceptible-transmissible-removed (STR) model. The derivation of this model
on a surface has incorporated population density.

Assume that the homogenous solution to T (x, t) is exponential such that

T (x, t) = A(x)er(x)t. (19)

Equation (19) is the real, homogenous solution to the linearised STR (18)
[111](See Appendix). Substituting (19) into the delay term of Model (18)’s T ,

∂

∂t
T (x, t−∆τ) = A(x)r(x)e−r(x)∆τer(x)t = αT (x, t) (20)

where
α(x, t) = ταu(∆τ) (21)

and τα(x) = r(x)e−r(x)∆τ . The subscript τ is for transmissible. Substituting
(20) into Model (18), reduces the latter to an ODE-like model,

Ṡ(t) = −βAρ2n(x) S(t)T (t)

Ṫ (t) = βAρ
2
n(x) S(t)T (t)− α(x)T (t) (22)

Ṙ(t) = α(x)T (t).

Comparing Models (22) and (1), the horizontal transmission incidence [101] is

ξ(x) = βAρ
2
n(x)N(x). (23)



The hybrid incidence susceptible-transmissible-removed model for pandemics 11

Applying the definition of R0 for the SIR model from Section 1’s (3) [20], STR
Model (22)’s basic reproduction number is

τR0(x) =
ξ(x)

α(x, t ≥ ∆τ)
(24)

and undefined for t < ∆τ .

ξ’s derivation for Models (18) and (22) differs from Brauer et al ’s [20] mass
action ξ derivation. Brauer et al assume that a host has βN transmission-
capable interaction per unit time. They then multiply this by the chance that
such an interaction is with a susceptible individual

(
S
N

)
. This product is Ṡ(t).

Consequently, ξ = βN for mass action incidence. Thus only the potential
direct secondary transmissions are considered. In contrast, (14)’s ξ calculates
the average transmissions over all potential interactions on N over ∆τ . This
includes indirect secondary transmissions. Thus, in principle,

R0 ≤ τR0.

Comparing the STR’s τR0 to R0 for mass action incidence (ξ = βN) and the
standard incidence (ξ = βsi),

βAρ
2
n(x)N(x)

α(t > ∆τ)
= τR0(x) ≥ R0 =

βN

α
or

βis
α
. (25)

3 Biological derivation of a continuous basic reproduction number

A transmissible timescale is derived that converts the STR model (18) into an
ODE model. A rhythmic timescale is then defined and mass action-, standard-
and hybrid incidence derived in the rhythmic timescale.

3.1 Defining the transmissible timescale

STR Model (18)’s coefficients are derived, in part, from (14). Equation (14)’s
Heaviside version (15) emphasises the finite transmissible period.

For timescale 1 : ∆t < 1 : ∆τ, (15) should be used to derive a Heaviside
version of (16). Thus timescale 1 : ∆t < 1 : ∆τ introduces a step function
(15) in the STR Model (18)’s ξ. Conversely, 1 : ∆t > 1 : ∆τ introduces a step
function in ODE-like Model (22)’s α.

Thus timescale
1 : ∆t = 1 : ∆τ.

transforms (22) into an ODE model similar to Model (1). This ∆τ -based
timescale is the transmissible timescale. τα and τR0 are then the transmissible
timescale infection frequency and basic reproduction number, respectively.
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3.2 Defining the rhythmic timescale

Consider a host infected by chickenpox (Varicella Zoster). The host becomes
infectious after 14 days. There is an additional 2-3 days (the prodrome) be-
fore the vesicular rash appears, the diagnosis is obvious and the host is isolated.

This host’s routine may include sleeping from 10 PM to 6 AM, public trans-
port between 7:30 and 8AM, and from 5:30 to 6PM; classroom from 8AM to
5PM; a cafeteria at 1PM; and family time from 6PM to 10PM. Comparing this
routine with (11), a diurnal variation exists to the probability of a successful
interaction. Selecting a timescale of 1 : 1 day masks this variation. Restated,

ˆ t0+(k+1)∆t

t0+k∆t

P (t)dt = pdaily ∀ ∆t = 1 day, k ∈ N

Similarly, weekly, monthly and annual activities are periodic. Thus multiple
timescales may exist that result in constant integrals of (11) over a time unit
in that timescale.

A rhythmic timescale

1 : ∆t = 1 : δt

is defined for periodic host transmission opportunity. Assuming a periodic
transmission opportunity, ∃ δt ∈ R such that ∀ t0 ∈ R

p =

ˆ t0+δt

t0

P (t)dt =

ˆ
δt

P (t)dt. (26)

The constant, p, represents the probability of an event on ψ(N) over δt. Suc-
cessful interactions are then independent events with probability p on ψ(N).

3.3 The rhythmic timescale mass action-, standard- and hybrid incidence R0

Let the time increments in the transmissible timescale be an integer multiple
of the increments in the rhythmic timescale. Then

∆τ ≈ Bδt where B ∈ N. (27)

B is necessary to transform between the transmissible- and rhythmic timescales.

3.3.1 Mass action incidence, basic reproduction number in rhythmic timescale

The mass action incidence formulation assumes that all host interactions are
random and that S ≈ N for several δt early in the epidemic. By definition,

τR0 is the number of secondary hosts produced by a primary host over ∆τ .
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At t = t0 the only host is the primary host and the number of secondary hosts
over ∆τ are necessarily τR0. This can be restated as

τR0 =

ˆ
∆t=∆τ

Ṫ (t0)dt. (28)

At the equivalent t = ∆τ in any timescale, (28) is true. From (2), in 1 time
unit of the transmissible timescale,

ξ(t0) =
τR0

N × 1
.

From (26) the primary host will infect pS ≈ pN individuals over δt. Applying
(2), over 1 time unit of the rhythmic timescale,

%ξ(t0) =
pN

N × 1

where %ξ(t0) is the rhythmic timescale ξ at t0. Because mass action incidence
assumes S ≈ N for several δt, there are BpN transmissions over Bδt =
∆τ . From (28), BpN = τR0. Therefore, after B time units in the rhythmic
timescale,

ˆ t0+B

t0
%ξ(t)dt =

∑
B

pN

N × 1
=

BpN

N
= B %ξ(t0)

=
τR0

N
= ξ(t0).

Therefore, the rhythmic timescale ξ is the arithmetic mean of the transmissible
timescale ξ. Restated

%ξ(t0) =
ξ(t0)

B
. (29)

From (21), for 0 < t < ∆τ , α = 0 and, consequently, %R0 is undefined. τR0

is the number of secondary hosts originating over the primary host’s ∆τ in a
completely susceptible population. Therefore either R0 is timescale invariant
or R0 ≥ 1 or R0 < 1 (4) should be timescale invariant.

Define a non-zero rhythmic timescale α as

%α :=
τα

B
. (30)

Then, from (3), one can use (29) and (30) to derive a rhythmic timescale R0:

%R0 =
%ξ(t0)

%α
=
ξ(t0)

τα
= τR0
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that preserves R0 and the property R0 ≥ 1 or R0 < 1. The resultant mass
action incidence, STR model in the rhythmic timescale is then

Ṡ(t) = − β
B
S(t)T (t)

Ṫ (t) =
β

B
S(t)T (t)− τα

B
T (t)

Ṙ(t) =
τα

B
T (t).

3.3.2 Standard incidence basic reproduction number in the rhythmic timescale

Hethcote’s standard incidence assumes that interactions are non-random. One
only interacts with close contacts, Nc � N [101]. Anderson and May [19,102,
103] provide experimental evidence to support the argument.

From Section 3.2 and (26), the new transmisions over δt occur with proba-
bility p. Transmission occurring in subsequent δt are independent events. Early
in the epidemic, the new entrants to T equate to Ṫ (t). Table 1 provides the

 :  ∈ Z, New Cumulative

 ≤ B T = Ṫ T S N
< 0 0 0 Nc Nc

0 1 1 Nc Nc + 1
1 Ncp Ncp+ 1 Nc(1− p) Nc + 1
2 Nc(1− p)p Ncp[(1− p)0 + (1− p)1] + 1 Nc(1− p)2 Nc + 1

3 Nc(1− p)2p Ncp
1−(1−p)3

1−(1−p)
+ 1 Nc(1− p)3 Nc + 1

 Ncp(1− p)−1 Ncp
1−(1−p)

p
+ 1 Nc(1− p) Nc + 1

Table 1 Changes in the SI compartments per δt in the standard incidence model

compartment sizes, at δt intervals, before primary host removal (δt ≤ ∆τ).

From (2) and the definition of incidence,

ξ(t ≈ t0) = − Ṡ(t)

S(t)
=
Ṫ (t ≈ t0)

S(t ≈ t0)
. (31)

Substituting terms from Table 1 into (31), without loss of generality,

ξ(t ≈ t0) = − Ṡ(t)

S(t)
= χ where χ = p or

p

1− p
⇐⇒ S(t) = S0e

−χt.

In the rhythmic timescale (1 : δt), over one time unit,

%ξ =
S0e

−χ − S0

S0 × 1
⇐⇒ e−χ = %ξ + 1. (32)
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After B time units in this rhythmic timescale, S(t) is S0e
−χB. B time units

in the rhythmic timescale is only one time unit in the transmissible timescale.
Substituting (32) at t0 over ∆τ into the discrete version of (2),

τξ =
S0e

−χB − S0

S0 × 1
= (%ξ + 1)B − 1 ⇐⇒ B

√
τξ + 1 = %ξ + 1.

Performing the binomial expansion,

B∑
k=0

(
B

k

)
%ξ
k = τξ + 1 ⇐⇒ τξ =

B∑
k=1

(
B

k

)
%ξ
k.

For %ξ � 1 and τξ � 1,

%ξ /
B
√
τξ. (33)

As for the transmissible timescale mass action incidence in Section 3.3.1, from
(21), α = 0 in the rhythmic timescale. Consequently, R0 is undefined. Define

τα :=

B∑
k=1

(
B

k

)
%α

k =⇒ %α / B
√
τα =

∆t
δt

√
α(t > ∆τ) 0 ≤ t < ∆τ (34)

for %α� 1 and τα� 1. Substituting (33) and (34) into (3),

%R0 / B

√
τξ

τα
= B
√
τR0 (35)

and the property of R0 < 1 or > 1 (4) is preserved across timescales.

The standard incidence, STR in the rhythmic timescale is approximately

Ṡ(t) = − B
√
βsi

S(t)T (t)

N(x)

Ṫ (t) = B
√
βsi

S(t)T (t)

N(x)
− B
√
τα T (t)

Ṙ(t) = B
√
τα I(t).

3.3.3 Hybrid incidence basic reproduction number in the rhythmic timescale

Section 2 derives an N -dependent ξ (23). Substituting (23) into (33),

%ξ = B
√
βAρ2nN (36)

ensures the geometric decrease in S. As in (34),

%α :=
1

B
B
√
τα.

From (35) and (25), the property R0 < 1 or R0 > 1 (4) is preserved by

%R0(x) ≈ B
√
τR0 ≥ B

√
R0. (37)
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The hybrid incidence, STR in the rhythmic timescale is then approximately

Ṡ(t) = − B
√
βAρ2nN

S(t)T (t)

N(x)

Ṫ (t) = B
√
βAρ2nN

S(t)T (t)

N(x)
− B
√
τα I(t)

Ṙ(t) = B
√
τα I(t).

4 Hybrid incidence, STR validation in the 1 : 1 day timescale

The HI-STR’s predicted relationship between %R0 and ρn is demonstrated
for a droplet spread, an aerosol spread and a non-airborne disease. Published
central measures (mode, median or mean) will represent %R0 ranges.

4.1 SARS (SARS-CoV)

Severe acute respiratory syndrome (SARS) was caused by SARS Coronavirus
(SARS-CoV) in the Far East Asia in 2002 [112,113]. Transmission was primar-
ily droplet spread [113]. 22% may have required hospitalisation [114]. Symptom
onset marked infectiousness [115]. The incubation mode was 4 days [116,117].
Symptom onset to self-isolation is unknown. Symptom onset to hospitalisa-
tion mode was 0.5 to 2.5 days [117, 118]. This is summarised in Table 2. The

Group Incubation Time to removal
Group proportion(%) mode (days) mode (days)
hospitalised 22 4 1.5
non-hospitalised 78 4 N/A

Table 2 Transmission dynamics for SARS – removal refers to removal from society

unknown non-hospitalised ∆τ is assumed the same as for the hospitalised.
∆τ = 1.5 days [118]. δt = 1 day. Substituting the resultant B = 1.5 into (37).

%R0 = B
√
τR0 = B

√
βAρ2nN

α(t > ∆τ)
= B

√
βAN

τα
× ρ

2.0
1.5
n

⇐⇒ ln(%R0) = ln(Γ ) + 1.3 ln(ρn) (38)

(where Γ = B
√
βAN/τα). SARS’ %R0’s theoretical dependence on ρn is (38).

Toronto and 4 Asian cities’ experimental %R0 [120, 124, 126] and ρn [119,
121–123, 125] are presented in Table 3. The natural logarithms are plotted in
Figure 1. The experimental gradient of 1.35 should be compared with (38).

The SARS-CoV validation uses retrospective %R0 on a cross-section of
(mostly Asian) cities during the course of one droplet-spread epidemic.
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Population Median
City density (ρn) %R0 Year
Toronto 4334 [119] 0.58 [120] 2003
Hong Kong 6300 [121] 1.1 [120] 2003
Singapore 6186 [122] 1.17 [120] 2003
Hanoi 1926 [123] 0.2 [124] 2003
Taipei 9461 [125] 1.54 [126] 2003

Table 3 2002/2003 SARS epidemic’s population density and basic reproduction number

Toronto

Hong Kong

Singapore

Hanoi

Taipei

ln(%R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln(%R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln(%R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln(%R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln(%R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98

-1.5

-1.0

-0.5

0.0

0.5

7.5 8.0 8.5 9.0

ln(ρn)

ln
( %
R

0
)

Hybrid incidence, STR SARS-CoV 2003 validation in Asia

Fig. 1 Experimental depiction of the predicted linear ln(%R0) to ln(ρn) relationship

4.2 Measles (Rubeola)

Measles incubates for 10-12 days [116]. The prodrome of non-specific [127], but
debilitating, symptoms heralds the infectious [128] period. The pathognomic
morbiliform rash ends the 2-4 day prodrome.

Conjecturing isolation at day 3 of the prodrome, ∆τ is 3 days; δt = 1 day
and B = 3. Substituting the latter into (37), for measles:

ln(%R0) = ln(Γ ) + 0.66 ln(ρn). (39)

Table 4 documents the experimental %R0 for 5 countries at 8 historical peri-
ods [130]. Figure 2 demonstrates the linear relationship predicted by (39).

Several experimental %R0 methods across multiple, historical, European
measles epidemics have validated the STR for aerosol-spread infections. The
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Population Middle
Country density (ρn) [129] %R0 [130] Year
Germany 70 [131] 9 1861
Italy 110 [132] 13 1901
Denmark 65 [133] 6 1911
Denmark 101 [133] 16 1948
Netherlands 443 [134] 23 1990
Luxembourg 161 [135] 7 1996
Germany 236 [136] 30 2006

Table 4 Population density and historical measles pR0 for Measles in Europe

Italy 1901

Germany 1861

Denmark 1911

Netherlands 1990

Germany 2006

Denmark 1948

Luxembourg 1996

ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln(%R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51

2.0

2.5

3.0

4.5 5.0 5.5 6.0

ln(ρn)

ln
( %
R

0
)

Hybrid incidence, STR validation for Measles in Europe

Fig. 2 Predicted linear relationship between ln(%R0) and ln(ρn)for measles in Europe

increased R2 is likely due to the several methods used by several investigators
to calculate R0 for measles. The STR model applies to isolated communities.
Although regions within countries may be treated as sufficiently isolated, it
may be that countries are insufficiently isolated in Europe.

4.3 Ebola (EBOV)

Ebola disease is caused by 1 of 7 Ebola virus species in the genus Ebolavirus of
the family filoviridae [137–139]. Ebola disease has a high CFR [140–143] and
is not airborne. Bodily fluid transmission is by blood, urine, faeces, vomit,
breast milk, saliva and sexual contact [139].
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Ebola virus disease is the ebola disease caused by the Zaire species (EVOD).
CFR is 43-89% [139–141] and δt is 1 day. The infected are categorised as

– asymptomatic,
– symptomatic and quarantined (hospital or an ebola treatment unit) [139],
– symptomatic and isolated at home [138,141].

The median incubation period– 6-12 days [137–139,141–145].

Population
Country density (ρn) [146] %R0 Year
Uganda 118 2.7 [147] 2000
Guinea 45 1.51 [142] 2014
Sierra Leone 97 2.53 [142] 2014
Liberia 33 1.59 [142] 2014

Table 5 Population density and Ebola %R0 for African countries

Kerkhove et al ’s median time from symptom onset to hospitalisation is 4
days [145]. Hospitalisation has been demonstrated to reduce transmission [148].

Uganda 2000

Guinea 2014

Sierra Leone 2014

Liberia 2014

ln(%R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln(%R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln(%R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln(%R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92

0.4

0.6

0.8

1.0

3.5 4.0 4.5

ln(ρn)

ln
( %
R

0
)

Hybrid incidence STR validation for Ebola in Africa

Fig. 3 Experimental linear relationship between ln(%R0) and ln(ρn) for Ebola in Africa

The end of ∆τ is the weighted average of the time to hospitalisation and
the time to isolation. These periods are assumed the same. The median time
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to hospitalisation is ∆τ = 4 days [145]. Substituting δt and ∆τ into (37),

ln(%R0) = ln(Γ ) + 0.50 ln(ρn). (40)

The Democratic Republic of Congo (DRC) outbreak in 1995 differs from the
2000 Uganda outbreak and the 2014 outbreak [147,149]. Chowell [149] shows a
shortened infectious period and Legrand [147] demonstrates more transmission
at funerals in the DRC. The DRC outbreak is omitted. Table 5 summarises

%R0 for Guinea, Sierra Leone, Liberia [142] and Uganda [147] . Equation (40)’s
predicted linear relationship is demonstrated experimentally in Figure 3.

The non-airborne Ebola validation has been performed using retrospective

%R0 data for multiple African countries.

5 Discussion

The transmissible timescale is based on the period that a host is able to trans-
mit disease. This period ends with either host demise, recovery, behavioural
modification or technological intervention.

The rhythmic timescale is a consequence of the host’s cyclical transmission
opportunity. The sleep-wake cycle is the origin of the periodic transmission
opportunity of the childhood infectious diseases. For childhood infectious dis-
eases the diurnal periodicity corresponds to the period of experimental data
collection.

Hybrid incidence (HI) lies between the extremum of completely random
interactions (mass action incidence) and completely non-random interactions
(standard incidence). The geometric mean converts the basic reproduction
number, infection frequency and horizontal transmission incidence between
the transmissible- and rhythmic timescales under special circumstances.

The HI-STR model can predict the basic reproduction number for suffi-
ciently isolated communities. The prediction is based on transmission dynam-
ics, population-size and -density. It reduces to an ODE model in the transmis-
sible timescale. The resultant localised basic reproductive numbers facilitate
differentiated control measures and resource allocation. The isolated commu-
nity idealisation has imposed a significant constraint on the discretisation of
a surface. Experiential construction of isolated communities is necessary until
an objective measure of sufficient isolation is derived.

The geographical constraints of the SIR model were not obvious. The HI-
STR has established that the SIR model applies to sufficiently isolated pop-
ulations. The HI-STR model effectively recognises a pandemic as a collection
of epidemics of the same kind at multiple locations and stages of temporal
propagation.
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6 Conclusion

A boundaried, DDE SIR-like model – the susceptible-transmissible-removed
(STR) model – is constructed. The hybrid incidence (HI) STR model in the
rhythmic timescale predicts the basic reproduction number (R0)’s dependence
on population density. The model has been validated for multiple transmission
modes where one host-vector predominates. The HI-STR allows a priori deter-
mination of localised R0s by adjusting for local population-size and -density.
This permits localised mitigation strategies, resource allocation and temporal
resource redistribution. Cultural similarity is required to transfer adjustedR0s.

For models simulating only one host type transmitting a disease, the trans-
missible timescale masks the HI-STR model’s delays. The geometric mean con-
verts the horizontal transmission incidence and infection frequency between
the transmissible- and rhythmic timescales.

7 Recommendation

The HI-STR allows geographical risk stratification based on population-size
and -density. The impact is not obvious. It is conceivable that a high B di-
minishes the significance of geographical stratification.

The isolated community idealisation simplifies the reduction of the HI-STR
model to an ODE model. The resultant ODEs prohibit the modelling of spatial
spread. A surface STR model with partial differential equations will simplify
surface discretisation, simulate population mobility and predict a pandemic’s
wave-like spatial propagation.

The model has been validated for infectious diseases with a diurnal varia-
tion in transmission opportunity. The sexually transmitted diseases’ (STDs’)
cyclical transmission opportunities have a low frequency. The STDs thus pro-
vide an opportunity to validate the model in (non-diurnal) timescales that
mask their longer transmission opportunity period.

Appendix: Solution for linearised STR model

A real solution to the linearised STR model is derived. Smith [111] and Diek-
man et al [150] provide comprehensive coverage.

Consider the system of DDEs (18). Early in the disease, one can make the
approximation N ≈ S reducing the system to the linear DDE systemṠṪ

Ṙ

 =

0 −ξ 0
0 ξ 0
0 0 0

 S(t)
T (t)
R(t)

+

0 0 0
0 −1 0
0 1 0

 Ṡ(t−∆τ)

Ṫ (t−∆τ)

Ṙ(t−∆τ)
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which (for z ∈ R3) is of the form

ż = Az(t) +Bż(t− τ). (41)

Refer to Kuang for analysis of this first order real scalar linear neutral delay
equation [151]. Only the transmissible compartment is considered further. For

ż2 = ξz2(t)− ż2(t− τ) (42)

Let z2(t) = eλt where λ ∈ C. Substituting this into (42),

λeλt = ξeλt−λeλ(t−τ) = ξeλt−λeλte−λτ ⇐⇒ eλt(ξ−λ−λe−λτ ) = 0 (43)

and the roots of the characteristic equation

ξ − λ(1 + e−λτ ) = 0

are the solutions to λ. Let the real part of λ be x and the imaginary part be
y then on the complex plane,

ξ = x+ xe−xτ cos(yτ)− ye−x sin(yτ)

0 = y + xe−xτ sin(yτ) + ye−x cos(yτ)(
ξ
0

)
=

[
I + e−τxR(τy)

](
x
y

)
(44)

where I is the identity matrix

[
1 0
0 1

]
and R(τy) =

[
cos(τy) − sin(τy)
sin(τy) cos(τy)

]
is the

rotation matrix. Note that a positive real solutions exist. At y = 0, for x > 0.
0 < e−x < 1 and therefore ξ

2 < x < ξ. Given that (biologically) ξ > 0, for
y = 0, all the terms in R(τy) > 0 and e−τx > 0⇒ x � 0.
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20. Brauer F, Castillo-Chávez C, Feng Z. Mathematical Models in Epidemiology. Springer
Netherlands; 2019.

21. Thompson RN, Hollingsworth TD, Isham V, Arribas-Bel D, Ashby B, Britton T,
et al. Key questions for modelling COVID-19 exit strategies. Proceedings of
the Royal Society B: Biological Sciences. 2020;287(1932):20201405. Available from:
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2020.1405.

22. Tuite AR, Fisman DN. Number-needed-to-vaccinate calculations: Fallacies associated
with exclusion of transmission. Vaccine. 2013;31(6):973 – 978. Available from: http:
//www.sciencedirect.com/science/article/pii/S0264410X12017495.

23. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation
of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations. Journal of Mathematical Biology. 1990 Jun;28(4):365–382. Available
from: https://doi.org/10.1007/BF00178324.

24. Diekmann Ov, Heesterbeek JAP. Mathematical epidemiology of infectious diseases :
model building, analysis, and interpretation. Chichester : Wiley; 2000. Available from:
http://lib.ugent.be/catalog/rug01:000897478.

25. Diekmann O, Heesterbeek H, Britton T. Mathematical Tools for Understanding Infec-
tious Disease Dynamics. Princeton Series in Theoretical and Computational Biology.
Princeton; 2013.

26. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission. Mathematical
Biosciences. 2002;180(1):29–48. Available from: https://www.sciencedirect.com/

science/article/pii/S0025556402001086.
27. Brauer vdDP F, Wu JH. Mathematical Epidemiology. Springer-Verlag, Berlin; 2008.
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