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Prospects for Analogue Confirmation 

 

Abstract: In analogical reasoning, observations about one or more source domains provide 

support for a conjecture about a target domain. Analogical support can range from plausibility 

to strong confirmation. In modeling this type of reasoning, two recent discussions are relevant. 

The first is Norton’s challenge to formal models of analogical inference (Norton 2021). The 

second, a debate about whether analogue experiments can confirm theories about an 

inaccessible target domain, provides impetus to develop just such formal models (Dardashti et 

al. 2019). This paper argues that we can navigate these discussions with quasi-formal models 

of analogical reasoning. Such models are broadly compatible with Norton’s position. They 

help to clarify the structure and strength of different forms of analogical inference, and to 

identify basic requirements for a good analogical inference, even when the target domain is 

inaccessible.  

 

1. Introduction 

 In analogical reasoning, observations about one or more source domains provide 

inductive support for a hypothesis about a target domain. This support can come in different 

strengths. Work by Froude in the 1800s showed that tests conducted on model ships (the 

source) can provide highly reliable information about the stability of full-size vessels (the 

target) (Froude 1874; Sterrett 2017a). By contrast, many analogical arguments are offered 
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merely to show that a hypothesis is plausible, i.e., a serious possibility. An ethnographic 

analogy appeals to our knowledge of an object produced by a familiar culture to motivate a 

potential explanation for a similar artefact from a vanished culture. Finally, there are 

analogical arguments of intermediate strength. Neuroscientists interested in the genetic 

mechanisms that lead to neurodegenerative disorders in humans employ animal models, 

typically mice, to support or refine hypotheses about how these diseases may be caused or 

treated in humans (Ahmad-Annuar et al. 2003; Fisher et al. 2019).  

 These examples correspond to a familiar distinction among three grades of inductive 

support. In Bayesian terms, where E represents a new observation and H represents a 

hypothesis, strong confirmation corresponds to Pr(H / E) > r for some threshold r; 

incremental confirmation corresponds to Pr(H / E) > Pr(H); and plausibility may be 

interpreted as non-negligible prior probability Pr(H). The examples suggest a corresponding 

distinction for analogies: strong and intermediate analogue confirmation, and analogical 

plausibility.  

The purpose of this article is to develop a general framework for evaluating whether an 

analogical argument provides strong, weak or intermediate inductive support. In modeling 

analogical reasoning, two current discussions are relevant. The first is Norton’s challenge to 

formal models of analogical reasoning. The second, a debate about analogical inferences with 

inaccessible target domains, provides impetus for developing just such formal models.  
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For Norton (2021), a formal model of analogical reasoning is an abstract, universal 

schema that sets normative standards. The main thesis of his material theory of induction is 

that inductive inferences are warranted entirely by “local” material facts. Inductive schemas, 

to the extent that they are valid, derive their legitimacy from these local facts (2021, 270). In 

the case of analogical reasoning, Norton rejects formal schemas altogether. We should focus 

not on abstract rules but rather on empirical investigation of the source and target domains. In 

a similar spirit, Currie writes that a formal approach can “obscure the local warrants” of 

analogical inferences and “misses where the action is” (2018, 197). I agree with Norton and 

Currie that local facts do the heavy lifting in assessing analogical arguments. I argue, 

however, that an orientation towards local warrant leaves room for what I shall call quasi-

formal models, and that they are broadly compatible with Norton’s position.  

Now consider the problem of analogies whose target domains are, in crucial respects, 

inaccessible to observation. Some physicists and philosophers believe that experiments on 

black hole analogues can confirm the existence of Hawking radiation in real black holes 

(Dardashti et al. 2017, 2019). The target domain is inaccessible because actual black holes, in 

relevant respects, are astronomically remote. Hawking radiation cannot be detected from 

earth. A second prominent group of examples comes from historical sciences, such as 

archaeology and evolutionary biology, where scientists use analogies to make inferences 

about the distant past. The target domains are inaccessible because they are historically 

remote.  
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The important question, when the target is inaccessible, is whether an analogical 

inference can provide intermediate (incremental) confirmation. There is no consensus on 

whether the analogue gravity experiments confirm the existence of Hawking radiation.1 There 

are both optimists and pessimists on analogue confirmation in archaeology.2 The material 

theory of analogy seems to have little to offer in resolving such debates. If the target domain is 

inaccessible, then empirical investigation, almost by definition, cannot settle disagreements 

about whether an analogical argument provides confirmation or just plausibility. This 

motivates us to reconsider formal approaches to analogical inference, and indeed (Dardashti et 

al. 2019) develop a Bayesian approach. 

I shall steer a middle course through these debates by arguing for the value of quasi-

formal models of analogical reasoning. The starting point is the thesis that good analogical 

arguments are related to background generalizations or uniformities, but in different ways.3 

Strong analogical arguments are “powered” by an underlying generalization that establishes a 

reliable correlation between features of the source and target domains. Weak analogical 

arguments proceed in the opposite direction: they aim at a potential generalization. Finally, 

intermediate analogical arguments rely on the refinement of partially articulated 

generalizations that generate inter-domain correlations of intermediate strength. In all three 

cases, the “action” is local, but quasi-formal models let us distinguish between the three types 

                                                 
1 Crowther et al (2019), in particular, reject claims of confirmation.  
2 (Chapman and Wylie 2016) review decades-long debates about analogies in archaeology. 
3 This idea, which builds on (Bartha 2010), is challenged by Fraser (this symposium). 
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by spelling out the role played by background generalizations. The models incorporate 

standards that are helpful in assessing the prospects for analogue confirmation, even for 

inaccessible (or partially inaccessible) target domains. 

Section 2 of the paper discusses Norton’s material theory. Section 3 provides examples 

of quasi-formal models for strong and weak analogical arguments. Section 4 argues for the 

value of similar models for intermediate analogue confirmation. Section 5 explores the 

Bayesian framework in Dardashti et al. (2019), and assesses its potential application to 

inaccessible target domains.  

2. Norton’s material theory of analogy 

Norton argues negatively that formal analyses of analogical reasoning are pointless, 

and positively for an analysis in which analogical inferences are warranted entirely on the 

basis of local facts.4 The essence of the negative argument is that any abstract formal schema 

for analogy will “at best fit a range of cases imperfectly” (Norton 2021, 105). Even elaborate 

schema “will still never be adequate to all the cases. Gaps will remain.” There is “no universal 

schema” which tells us when properties of the source can legitimately be passed to the target. 

On Norton’s positive account, analogies are “factual matters to be explored 

empirically” (2021, 96). A good analogical inference is “powered” by some material fact that 

embraces the two systems, which Norton calls the fact of analogy. In a successful analogical 

argument, the fact of analogy, together with additional observations about one or both 

                                                 
4 This section draws on the assessment of Norton’s theory of analogy in (Bartha 2020). 
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systems, warrants the conclusion. Norton argues that this analysis matches scientific practice. 

Analogical reasoning in science is oriented towards “empirical investigations” of the facts, 

rather than useless formal principles (2021, 106).  

As an illustration, Norton considers Galileo’s use of analogy to infer the existence of 

mountains on the moon. In Siderius Nuncius (1610), Galileo records his observation of the 

advancing edge of sunlight on the moon. Bright points of light appear ahead of the boundary, 

and eventually join up with the illuminated area. Galileo compares this to what happens at 

sunrise on earth, when the “highest peaks [are] illuminated by the sun’s rays while the plains 

below remain in shadow” (1610, 33). He infers that the points of light mark the location of 

mountains on the moon. On Norton’s reading, Galileo’s inference is not warranted by 

conformity to some formal rule. Rather, the warrant is this: “the mode of creation of shadows 

on the earth and of the moving dark patterns on the moon is the same: they are shadows 

formed by straight rays of sunlight” (2021, 108). Norton adds: “the inference is not driven as 

much by analogy as by subsumption of the moon into a larger class of illuminated bodies” 

(2021, 109). 

In this example, the “fact of analogy” is best understood as a background 

generalization sufficiently broad that it applies to both domains.5 This generalization, together 

with additional facts about the two domains, provides both formal and material warrant for the 

                                                 
5 This reading of Norton is defended in (Bartha 2020). 
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analogical inference, and eliminates the need for any universal schema.  We can, however, 

characterize Galileo’s argument in formal terms, using the following pattern:  

S (Earth)      T (Moon) 

   (x)(P(x) → Q(x))         1 

P(S): points of light/shadows    P(T) →Q(T) 

Q(S): mountains     P(T) 

       ↓2 

       Q(T) 

   Fig. 1: Mountains on the moon 

The local generalization is that patterns of light and shadow on illuminated bodies are always 

produced by rays of sunlight striking regions of different elevation. This generalization 

derives support both from terrestrial observations and from general theory (optics). The two 

arrows represent deductive inferences from the generalization, together with the observation 

P(T) of the points of light on the moon. We could invoke a broader generalization (the laws of 

optics), but the overall reasoning pattern would be similar.6  

 Quasi-formal models are compatible with Norton’s rejection of universal schemas. 

They are templates that indicate how an analogical inference relates to particular facts and to 

                                                 
6Norton notes that there is an element of inductive risk in the conclusion. We could represent the argument form 
as abductive (see section 3.2). In short, different quasi-formal models might be applied, each specifying a 
different “formal basis” for the argument.  
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the background generalization (fact of analogy). Norton insists that the fact of analogy always 

“powers” the argument. This position limits the material theory to models of strong analogue 

confirmation (section 3.1). Other types of analogical inference require different models.  

3. Strong and weak analogical arguments 

Predictive analogical arguments use analogies to predict specific properties of the target 

domain. Explanatory analogical arguments use analogies to support an explanatory hypothesis 

about the target domain, one that would explain the observed features. I argue in this section 

that this distinction about objectives aligns with a distinction in logical structure between 

strong and weak analogical arguments. In strong analogical arguments, a well-supported 

background uniformity powers the inference. In weak arguments, the background uniformity 

may not be articulated and the direction of inference is reversed. The structural distinction 

leads to different models, and different standards, for the two categories. 

3.1 Strong analogue confirmation and predictive analogies 

 Experiments and observations on a source domain sometimes lead to highly reliable 

predictions about the target domain. This type of analogical reasoning, important in practical 

settings, draws upon empirical observation and theoretical understanding of both domains.  

Sterrett (2017a, 2017b) provides historical and philosophical examination of the 

method of physically similar systems. One of the examples that she discusses is the work of 

William Froude, a 19th century English engineer, on model ships. Prior to Froude, model ships 

were used in the design of full-size vessels, but predictions were unreliable. Froude 
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determined that the key concept was a dimensionless characteristic now known as the Froude 

number,  

𝐹𝐹 = 𝑣𝑣
�𝑙𝑙𝑙𝑙

  , 

where v represents ship speed, l is the characteristic length of the hull and g is the gravitational 

constant. A model ship with the same Froude number as a full-sized vessel could be used to 

predict, for the full-sized ship, the residual resistance of the water due to created waves and 

eddies. Froude’s Law of Comparisons states that if S and T are ships with the same Froude 

number (FS = FT), then their residual resistance is in the ratio of the cubes of their lengths: 

 𝑅𝑅𝑇𝑇
𝑅𝑅𝑆𝑆

= 𝑙𝑙𝑇𝑇
  3

𝑙𝑙𝑆𝑆
  3 . 

Froude’s results allowed for “the estimation, with reasonable accuracy, of the resistance and 

horse-power of full-sized ships from experiments with small and inexpensive models” (Taylor 

1907, 418).7 

 Efforts to analyze the reasoning in this and similar examples culminated in two papers 

by Edgar Buckingham (1914a, 1914b). Buckingham begins with a standard characterization of 

two physically similar systems S and S′:  

                                                 
7Taylor mentions a number of constraints for such inferences. 
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If the relation in S′ is of the same form as the relation in S and is describable by the 

same equation, then the two systems are physically similar as regards this relation. 

(1914b, 353) 

In many cases, we don’t need to know the underlying physical laws. It is enough to know that 

certain dimensionless quantities determine the feature of interest, and that these dimensionless 

quantities are identical in the two systems. (The Froude number is one such dimensionless 

quantity.) Buckingham writes Π1, …, Πp for the dimensionless parameters and Ψ(Π1, …, Πp) 

= 0 for the reduced equation that indicates the dependence relations. He states: 

If the values of the dimensionless parameters… are the same for S and S′, then we can 

determine the values of any [physical variable] Qi in S′ given the others, and given 

values of Qi in S. (1914a) 

This gives us a quasi-formal model for analogical reasoning, described in (Sterrett 2017b): 

  S (source)      T (target) 

     Ψ(Π1, …, Πp) = 0 

 

  Π1 = π       Π1 = π1  

  Q(S)       Q(T)  

Fig. 2: Common reduced equation 
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The template in Fig. 2 is quasi-formal because it has the kind of “gaps” that Norton notes. 

Correct application requires expertise about the range of applicability for the reduced 

equation. The template is nevertheless useful because it illustrates the basic structure and 

requirements of strong analogue confirmation: 

• A well-confirmed local generalization that lets us move reliably between features of the 

source and target domains; 

• Typically, a predictive analogical inference: the inferred conclusion, Q(T), is a particular 

property of the target. 

3.2 Weak analogical arguments 

Analogical reasoning is often used to show that a conjecture is plausible, i.e., worthy of 

serious consideration. Bartha (2010) proposes that such arguments are successful if they 

establish the potential truth of a generalization that covers both source and target domains. 

Bartha’s articulation model is based on a two-step evaluation. The first step is to articulate the 

prior association, a causal or logical relationship among the properties of the source domain. 

The second step is to assess the potential for generalization by verifying that no crucial 

element of the prior association lacks an analogue in the target domain.  

As an illustration, consider the acoustical analogy, employed by some 19th century 

physicists seeking to explain the discrete lines in the visible spectrum of Hydrogen.8 Around 

                                                 
8 This example expands on the discussion in (Bartha 2010). For a historical account, see (Maier 1981). 
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1870, Stokes suggested that the lines might be explained using a model analogous to a 

vibrating string or tuning fork. If such a model were correct, then we could identify the 

frequencies with some type of oscillation. We should expect to find that frequencies fn of the 

spectral lines are integral multiples of a fundamental frequency f1, and therefore that the 

frequencies should be related by simple whole-number ratios. Although Stoney (in 1871) 

found that some of the frequencies could be related in this way, there were many missing 

spectral lines. Furthermore, the whole-number ratios that he discovered involved the numbers 

20, 27 and 32 – hardly simple ratios. As Bartha (2010) suggests, the acoustical analogy has an 

initial measure of plausibility but, on close scrutiny, fails to satisfy the criterion of potential 

for generalization.  

Consider the structural difference between the acoustical analogy and analogical 

inference using model ships. In the latter case, the background generalization, Froude’s Law, 

is well understood in advance and drives the analogical reasoning. In the acoustical analogy, 

the analogical inference is powered in the reverse direction: from observed features of the two 

domains (the discrete frequencies) towards a possible generalization that is not fully 

articulated. This is an explanatory analogical inference: its purpose is to suggest the kind of 

hypothesis that might explain the spectral lines of hydrogen. We can represent the inference 

with the following diagram: 
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S (vibrating string)     T (hydrogen spectral lines) 

    [General harmonic oscillator model] 

     

  

 Q:  fn = n f1 for n = 1,2,…    Q*:  fn = n f1 for n = 1,2,…  

E: fn / fm = n/m     E*: ? fn / fm = n/m  

           

    Fig. 3: Acoustical analogy 

Q represents an explanatory feature of the source whose analogue is projected to hold for the 

target. The positive analogy, E and E*, is the observed evidence of discrete frequencies in 

whole number ratios. The dashed arrows point towards a tentative background generalization. 

The argument fails for lack of evidence that spectral line frequencies fn occur in the right 

ratios. The logic is captured in the quasi-formal model of Fig. 3.  

Weak analogical arguments derive their cogency from the possibility of a background 

generalization. Quasi-formal models indicate the structure of this relationship, which supplies 

the material and formal foundation for the argument.  

4. Intermediate analogical arguments 

A positive result for medical treatment tested on an animal model may count as evidence 

(incremental confirmation) for its effectiveness in humans. Currie (2018) seems to 
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acknowledge a similar function for analogies in the historical sciences. He identifies a role for 

background uniformities in such arguments:  

One does not move from analogue-features to the target having features without 

mediation. The mediation in historical science is often via some process type that is 

taken to have been active in both analogue and target… (2018, 197) 

This diverges from the models in section 3. We must have prior knowledge of a background 

uniformity over the two domains (in contrast to plausibility arguments), but this may be a 

broad uniformity (in contrast to strong analogical arguments). Particular facts about the 

domains are then used to refine the uniformity. Intermediate analogue confirmation, therefore, 

is “powered” in both directions. This section outlines two models. 

4.1 Analogical reasoning used to refine a broad regularity 

 Donnan (1971) uses ethnographic analogy to explain the significance of odd markings 

on the necks of Moche clay pots found in the Peruvian Andes (Donnan 1971). Donnan learned 

that contemporary Peruvian potters in the region employ similar markings, known as signáles, 

to indicate ownership when multiple potters fire their pots in a common kiln. The analogical 

reasoning appears to confirm that the marks served the same purpose for the Moche. The 

conclusion is strengthened by direct historical analogy: the present-day population traces a 

continuous link to the Moche culture. 

 The pattern of inference may be represented as follows: 
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 Q    X    Q*  

     X’ 

P        P*   

   Fig. 4: Refinement of a broad regularity 

P and P* denote the positive analogy: analogous effects (signáles). Q denotes the known 

explanation for current production practices, and Q* denotes the analogous explanation for the 

Mochica. X represents a broad background uniformity: production processes operate in the 

same way in both domains. X is refined to a more specific uniformity, X′: “ceramic 

technologies… are maintained over long periods of time” (Donnan 1971, 466). The refined 

uniformity supports the analogical conclusion, Q*.  

 It might seem that this explanatory analogy provides incremental confirmation. 

Interestingly, Donnan makes no such claim, contenting himself with a modest assertion of 

plausibility:  

The ethnographic analogy does offer a possible explanation for the marks… and 

provides an interesting hypothesis which could be tested when more data are made 

available (1971, 466).  



16 
 

Whether this sort of analogical argument counts as confirmation appears to depend upon our 

ability to exclude rival explanatory hypotheses. This difficulty is specific to explanatory 

analogies, which reinforces the idea that they are naturally classified as plausibility arguments.  

4.2 Engineering the right source domain 

 Researchers studying neurodegenerative diseases rely on animal models, typically 

mice or rats, to understand how the diseases work in humans. Consider SMA, Spinal Muscular 

Atrophy, a disease caused by defective motor neurons. Humans have one copy of the SMN1 

(survival motor neuron 1) gene and up to four copies of SMN2, a “backup” gene that 

imperfectly duplicates the protein-producing function of SMN1. Mutations in SMN1 result in 

SMA, a disease in which motor neurons in the brain stem and spinal cord gradually die. The 

death rate is inversely related to the amount of functional SMN2.  

 Mice are used to study SMA, but the genetic mechanism in mice is different. Mice 

have a single SMN gene (Fig. 5, from (Fisher and Bannerman 2019)). If one or both alleles 

are normal, the mouse is viable and does not develop SMA; if both alleles are mutated, the 

mouse dies in embryo. Consequently, SMA never occurs in naturally born mice.  
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Mouse    Human 

 

 

 

Fig. 5: SMN genes in mice and humans 

For this reason, engineered mouse models are used. One SMN allele is deleted and the other is 

modified to resemble various mutations of human SMN2. The mouse is viable and develops 

SMA. Researchers can study the rate of neuron loss in relation to the amount of functional 

SMN2, and they can test gene therapies. This research has had considerable success in 

developing treatments for humans. 

 Do the experiments on mice provide incremental confirmation for hypotheses about 

neurodegenerative diseases in humans? Arguably, yes. The argument begins with a broad 

background uniformity, in this case our common genetic inheritance:  

99% of human genes have a mouse homolog and more than 90% of the genes that 

have been implicated in human disease are present in the mouse genome” (Ahmad-

Annuar et al 2003, 451).  

This provides a basis for using the animal model in plausibility arguments, aimed at exploring 

possible genetic mechanisms for a disease. In the case of SMA, where the causal gene is 
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known, researchers adopt a more precise approach in which the gene is mutated to create the 

mouse model. Researchers can then rely on a specific uniformity to explore causal 

mechanisms and develop treatments. These predictive analogical arguments are good 

candidates for incremental confirmation.  

In short: intermediate analogue confirmation seems to require an independently 

established background generalization which is refined using particular facts about the two 

domains. The prospects for incremental analogue confirmation are better for predictive 

analogies than for explanatory analogies.  

5. Bayesian analysis of analogue confirmation; application to inaccessible domains 

Dardashti et al. (2019), henceforth (DHTW 2019), propose a Bayesian analysis of 

intermediate analogue confirmation. This section briefly explains their Bayesian model (in a 

simplified fashion) and explores its applicability to black holes and other inaccessible target 

domains. 

In an earlier paper (Dardashti et al. 2017), the authors argue that analogue confirmation of 

a hypothesis about an inaccessible target domain rests on an assumption of universality. Two 

systems belong to the same universality class if variation in physical type is irrelevant to the 

physical properties of interest. The assumption that source and target belong to the same 

universality class is appropriate for physically similar systems (section 3.1). More generally, 

the requirement of universality is similar to the requirement, in section 4, of an independently 

established background generalization for incremental confirmation. In the examples of 



19 
 

section 4, however, justification comes from observation of both source and target domains. If 

the target is inaccessible, the authors suggest, “model-external and empirically grounded 

arguments”, or MEEGA, might still be given for universality (2017, 73).  

In the black hole example, the challenge is to justify the assumption, call it X, that 

laboratory analogues of black holes belong to the same universality class as actual black holes. 

Given X, the observation of phenomena analogous to Hawking radiation in the analogue 

experiments can provide incremental confirmation for Hawking radiation in actual black 

holes. But it is unclear exactly how X is to be justified.  

The Bayesian analysis of (DHTW 2019) offers two improvements. First, it provides a 

general model for incremental analogue confirmation. Second, it replaces the assumption of 

universality (X) with the seemingly weaker assumption 0 < Pr(X) < 1: universality has non-

zero prior probability. Let A represent the source domain and M the target. The Bayesian 

model introduces four binary variables: 

X: Universality assumptions hold. 

M: The model of the target is adequate. 

A: The model of the source is adequate. 

E: Empirical evidence is observed for the model A. 
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Fig. 6: Bayesian representation of analogue confirmation 

The argument for confirmation rests on the following assumptions: 

(1) The relationship between X, M, A, E is appropriately modeled with the Bayesian 

network in Fig. 6. 

(2) 1 > Pr(X) > 0 

(3) Pr(M / X) > Pr(M / ¬X): Universality supports M. 

(4) Pr(A / X) > Pr(A / ¬X): Universality supports A. 

(5) Pr(E / A) > Pr(E / ¬A): E is supported by A. 

From these assumptions, one can prove 

Pr(M / E) > Pr(M). 

M A 

E 

X 
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After arguing that conditions (1) – (5) are satisfied for the black hole example, the authors 

conclude that observation of phenomena analogous to Hawking radiation in the laboratory 

analogues would incrementally confirm the reality of Hawking radiation.   

 The Bayesian analysis provides a useful model for incremental analogue confirmation. 

There is an important concern, however, about whether the argument gains in generality by 

substituting the assumption 0 < Pr(X) < 1 in place of X.  

Consider the following simple experiment. A coin of unknown bias is tossed. If Heads 

comes up, a coin biased in favour of Heads is placed in each of two boxes, labelled M and A. 

If Tails comes up, coins biased in favour of Tails are placed in the two boxes. Box M is 

removed from the room; it is now unobservable. Box A is opened, the coin inside is tossed 

and the result is Heads. This evidence provides incremental confirmation that the coin in box 

M is biased for Heads. To see that this experiment conforms to assumptions (1) – (5), let X 

signify Heads on the original toss, let M and A signify the placement of a coin biased for 

Heads in the two boxes, and let E stand for a result of Heads when the coin in box A is tossed. 

Because (1)– (5) are satisfied, we have analogue confirmation: Pr(M / E) > Pr(M). But the 

assumptions guarantee the existence of a correlation between the variables M and A: 

Pr(M / A) > Pr(M) and Pr(M / ¬A) < Pr(M) regardless of the value of Pr(X), so long as 

0 < Pr(X) < 1. The relevant universality assumption here is not X but an experimental set-up 

that guarantees that both coins have the same bias.  



22 
 

 Similarly, in the black hole example, the universality assumption responsible for 

incremental confirmation is not X, but the Bayesian network set-up that guarantees a 

correlation between M and A. The universality assumption is no weaker than in the (2017) 

paper. We face the same difficulty: to understand how MEEGA can justify a universality 

assumption for an entirely inaccessible target domain. Perhaps this concern is similar to the 

one expressed by Crowther et al (2019), who insist that analogue confirmation depends on 

prior confirmation that source and target belong to a common universality class. 

6. Conclusion 

I close with two optimistic comments about analogue confirmation. First: there are ways 

of establishing the universality assumption in cases of partially inaccessible targets (as we saw 

in the SMA example), and perhaps we can do the same for black holes, based on general 

theoretical considerations or accessible knowledge of black holes. Second: the distinction 

between confirmation and plausibility arguments is not always critical. Plausibility arguments 

count towards overall probability and, in a Bayesian framework, they are part of the logic of 

confirmation. Furthermore, as Reiss (2019) suggests, there is much to be said for broadening 

our understanding of model-based reasoning beyond a narrow focus on confirmation.  
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