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Abstract

One challenge in explaining neural evolution is the formal equivalence
of a variety of different computational architectures. Well-known results
show that various architectures, including neural networks with a single
hidden layer and a nonlinear activation function, can be universal func-
tion approximators (Hornik et al., 1989). Why change? The answer must
involve the intense competition for resources—including time, space, and
energy— under which brains operate (Sterling and Laughlin, 2015). I ar-
gue that such explanations are ultimately an abstract species of resource
explanation (Klein, 2018), which are distinct from but complementary to
explanations in terms of mechanical parts. Resource explanations play an
important role in computer science, one that is often under-appreciated
by philosophers of neuroscience. As a case study, I show how the develop-
ment of recurrence in neural networks can be favored when the increased
complexity allows for more efficient use of existing resources. While re-
source competition drives the change itself, the development of recurrence
creates shifts in the landscape of what is evolvable. The resulting frame-
work suggests a mechanisms by which major neural transitions can occur,
and shows why organisms on either side of a transition boundary may have
very similar cognitive capacities but very different potential for evolving
new capacities.

1 Introduction

Smith and Szathmáry (1997) proposed that we could understand the evolution-
ary history of organisms in part by thinking about a few major transitions in
evolution. Major transitions included the jump from replicating molecules to
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cells, the rise of sexual reproduction, and the origin of multicellularity. Each
represents a major change in volvability – that is, in the possible ways that
organisms might evolve. Each is also something of a one-way ticket: increased
complexity is difficult to wind back once it has become stabilized.

More recently, several authors have argued that we might also understand the
evolution of nervous systems as a series of major transitions. Ginsburg and
Jablonka (2019) argue that the shift from limited to unlimited associative learn-
ing represents something like a major transition, explicitly on the model of Smith
and Szathmáry and their transition from limited to unlimited heredity. Birch
et al. (2020) further develop this idea, with unlimited learning as a ‘transition
marker’ for a suite of capacities including conscious experiences. Barron, Halina,
and Klein (draft ms) suggest that transitions might be understood in terms of
changes in information flow in nervous systems, positing centralization, recur-
rence, and lamination as key major transitions. McShea and Simpson (2011)
note that while changes in information flow are part of Smith and Szathmáry’s
discussion, they remain under-theorized and likely more important as organisms
become more complex.

Yet while major transitions represent a powerful tool for thinking about how
organisms and the space of evolvability might change over time, there are still
considerable questions about how and why particular transitions occur. In the
case of brains the question is relatively pressing, as it seems that even very
simple brains possess considerable computational power. To put the problem
starkly (and hint at the coming answer): there is a well-known result from com-
puter science that suggests that neural networks with a single hidden layer and
a nonlinear activation function are universal function approximators (Hornik
et al., 1989). Anything we do with a complex, richly structured brain, then,
could be done by a simple neural network of appropriate size. Why not just get
bigger?

To make sense of a transition, we must make sense of why a transition to a
new and more complex form of organization is favored at some time, given that
the interesting benefits of evolvability come at some later time. Smith and
Szathmáry note that “We cannot hope to explain these transitions in terms of
the ultimate benefits they conferred” (Smith and Szathmáry, 1997, 8). The
driver of evolution is usually immediate reproductive advantage.1 In the case
of brains, furthermore, it seems that merely making a new function—evolving a
new sense organ, or a new processing trick, or any bread-and-butter evolutionary
improvement—does not obviously get one any closer to a major transition. A
transition is more than the aggregation of individually useful functions: it is a
change in which functions are possible in the first place.

1Whether this is true of all changes in evolvability is something of a contested question—
see Pigliucci (2008) for a review of the conceptual landscape. I follow Pigliucci’s conclusion
that the sense of evolvability at issue in major transitions is one that can only be selected
for indirectly. In this paper I take no particular stance on whether evolvability also requires
substantial developmental changes; see Brown (2014) for a helpful discussion of this issue. For
what it’s worth, I am also assuming that simple saltationist models, which assume a large de
novo jump, are off the table
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So the fan of major transitions in neural evolution would appear to face some-
thing of a mild puzzle. Transitions appear to have occurred and been important,
and yet it is not obvious why or how they might occur. Now, this is obviously
the sort of thing that should have a solution. As with most evolutionary puzzles,
the key is finding something that might generate the necessary fitness gradient.
In what follows, I will sketch an argument that a major driver of transitions
could be general resource constraints. In section 2 I sketch a brief theory of
explanation by resource constraint. In section 3 I then show how a transition
might occur using purely resource considerations. I conclude in section 4 with
a return to universal approximator theorems and the role of resource thinking
on constraining our explanatory approach to neural evolution more generally.

2 Resource explanations

Resource explanations are, broadly speaking, a kind of mechanistic explanation.
Mechanistic explanations decompose entities into parts, the coordinated activity
of which explains some characteristic activity of the whole (Craver, 2007; Bechtel
and Richardson, 2010). When we break down a mechanism into spatiotemporal
parts, however, we find that these often come in one of two different flavors. To
explain how an internal combustion engine produces rotary motion, we have to
talk about pistons, valves, and injectors on the one hand, and gasoline and air
and oil on the other. These play different roles within the broader explanation,
and need slightly different treatment.

Following Klein (2018), I will distinguish between mechanical parts and re-
sources. Very roughly speaking, this corresponds to an agent-patient distinc-
tion: mechanical parts do things (to other parts or to resources), while resources
have things done to them. We can sharpen up that characterization along four
different criteria.

First, mechanical parts tend to persist over the timescale of the explanation,
while resources are often transformed. Gasoline and air are mixed and burned;
the pistons and valves stay the same throughout. Note that transformation
need not be dramatic or irreversible: cool oil is fed into the engine block, and is
warmed as it removes heat. It is later cooled, and the cycle continues. Second,
mechanical parts tend to be individual whereas resources are often aggregate.
There are four pistons, and each of them needs to do the right thing at the
right time. By contrast, gasoline is a mass that is broken into smaller bits as
needed. While continuous resources are the cleanest cases, we can have discrete
resources as well. A youth soccer team needs so many oranges at half time:
the individual identity of the oranges is not important, only that there are
enough for everybody. Third, mechanical parts are often realization-indifferent
whereas resources are often realization-sensitive. Spark plugs and valves are
classic functionalist examples: for the purposes of explanation nobody cares
that much about what they are made of, so long as they are made of something
that can do the job. Gasoline, by contrast, is not fungible: put in diesel and
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the engine won’t work.

Note that the mechanical part/resource distinction—and therefore the satisfac-
tion of the first three criteria—is often explanation-relative. If I care how my
car stops, brake pads are mechanical parts: persistent, individually important,
and functional. If I’m managing a racing team, I may go through so many
brake pads that I treat them as a consumable resource. Whole mechanisms in
one context can be mere resources in another: the jeep is a complex whole to
the mechanic, matériel to the quartermaster. The point of distinguishing me-
chanical parts and resources is thus not to draw a firm metaphysical line in the
world, but to emphasize the different roles that different spatiotemporal parts
of a mechanism can play within the same explanation.

Fourth and finally, mechanical parts are usually causally conservative whereas
resources are causally promiscuous. Each valve has a fixed role and interacts
with a few different things in predictable ways. Indeed, an important rule of
thumb in engineering is to keep systems modular if possible: that is, to minimize
the ways in which mechanical parts interact (Simon, 1996; Calcott, 2014). By
contrast, resources are often used by multiple different processes at once. In
most cars, engine oil both lubricates and cools the engine. The functions can
interact: if the oil gets too hot, it ceases to be a good lubricant.

Indeed, in many domains there is a familiar possibility of resource competition
with attendant resource starvation as an explanation of failures. It takes so
much rangeland to support so many head of cattle. Why? Any individual ani-
mal would need much less, but the fact that they are all competing for the same
grass means that starvation threatens on a smaller plot. Conversely, there are
many engineering problems that arise from the need for resource management.
Electrical grids would be simple if there was one producer and one consumer.
Delivering energy to many different households with different patterns of de-
mand requires considerable infrastructure just to make sure that everyone gets
what they need.

I have mostly spoken of concrete resources. However, the point can easily be
generalized to more abstract resources as well. Economics is all about the inter-
action between various concrete resources (pigs, whiskey, fireworks) and various
abstract ones (money, futures, derivatives). A key set of abstract resources are
found in computational theory. In particular, computational complexity the-
ory studies how different algorithms require different amounts of time, memory,
processor cycles, bandwidth, and so on (Aaronson, 2015). Sometimes these
resources trade off against one another: we might cache results from a compu-
tation to save time at the expense of space. They also enter into explanations
that involve resource competition and resource starvation. My poor choice of
a sorting algorithm means that my computer used too much memory, which
explains why the operating system crashed. Both would have been fine on their
own, but the fact that they were competing for the same, causally promiscuous,
pool of memory means that they couldn’t co-exist.
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3 Transition and elaboration

Return to the evolution of brains. Brains—and nervous systems more broadly—
are incredible resource hogs. Raichle and Mintun (2006, 467) estimate that the
human brain uses about 20% of our total energy expenditure despite being only
about 2% of body weight. Furthermore, the majority of that is a standing
cost: it is paid whenever we are awake, regardless of what we are doing. In
Sterling and Laughlin (2015)’s survey of overarching principles of neural design,
they show that resource constraints shape even the most basic nervous systems.
Some of these constraints also have important nonlinearities. Notably, the both
the energetic and volumetric costs of sending information rise disproportionately
at the rate increases (Sterling and Laughlin, 2015, 54).

The basic question about transitions, recall, was why a change in information-
flow might be favored, given that the obvious benefits of such a change to
evolvabiilty of new functions don’t arise until after the transition. Put in the
language of the previous section, transitions may well allow for the evolution of
new mechanical parts, but the possibility of new parts cannot be the reason why
the transition occurs. An obvious place to look for the answer is instead with
resource constraints. Furthermore, as I’ll argue, it is possible for a transition
favored on resource grounds alone to facilitate new patterns of information flow
and thus new functional parts down the line.

Here is an example of the sort thing I have in mind, using an example from
artificial neural networks. Consider a recurrent neural network containing s
neurons and requiring t timesteps to calculate some function f . There is a well-
known result that shows that this network can be ‘unrolled’ into into a purely
feedfoward network, which computes f with containing t layers and st neurons.2

Assume that the timescale is comparable in each case (that is, that recurrent
loops take the same amount of time as additional layers), so that the recurrent
and unrolled network also take the same amount of time to compute f .

Now, flip this picture around. Suppose an organism with purely feedforward
connectivity calculates some f by circuit N , but that f could be calculated by a
recurrent network N ′, such that N is the unrolled version of N ′. Ex hypothesi,
both circuits calculate the same function in the same amount of time. However,
if N has several layers, the shift to N ′ might come at a substantial energetic
savings, because N ′ would use s(t− 1) fewer neurons.

2I use the formulation found in Š́ıma and Orponen (2003, p2746) Very literal readings
of this should be taken with a grain of salt. The result is typically attributed to Savage
(1972), with Goldschlager and Parberry (1986, p56) the first to dub it ‘unrolling’. Both the
Savage and the Golschlager & Parberry articles concern networks of traditional Boolean gates,
however, and these do not need to be trained. The fact that useful trainable recurrent nets
use specialized gates, higher-order weight functions, or other similar departures from simple
perceptron models suggest the need for more nuance. That said, there are a number of intuitive
presentations of recurrent neural networks in terms of unrolling to purely feedforward neural
nets, and the idea that a recurrent net can be translated into a feedforward net with a space
penalty roughly proportional to time should be uncontroversial.
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In fact, the tradeoff is a bit more complex. Artificial recurrent networks are
harder to train: simple backpropagation faces a problem of vanishing or explod-
ing error gradients.3 Recurrence in biological systems faces an analogous prob-
lem, one assumes, due to the inherent instability of excitatory feedback loops.
Long-range feedback might also mean more long-range wiring costs, which are
themselves substantial resource drain (Sterling and Laughlin, 2015) and one
that brains seek to minimize (Cherniak et al., 2004). So there are additional
steps needed to make a recurrent network stable and trainable. Let’s assume
that these costs scale with the number of neurons by some constant factor c.
Then we might expect an evolutionary transition from N to N ′ to be favored,
on resource grounds alone, just when st > sc.

In other words, we should not expect recurrence to evolve and stabilize when
the additional costs of stabilizing a recurrent network is more than the cost of
the additional layers needed by a feedforward network. Furthermore, since these
tradeoffs are vague and approximate, if recurrence does occur, we should expect
there to be some point where both N and N ′ are both live options—that is, N ′

does not have an obvious advantage over N , despite added complexity.

Or, to be more precise, N ′ does not have an advantage with respect to computing
f . However, the transition to a recurrent network might bring benefits for
computing other functions. For N ′ can compute functions that take longer
than t without having to add additional hardware. What N ′ can do with time,
N must do with space—and time is often cheaper than space. That is, if an
organism has the leisure to run a function for longer, it gets the benefit of
recurrence for minimal additional metabolic cost. Adding neurons and wiring,
by contrast, adds a substantial fixed cost. Furthermore, the choice of whether
to run an algorithm longer can be made on the fly, whereas making a bigger
brain usually requires developmental changes.

For a concrete example of the sort of algorithms that benefit from more time, one
might consider what Zilberstein and Russell (1996) call ‘anytime algorithms’.
These approximate a certain function and do a better job the more time they
are given, and hence “allow computation time to be traded for decision quality”
(Zilberstein and Russell, 1996, 181). Some algorithms of this sort, like Newton’s
method for finding roots, are well known. However, there are interruptible
anytime versions of algorithms for many problems faced by real-time control,
like the traveling salesman problem (Zilberstein and Russell, 1996, 190ff).

My claim is that a network like N ′ might get the benefits of these algorithms
effectively for free, while N has no obvious way to perform additional iterations
aside from adding more layers (and thereby commit more resources). That
in turn opens up the possibility of real functional change, by making possible

3As Schmidhuber (2015, 93ff) notes, this problem was known by the late 1980s, received
formal expression by Hochreiter’s 1991 PhD thesis, and was the focus of intense research for
nearly 20 years before recurrent neural networks were competitive at major contests. The
advances required to make RNNs competitive were not simply increases in computational
power (thought that helped), but also fundamental algorithmic advances. Once RNNs were
feasible, however, they rapidly came to dominate at many tasks—reflecting the argument of
this paper in miniature.
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algorithms that would be too costly to be useful in simple feedforward networks.

This is all a how-possibly explanation, of course, and an abstract one at that.
The point is not to make claims about an actual transition, but rather to show
how resource considerations alone could support a neural transition. The ex-
planatory pattern above suggests that the transition itself might be favored on
pure resource competition grounds. The same function f is computed in the
same amount of time before and after the transition. However, the consequence
of the transition may well be the evolvability of more complex, more efficient, or
more useful functions—functions that the original network may resist evolving
precisely because of the added cost.

4 Conclusion

In setting up the problem of transitions, I noted the universal approximator
theorem and suggested that anything a complex brain does could also be done
by a sufficiently large simple brain. Why not just make a simple big brain
then? Answer: because big brains are costly, and at some point the benefits
of simplicity are outweighed by those costs. The transition to a more complex
pattern of information flow may solve a proximate resource problem. In doing
so, however, it may open up the possibility of evolving more sophisticated and
more complex functions. A resource-driven transition might change the pattern
of evolvability more generally, then, just as the major transitions framework
predicts.

I note that while resource pressures are particularly pressing for brains, they
have also been cited as drivers for more basic transitions as well. Knoll and
Hewitt (2011) have an excellent discussion about how many features of mul-
ticellularity are driven by the limitations of passive diffusion as a transport
mechanism. Once a multicellular organism gets large enough, it cannot rely on
simple gradients of nutrients from the outside to the inside. While there are
short-term fixes, a common pathway seems to lead to developmental changes,
which ultimately lead to the specialization of function that is a common fea-
ture of increasing complexity (Calcott, 2011). Again, this strikes me the sort of
transition that is fundamentally driven by pressures on resource management
and resource allocation.

Indeed, while I have focused on the efficiencies to be gained by a transition from
purely feedforward to recurrent networks, I suggested that there are costs to be
borne as well. In many engineered systems, problems of resource competition
are solved by systems dedicated to resource management: if everyone in the
house wants to stream a movie at once, a good router will try to balance the
load to make sure that no one person saturates the connection. As systems get
more complex, more and more effort must be devoted to resource management,
including higher-order problems of resource management. Money helps solve the
problems arising from the allocation of scarce concrete resources. Banks help
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solve problems that arise from managing large quantities of money. Regulators
manage banks. And so on. Each level of this hierarchy uses some of the very
resources they manage (bankers like to get paid), which in turn creates more
complex resource management problems.

We should not expect the brain to be different. The transition to more com-
plex brains comes with increasing pressure on resource management. Indeed, in
complex brains like ours, I suspect this becomes a central preoccupation. Re-
source explanations of ever increasing complexity might therefore be the key to
understanding major transitions in neural evolution.
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