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Abstract

This paper argues for the value of interpreting classical gauge theories as part of the

larger project of interpreting quantum field theories. It looks specifically at the benefit of

studying a classical version of chromodynamics in order to better understand certain

features of color charge in quantum chromodynamics. It discusses the ways in which the

usual presentation of the conservation of color charge and the confinement of color charge

serve to obscure the Lie­algebra­valued character of the conserved Noether charge, and it

explores how we can remove these obscuring factors by studying color charge in classical

chromodynamics. This key example of color charge illustrates the methodological benefit

of the classical vantage point, giving us the ability to pinpoint the uniquely quantum

character of certain features of charge properties.
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1 Introduction

Contemporary particle physics is built up from three primary quantum field theories describing

the strong, weak, and electromagnetic interactions of elementary particles. These quantum field

theories are painstakingly developed, with varying degrees of mathematical rigor, by applying

quantization procedures to classical versions of these theories. It is the resulting quantum

versions that are the successful theories, and it is these theories, therefore, that should be the

proper subject of philosophical investigation into what our current best physics has to say about

the nature of matter at the smallest levels accessible to empirical study (given current

technological limitations).

It may seem, therefore, that the classical versions of these theories are philosophically

insignificant, if they are construed as mere formal precursors to the real theory born out of the

process of quantization. I argue against this view, defending the methodological value of

interpreting classical theories and coming to better understand their quantum counterparts from

that vantage point. I give an illustration of how key features of the quantum theory are already

present, prior to quantization, in the classical version. The license to interpret quantum charge

from the classical vantage point comes from the shared gauge symmetry structure across the

relevant classical and quantum theories. Furthermore, however, there is a benefit from making

use of this license to interpret from the classical vantage point. I show how the formulation of a

classical version of chromodynamics in terms of fiber bundles gives a particular vantage point

for understanding the su(3) character of color charge in QCD—a feature of color charge that is

obscured in QCD itself due to confinement.

I take it as an uncontroversial point of agreement that any philosophical account of what

contemporary physics has to say about the smallest constituents of matter that does not
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seriously contend with the quantum aspects of our current theories is, at best incomplete, and at

worst fundamentally misguided. Any yet, quantum field theory (QFT) is a particularly tangled

area of theoretical physics, and untangling many of its conceptual puzzles is made more

tractable through a piecemeal of approach. Classical gauge theories can be thought of as part of

the ‘classical bones’ beneath the ‘quantum flesh’ of current best physics. By separating the

‘bones’ from the ‘flesh’ we can more easily untangle those distinctively quantum features of a

given quantum field theory from those features that arise from the shared geometric backbone

of both classical and quantum field theory.

2 Color charge in quantum chromodynamics

Charge properties in field theories (both quantum and classical) are of philosophical interest for

several reasons. Foremost, charge properties are major conceptual linchpins in their respective

theories. The electric, color, and weak charges of the Standard Model (SM) govern the

fundamental interaction processes of each theory, categorizing those particles that are eligible

for participation in each interaction, and bearing a close conceptual connection to the coupling

constants for each theory. In addition, as conserved quantities via Noether’s theorem, these

charge properties have a distinguished level of physical significance. And from the standpoint

of metaphysics, these properties are especially relevant for questions concerning the

interpretation of fundamental properties in our current best physics of the smallest empirically

accessible length scales. In this section, I focus on two important features of color charge in

QCD. First, the conserved Noether current for color charge in QCD is Lie­algebra­valued,

taking values in su(3). Second, QCD color charge is confined. In the remainder of this section,

I argue that the feature of confinement (and related notions) in QCD actually obscures the
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Lie­algebra­valued character of color charge. In section 3 I will argue that the su(3)character of

color charge is made manifest in a classical version of chromodynamics.

2.1 Confinement, color neutrality, infrared slavery, and asymptotic

freedom

It is well­known that the result of applying Noether’s theorem to gauge symmetries results in a

conserved current that takes values in the Lie algebra associated to the symmetry group.1 In the

case of electrodynamics, this reduces to the usual sense of conserved electric charge given in

real numbers. This works because the relevant symmetry group is U(1) whose Lie algebra is

simply R. Thus, we may not immediately recognize that electric charge is in fact a

Lie­algebra­valued quantity. In chromodynamics the conserved Noether current takes values in

the Lie algebra su(3), since su(3)is the Lie algebra of the symmetry group SU(3).

For the interpretation of charge in QCD, however, this su(3)feature of color charge is

sometimes obscured by the further recognition that color charge is confined. As is well­known,

quarks, anti­quark, and gluons are not observable in isolation, but rather nature only allows for

them to appear in bound states with each other in such a way that the net color charge of the

observed state is always zero, or ‘white.’ In discussions of the conservation of color charge,

most textbook discussions proceed at the level of specific quark and anti­quark color states, (r,

b, g; r̄, b̄, ḡ). Often in conjunction with Feynman diagrams, we speak of the conservation of

color in terms of, separately, the conservation of each of these kinds of color at each vertex in a
1See Banados and Reyes (2016) for a recent review of Noether­type theorems. See also

Kosmann­Schwarzbach (2011) for a comprehensive treatment, and see Olver (1993) for a stan­

dard mathematical presentation of the theorem.
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diagram (see figure ). Since (r, b, g; r̄, b̄, ḡ) are not elements of su(3), this gives a very

different way of thinking of the conservation of color charge than the sense of conservation we

get from Noether’s theorem.

Figure 1: Color states r, b, and g accounted for at each vertex within a Feynman diagram, here

given for the process of nucleon scattering via pion exchange. Straight lines with arrows depict

quark states and curly lines with double coloring depict gluon states.

It is valuable to disambiguate several ideas related to confinement. First, there is the as yet

unproven result of quark confinement as a consequence of the dynamics of QCD. Second, there

is the theoretical stipulation of color neutrality. For example, in the construction of proton

states, p, we take the tensor product of the SU(3) carrier spaces for each of the three valance

quarks within the proton:

p ∈ C3 ⊗ C3 ⊗ C3 ∼= C1 ⊕ C8 ⊕ C8 ⊕ C10. (1)
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On the right hand side, we have the four different mathematical possibilities for which

representation of SU(3) the proton could be in: C1, two copies of C8, or C10. The C1 option is

the only physical possibility, according to the stipulation of color neutrality: all observable

states must transform according to the trivial representation (whose carrier space is C1) of the

SU(3) color symmetry, i.e., be overall color­charge­neutral.

In addition, there are two well­known, key dynamical consequences of running of the

strong coupling constant αs in QCD. First, there is widespread consensus that applying

perturbation theory to QCD proves that the theory has ultraviolet asymptotic freedom, that is,

for energy levels in the ultraviolet regime (shorter length­scales, higher energies) the effective

QCD coupling goes to zero as distance goes to zero.2 Second, QCD appears to have, as

demonstrated numerically in lattice QCD, infrared slavery: in the infrared regime (larger

length­scales, lower energies) the coupling increases. These numerical results are, we might

say, forcefully suggestive of quark confinement, while falling short of an airtight proof. It is

expected that, if a proof of infrared slavery is found, it would further show that color neutrality

is a dynamical consequence of the theory.

2.2 Obscuring su(3)

The target of this open question, more specifically, is the demonstration of confinement for a

certain class of non­Abelian gauge theories. The theory of the weak interaction, for instance, is

non­Abelian and quantum, and yet weak charge is manifestly not confined. Recent

developments in mathematical quantization procedures3 seem to be one promising line of
2Though see Seiler (2003) for a dissenting view.
3For an overview of such quantization procedures Ali and Engliš (2005), and see Hall (2013)

chapters 22 and 23 for more on geometric quantization.
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attack. Moreover, on that line of attack, it will be beneficial to have at one’s disposal the

vantage point of classical non­Abelian gauge theories. From that vantage point, one of the

valuable things we can see about color charge, in stark relief, is that it’s quark and anti­quark

matter fields have, in a sense to be shown below, a Lie­algebra­valued quantity of charge. In

classical chromodynamics, this quantity is not confined; there is no trouble with having free

quark, anti­quark, or gluon fields. As a contrast class for QCD, classical chromodynamics

provides clarity as to what precisely must change as a result of an appropriate quantization

procedure in order to explain quark confinement.

One of the ways we speak of color neutrality (r + b + g = white) in QCD can obscure the

Lie algebra structure of color charge for the matter fields. Since color charge is confined, its

conservation amounts to always having overall ‘white’ states, usually accounted for by equal

amounts of r, b, and g, or else through the compensation of each of these colors with their

corresponding anti­colors. This suggests that what is conserved is red, and separately blue, and

separately green. There may indeed be a way of showing that the conservation of the Noether

charge entails these these conservation laws—but that has yet to be shown, and attempts in that

direction must contend with the gauge dependence of those specific (r, b, g; r̄, b̄, ḡ) quantities.

The converse (that the conservation of (r, b, g; r̄, b̄, ḡ) should imply the conservation of the

Noether current) is far from apparent. By focusing on the (r, b, g; r̄, b̄, ḡ) properties, this way of

looking at color charge conservation obscures the role of su(3)in this conservation law.

I argue in the next section that we can, instead, make sense of the conservation of the

su(3) Noether charge in QCD by investigating charge in a classical version of quantum

chromodynamics. In that classical theory, the formulation of the Wong force law (the

non­Abelian generalization of the Lorentz force law) leads to the ascription of an su(3)­valued

quantity of charge for matter fields, as well as for the gauge field. This gives us a vantage point
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from which to see clearly the su(3) character of charge for the matter fields themselves, and

how they therefore contribute to the overall conserved su(3) Noether charge. Moreover, by

choosing to investigate charge in this classical version of chromodynamics, we have set aside

the physically important but conceptually confounding issues of color neutrality, quark

confinement, asymptotic freedom, and infrared slavery. By looking at this classical version of

the theory with unconfined, non­neutral matter fields, we can more clearly see the

su(3) character of quantum color charge.

3 Color charge in quantum chromodynamics

In this section, I show how the formulation of a classical version of chromodynamics in terms

of fiber bundles gives a particular vantage point for understanding the su(3) character of color

charge in QCD. This classical version of chromodynamics is not the final, correct theory, and it

does not enjoy the empirical success that QCD has.4 Nevertheless, the geometric bones of

QCD are more clearly studied in classical chromodynamics than in QCD itself. And these

geometric bones give a clear sense in which the color­charged particles have su(3)­valued

charge. This serves to illustrate the interpretive advantage of the classical vantage point. By

isolating and investigating the ‘classical bones’ supporting the ‘quantum flesh’ of our

successful field theories, we can separate various conceptual structures and relationships in

quantum chromodynamics. In particular, we see here that two key features of color charge

picked out in section 2, namely confinement and the role of the su(3), come from two different
4For that matter, QCD is not the final correct theory either. But it is the predictions of QCD

(together with all the calculational details of renormalization, perturbation theory, lattice QCD,

etc.,), rather than any of classical chromodynamics, that currently enjoy empirical success.
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places in QCD. Confinement must be found in the ‘quantum flesh,’ whereas the

Lie­algebra­valued nature of charge is manifest in the ‘classical bones.’

3.1 Classical chromodynamics and the Wong force law

We may formulate the basic features of a classical version of chromodynamics as follows.5 We

will adopt the abstract index notion developed in Wald (1984) with the further notational

conventions of Weatherall (2016). In particular, vectors and tensors tangent toM have

lower­case Latin indices; vectors and tensors tangent to the total space P have lower­case Greek

indices; and upper­case Fraktur indices are used for vectors with a Lie algebra structure. In

addition, indices i, j, etc. will be used to label vectors in the carrier space V of a representation

of SU(3) used to construct an associated bundle. Using these conventions, fix a relativistic

spacetime (M, gab) and an SU(3) principal bundle P
℘→M overM . In addition, fix a principal

connection ωA
α on P and an inner product kAB on the Lie algebra su(3) associated to SU(3).

The curvature of the principal connection is interpreted as the chromodynamic field

strength. This curvature is

ΩA
αβ = dαω

A
β +

1

2
[ωA

α, ω
A
β], (2)

where dα is the exterior derivative on P , and the bracket [·, ·] is the Lie bracket on su(3).

The quark and anti­quark matter fields correspond to sections of different associated

bundles P ×G V
℘ρ→M , where V is the carrier space for an irreducible representation ρ of

SU(3). Thus, a matter field Ψ :M → P ×G V maps points x ∈M to equivalence classes

[p, vi] for some p ∈ P and vi ∈ V . Here [p, vi] ∼= [p′, vj] just in case there exists a g ∈ SU(3)

5See Weatherall (2016) for more technical details about formulating classical field theories

using the machinery of fiber bundles.
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such that (pg, ρ(g−1)vi) = (p′, vj). These vectors vk describe state vectors in the internal

charge space for an elementary particle of this kind of matter field (either a quark, anti­quark,

or gluon).

The sections Ψ :M → P ×G V are in one­to­one correspondence with V ­valued,

G­equivariant maps ψi on P . Given a section defined at a point x inM , Ψ(x) = [p, v], we

define ψi : P → V by ψi(p) 7→ λ−1
p (Ψ(℘(p))), where the map λp : V → π−1

ρ (℘(p)) is defined

by λp(v) = [p, v]. In different contexts, it is sometimes more convenient to use ψi on P rather

than Ψ onM . In particular, it is technically simpler to define the action of the covariant

derivative induced by the connection ωA
α on ψi than on Ψ. For a field ψi : P → V , its

covariant derivative is the ordinary exterior derivative dα on P following the horizontal

projection. That is, for any vector ξα on P , the covariant derivative induced by the connection

is
ω

Dαψ
iξα = dαψ

iξα|, (3)

where ξα| = ωA
αξ

α.

The generalization of the Lorentz force law to non­Abelian gauge theory is known as the

Wong force law, first given by Wong (1970). It can be mathematically derived as follows,

although the status of this derivation as a physical argument is unclear.6 Using the inner

product kAB, the metric gab onM , and our principal connection ωA
α, we can construct a metric

6In particular, it is unclear what physical significance we should attribute to geodesics in the

total space. The mathematical derivation rehearsed here was first given by Kerner (1968). It

is also given in Bleecker (2013) chapter 10 section 1. Alternative derivations can be found in

Storchak (2014), Sternberg (1977), and Weinstein (1978). Wong (1970) himself arrives at the

expression by extracting a classical limit of the equations of motion for the quantum fields.
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on the total space known as the ‘bundle metric.’ First, we take gab on the base spaceM , and we

pull this back along the projection to get a symmetric rank 2 tensor (℘∗g)αβ on the total space

P . That is,

(℘∗g)αβσ
αηβ = gab(℘∗σ

α)(℘∗η
β) (4)

for all vectors σα, ηα at a point p in P . There is another symmetric rank 2 tensor on P , denoted

kαβ , defined in terms of the connection ωA
α. It is given by

kαβσ
αηβ = kABω

A
ασ

αωB
βη

β. (5)

For any two vectors σα and ηβ at a point p in P , kαβ gives the inner product of their vertical

projections. Adding these two tensors gives us our bundle metric hαβ:

hαβ = (℘∗g)αβ + kαβ. (6)

We can use the bundle metric to classify curves through the total space. Let γ : [0, 1] → P

be a geodesic relative to hαβ with tangent field ξα(t). It follows that ωA
αξ

α(t) = QA ∈ su(3) is

independent of t (see Bleecker (2013), Theorem 10.1.5). Let γ̃ = ℘ ◦ γ be the projection of γ

down to the base space with tangent field ξa. It follows that, relative to a choice of section σ,

the acceleration of this curve γ̃ on spacetime obeys the Wong force law:

ξn∇nξ
b = kABg

cbQAΩB
acξ

a = QAΩ b
Aa ξ

a , (7)

where ΩA
ab = σ∗(ΩA

αβ) is the field strength (see Bleecker (2013), Theorem 10.1.6). We

interpret γ̃ as the world­line for a particle of massm and charge qA = QA/m. If G = U(1), this
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reduces to the familiar Lorentz force law for electromagnetism. In that case we interpret

qA ∈ R as the amount of electric charge carried by the particle whose world line is γ̃. Thus, in

classical chromodynamics, qA is the non­Abelian charge property analog of electric charge.

3.2 Interpretation

How may we interpret qA in this formulation of classical chromodynamics? We usually

predicate color charge of a particle in the sense of a basis vector in a representation of SU(3),

that is, a specific color state (r, b, g; r̄, b̄, ḡ). Using the electromagnetic interpretation as a

guide, one might then expect that qA gives the color state of the particle under the influence of

the Wong force. And since gluons are the only type of particle which have Lie­algebra­valued

color states, one might conclude that γ̃ is the world line of a gluon.

However, such reasoning is mistaken. The color­charged matter fields, representing either

quarks or gluons, subject to this Wong force law couple to the gauge field via the

charge­current density. This charge­current density is itself a Lie­algebra­valued 1­form JA
α on

the total space P . The charge qA is Lie­algebra­valued because the charge current density is

Lie­algebra­valued. It is only in the case of electromagnetism that the charge qA reduces to a

real number which can be interpreted as the amount of charge carried by an electrically charged

particle.

The definition of JA
a relies upon the inner product kAB on su(3), as well as an inner product

hij on the carrier space V of the representation of G used to describe the matter field. Fix a

basis {eA} of the Lie algebra su(3). Then, following Bleecker (2013) 5.1.2., the current JA
a is

given by

JA
α = kABeBhijψ̃

j
ω

Dαψ
i , (8)
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where ψ̃j = ρ∗(eA) ▷ ψj . That is, ψ̃j is the result of transforming ψj under the representation

ρ∗ of su(3) on V induced by the representation ρ of G on V.7 The definition of the current in eq.

(8) gives us mathematical reason to acknowledge that the charge values qA for charged matter

fields that contribute to JA
α are Lie­algebra­valued.

This general expression for the current associated with a charged matter field ψi in a

non­Abelian gauge theory reduces to the more familiar current of electromagnetism as follows.

Suppose now that G = U(1). Further, choose i =
√
−1 as a basis for U(1)’s associated Lie

algebra g = R, and choose kAB such that kABeAeB = 1. Then the current JA
α becomes,

JA
α = ihij(iψ)

j
ω

Dαψ
i . (9)

Now fix a choice of local section σ : U → P . The vector potential Aa = σ∗(ωA
α) is the

pullback of the connection along the choice of section σ. Similarly, the complex scalar field on

M is Ψ = σ∗(ψi). With this notation, a local representation of the current onM is

Ja = i((iΨ)∗∇aΨ+ iΨ(∇aΨ)∗) (10)

= Ψ∗∇aΨ−Ψ(∇aΨ)∗ , (11)

where∇a = ∂a − iAa is the covariant derivative onM , and the star ∗ indicates complex

conjugation.

To return now to the main theme of the value of interpreting classical field theories, the

foregoing discussion shows how color charge has a distinctly Lie­algebra­valued character due

to the structure of the field theory that is captured in the geometry, and not from the quantum
7See Hamilton (2017) 2.1.12.
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character of QCD. Electric charge in QED is also Lie­algebra­valued, but since the Lie algebra

of U(1) is R we do not immediately recognize the role of the Lie algebra for electric charge.

The field strength (eq. 2), given by the curvature of the connection, is Lie­algebra­valued from

the start, and this fits with what we expect of the gauge field for chromodynamics in relation to

gluons, which transform according to the adjoint representation. Moreover, the charge

qA = QA/m in (eq. 7) is Lie­algebra­valued, and it gives the charge of the particle whose

trajectory obeys the Wong force law. Thus, charge for quarks and anti­quarks is not only a

matter of states within the fundamental representations of SU(3) (wherein we find (r, b, g; r̄, b̄,

ḡ)), but also of Lie­algebra­valued contributions to the charge current density JA
a.

Since there is, then, this sense in which charged particles have su(3)charge, this gives us

another vantage point from which to consider the conversation of the current JA
α (see Bleecker

(2013) 5.1.5). Rather than thinking of conservation of color charge in terms of (r, b, g; r̄, b̄,

ḡ) values in Feynman diagrams, we can think of it in terms of su(3)contributions to JA
α. While

there is merit to the Feynman diagram viewpoint of charge conservation, the benefit of this

classical vantage point is that the Lie­algebra­valued character of JA
α is manifest.

The point is not that we can only see these features of charge from the classical vantage

point, or that they are not available from the quantum field theory vantage point. Indeed, these

features are present in the quantum version of the theory, and so these features of charge are

expected to be preserved under any acceptable quantization procedure. They are, then, part of

the quantum version of the theory precisely because they are first of all present with the

quantum theory’s ‘classical bones.’ And by extracting just the ‘bones’ apart from the quantum

‘flesh’, we are better poised to see the role the bones play in the final, finished quantum body of

knowledge.
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4 Conclusion

In this paper I have argued for the benefit to be gained from viewing quantum field theoretic

properties from the vantage point of the classical versions of these field theories. The benefit is

not absolute: the ultimate goal is a thoroughgoing understanding of the relevant properties from

the standpoint of quantum field theories (and later on, presumably, of their successors). But,

when we return to renew our efforts at interpreting quantum field theories as applied in particle

physics, we will benefit from having first spent some time looking at these fundamental

properties from the classical vantage point. I have illustrated the benefit of this approach by

showing how the Lie­algebra­value character of charge properties is made manifest in classical

field theories. In the case of chromodynamics, this feature of charge is obscured in the quantum

version of the theory due to confinement and color neutrality. By turning attention to the

unconfined matter fields in classical chromodynamics, we uncover the su(3)character of color

charge.

Thus, from the classical vantage point, we can more easily see key features of charge

properties that are preserved under the process of quantization, while also becoming more

keenly aware of those features of charge and its associated interpretive issues that are

essentially quantum. Classical field theories are, therefore, not merely useful fictions; we

should not discard them as irrelevant for philosophical investigation for being ‘the wrong

theory’. While they do not tell the full story of what current best physics has to say about the

subatomic realm, classical field theories are a core part of the skeleton of the SM. Quantization

(and many other theoretical and calculational procedures—e.g. renormalization) fill out the rest

of the scientific achievement that is the SM. There is much we can learn about the entire body

of the SM from investigating the bones themselves (classical field theories) and comparing
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them against the full story given by quantum field theory.
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