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Electromagnetic Models of the Electron and the Transition from

Classical to Relativistic Mechanics*

Michel Janssen and Matthew Mecklenburg

1. Introduction

“Special relativity killed the classical dream of using the energy-momentum-velocity

relations as a means of probing the dynamical origins of [the mass of the electron]. The

relations are purely kinematical” (Pais 1982, 159). This perceptive comment comes from

a section on the pre-relativistic notion of electromagnetic mass in ‘Subtle is the Lord …’,

Abraham Pais’ highly acclaimed biography of Albert Einstein. By ‘kinematical’ Pais

meant something like ‘completely independent of the details of the dynamics’. In this

paper we examine the classical dream referred to by Pais from the vantage point of

relativistic continuum mechanics.

There were actually two such dreams in the years surrounding the advent of special

relativity. Like Einstein’s theory, both dreams originated in the electrodynamics of

moving bodies developed in the 1890s by the Dutch physicist Hendrik Antoon Lorentz.

Both took the form of concrete models of the electron. Even these models were similar.

Yet they were part of fundamentally different programs competing with one another in

the years around 1905. One model, due to the German theoretician Max Abraham

(1902a), was part of a revolutionary effort to substitute the laws of electrodynamics for

those of Newtonian mechanics as the fundamental laws of physics. The other model,

adapted from Abraham’s by Lorentz (1904b) and fixed up by the French mathematician

Henri Poincaré (1906), was part of the attempt to provide a general explanation for the

absence of any signs of ether drift, the elusive 19th-century medium thought to carry light

waves and electromagnetic fields. A choice had to be made between the objectives of

Lorentz and Abraham. One could not eliminate all signs of the earth’s motion through the

ether and reduce all physics to electrodynamics at the same time. Special relativity was

initially conflated with Lorentz’s theory because it too seemed to focus on the

undetectability of motion at the expense of electromagnetic purity. The theories of

Lorentz and Einstein agreed in all their empirical predictions, including those for the
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velocity-dependence of electron mass, even though special relativity was not wedded to

any particular model of the electron. For a while there was a third electron model, a

variant on Lorentz’s proposed independently by Alfred Bucherer (1904, 57–60; 1905)

and Paul Langevin (1905). At the time, the acknowledged arbiter between these models

and the broader theories (perceived to be) attached to them was a series of experiments

by Walter Kaufmann and others on the deflection of high-speed electrons in β-radiation

and cathode rays by electric and magnetic fields for the purpose of determining the

velocity-dependence of their mass.1

As appropriate for reveries, neither Lorentz’s nor Abraham’s dream about the nature

and structure of the electron lasted long. They started to fade a few years after Einstein’s

formulation of special relativity, even though the visions that inspired them lingered on

for quite a while. Lorentz went to his grave clinging to the notion of an ether hidden from

view by the Lorentz-invariant laws governing the phenomena. Abraham’s

electromagnetic vision was pursued well into the 1920s by kindred spirits such as Gustav

Mie (1912a, b; 1913). By then mainstream physics had long moved on. The two dreams,

however, did not evaporate without a trace. They played a decisive role in the

development of relativistic mechanics.2 It is no coincidence therefore that relativistic

continuum mechanics will be central to our analysis in this paper. The development of

the new mechanics effectively began with the non-Newtonian transformation laws for

force and mass introduced by Lorentz (1895, 1899). It continued with the introduction of

electromagnetic momentum and electromagnetic mass by Abraham (1902a, b; 1903;

1904; 1905; 1909) in the wake of the proclamation of the electromagnetic view of nature

by Willy Wien (1900). Einstein (1907b), Max Planck (1906a, 1908), Hermann

Minkowski (1908), Arnold Sommerfeld (1910a, b), and Gustav Herglotz (1910,

1911)—the last three champions of the electromagnetic program3—all contributed to its

                                                  

1 See (Kaufmann 1901a, b, c; 1902a, b; 1903; 1905; 1906a, b; 1907). For references to later experiments,

see, e.g., (Pauli 1921, 83). Our paper will not touch on the intricacies of the actual experiments. Those are

covered in (Cushing 1981). See also (Hon 1995).
2 Moreover, classical electron models have continued to attract attention from (distinguished) physicists

(see note 10 below). In addition, the notion of “Poincaré pressure” introduced to stabilize Lorentz’s

electron (see below) resurfaced in a theory of Einstein (1919), which is enjoying renewed interest (Earman

2003), as well as in other places (see, e.g., Grøn 1985, 1988).
3 See (Sommerfeld 1904a, b, c; 1905a, b) and (Herglotz 1903). For a discussion of the development of

Sommerfeld’s attitude toward the electromagnetic program and special relativity, see (McCormmach 1970,

490) and (Walter 1999a, 69–73; forthcoming, sec. 3). On Minkowski and the electromagnetic program, see

(Galison 1979), (Pyenson 1985, Ch. 4), (Corry 1997), and (Walter 1999a, b; forthcoming).
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further development in a proper relativistic setting. These efforts culminated in a seminal

paper by Max Laue (1911a) and were enshrined in the first textbook on relativity

published later that year (Laue 1911b).

There already exists a voluminous literature on the various aspects of this story.4 We

shall freely draw and build on that literature. One of us has written extensively on the

development of Lorentz’s research program in the electrodynamics of moving bodies

(Janssen 1995, 2002b; Janssen and Stachel 2004).5 The canonical source for the

electromagnetic view of nature is still (McCormmach 1970), despite its focus on Lorentz

whose attitude toward the electromagnetic program was ambivalent (cf. Lorentz 1900;

1905, 93–101; 1915, secs. 178–186). His work formed its starting point and he was

sympathetic to the program, but never a strong advocate of it. (Goldberg 1970) puts the

spotlight on the program’s undisputed leader, Max Abraham. (Pauli 1921, Ch. 5) is a

good source for the degenerative phase of the electromagnetic program in the 1910s.6 For

a concise overview of the rise and fall of the electromagnetic program, see Ch. 8 of

(Kragh 1999), aptly titled “A Revolution that Failed.”

Another important source for the electromagnetic program is Ch. 5 in (Pyenson

1985), which discusses a seminar on electron theory held in Göttingen in the summer

semester of 1905. Minkowski was one of four instructors of this course. The other three

were Herglotz, David Hilbert, and Emil Wiechert. Max Laue audited the seminar as a

postdoc. The syllabus for the seminar lists papers by Lorentz (1904a, b), Abraham

(1903), Karl Schwarzschild (1903a, b, c), and Sommerfeld (1904a, b; 1905a). This

seminar gives a good indication of how active and cutting edge this research area was at

the time. Further evidence of this vitality is provided by debates in the literature of the

day such as those between Bucherer (1907; 1908a, b) and Ebenezer Cunningham (1907,

1908)7 and between Einstein (1907a) and Paul Ehrenfest (1906, 1907) over various points

concerning these electron models. The roll call of researchers active in this area also

                                                  

4 This particular history of the electron is conspicuously absent, however, from the histories of the electron

brought together in (Buchwald and Warwick 2001). One of us (MJ) bears some responsibility for that and

hopes to make amends with this paper.
5 See also (Darrigol 2000). We refer to (Janssen 1995, 2002b) for references to and discussion of earlier

literature on this topic.
6 For more recent commentary, see (Corry 1999).
7 For brief discussions, see (Balazs 1972, 29–30) and (Warwick 2003, Ch. 8, especially 413–414). We also

refer to Warwick’s work for British reactions to the predominantly German developments discussed in our

paper. See, e.g., (Warwick 2003, 384) for comments by James Jeans on electromagnetic mass.
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included the Italian mathematician Tullio Levi-Civita (1907, 1909).8 One may even get

the impression that in the early 1900s the journals were flooded with papers on electron

models. We wonder, for instance, whether the book by Bucherer (1904) was not

originally written as a long journal article, which was rejected, given its similarity to

earlier articles by Abraham, Lorentz, Schwarzschild, and Sommerfeld.

The saga of the Abraham, Lorentz, and Bucherer-Langevin electron models and their

changing fortunes in the laboratories of Kaufmann, Bucherer, and others has been told

admirably by Arthur I. Miller (1981, secs. 1.8–1.14, 7.4, and 12.4). Miller (1973) is also

responsible for a detailed analysis of the classic paper by Poincaré (1906) that introduced

what came to be known as “Poincaré pressure” to stabilize Lorentz’s purely

electromagnetic electron.9  The model has been discussed extensively in the physics

literature, by Fritz Rohrlich and by such luminaries as Paul Dirac and Julian Schwinger.10

It is also covered elegantly in volume two of the Feynman lectures (Feynman et al. 1964,

Ch. 28). (Pais 1972) and (Rohrlich 1973) nicely combine discussions of physics and

history.

Given how extensively this episode has been discussed in the historical literature, the

number of sources covering its denouement with the formulation of Laue’s relativistic

continuum mechanics is surprisingly low. Max Jammer does not discuss relativistic

continuum mechanics at all in his classic monograph on the development of the concept

of mass (cf. Jammer 1997, Chs. 11–13). Miller prominently discusses Laue’s work, both

in (Miller 1973, sec. 7.5) and in the concluding section of his book (Miller 1981, sec.

12.5.8), but does not give it the central place that in our opinion it deserves. To bring out

the importance of Laue’s work, we show right from the start how the kind of spatially

extended systems studied by Abraham, Lorentz, and Poincaré can be dealt with in special

relativity. We shall use modern notation and modern units throughout and give self-

contained derivations of all results. Our treatment of these electron models follows the

analysis of the experiments of Trouton and Noble in (Janssen 1995, 2002b, 2003), which

                                                  

8 For brief discussion, see (Balazs 1972, 30)
9 We have benefited from (annotated) translations of Poincaré’s paper by Schwartz (1971, 1972) and

Kilmister (1970), as well as from the translation of passages from (Poincaré 1905), the short version of

(Poincaré 1906), in (Keswani and Kilmister 1983). A new translation of parts of (Poincaré 1906) by Scott

Walter will appear in (Renn forthcoming (b)).
10 See (Rohrlich 1960, 1965, 1970, 1997). See also, e.g., (Fermi 1921, 1922) [cf. note 19 below], (Dirac

1938), (Caldirola 1956), (Pearle 1982), (Schwinger 1983) [in a special issue on the occasion of Dirac’s 80th

birthday], (Comay 1991), (Yaghjian 1992), and (Hnizdo 1997).
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was inspired in part by the discussion in (Norton 1992) of the importance of Laue’s

relativistic mechanics for the development of Gunnar Nordström’s special-relativistic

theory of gravity. The focus on the conceptual changes in mechanics that accompanied

the transition from classical to relativistic kinematics was inspired in part by the work of

Jürgen Renn and his collaborators on pre-classical mechanics (Damerow et al. 2004).

2. Energy-momentum-mass-velocity relations.

2.1. Special relativity. In special relativity, the relations between energy, momentum,

mass, and velocity of a system are encoded in the transformation properties of its four-

momentum. This quantity combines the energy U and the three components of the

ordinary momentum P:11

P
U

c
µ =









,  P (2.1)

(where c is the velocity of light). In the system’s rest frame, with coordinates

x ct x y z0 0 0 0 0
µ = ( ),  ,  ,  , the four-momentum reduces to:

P
U

c0
0 0 0 0µ = 





,  ,  ,  , (2.2)

i.e., P0 0= . The system’s rest mass is defined as m U c0 0
2≡ / .

We transform P0
µ  from the x0

µ -frame to some new xµ -frame, assuming that P0
µ

transforms as a four-vector under Lorentz transformations. Let the two frames be related

by the Lorentz transformation x xµ µ
ν

ν= Λ 0 .12 Since, in general, the four-momentum does

not transform as a four-vector, the Lorentz transform of P0
µ  will, in general, not be the

four-momentum in the xµ -frame. We therefore cautiously write the result of the

transformation with an asterisk:
P P*µ µ

ν
ν= Λ 0 . (2.3)

                                                  

11 The letter U rather than E is used for energy to avoid confusion with the electric field. We shall be using

SI units throughout. For conversion to other units, see, e.g., (Jackson 1975, 817–819).
12 Here and in the rest of the paper summation over repeated indices is implied. The transformation matrices

Λµ
ν  satisfy Λ Λµ

ρ
ν

σ
ρσ µνη η= , the defining equation for Lorentz transformations, where

ηµν ≡ − − −( )diag 1 1 1 1, , ,  is the standard diagonal Minkowski metric.
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Without loss of generality we can focus on the special case in which the motion of the
xµ -frame with respect to the x0

µ -frame is with velocity v in the x-direction. The matrix

for this transformation is:

Λµ
ν

γ γβ

γβ γ
=



















0 0

0 0

0 0 1 0

0 0 0 1

, (2.4)

with γ β≡ −1 1 2/ and β ≡ v c/ . In that case,

P
U

c

U

c
m c m* ,  ,  ,  ,  µ γ γ β γ γ= 





= ( )0 0
0 00 0 v . (2.5)

If the four-momentum of the system does transform as a four-vector, P*µ  in eq. (2.5) is

equal to Pµ  in eq. (2.1) and we can read off the following relations between energy,

momentum, mass, and velocity from these two equations:

U U m c= =γ γ0 0
2,    P v= γ m0 . (2.6)

Eqs. (2.6) hold for a relativistic point particle with rest mass m0 . Its four-momentum

is given by

P m u m
dx

d
m

dx

dt
µ µ

µ µ

τ
γ= = =0 0 0 . (2.7)

Since u dx dµ µ τ≡ /  is the four-velocity, this is clearly a four-vector. The relation

between proper time τ , arc length s, and coordinate time t  is given by

d ds c dtτ γ= =/ / .13 If the particle is moving with velocity v, dx dt cµ / ,  = ( )v  and

eq. (2.7) becomes:

P m c mµ γ γ= ( )0 0,  v . (2.8)

Eqs. (2.6) also hold for spatially extended closed systems, i.e., systems described by

an energy-momentum tensor Tµν  with a vanishing four-divergence, i.e., ∂ν
µνT = 0

(where ∂µ  stands for ∂ ∂ µ/ x ). The energy-momentum tensor brings together the

                                                  

13 From ds dx dx c v dt2 2 2 2= = −( )ηµν
µ ν  it follows that ds c v c dt cdt= − =1 2 2/ /γ .
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following quantities. The component T00 gives the energy density; T ci0 /  the

components of the momentum density; cT i0  the components of the energy flow

density;14 and Tij  the components of the momentum flow density, or, equivalently, the

stresses.15 The standard definition of the four-momentum of a spatially extended (not

necessarily closed) system described by the (not necessarily divergence-free) energy-

momentum tensor Tµν  is:

P
c

T d xµ µ≡ ∫
1 0 3 . (2.9)

Before the advent of relativity, this equation was written as a pair of separate equations:

U ud x= ∫ 3 ,    P p= ∫ d x3 , (2.10)

where u and p are the energy density and the momentum density, respectively. Definition

(2.9) is clearly not manifestly Lorentz invariant. The space integrals of Tµ0 in the xµ -

frame are integrals in space-time over a three-dimensional hyperplane of simultaneity in

that frame. A Lorentz transformation does not change the hyperplane over which the

integration is to be carried out. A hyperplane of simultaneity in the xµ -frame is not a

hyperplane of simultaneity in any frame moving with respect to it. From these last three

observations, it follows that the Lorentz transforms of the space integrals in eq. (2.9) will

not be space integrals in the new frame. But then how can these Lorentz transforms ever

be the four-momentum in the new frame? The answer to this question is that if the system

is closed (i.e., if ∂ν
µνT = 0), it does not matter over which hyperplane the integration is

done. The integrals of the relevant components of Tµν  over any hyperplane extending to

infinity will all give the same values. So for closed systems a Lorentz transformation

does map the four-momentum in one frame to a quantity that is equal to the four-

momentum in the new frame even though these two quantities are defined as integrals

over different hyperplanes.16

                                                  

14 The energy-momentum tensor is typically symmetric. In that case, T Ti i0 0= , which means that the

momentum density (T ci0 / ) equals the energy flow density ( cT i0 ) divided by c2 . As was first noted by

Planck, this is one way of expressing the inertia of energy, E mc= 2.
15 Which is why T µν  is also known as the stress-energy tensor or the stress-energy-momentum tensor
16 See (Rohrlich 1965, 89–90, 279–281) or (Janssen 1995, sec. 2.1.3) for the details of the proof, which is

basically an application of the obvious generalization of Gauss’ theorem (which says that for any vector

field A, A S A⋅∫ =∫d d xdiv 3 ) from three to four dimensions.



8

The standard definition of four-momentum can be replaced by a manifestly Lorentz-

invariant one. First note that the space integrals of Tµ0 in the xµ -frame can be written in

a manifestly covariant form as17

P
c

x n T n d xµ
ρσ

ρ σ µν
νδ η= ( )∫

1 4 , (2.11)

where δ x( ) is the Dirac delta function and nµ  is a unit vector in the time direction in the

xµ -frame. In that frame nµ  has components 1 0 0 0, ,  ,  ( ). The delta function picks out

hyperplanes of simultaneity in the xµ -frame. The standard definition (2.9) of four-

momentum can, of course, be written in the form of eq. (2.11) in any frame, but that

requires a different choice of nµ  in each one. This is just a different way of saying what

we said before: under the standard definition (2.9), the result of transforming Pµ  in the

xµ -frame to some new frame will not be the four-momentum in the new frame unless the

system is closed. If, however, we take the unit vector nµ  in eq. (2.11) to be some fixed

timelike vector—typically the unit vector in the time direction in the system’s rest

frame18— and take eq. (2.11) with that fixed vector nµ  as our new definition of four-

momentum, the problem disappears.

Eq. (2.11) with a fixed timelike unit vector nµ  provides an alternative manifestly

Lorentz-invariant definition of four-momentum. Under this new definition—which was

proposed by, among others, Enrico Fermi (1922)19 and Fritz Rohrlich (1960, 1965)—the

four-momentum of a spatially extended system transforms as a four-vector under Lorentz

transformations no matter whether the system is open or closed. The definitions (2.9) and

(2.11) are equivalent to one another for closed systems, but only coincide for open

systems in the frame of reference in which nµ  has components 1 0 0 0, ,  ,  ( ). In this paper,

we shall use the admittedly less elegant definition (2.9), simply because either it or its

                                                  

17 This way of writing Pµ  was suggested to me by Serge Rudaz. See (Janssen 2002b, 440–441, note; 2003,

47) for a more geometrical way of stating the argument below.
18 As Gordon Fleming (private communication) has emphasized, the rest frame cannot always be uniquely

defined. For the systems that will concern us here, this is not a problem. Following Fleming, one can avoid

the arbitrary choice of nµ  altogether by accepting that the four-momentum of spatially extended systems is

a hyperplane-dependent quantity.
19 Some of Fermi’s earliest papers are on this issue (Miller 1973, 317). We have not been able to determine

what sparked Fermi’s interest in this problem. His biographer only devotes one short paragraph to it: “In

January 1921, Fermi published his first paper, “On the Dynamics of a Rigid System of Electrical Charges

in Translational Motion” [Fermi 1921]. This subject is of continuing interest; Fermi pursued it for a number

of years and even now it occasionally appears in the literature” (Segrè 1970, 21).
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decomposition into eqs. (2.10) were the definitions used in the period of interest. Part of

the problem encountered by our protagonists simply disappears by switching to the

alternative definition (2.10). With this definition energy and momentum always obey the

familiar relativistic transformation rules, regardless of whether we are dealing with closed

systems or with their open components. As one would expect, however, a mere change of

definition does not take care of the main problem that troubled the likes of Lorentz,

Poincaré, and Abraham. That is the problem of the stability of a spatially extended

electromagnetic electron.

2.2 Pre-relativistic theory. The analogues of relations (2.6) between energy, mass,

momentum, and velocity in Newtonian mechanics are the basic formulae for kinetic

energy and momentum:

U mvkin =
1
2

2,    p v= m . (2.12)

In the years before the advent of special relativity, physicists worked with a hybrid

theory in which Galilean-invariant Newtonian mechanics was supposed to govern matter

while the inherently Lorentz-invariant electrodynamics of Maxwell and Lorentz governed

the electromagnetic fields. In this hybrid theory they had already come across what are

essentially the relativistic energy-momentum-velocity relations.

Initially, their starting point had still unquestionably been Newton’s second law,

F a= m . Electrodynamics merely supplied the Lorentz force for the left-hand side of this

equation. Eventually, however, physicists were leaning toward the view that matter does

not have any Newtonian mass at all and that its inertia is just a manifestation of the

interaction of electric charge distributions with their self-fields. Lorentz was reluctantly

driven to this conclusion because it would help explain the absence of any signs of ether

drift. Abraham enthusiastically embraced it because it opened up the prospect of a purely

electromagnetic basis for all of physics. With F a= m  reduced to F = 0 Newton’s second

law only nominally retained its lofty position as the fundamental equation of motion. All

real work was done by electrodynamics. Writing F = 0 as d dtPtot / = 0, one can read it

as expressing momentum conservation. Momentum does not need to be mechanical.

Abraham introduced the concept of electromagnetic momentum.20 Lorentz was happy to

                                                  

20 See (Abraham 1902a, 25–26; 1903, 110). In both places, he cites (Poincaré 1900) for the basic idea of

ascribing momentum to the electromagnetic field. For discussion, see (Miller 1981, sec. 1.10), (Darrigol

1995), and (Janssen 2003, sec. 3)
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leave Newtonian royalty its ceremonial role. Abraham, of a more regicidal temperament,

sought to replace F a= m  by a new purely electrodynamic equation that would explain

why Newton’s law had appeared to be the rule of the land for so long.

Despite their different motivations, Lorentz and Abraham agreed that the effective

equation of motion for an electron in some external field is21

F Fext self+ = 0, (2.13)

with Fext  the Lorentz force coming from the external field and Fself  the Lorentz force

coming from the self-field of the electron. The key experiments to which eq. (2.13) was

applied were the experiments of Kaufmann and others on the deflection of fast electrons

by electric and magnetic fields. Both Lorentz and Abraham conceived of the electron as a

spatially extended spherical surface charge distribution. They disagreed about whether

the electron’s shape would depend on its velocity with respect to the ether, more

specifically about whether it would be subject to a microscopic version of the Lorentz-

FitzGerald contraction. Lorentz believed it would, Abraham believed it would not.

The Lorentz force the electron experiences from its self-field can be written as minus

the time derivative of the quantity that Abraham proposed to call the electromagnetic

momentum:

F E v B
P

self
EM= + ×( ) = −∫ ρ d x

d

dt
3 . (2.14)

In this expression ρ  is density of the electron’s charge distribution, and E and B are the

electric and magnetic field produced by this charge distribution. The electromagnetic

momentum of these fields is defined as

P E BEM ≡ ×∫ ε0
3d x . (2.15)

and doubles as the electromagnetic momentum of the electron itself.

Eq. (2.14) can be derived as follows (Abraham 1905, sec. 5; Lorentz 1904a, sec. 7;

Janssen 1995, 56–58). Using the inhomogeneous Maxwell equations,

divE = ρ ε/ 0,    curlB v
E

= +µ ρ
∂
∂0 2

1

c t
, (2.16)

                                                  

21 In fact, another force, Fstab , needs to be added to keep the charges from flying apart under the influence

of their Coulomb repulsion.
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we can eliminate charge and current density from the Lorentz force density, the integrand

in eq. (2.14):

ρ ε µ
µ ∂

∂
E v B E E + B B

E
B+ ×( ) = × − ×−

−

0 0
1 0

1

2
div curl

c t
. (2.17)

The last term can be written as:

− ×( ) + ×
∂
∂

ε ε
∂
∂t t0 0E B E
B

, (2.18)

where we used that c2
0 01= / ε µ . The first of these two terms is minus the time derivative

of the electromagnetic momentum density (cf. eq. (2.15)). The integral over this term

gives the right-hand side of eq. (2.14). A few lines of calculation show that the remaining

terms in eqs. (2.17)–(2.18) combine to form the divergence of the Maxwell stress tensor.

The integral over this divergence vanishes on account of Gauss’ theorem. Since we shall

encounter the same calculation again in sec. 6 (see eq. (6.5)), we shall go through it here

in some detail.

Using the homogeneous Maxwell equations,

divB = 0,    curlE
B

= −
∂
∂t

, (2.19)

we can write the remaining terms in eqs. (2.17)–(2.18) in a form symmetric in E and B:

ε µ0 0
1E E + E E + B B + B Bdiv curl div curl×( ) ×( )− . (2.20)

The further manipulation of this expression is best done in terms of its components. We

introduce Ei
i

{ }
=1 2 3, ,

 and Bi
i

{ }
=1 2 3, ,

 for E E Ex y z,  ,  { } and B B Bx y z,  ,  { } , respectively.

The part of expression (2.20) depending on E has components:

ε ∂ ε ε ∂0 E E E Ei
k

k
ijk jlm l

m k+ ( )( ) , (2.21)

where εijk  is the fully anti-symmetric Levi-Civita tensor.22 Inserting

ε ε ε ε δ δ δ δijk jlm jik jlm il km im kl= − = − + , (2.22)

                                                  

22 Its definition is: εijk = 1 for even permutations of 123, –1 for odd permutations, and 0 otherwise.
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where δij  is the Kronecker delta,23 into this expression, we find

ε ∂ ∂ ∂ ε ∂ δ0 0
1

2
2E E E E E E E E Ei

k
k

i
k k

k
i k

k
i k ik− +( ) = −( ). (2.23)

The part of eq. (2.20) depending on B can likewise be written as

µ ∂ δ0
1 1

2
2− −( )k

i k ikB B B . (2.24)

The sum of these two parts is the divergence of the Maxwell stress tensor,

T E E E B B Bij i j ij i j ij
Maxwell ≡ −


 


 + −


 


−ε δ µ δ0

1

2
2

0
1 1

2
2 . (2.25)

Gauss’ theorem tells us that

∂ j
ijT d xMaxwell

3 0∫ = (2.26)

as long as Tij
Maxwell drops off faster than 1 2/r  as x goes to infinity. This concludes the

proof that the only term that contributes to the Lorentz force density in eq. (2.17) is the

first term in eq. (2.18) with the electromagnetic momentum density.

With the help of eq. (2.14) the electromagnetic equation of motion (2.13) can be

written in the form of the Newtonian equation F p= d dt/  with Abraham’s

electromagnetic momentum replacing ordinary momentum:

F
P

ext
EM=

d

dt
. (2.27)

Like Newton’s second law, which can be written either as F a= m  or as F p= d dt/ , this

new law can, under special circumstances, be written as the product of mass and

acceleration. Assume that the momentum is in the direction of motion,24 i.e., that

P vEM P v= ( )EM / . We then have

                                                  

23 Its definition is: δ δij
ij= = 1  for i j=  and 0 otherwise.

24 This assumption may sound innocuous, but under the standard definition (2.9) of the four-momentum of

spatially extended systems, the (ordinary three-)momentum of open systems will in general not be in the

direction of motion. Because both Lorentz’s and Abraham’s electrons are symmetric around an axis in the

direction of motion, the momentum of their self-fields is always in the direction of motion, even though

these fields by themselves do not constitute closed systems. If a system has momentum that is not in the
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d

dt

dP

dt v
P

d

dt v

P v vEM EM
EM= + 





. (2.28)

The first term on the right-hand side can be written as

dP

dt v

dP

dv

dv

dt v

dP

dv
EM EM EMv v

a= = // , (2.29)

where a //  is the longitudinal acceleration, i.e., the acceleration in the direction of motion.

The second term can be written as

P
d

dt v

P

vEM
EMv

a





= ⊥ , (2.30)

where a⊥  is the transverse acceleration, i.e., the acceleration perpendicular to the

direction of motion. The factors multiplying these two components of the acceleration are

called the longitudinal mass, m// , and the transverse mass, m⊥ , respectively. Eq. (2.28)

can thus be written as

d

dt
m m

P
a aEM = + ⊥ ⊥// // , (2.31)

                                                                                                                                                      

direction of motion, it will be subject to a turning couple trying to align its momentum with its velocity.

Trouton and Noble (1903) tried in vain to detect this effect on a charged capaticor hanging from the ceiling

of their laboratory on a torsion wire (Janssen 2002b, 440–441, note; Janssen 1995, especially secs. 1.4.2

and 2.2.5). Ehrenfest (1907) raised the question whether the electron would be subject to a turning couple if

it were not symmetric around the axis in the direction of motion. Einstein (1907a) countered that the

behavior of the electron would be independent of its shape (see Miller 1981, sec. 7.4.4, for discussion of

this exchange between Einstein and Ehrenfest). Laue (1911a) showed how this could be (see also Pauli

1921, 186–187). As with the capacitor in the Trouton-Noble experiment, the electromagnetic momentum of

the electron is not the only momentum of the system. The non-electromagnetic part of the system also

contributes to its momentum. Laue showed that the total momentum of a closed static system is always in

the direction of motion. From a modern point of view this is a direct consequence of the fact that four-

momentum of a closed system (static or not) transforms as a four-vector under Lorentz transformations.

The momenta of open systems, such as the subsystems of a closed static system, need not be in the

direction of motion, in which case the system is subject to equal and opposite turning couples. A closed

system never experiences a net turning couple. The turning couples on open systems, it turns out, are

artifacts of the standard definition (2.9) of the four-momentum of spatially extended systems. Under the

alternative Fermi-Rohrlich definition (see the discussion following eq. (2.11)), there are no turning couples

whatsoever (Butler 1968, Janssen 1995, Teukolsky 1996).
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with25

m
dP

dv// = EM ,      m
P

v⊥ = EM . (2.32)

The effective equation of motion (2.27) becomes:

F a aext = + ⊥ ⊥m m// // . (2.33)

We shall see that for v = 0 (in which case the electron models of Abraham and Lorentz

coincide) m m m// = =⊥ 0 , and that for v ≠ 0 m//  and m⊥  differ from m0  only by terms

of order v c2 2/ . For velocities v c<< , eq. (2.33) thus reduces to:

F a a aext ≈ +( ) =⊥m m0 0// . (2.34)

Proponents of the electromagnetic view of nature took eq. (2.27) to be the fundamental

equation of motion and derived Newton’s law from it by identifying the ordinary

Newtonian mass with the electromagnetic mass m0  of the relevant system at rest in the

ether.

Eq. (2.32) defines the longitudinal mass m//  of the electron in terms of its

electromagnetic momentum. It can also be defined in terms of the electron’s

electromagnetic energy. Consider the work done as an electron is moving in the x-

direction in the absence of an external field. The work expended goes into the internal

energy of the electron, dU dW= − . According to eq. (2.13), the work is done by Fself .26

The internal energy is identified with the electromagnetic energy UEM.

dU dW dEM self= − = − ⋅F x . (2.35)

Using eqs. (2.14) and (2.31), we can write this as

dU
d

dt
d m d m

dv

dt
dx m vdvEM

EM= ⋅ ⋅ =
P

x = a x =// // // // . (2.36)

                                                  

25 Substituting the momentum, p mv= , of Newtonian mechanics for PEM  in eq. (2.32), we find

m m m// = =⊥ .
26 But recall that there should be an additional term, Fstab , on the right-hand side of eq. (2.13) (see note 21).
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It follows that27

m
v

dU

dv// =
1 EM . (2.37)

As we shall see in sec. 4, given the standard definitions (2.10) of electromagnetic energy

and momentum, the neglect of non-electromagnetic stabilizing forces in the derivation of

eqs. (2.32) and (2.37) leads to an ambiguity in the expression for the longitudinal mass of

Lorentz’s electron.

If the combination of the energy U  (divided by c), and the momentum P for any

system, electromagnetic or otherwise, transforms as a four-vector under Lorentz
transformations, then m//  calculated from eq. (2.32) (with P substituted for PEM ) is equal

to m//  calculated from eq. (2.37) (with U substituted for UEM).28 Consider the

transformation from a rest frame with coordinates x0
µ  to the xµ -frame. In that case (see

eqs. (2.1)–(2.5)):

P
U

c
m c mµ γ γ= 





= ( ),  ,  P v0 0 . (2.38)

The energy U gives the longitudinal mass (see eq. (2.37))

m
v

dU

dv v

d

dv
m c

m c

v

d

dv// = = ( ) =
1 1

0
2 0

2
γ

γ
. (2.39)

The momentum P gives the longitudinal mass (eq. (2.32)):

m
dP

dv

d

dv
m v m

d v

dv// = = ( ) =
( )

γ
γ

0 0 . (2.40)

                                                  

27 Substituting the kinetic energy, U mvkin =
1

2
2, of Newtonian mechanics for UEM  in eq. (2.37), we find

m m// = , in accordance with the result found on the basis of eq. (2.32) and p mv=  (see note 25).
28 The converse is not true. For the electron model of Bucherer and Langevin (see sec. 4) U cEM EM/ , P( )  is

not a four-vector, yet UEM  and PEM give the same longitudinal mass m//  (see eqs. (4.23)–(4.26)). The

same is true for the Newtonian energy U mvkin =
1

2
2 and the Newtonian momentum p mv=  (see notes 25

and 27).
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Using that29

d

dv

v

c

γ
γ= 3

2 ,       
d v

dv

γ
γ

( )
= 3, (2.41)

we find that eqs. (2.39) and (2.40) do indeed give the same result:

m
v

dU

dv

dP

dv
m// = = =

1 3
0γ . (2.42)

The momentum P in eq. (2.38) gives the transverse mass (eq. (2.32)):

m
P

v
m⊥ = = γ 0 . (2.43)

Eqs. (2.42) and (2.43) give mass-velocity relations that hold for any relativistic particle.

These equations thus have much broader applicability than their origin in

electrodynamics suggests. This is exactly what killed the dreams of Abraham and Lorentz

of using these relations to draw conclusions about the nature and shape of the electron.

                                                  

29 The first relation follows from 
d

dv

d

dv
v

c

γ −

= −






2 2

21  or − = −−2 23 2γ
γd

dv
v c/ ; the second is found with

the help of the first: 
d v

dv
v

d

dv

γ
γ

γ
γ γ β γ β β γ

( )
= + = + = − +( )=3 2 3 2 2 31
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3. Lorentz’s theorem of corresponding states, the generalized contraction

hypothesis, and the velocity dependence of electron mass

Lorentz had already published the relativistic eqs. (2.42) and (2.43) for longitudinal and

transverse mass, up to an undetermined factor l, in 1899. To understand how Lorentz

originally arrived at these equations we need to take a look at his general approach to

problems in the electrodynamics of moving bodies.30 The basic problem that Lorentz was

facing was that Maxwell’s equations are not invariant under Galilean transformations,

which relate frames in relative motion to one another in Lorentz’s classical Newtonian

space-time. Lorentz thus labored under the impression that Maxwell’s equations only

hold in frames at rest in the ether and not in the terrestrial lab frames in which all our

experiments are done.

Consider an ether frame with space-time coordinates t0 0,  x( )  and a lab frame with

space-time coordinates t,  x( ) related to one another via the Galilean transformation

t t x x vt y y z z= = − = =

= = =

0 0 0 0 0

0 0 0

,   ,   ,   ,

,   ,   .E E B B ρ ρ

(3.1)

The second line of this equation expresses that the electric field, the magnetic field, and

the charge density remain the same even though after the transformation they are thought

of as functions of t,  x( ) rather than as functions of t0 0,  x( ) .

The equations for the fields produced by a charge distribution static in the lab frame

as functions of the space-time coordinates t,  x( ) are obtained by writing down Maxwell’s

equations for the relevant quantities in the lab frame, adding the current µ ρ0 v 31 and

replacing time derivatives by the operator ∂ ∂ ∂ ∂/ /t v x− .32 We thus arrive at:

div curl

div curl

E B v
E E

B E
B B

= = + −







= = − +

ρ ε µ ρ
∂
∂

∂
∂

∂
∂

∂
∂

/ , ,

, .

0 0 2
1

0

c t
v

x

t
v

x

(3.2)

                                                  

30 For more extensive discussion, see (Janssen 1995, Ch. 3; 2002b; Janssen and Stachel 2004).
31 For the magnetic field it is the motion of charges with respect to the ether that matters, not the motion

with respect to the lab frame.
32 For the induced E and B fields it is the changes in the B and E fields at fixed points in the ether that

matter, not the changes at fixed points in the lab frame.
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Lorentz now replaced the space-time coordinates t,  x( ), the fields E and B, and the

charge density ρ  by auxiliary variables defined as:

′ = ( ) ′ = − 















 ′ =

′ = ( ) + ×( ) ′ = ( ) − ×







x x

E E v B B B v E

l t l
t v

c
x

l

l l c

diag ,    

diag diag

γ
γ

γ ρ
ρ

γ

γ γ γ γ

,  ,  ,   ,  

, ,  ,    , ,  ,

 

1 1

1
1

1
1

1

2 3

2 2 2

(3.3)

where l is an undetermined factor that is assumed to be equal to one to first order in v c/ .

Since the auxiliary time variable depends on position, it is called local time. He showed

that the auxiliary fields ′E  and ′B  and the auxiliary charge density ′ρ  written as

functions of the auxiliary space-time coordinates ′ ′( )t ,  x  satisfy Maxwell’s equations:

div curl

div curl

′ ′ = ′ ′ ′ =
′
′

′ ′ = ′ ′ = −
′
′

E B
E

B E
B

ρ ε
∂
∂

∂
∂

/ , ,

, .

0 2
1

0

c t

t

(3.4)

When the factor l is set exactly equal to one, what Lorentz showed, at least for static

charge densities,33 is that Maxwell’s equations are invariant under what Poincaré (1906,

495) proposed to call Lorentz transformations. For l =1, the transformation formulae in

eq. (3.3) for the fields E and B and for a static charge density ρ  look exactly the same as

in special relativity. The transformation formulae for the space-time coordinates do not.

Bear in mind, however, that Lorentz did the transformation in two steps, given by eqs.

(3.1) and (3.3), respectively. Schematically, we have:

t t t l0 0 0 0 0 1,  x E B , x E B , x E B,  ,  ,  ,  ,  ,  ,  ,  ,  ρ ρ ρ( ) → ( ) → ′ ′ ′ ′ ′( ) = . (3.5)

Combining these two steps, we recover the familiar Lorentz transformation formulae. For

the fields and the charge density, this is just a matter of replacing E B,  ,  ρ( )  in eq. (3.3)

by E B0 0 0, ,  ρ( ) . For the space-time coordinates, it takes only a minimal amount of

algebra:

                                                  

33 Lorentz only started using the relativistic transformation formula for non-static charge densities and for

current densities in 1915 (see Janssen 1995, secs. 3.5.3 and 3.5.6).
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′ = = −( ) ′ = = ′ = =

′ = − = − −( ) = −










x x x vt y y y z z z

t
t v

c
x

t v

c
x vt t

v

c
x

γ γ

γ
γ

γ
γ γ

0 0 0 0

2
0

2 0 0 0 2 0

,    ,    ,

,

(3.6)

where in the second line we used that 1 12 2 2 2/ / /γ γ γ γ β γ+ ( ) = + =





v c .

The inverse of the transformation t t0 0 0 0,  x E B , x E B,  ,  ,  ,  ( ) → ′ ′ ′ ′( )  for l =1 is

found by interchanging t0 0 0 0,  x E B,  ,  ( )  and ′ ′ ′ ′( )t ,  x E B,  ,   and changing v to –v

Doing the inversion for l ≠1 also requires changing l to l−1. The inverse of the

transformation E B E B0 0, ,  ( ) → ′ ′( )  for l ≠1, for instance, is given by

E E E v B

B B B v E

0
2

0
2

2

1

1
1

= = ( ) ′ − × ′( )

= = ( ) ′ + × ′







l

l
c

diag

diag

, ,  ,

, ,  .

γ γ

γ γ

(3.7)

The transformation is symmetric only for l =1. Unlike Lorentz before 1905, Poincaré and

Einstein both looked upon the primed quantities as the quantities measured by the

observer in the lab frame. In special relativity, the ether frame is just another inertial

frame on a par with the lab frame. The situation for observers in these two frames will be

fully symmetric only if l =1. This was essentially the argument for both Poincaré and

Einstein to set l =1. As we shall see in the next section, Lorentz also ended up setting

l =1 but on the basis of a roundabout dynamical argument. For our purposes it is

important that we leave the factor l undetermined for the time being.

The invariance of Maxwell’s equations under the combination of transformations

(3.1) and (3.3) allowed Lorentz to formulate what he called the theorem of corresponding

states. This theorem says that for any field configuration in a frame at rest in the ether

there is a corresponding field configuration in a frame moving through the ether such that

the auxiliary fields ′E  and ′B  in the moving frame are the same functions of the auxiliary

space and time coordinates ′ ′( )t ,  x  as the real fields E0 and B0  in the frame at rest of the

real space and time coordinates t0 0,  x( ) . Lorentz was particularly interested in free field

configurations (for which ρ = 0) describing patterns of light and darkness. Most

experiments in optics eventually boil down to the observation of such patterns.

To describe a pattern of light and darkness it suffices to specify where the fields

averaged over times that are long compared to the period of the light used vanish and

where these averages are large. ′E  and ′B  are linear combinations of E  and B (see eq.
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(3.3)). They are large (small) when- and wherever E  and B are. Since patterns of light

and darkness by their very nature are effectively static, no complications arise from the x-

dependence of local time. If it is light (dark) simultaneously at two points with

coordinates x a0 =  and x b0 =  in some field configuration in a frame at rest in the ether,

it will be light (dark) simultaneously at the corresponding points ′ =x a and ′ =x b  in the

corresponding state in a frame moving through the ether. In terms of the real coordinates

these are the points x a= ( ) ( )1 1 1 1/ / ,  ,  l diag γ  and x b= ( ) ( )1 1 1 1/ / ,  ,  l diag γ . The pattern

of light and darkness in a moving frame is thus obtained from its corresponding pattern in

a frame at rest in the ether by contracting the latter by a factor γ l  in the direction of

motion and a factor l in the directions perpendicular to the direction of motion.

Examining the formula for the local time in eq. (3.3), one likewise sees that the periods of

light waves in a moving frame are obtained by multiplying the periods of the light waves

in the corresponding state at rest in the ether by a factor γ / l .

To account for the fact that these length-contraction and time-dilation effects in

electromagnetic field configurations were never detected, Lorentz (1899) assumed that

matter interacting with the fields (e.g., the optical components producing patterns of light

and darkness) experiences these same effects. Lorentz thereby added a far-reaching

physical assumption to his purely mathematical theorem of corresponding states.

Elsewhere one of us has dubbed this assumption the generalized contraction hypothesis

(Janssen 1995, sec. 3.3; 2002b; Janssen and Stachel 2004). It was through this hypothesis

that Lorentz decreed a number of exemptions of the Newtonian laws that had jurisdiction

over matter in his theory. The length-contraction and time-dilation rules to which matter

and field alike had to be subject to account for the absence of any signs of ether drift are

examples of such exemptions. The velocity dependence of mass is another (Janssen 1995,

sec. 3.3.6). This is the one that is important for our purposes.

Suppose an oscillating electron in a light source at rest in S0 satisfies F a0 0 0= m . In

the corresponding state in S the corresponding electron will then satisfy the same

equation in terms of the auxiliary quantities, i.e.,

′ = ′F am0 , (3.8)

where ′F  is the same function of ′ ′( )t ,  x  as F0 is of t0 0,  x( ) , and where ′ = ′ ′a xd dt2 2/

and a x0
2

0 0
2= d dt/  are always the same at corresponding points in S and S0. Lorentz
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assumed that motion through the ether affects all forces on the electron the same way it

affects Coulomb forces34

′ = ( )F  F
1

12l
diag ,  ,  γ γ . (3.9)

For the relation between the acceleration ′a  in terms of the auxiliary space and time

coordinates and the real acceleration a, Lorentz used the relation

′ = ( )a  a
1 3 2 2

l
diag γ γ γ,  ,  . (3.10)

In general, this relation is far more complicated, but when the velocity d dtx0 0/  with

which the electron is oscillating in S0 is small, d dt′ ′x / (equal to d dtx0 0/  at the

corresponding point in S0) can be neglected and eq. (3.10) holds. A derivation of the

general relation between a′ and a was given by Planck (1906a) in the context of his

derivation of the relativistic generalization of Newton’s second law, a derivation

mathematically essentially equivalent to Lorentz’s 1899 derivation of the velocity

dependence of mass, except that Planck only had to consider the special case l = 1.35

Lorentz probably arrived at eq. (3.10) through the following crude argument. If an

electron oscillates around a fixed point in S with a low velocity and a small amplitude,

the x-dependent term in the expression for local time can be ignored. In that case, we only

need to take into account that x′ differs from x by a factor l diag γ ,  ,  1 1( ) and that t′

differs from t by a factor l/γ (see eq. (3.3). This gives a quick and dirty derivation of

eq. (3.10):

′ =
′

′
= 



 ( ) ( )a

x x
= a

d

dt l
l

d

dt l

2

2

2 2

2
3 2 21 1

1γ
γ γ γ γdiag diag,  ,  ,  ,  . (3.11)

Inserting eqs. (3.9) and (3.10) into eq. (3.8), we find

1
1

1
2

3 2 2
0

l l
mdiag diag, ,  ,  ,  γ γ γ γ γ( ) ( ) F = a . (3.12)

                                                  

34 See (Lorentz 1895, sec. 19–23) for the derivation of this transformation law and (Janssen 1995, sec.

3.2.5) or (Zahar 1989, 59–61) for a reconstruction of the derivation in modern notation.
35 For an elegant and elementary exposition of Planck’s derivation, see (Zahar 1989, sec. 7.1, 227–237).

The equations for the relation between a′ and a can be found on p. 232, eqs. (2)–(4).
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This can be rewritten as

 F = al mdiag γ γ γ3
0, ,  ( ) . (3.13)

From this equation it follows that the oscillation of an electron in the moving source can

only satisfy Newton’s second law if the mass m of an electron with velocity v with

respect to the ether (remember that the velocity of the oscillation itself was assumed to be

negligible) differs from the mass m0 of an electron at rest in the ether in precisely the

following way:

m l m// = γ 3
0,    m l m⊥ = γ 0 . (3.14)

If l =1, these are just the relativistic eqs. (2.42) and (2.43). It was Planck who showed in

the paper mentioned above that these relations also obtain in special relativity.36 Planck’s

interpretation of these relations was very different from Lorentz’s. For Planck, as for

Einstein, the velocity dependence of mass was part of a new relativistic mechanics

replacing classical Newtonian mechanics. Lorentz wanted to retain Newtonian

mechanics, even after he accepted in 1904 that there are no Galilean-invariant Newtonian

masses or forces in nature. Consequently, he had to provide an explanation for the

peculiar velocity-dependence of electron mass he needed to account for the absence of

any detectable ether drift. In 1904, adapting Abraham’s electron model, Lorentz provided

such an explanation in the form of a specific model of the electron that exhibited exactly

the velocity dependence of eq. (3.14) for l =1.

                                                  

36 Einstein (1905, 919) obtained m m⊥ =γ 2
0 instead of m m⊥ = γ 0 , the result obtained by Planck and

Lorentz (for l=1). The discrepancy comes from Einstein using ′=F F  instead of ′= ( )F  Fdiag 1, , γ γ , the

now standard transformation law for forces used by Lorentz and Planck (Zahar 1989, 233). Einstein made it

clear that he was well aware of the arbitrariness of his definition of force.
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4. Electromagnetic energy, momentum, and mass of a moving electron

In this section we use Lorentz’s theorem of corresponding states to calculate the energy,

the momentum, and the Lagrangian for the field of a moving electron, conceived of as

nothing but a surface charge distribution and its electromagnetic field. We then compute

the longitudinal and the transverse mass of the electron.

moving electron corresponding state
stretch dimensions of

moving system by
diag γ l l l,  ,  ( )

The rigid electron of
Abraham
( l = 1)

R R R,  ,  ( ) γ R R R,  ,  ( )

The contractile electron of
Lorentz and Poincaré
( l = 1)

R

l

R

l

R

l

R
R R

γ γ
,  ,  ,  ,  









 =











R R R/ ,  ,  γ( ) R R R,  ,  ( )

The contractile electron of
constant volume of Bucherer
and Langevin ( l = −γ 1 3/ )

R

l

R

l

R

lγ
,  ,  









 =

R
R R

γ
γ γ2 3

1 3 1 3
/

/ /,  ,  










R R R/ ,  ,  / / /γ γ γ2 3 1 3 1 3 R R R,  ,  ( )

Figure 1: A moving electron according to the models of Abraham, Lorentz,
and Bucherer-Langevin, and the corresponding states at rest in the ether.

sphere

sphere

sphere

ellipsoid

ellipsoid

ellipsoid
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We distinguish three different models. In all three the electron at rest in the ether is

spherical. In Abraham’s model it remains spherical when it is set in motion; in Lorentz’s

model it contracts by a factor γ  in the direction of motion; and in the Bucherer-Langevin

model it contracts by a factor γ 2 3/  in the direction of motion but expands by a factor

γ 1 3/  in the directions perpendicular to the direction of motion so that its volume remains

constant. Fig. 1 shows a moving electron according to these three models along with the

corresponding states in a frame at rest in the ether. For Abraham’s rigid electron the

corresponding state is an ellipsoid; for the contractile electrons of Lorentz and Bucherer-

Langevin it is a sphere.

In the corresponding state of a moving electron (in relativistic terms: in the electron’s

rest frame) there is no magnetic field. Hence ′ =B 0  and eq. (3.7) gives:

E = l E E Ex y z
2 ′ ′ ′( ),  , ,γ γ    B = − ′ ′( )γ l v

c
E Ez y

2

2 0,  ,  . (4.1)

4.1 Energy. The energy of the electric and magnetic field is defined as

U E B d xEM = +





−∫
1
2

1
20

2
0

1 2 3ε µ . (4.2)

For the field in eq. (4.1) with Bx = 0, it is given by

U E d x E E d x B B d xx y z y zEM = + +( ) + +( )∫ ∫ ∫ −1
2

1
2

1
20

2 3
0

2 2 3
0

1 2 2 3ε ε µ    . (4.3)

Following Poincaré (1906, 523), we call these three terms A, B, and C. Using eq. (4.1)

and d x d x l3 3 3= ′ /γ , we find

A
l

E d x
l

A

B l E E d x l B

C
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c
E E d x l B

x

y z
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= ′ ′ = ′
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1 2

4
2 2 3 2

,

,

.

(4.4)

If the corresponding state is spherical,

′ = ′ = ′B A U2
2
3 EM . (4.5)
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It follows that for the models of Lorentz and Bucherer-Langevin:

U l A l UEM EM= + +








 ′ = +





′γ
γ

β γ β
1

2 2 1
1
32

2 2 , (4.6)

where we used that γ β− = −2 21  and that 3 ′ = ′A UEM. Eq. (4.6) can also be written as

U l U l UEM EM EM= − −( )



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





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1
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2 . (4.7)

4.2 Lagrangian. The Lagrangian can be computed the same way. We start from

L d xEM = ∫ LEM
3 , (4.8)

where LEM is the Lagrange density defined as (note the sign)

LEM ≡ −−1
2

1
20

1 2
0

2µ εB E . (4.9)

This quantity transforms as a scalar under Lorentz transformations as can be seen from its

definition in manifestly Lorentz-invariant form:37

LEM ≡ −1
4 0

1µ µν
µνF F . (4.10)

It follows that L LEM EM= ′l4  with ′ = −( ) ′LEM 1 2 0
2/ ε E . Eq. (4.8) thus gives:

L l
d x

l

l
UEM EM= ′

′
= − ′∫ 4

3

3LEM
γ γ

. (4.11)

4.3 Momentum. The electromagnetic momentum can also be computed in this way. For

the field of the electron, the electromagnetic momentum density (see eq. (2.15)) is:

pEM =

−
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. (4.12)

                                                  

37 See eq. (6.2) below for the relation between the (contravariant) electromagnetic field strength tensor Fµν

(and its covariant form F Fµν µρ νσ
ρση η= ) and the components of E and B.
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Because of symmetry (in all three models)

p d x p d xy zEM EM
3 3 0∫ ∫= = . (4.13)

For the x-component, we find

P
l

p d x l
v

c
E E d xx x y zEM EM

= ′ = ′ + ′( ) ′∫ ∫
1

3
3

2 0
2 2 3

γ
γ ε . (4.14)

This is equal to γ l v c B( / )2 2 ′. For the contractile electron (Lorentz and Bucherer-

Langevin), ′ = ′B U( / )2 3 EM . In that case

P vEM
EM=
′








4
3 2γ l

U

c
. (4.15)

This pre-relativistic equation will immediately strike anyone familiar with the basic

formulae of special relativity as odd. Remember that from a relativistic point of view the

energy ′UEM  of the moving electron’s corresponding state at rest in the ether is nothing
but the energy U0EM

 of the electron in its rest frame. Comparison of eq. (4.15) with l = 1

to P v= γ m0  (eq. (2.6)) suggests that the rest mass of the electron is m U c0
4

3 0
2=

EM
/ .

This seems to be in blatant contradiction to the equation everybody knows, E mc= 2.

This is the notorious “4/3 puzzle” of the energy-mass relation of the classical electron.

The origin of the problem is that the system we are considering, the self-field of the

electron, is not closed and that its four-momentum consequently does not transform as a

four-vector, at least not under the standard definition (2.9). The solution to the puzzle is

either to add another piece to the system so that the composite system is closed or to

adopt the alternative Fermi-Rohrlich definition (2.11) (with a fixed unit vector nµ ) of the

four-momentum of spatially extended systems. As we shall see, the “4/3 puzzle” had

already reared its ugly head before the advent of special relativity, albeit in a different

guise.

4.4 Longitudinal and transverse mass. Substituting eqs. (4.7) and (4.15) for the energy

and momentum of the field of a moving contractile electron into the expressions (2.32)

and (2.37) for the electron’s transverse and longitudinal mass, we find:

m
dP

dv

d lv

dv

U

c
// = =

( ) ′EM EMγ 4
3 2 , (4.16)
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m
P

v
l

U

c
⊥ = =

′EM EMγ
4
3 2 , (4.17)

m
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dU

dv v
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dv

l l
U// = = −
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
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 ′

1 1 4
3 3

EM
EM

γ
γ

. (4.18)

Several conclusions can be drawn from these equations. First, it turns out that eq. (4.16)

only gives the velocity dependence of the longitudinal mass required by Lorentz’s

generalized contraction hypothesis for l = 1. Unfortunately, for l = 1, eq. (4.18) does not

give the same longitudinal mass as eq. (4.16). One only obtains the same result for

l = −γ 1 3/ . This is the value for the Bucherer-Langevin constant-volume contractile

electron.

It is easy to prove these claims. Using eq. (2.41), we can write eq. (4.16) as

m
dP

dv
l v

dl

dv

U

c
// = = +





′EM EMγ γ3
2

4
3

. (4.19)

From eqs. (4.17) and (4.19) it follows that the only way to ensure that m l m// = γ 3
0 and

m l m⊥ = γ 0, as required by the generalized contraction hypothesis (see eq. (3.14)), is to

set the Newtonian mass equal to zero, to set l = 1, and to define the mass of the electron

at rest in the ether as

m
U

c
0 2

4
3

=
′EM (4.20)

(which, from a relativistic point of view, amounts to the odd equation E mc= 3

4
2). Eqs.

(4.19) and (4.17) then reduce to

m m// = γ 3
0,    m m⊥ = γ 0, (4.21)

in accordance with eq. (3.14).

Lorentz (1904) had thus found a concrete model for the electron with a mass

exhibiting exactly the velocity dependence that he had found in 1899. This could hardly

be a coincidence. Lorentz concluded38 that the electron was indeed nothing but a small

                                                  

38 This is an example of what one of us called a “common origin inference” or COI in (Janssen 2002a). The

example illustrates how easy it is to overreach with this kind of argument (for other examples see, ibid.,

474, 491, 508).
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spherical surface charge distribution, subject to a microscopic version of the Lorentz-

FitzGerald contraction when set in motion, and that its mass was purely electromagnetic,

i.e., the result of interaction with its self-field. This is Lorentz’s version of the classical

dream referred to by Pais in the passage we quoted in the introduction. The mass-velocity

relations for Lorentz’s electron model are just the relativistic relations (2.42)–(2.43). So it

is indeed no coincidence that Lorentz found these same relations twice, first, in 1899, as a

necessary condition for rendering ether drift unobservable (see eqs. (3.8)–(3.14)) and

then, in 1904, as the mass-velocity relations for a concrete Lorentz invariant model of the

electron. But the explanation is not, as Lorentz thought, that his model provides an

accurate representation of the real electron; it is simply that the mass of any Lorentz-

invariant model of any particle—whatever its nature and whatever its shape—will exhibit

the exact same velocity dependence. This was first shown (for static systems) by Laue

(1911a) and, to use Pais’ imagery again, it killed Lorentz’s dream.

Quite independently of Laue’s later analysis, Lorentz’s electron model appeared to be

dead on arrival. The model as it stands is inconsistent. One way to show this is to

compare expression (4.21) for the longitudinal mass m//  derived from the electron’s

electromagnetic momentum to the expression for m//  derived from its electromagnetic

energy (see eq. (4.7)). These two calculations, it turns out, do not give the same result

(Abraham 1905, 188, 204).39 Setting l = 1 in eq. (4.18) and using eq. (2.41), we find

m
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The first term in the last expression is equal to m//  in eq. (4.19) for l = 1. Without even

working out the second term, we thus see that momentum and energy lead to different

expressions for the longitudinal mass of Lorentz’s electron.

For the Bucherer-Langevin electron there is no ambiguity in the formula for its

longitudinal mass. Inserting l = −γ 1 3/  and eq. (4.20) into eq. (4.19), we find that the

electromagnetic momentum of the Bucherer-Langevin electron gives:

m
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8 3 2

01
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, (4.23)

                                                  

39 Cf. (Miller 1981, sec. 1.13.2). Miller cites a letter of January 26, 1905, in which Abraham informed

Lorentz of this difficulty. See also (Lorentz 1915, 213).
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where in the last step we used eq. (2.41) in conjunction with
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Inserting l = −γ 1 3/  and eq. (4.20) into eq. (4.18), we find that its electromagnetic energy

gives:
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Some simple gamma gymnastics establishes that eq. (4.25) reproduces eq. (4.23):40
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8 3 2
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EM γ β . (4.26)

So the energy and the momentum of the Bucherer-Langevin electron do indeed give the

same longitudinal mass. The same is true for the Abraham electron, although the

calculation is more involved and unimportant for our purposes.

One thing the Abraham model and the Bucherer-Langevin model have in common

and that distinguishes both models from Lorentz’s is that the volume of the electron is

constant. Hence, whatever forces are responsible for stabilizing the electron never do any

work and can safely be ignored, as was done in the derivation of the basic equations

(2.32) and (2.37) for longitudinal mass (see eqs. (2.13) and (2.35) and notes 21 and 26).

This does not mean that no such forces are needed. In all three models, one is faced with

the problem of the electron’s stability. Abraham, however, argued that whereas Lorentz’s

contractile electron called for the explicit addition of non-electromagnetic stabilizing

forces, he, Abraham, could simply take the rigidity of his own spherical electron as a

given and proceed from there without ever running into trouble.

In the introduction of the 1903 exposition of his electron dynamics, Abraham (1903,

108–109) devoted two long paragraphs to the justification of this crucial assumption. He

                                                  

40 Carrying out the differentiation with respect to γ  in eq. (4.25), we find:

m
c

v

v

c
m//

/ /= +− −( )
2

2

3
1 3 1

3
7 3 3

2 0γ γ γ ,

where we used eq. (2.41) for d dvγ / . This in turn can be rewritten as

m m m m//
/ / /= + = + − = −− 



( ) ( ) ( )γ γ γ β γ β8 3 2

3

1

3
2

0
8 3 2

3

1

3
2

0
8 3 1

3
2

01 1 .



30

distinguished three sets of equations for the dynamics of the electron. We already

encountered two of these, the “field equations” determining the self-field of the electron

and the “fundamental dynamical equations” determining the motion of the electron in an

external field. Logically prior to these, however, is what Abraham called the “basic

kinematical equation,” which “limits the freedom of motion of the electron.” This is the

assumption that the electron always retains its spherical shape. Abraham tried to preempt

the criticism he anticipated on this score:

This basic kinematical hypothesis may strike many as arbitrary; invoking the analogy
with ordinary electrically charged solid bodies, many would subscribe to the view that the
truly enormous field strengths at the surface of the electron—field strengths a trillion
times larger than those amenable to measurement—are capable of deforming the
electron; that electrical and elastic forces on a spherical electron would be in equilibrium
as long as the electron is at rest; but that the motion of the electron would change the
forces of the electromagnetic field, and thereby the shape of the equilibrium state of the
electron. This is not the view that has led to agreement with experiment. It also seemed to
me that the assumption of a deformable electron is not allowed on fundamental grounds.
The assumption leads to the conclusion that work is done either by or against the
electromagnetic forces when a change of shape takes place, which means that in addition
to the electromagnetic energy an internal potential energy of the electron needs to be
introduced. If this were really necessary, it would immediately make an electromagnetic
foundation of the theory of cathode and Becquerel rays, purely electric phenomena,
impossible: one would have to give up on an electromagnetic foundation of mechanics
right from the start. It is our goal, however, to provide a purely electromagnetic
foundation for the dynamics of the electron. For that reason we are no more entitled to
ascribe elasticity to the electron than we are to ascribe material mass to it. On the
contrary, our hope is to learn to understand the elasticity of matter on the basis of the
electromagnetic conception (Abraham 1903, 108–109).

The suggestion that experimental data, presumably those of Kaufmann, supported his

kinematics was wishful thinking on Abraham’s part (cf. Miller 1981, secs. 1.9 and 1.11).

In support of his more general considerations—as an argument it is a textbook example

of the genetic fallacy—Abraham proceeded to appeal to no less an authority than

Heinrich Hertz:

Hertz has convincingly shown that one is allowed to talk about rigid connections before
one has talked about forces. Our dynamics of the electron does not talk about forces
trying to deform the electron at all. It only talks about “external forces,” which try to give
[the electron] a velocity or an angular velocity, and about “internal forces”, which stem
from the [self-]field of the electron and which balance these external forces. Even these
“forces” and “torques” are only auxiliary quantities defined in terms of the fundamental
kinematic and electromagnetic concepts. The same holds for terms like “work,” “energy,”
and “momentum.” The guiding principle in choosing these terms, however, was to bring
out clearly the analogy between electromagnetic mechanics and the ordinary mechanics
of material bodies (Abraham 1903, 109).

Abraham submitted this paper in October 1902, almost three years before the publication

of Einstein’s first paper on relativity. He can thus hardly be faulted for basing his new
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electromagnetic mechanics on the old Newtonian kinematics. Minkowski would sneer a

few years later that “approaching Maxwell’s equation with the concept of a rigid electron

seems to me the same thing as going to a concert with your ears stopped up with cotton

wool” (quoted in Miller 1981, sec. 12.4.5, 330). He made this snide comment during the

80th Versammlung Deutscher Naturforscher und Ärzte in Cologne in September 1908,

the same conference where he gave his now famous talk “Space and Time” (Minkowski

1909). His veritable diatribe against the rigid electron, which he called a “monster” and

“no working hypothesis but a working hindrance,” came during the discussion following

a talk by Bucherer (1908c), who presented data that seemed to contradict Abraham’s

predictions for the velocity dependence of electron mass and support what was by then no

longer just Lorentz’s prediction but Einstein’s as well. It was only decades later that these

data were also shown to be inconclusive (Zahn and Spees 1938; quoted in Miller 1981,

331).

Minkowski’s comment suggests that we run Abraham’s argument about the

kinematics of the electron in Minkowski rather than in Newtonian space-time. We would

then take it as a given that the electron has the shape of a sphere in its rest frame, which

implies that it will have the shape of a sphere contracted in the direction of motion in any

frame in which it is moving. This, of course, is exactly Lorentz’s model. This gives rise

to a little puzzle. The point of Abraham’s argument in the passage we just quoted was

that by adopting rigid kinematical constraints we can safely ignore stabilizing forces. His

objection to Lorentz’s model was that Lorentz did have to worry about non-

electromagnetic stabilizing forces or he would end up with two different formulae for the

longitudinal mass of his electron. How can these two claims by Abraham be reconciled

with one another? One’s initial reaction might be that Abraham’s kinematical argument

does not carry over to special relativity because the theory leaves no room for rigid

bodies. That in and of itself is certainly true, but it is not the source of the problem. We

could run the argument using some appropriate concept of an approximately rigid body

(and as long as the electron is moving uniformly there is no problem whatsoever on this

score). Abraham’s argument that kinematic constraints can be used to obviate the need

for discussion of the stability of the electron will then go through as long as we use

proper relativistic notions. From a relativistic point of view, the analysis of Lorentz’s

model in this section is based on the standard non-covariant definition (2.9) of four-

momentum. If we follow Fermi, Rohrlich and others and use definition (2.11) (with a

fixed unit vector nµ ) instead, the ambiguity in the longitudinal mass of Lorentz’s

electron simply disappears. After all, under this alternative definition the combination of

the energy and momentum of the electron’s self-field transforms as a four-vector, even
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though it is an open system. This, in turn, guarantees—as we saw in eqs. (2.38)–(2.43) at

the end of sec. 2—that energy and momentum give the same longitudinal mass. This

shows that the ambiguity in the longitudinal mass of Lorentz’s electron is not a

consequence of the instability of the electron, but an artifact of the definitions of energy

and momentum he used. We do not claim great originality for this insight. It is simply a

matter of translating Rohrlich’s analysis of the “4/3 puzzle” in special relativity (see the

discussion following eq. (4.15)) to a pre-relativistic setting.

4.5 Hamiltonian, Lagrangian, and generalized momentum. Poincaré (1906, 524)

brought out the inconsistency of Lorentz’s model in a slightly different way. He raised

the question whether the expressions he found for energy, momentum, and Lagrangian

for the field of the moving electron conform to the standard relations between

Hamiltonian, Lagrangian, and generalized momentum. For an electron moving in the

positive x-direction, these relations are

U L Pv L= ⋅ − = −P v ,    P P
dL

dvx= = . (4.27)

It turns out that the first relation is satisfied by both the Lorentz and the Bucherer-

Langevin model, but that the second is satisfied only by the latter. Using eqs. (4.11) and

(4.15) for PEM  and LEM, respectively, we find

P v L l
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which does indeed reduce to the expression for UEM  found in eq. (4.6) for any value of l.

We now compute the conjugate momentum.
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where we used eq. (2.41). For the Lorentz model, with l = 1, this reduces to

dL

dv

U

c
vEM EM=

′





γ 2 , (4.30)

which differs by the now familiar factor of 4/3 from the expression for PEM  read off

from eq.  (4.15) for l = 1. For the Bucherer-Langevin model, l = −γ 1 3/  and with the help

of eq. (4.24) we find:
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This agrees exactly with eq. (4.15) for l = −γ 1 3/ .

The relations (4.27) are automatically satisfied if U c/ ,  P( ) transforms as a four-

vector under Lorentz transformations. In that case, we have (see eq. (2.6)):

U U= γ 0 ,    P
U

c
v= γ 0

2
. (4.32)

Inserting this into L Pv U= − , we find
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which, in turn, implies that
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in accordance with eq. (4.32). This shows once again (cf. the discussion at the end of sec.

4.4) that the inconsistency in Lorentz’s model can be taken care of by switching—in

relativistic terms—from the standard definition (2.9) of four-momentum to the Fermi-

Rohrlich definition (2.11) (with fixed nµ ). In that case the energy and momentum of the

electron’s self-field will satisfy eqs. (4.32)–(4.34) even though it is an open system.
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5. Poincaré pressure.

In this section we give a streamlined version of the argument with which Poincaré (1906,

525–529) introduced what came be known as “Poincaré pressure” to stabilize Lorentz’s

purely electromagnetic electron.41

real electron (in motion)
dimensions: r r r,  ,  ϑ ϑ( )

ideal electron (at rest)
dimensions: γ ϑ ϑlr l r l r,  ,  ( )

The rigid electron of
Abraham
ϑ = 1
l  arbitrary
r constant

r r r,  ,  ( ) γ lr lr lr,  ,  ( )

The contractile electron of
Lorentz and Poincaré
ϑ γ=
l = 1
γ r = constant

r r r,  ,  γ γ( ) γ γ γr r r,  ,  ( )
The contractile electron of
constant volume of Bucherer
and Langevin
ϑ γ=

l = −γ 1 3/

γ lr = constant

r r r,  ,  γ γ( ) γ γ γ2 3 2 3 2 3/ / /,  ,  r r r( )
Figure 2: Poincaré’s characterization of the different models for a moving

electron and the corresponding states at rest in the ether.

                                                  

41 We are grateful to Serge Rudaz for his help in reconstructing this argument.

sphere ellipsoid

sphereellipsoid

sphereellipsoid
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The Lagrangian for the electromagnetic  field of a moving electron can in all three

models (Abraham, Lorentz, Bucherer-Langevin) be written as

L
r

EM =
( )ϕ ϑ γ

γ

/
2

(5.1)

(Poincaré 1906, 525), where the argument ϑ γ/  of the as yet unknown function ϕ  is the

‘ellipticity’ (our term) of the “ideal electron” (Poincaré’s term for the corresponding state

of the moving electron). The ellipticity is the ratio of the radius of the “ideal electron” in

the directions perpendicular to the direction of motion ( l rϑ ) and its radius (γ lr ) in the

direction of motion. This is illustrated in Fig. 2, which is the same as Fig. 1, except that it

shows the notation Poincaré used to describe the three electron models.

For the Abraham electron the ellipticity is 1/γ ; for both the Lorentz and the

Bucherer-Langevin electron it is 1. By examining the Lorentz case, we can determine

ϕ( )1 . Inserting U e r0
2

08
EM

= / πε γ ,42 where γ r  is the radius of the electron at rest in the

ether, into eq. (4.11) for the Lagrangian, we find:

L
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r
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EM= − = −0
2

0
28γ πε γ

, (5.2)

Comparison with the general expression for LEM in eq. (5.1) gives:

ϕ
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1
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e
. (5.3)

Abraham (1902a, 37) found that the Lagrangian for his electron model has the form

L
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rEMAbraham =
− +

−
1 1
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2β
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β
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ln (5.4)

(Poincaré 1906, 526). Since L rEM = ϕ( ) /1  for β = 0 (in which case all three electron

models coincide), it follows that a = ϕ( )1 . From eqs. (5.1) and (5.4) it follows that

ϕ γ γ
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β
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1
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+
−

rL
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EMAbraham
. (5.5)

                                                  

42 See note 52 below for a derivation of this formula.
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The Lagrangian for the Lorentz model told us that ϕ( )1 = a. The Lagrangian for the

Abraham model allows us to determine ′ϕ ( )1 . We start from eq. (5.5) and develop both

the right-hand side and the argument 1/γ  of ϕ  on the left-hand side to second order in

β . This gives (ibid.):

ϕ β β1
1
2

1
1
3

2 2−





= +





a . (5.6)

Now differentiate both sides:

− ′ −





=βϕ β β1
1
2

2
3

2 a . (5.7)

It follows that ′( ) = −( )ϕ 1 2 3/ a.

As Poincaré notes, all three electron models satisfy a constraint of the form

r b m= ϑ , (5.8)

where b is a constant and where the exponent m depends on which model we consider. In

the Abraham model ϑ = 1 and r  is a constant. Hence, r b= . In the Lorentz model, ϑ γ=

and γ r  is a constant. It follows that ϑr b= , or r b= −ϑ 1. In the Bucherer-Langevin

model, ϑ γ=  and γ 2 3/ r  is a constant. It follows that ϑ 2 3/ r b= , or r b= −ϑ 2 3/ . In other

words, the values of m in the three models are

Abraham: m = 0,

Lorentz: m = −1, (5.9)

Bucherer-Langevin: m = −2 3/ .

Substituting r b m= ϑ  into the general expression (5.1) for the Lagrangian, we find:

L
b mEM =

( )ϕ ϑ γ

γ ϑ

/
2

. (5.10)

Poincaré proceeds to investigate whether this Lagrangian describes a stable physical

system. To this end, he checks whether ∂ ∂θLEM/  vanishes. It turns out that for

m = −2 3/  it does, but that for m = −1 it does not. Denote the argument of the function ϕ

with u ≡ ϑ γ/ .

∂
∂ϑ

ϕ

γ ϑ

ϕ

γ ϑ

L u

b

m u

bm m
EM =

′( )
−

( )
+3 2 1

. (5.11)
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This derivative vanishes if

′( ) =
( )

=
( )

ϕ
γ ϕ

ϑ
ϕ

u
m u

m
u

u
. (5.12)

For the Lorentz and Bucherer-Langevin models u = 1, and this condition reduces to

′( ) = ( )ϕ ϕ1 1m . (5.13)

Inserting ϕ( )1 = a and ′( ) = −( )ϕ 1 2 3/ a, we see that the purely electromagnetic

Lagrangian only describes a stable system for m = −2 3/ , which is the value for the

Bucherer-Langevin electron. The Lorentz electron calls for an additional term in the

Lagrangian.43 The total Lagrangian is then given by the sum

L L Ltot EM non-EM= + . (5.14)

Like LEM, Lnon EM−  is a function of ϑ  and r . Treating these variables as independent,

we can write the stability conditions for the total Lagrangian as

∂
∂ϑ

L LEM non-EM+( ) = 0,      
∂
∂r

L LEM non-EM+( ) = 0. (5.15)

Evaluating the partial derivatives of LEM given by eq. (5.1),

∂
∂ϑ

ϕ

γ

L u

r
EM =

′( )
3

,      
∂

∂
ϕ

γ

L

r

u

r
EM = −

( )
2 2

, (5.16)

and inserting the results into the stability conditions, we find

∂
∂ϑ

ϕ

γ

L u

r
non-EM = −

′( )
3 ,      

∂
∂

ϕ

γ

L

r

u

r
non-EM =

( )
2 2 . (5.17)

Poincaré (1906, 528–529) continues his analysis without picking a specific model. We

shall only do the calculation for the Lorentz model. So we no longer need subscripts such

as in eqs. (5.2) and (5.4) to distinguish between the models of Abraham and Lorentz. For

                                                  

43 Referring to (Poincaré 1885, 1902a, b), Scott Walter (fortcoming, sec. 1) makes the interesting

suggestion that “[s]olving the stability problem of Lorentz’s contractile electron was a trivial matter for

Poincaré, as it meant transposing to electron theory a special solution to a general problem he had treated

earlier at some length: to find the equilibrium form of a rotating fluid mass.”
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the Lorentz model m = −1, γ ϑ= , r b= /ϑ , and u = 1. Substituting these values into eqs.

(5.17) and using that  ϕ( )1 = a and ′( ) = −( )ϕ 1 2 3/ a, we find:

∂
∂ϑ ϑ

L a

b
non-EM =

2

3 2 ,      
∂

∂
L

r

a

b
non-EM = 2 . (5.18)

These equations are satisfied by a Lagrangian of the form

Lnon-EM = Ar3 2ϑ , (5.19)

where A is a constant. Since r3 2ϑ  is proportional to the volume V of the moving electron,

Lnon-EM can be written as

L P Vnon-EM Poincaré= , (5.20)

where PPoincaré is a constant. We chose the letter P because this constant turns out be a

(negative) pressure. To determine the constant A, we take  the derivative of eq. (5.19)

with respect to ϑ  and r, and eliminate r from the results, using r b= /ϑ :

∂
∂ϑ

ϑ
ϑ

L
Ar

Abnon-EM == 2
23

3

2 ,      
∂

∂
ϑ

L

r
Ar Abnon-EM = =3 32 2 2 . (5.21)

Comparison with eqs. (5.18) gives:

A
a

b
=

3 4 . (5.22)

Finally, we write Lnon-EM in a form that allows easy comparison with L a rEM = /γ 2  (see

eq. (5.1) with ϕ ϑ γ ϕ/( ) = ( ) =1 a). Using eq. (5.22) along with ϑ γ=  and b r= γ , we can

rewrite eq. (5.19) for Lnon-EM as

L
a

b
r

a

r
L

U
non-EM EM

EM= = = = −
3

1
3

1
3

1
34

3 2
2

0ϑ
γ γ

, (5.23)

where in the last step we used eq. (4.11) for l = 1. Using that the volume V0  of Lorentz’s

electron at rest is equal to γV , we can rewrite this as:

L
U

V
Vnon-EM

EM= −
1
3

0

0
. (5.24)

Comparison with expression (5.20) gives:
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P
U

VPoincaré
EM= −

1
3

0

0
(5.25)

(Laue 1911b, 164, eq. 171). Note that this so-called Poincaré pressure is negative. The

pressure is present only inside the electron and vanishes outside (Poincaré 1906, 537).44 It

can be written more explicitly with the help of the ϑ -step-function. 45 For an electron

moving through the ether with velocity v in the x-direction the Poincaré pressure in a co-

moving frame (related to a frame at rest in the ether by a Galilean transformation) is:

P
U

V
R x y zPoincaré

EMx( ) = − − + +





1
3

0

0

2 2 2 2ϑ γ , (5.26)

where R is the radius of the electron at rest. So there is a sudden drop in pressure at the

edge of the electron, which is the only place where forces are exerted.46 These forces

serve two purposes. First, they prevent the electron’s surface charge distribution from

flying apart under the influence of the Coulomb repulsion between its parts. Second, as

the region where PPoincaré x( ) is non-vanishing always coincides with the ellipsoid-shaped

region occupied by the moving electron, these forces make the electron contract by a

factor γ  in the direction of motion when it is moving with a velocity v.

Relations (4.27) between Hamiltonian, Lagrangian and generalized momentum, only

one of which was satisfied by Lorentz’s original purely electromagnetic electron model,

are both satisfied once Lnon EM−  is added to the Lagrangian. Using the total Lagrangian,

L L L L
U

tot EM non-EM EM
EM= + = = −

4
3

4
3

0

γ
, (5.27)

to compute the total momentum, we find:

P
dL

d

dL

d

U

c
vtot

tot EM
v v

EM= = =
4
3

4
3

0
2

γ , (5.28)

                                                  

44 As Miller (1973, 300) points out, in the short announcement of his 1906 paper, (Poincaré 1905, 491)

mistakenly wrote that the electron “is under the action of constant external pressure” (Keswani and

Kilmister 1983, 352).
45 The definition of this function is: ϑ x( )=0  for x<0  and ϑ x( ) = 1 for x≥0.
46 For a detailed analysis of the completely analogous case of the forces on a capacitor in the Trouton-Noble

experiment, see secs. 2.3.3 and 2.4.2 of (Janssen 1995).
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where in the last step we used eq. (4.30). This is just the electromagnetic momentum

PEM  found earlier (see eq. (4.15) for l =1). With the help of these expressions for Ltot

and Ptot , we can compute the total energy.

U P v L U
U

Utot tot tot EM
EM

EM
= − = + =

4
3

4
3

4
30

2 0
0γ β

γ
γ . (5.29)

The total energy is the sum of the electromagnetic energy (see eq. (4.7)),

U U
U

EM EM
EM= −

4
3

1
30

0γ
γ

, (5.30)

and the non-electromagnetic energy,

U
U

non EM
EM

− =
1
3

0

γ
, (5.31)

which is minus the product of the Poincaré pressure (see eq. (5.25)) and the volume

V V= 0 /γ  of the moving electron. The total energy of the system at rest is

U U0 0
4
3tot EM

= . (5.32)

and its rest mass is m U c0 0
2

tot tot
= /  accordingly. Eq. (5.28) can thus be rewritten as

P
U

c
v m vtot

tot
tot

=








 =γ γ0

2 0 . (5.33)

The troublesome factor 4/3 has disappeared.

The total energy and momentum transform as a four-vector under Lorentz

transformations. In the system’s rest frame its four-momentum is

P U c0 0 0 0
tot tot0

µ = ( )/ ,  ,  ,  . In a frame moving with velocity v in the x-direction, it is

P P
U

c

U

ctot
0 0

tot
tot totµ µ

ν
ν γ γ β= =









Λ 0 0 0,  ,  ,  , (5.34)

in accordance with eqs. (5.29), (5.32), and (5.33). As we saw at the end of sec. 2, if

U c/ ,  P( ) transforms as a four-vector, it is guaranteed that energy and momentum lead to

the same longitudinal mass. With Poincaré’s amendment Lorentz’s electron model may

no longer be purely electromagnetic—at least it is fully consistent.
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As we pointed out earlier, the problem that Abraham found in Lorentz’s purely

electromagnetic electron model (viz. that momentum and energy lead to different

expressions for the longitudinal mass) returns in special relativity  as the infamous “4/3

puzzle” of the mass-energy relation of the classical electron. Mathematically, these two

problems are identical and the introduction of Poincaré pressure thus takes care of both.

In the next section, we shall reintroduce Poincaré pressure à la Max Laue (1911a, b) in

his relativistic treatment of Lorentz’s electron model.

Before we do so, we need to deal with a serious error committed by Poincaré (1906,

538) in his calculation of the transverse and longitudinal mass of the stabilized Lorentz

electron. As a result of this error, Poincaré overestimated what he had accomplished in

his paper.47 The calculations in (Poincaré 1906) that we have covered so far are all from

section 6 of the paper. This section is phrased entirely in terms of energies, momenta, and

Lagrangians. The consideration of mass is explicitly postponed (Ibid., 522). In section 4

we showed how Poincaré restated the problem of the ambiguity of the longitudinal mass

of Lorentz’s electron in terms of the model failing to satisfy one of the standard relations

between Hamiltonian, Lagrangian, and generalized momentum (Ibid., 524; cf. sec. 4.5).

In this section we traced the steps that Poincaré took in the remainder of section 6 to

restore the validity of these relations for Lorentz’s model (Ibid., 525–529). This is a

completely unobjectionable way to proceed, from a pre-relativistic as well as from a

relativistic point of view.48

In section 7 of his paper, Poincaré (1906, 531) finally introduces Abraham’s

definitions (2.32) of the electromagnetic longitudinal and transverse mass of the electron.

And at the end of section 8, at the very end of his discussion of electron models and just

                                                  

47 We are grateful to Scott Walter for reminding us of this problem. We essentially follow the analysis of

the problem by Miller (1973, 298–299), although we draw a slightly different conclusion (see note 48).

Schwartz (1972, 871) translates the relevant passage from (Poincaré 1906) but passes over the problem in

silence.
48 One might object, however, that our reading of Poincaré is too charitable. Poincaré certainly does not

explicitly say, once he has derived the expression for Poincaré pressure at the end of section 6, that this

restores the standard relations between Hamiltonian, Lagrangian, and generalized momentum in Lorentz’s

model. Yet we take this to be the rationale behind his calculations. Miller (1973, 248) is harder on

Poincaré: “contrary to what is sometimes attributed to this paper [Poincaré 1906], Poincaré never computed

the counter term [our eq. (5.31)] necessary to cancel the second term on the right-hand side of [our eq.
(5.30)], nor did he reduce the factor of 4/3 in [the electromagnetic momentum] to unity [compare PEM in

eq. (4.15) for Ptot  in eq. (5.28)].” This is all true. Our rejoinder on behalf of Poincaré is that he did not need

to do any of this to remove the inconsistency in Lorentz’s model.
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before he turns to the problem of gravitation, he computes the mass of the electron in

Lorentz’s model, limiting himself to what he calls—in scare quotes—the ““experimental

mass,” i.e., the mass for small velocities” (Ibid., 538). He writes down the Lagrangian

(5.1) for the special case of the Lorentz electron. Using that ϕ ϑ γ ϕ/( ) = ( ) =1 a  (where

a e= − 2
08/ πε ) and γ r b= (with b  is the radius of the electron at rest in the ether), we

arrive at the expression given by Poincaré at this point,

L
a

b
v cEM = −1 2 2/ , (5.35)

except that Poincaré uses H  instead of LEM and sets c = 1. For small velocities, eq.

(5.35) reduces to

L
a

b

v

c
EM ≈ −









1

1
2

2

2 . (5.36)

Poincaré concludes that for small velocities both the longitudinal and the transverse mass

of the electron is given by a b/ . Since a  is negative, he must have meant −a b/ . This is

just a minor slip. Poincaré’s result corresponds to U c0
2

EM
/ ,49 which differs from the

result that we found by the infamous factor of 4/3 (see eqs. (5.32)–(5.33)). How did

Poincaré arrive at his result? It is hard to see how he could have found this in any other

way than the following. Computing the electromagnetic momentum as the generalized

momentum corresponding to the Lagrangian (5.36), one finds

P
dL

dv

a

b

v

c
EM

EM= ≈ − 2 . (5.37)

Inserting this result into definitions (2.32) for longitudinal and transverse mass, one

arrives at:

m
dP

dv

a

bc
// = ≈ −EM

2 ,     m
P

v

a

bc
⊥ = ≈ −EM

2 . (5.38)

This is just the result reported by Poincaré (recall that he set c = 1). However, we had no

business using eq. (5.37)! As Poincaré himself had pointed out in section 6 of his paper,

in the case of the Lorentz model, the electromagnetic momentum PEM  is not equal to the

generalized momentum dL dvEM / . The relation P dL dv= /  only holds for the total

                                                  

49 Compare eq. (5.35) to eq. (5.2), which for small velocities reduces to L U v cEM EM
≈ − −( )0

2 21 2/ .
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momentum and the total Lagrangian. The total Lagrangian is 4/3 times the

electromagnetic part. For low velocities it reduces to (cf. eq. (5.36)):

L
a

b

v

c
tot ≈ −











4
3

1
1
2

2

2 . (5.39)

Replacing LEM by Ltot  in eqs. (5.37)–(5.38), we find that the low-velocity limit of the

electron mass is 4/3 times −a b/  or 4/3 times U c0
2

EM
/ , in accordance with what we

found above. Unlike the minus sign of −a b/  that Poincaré lost in his calculation, the
conflation of  LEM and Ltot  has dire consequences. If we use Ltot  it is immediately

obvious that the mass of Lorentz’s electron is not of purely electromagnetic origin,

whereas if we use LEM we are led to believe that it is. In fact, this is exactly what

Poincaré claimed, both at the end of section 8 and in the introduction of his paper. In the

introduction, he writes:

If the inertia of matter is exclusively of electromagnetic origin, as is generally
admitted since Kaufmann’s experiment, and all forces are of electromagnetic origin
(apart from this constant pressure that I just mentioned), the postulate of relativity
may be established with perfect rigor. (Poincaré 1906, 496)

Commenting on this passage, Miller (1973, 248) writes: “However the presence of these

stresses [the Poincaré pressure] negates a purely electromagnetic theory of the electron’s

inertia.” We agree. One has to choose between the “postulate of relativity” and mass

being “exclusively of electromagnetic origin.” Even Poincaré cannot have his cake and

eat it too.
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6. The relativistic treatment of the electron model of Lorentz as amended by

Poincaré.

From the point of view of Laue’s relativistic continuum mechanics, the problem with

Lorentz’s fully electromagnetic electron is that it is not a closed system. The four-

divergence of the energy-momentum tensor of its electromagnetic field does not vanish.

Computing this four-divergence tells us what needs to be added to this energy-

momentum tensor to obtain a closed system, i.e., a system with a total energy-momentum

tensor such that ∂ν
µνTtot = 0. Unsurprisingly, the part that needs to be added is just the

energy-momentum tensor for the Poincaré pressure.

The energy-momentum tensor for the electromagnetic field is given by

T F F F FEM
µν µ

α
αν µν

αβ
αβµ η= +


 


−

0
1 1

4
, (6.1)

where F µν  is the electromagnetic field tensor with components:

F

E c E c E c

E c B B

E c B B

E c B B

x y z

x z y

y z x

z y x

µν =

− − −

−

−

−



















0

0

0

0

/ / /

/

/

/

. (6.2)

Compared to F µν  the 0i  and ij  components of F Fµ
ν

µα
ανη=  have the opposite sign,

as do the 0i  and i0 components of F Fµν µα
αβ

βνη η= . Inserting the components of the

field tensor into eq. (6.1) for the energy-momentum tensor, we recover the familiar

expressions for the electromagnetic energy density (cf. eq. (4.2)), (c times) the

electromagnetic momentum density (cf. eq. (2.15)), and (minus) the Maxwell stress

tensor (cf. eq. (2.25)).

T E B u

T T T T T T c c

T E E E B B B Tij i j ij i j ij ij

EM EM

EM EM EM EM EM EM EM

EM Maxwell

00 1

2 0
2 1

2 0
1 2

01 02 03 10 20 30
0

0
2

0
1 21

2
1
2

= + =

( ) = ( ) = ×

= − −





− −





= −

−

−

ε µ

ε

ε δ µ δ

,

,  ,  ,  ,  ,

.

E B = p (6.3)

We calculate the four-divergence of the energy-momentum tensor for the

electromagnetic field of Lorentz’s electron in its rest frame. Lorentz invariance
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guarantees that if the four-divergence of the total energy-momentum tensor vanishes in

the rest frame (∂
ν

µν
0 0tot

T = 0), it will vanish in all frames (∂ν
µνTtot = 0). In the rest frame,

we have

T
u

Tij0
0

0EM

EM

Maxwell

0

0
µν =

−









 . (6.4)

Consider the four-divergence ∂
ν

µν
0 0EM

T  of this tensor. Since the system is static, only the

spatial derivatives, ∂ µ
0 0EMj

jT  , give a contribution. Since T j
0EM

0 0= , there will only be

contributions for µ = i. Going through eqs. (2.20)–(2.25) in reverse order and setting

B = 0, we can write these contributions as:

∂ ∂ ε ρ0 0 0 0EM Maxwell
div

j
ij

j
ij i iT T E E= − = − = −0 0 0 0 0E , (6.5)

where in the last step we used one of Maxwell’s equations.50 The charge density ρ0  is the

surface charge density σ π= e R/ 4 2  (where e is the charge of the electron and R the

radius of the electron in its rest frame):

ρ σδ0 0= −( )R r , (6.6)

where r x y z0 0
2

0
2

0
2≡ + + . Inside the electron there is no electric field (it is a miniature

version of Faraday’s cage); outside the field is the same as that of a point charge e located

at the center of the electron. We thus have:

E

r R

r R
e

r

x

r

i i
0

0

0
0 0

2
0

0

0

4

=

<

>









:

: .
πε

(6.7)

At r R0 = , right at the surface of the electron, the field has a discontinuity. Its magnitude,

E0, jumps from 0 to e R/ 4 0
2πε . At this point we need to use the average of these two

values (see, e.g., Griffith 1999, 102–103). At r R0 =  the field is thus given by

                                                  

50 From a relativistic point of view, eq. (6.5) is immediately obvious since the (four-)gradient of the energy-

momemtum tensor gives minus the density of the (four-)force acting on the system (see, e.g., Pauli 1921,

126, eq. (345)). The right-hand side of eq. (6.5) is minus the Lorentz force density in the absence of a

magnetic field (ibid., 85, eq. (225)).
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E
e

R

x

R

x

Rr R
i

i i

0
0

2
0

0

0
0 8 2=

= =
πε

σ
ε

, (6.8)

where we used that σ π= e R/ 4 2 . Substituting eqs. (6.8) and (6.6) into eq. (6.5), we find:

∂
σ
ε

δ0 0EMj
ij

i
T

x

R
R r= − −

2

0

0
02

( ). (6.9)

In summary, the divergence of the energy-momentum tensor of the electron’s

electromagnetic field in its rest frame is:

∂
µ

µ
σ
ε

δν
µν

0 0EM
T

i
x

R
R r

i=

=

= − −








0 0

2

2

0

0
0

:

: ( ).
(6.10)

It vanishes everywhere except at the surface of the electron where its charge is. To get a

total energy-momentum tensor with a four-divergence that vanishes everywhere,

∂ ∂
ν

µν
ν

µν µν
0 0 0 0 0tot EM non-EM

T T T= +( ) = 0, (6.11)

we need to add the Poincaré pressure of eq. (5.26), which in the electron’s rest frame is

described by the energy-momentum tensor

T P R r0 Poincarénon-EM

µν µνη ϑ= − −( )0 . (6.12)

We calculate the four-divergence of this energy-momentum tensor, ∂
ν

µν
0 0non-EM

T . Only

the ij-components will contribute (cf. eqs. (6.4)–(6.5) above):51

                                                  

51 T0non-EM
00  can be any function of the spatial coordinates and the system will still be closed. Of course,

this component needs to be chosen in such a way that Tnon-EM
µν  continues to transform as a tensor. We

ensure this by changing definition (6.12) to:

T P R r f u u c0non-EM Poincaré
µν µν µ νη ϑ≡ − − +( )0 0 0 0

2( ) /x ,

where u c
µ

γ= ( , )v  is the electron’s four-velocity. The function f ( )x0  can be chosen arbitrarily as long as

the energy density is positive definite everywhere. Hence, it must satisfy the condition f ( )x0 0≥  outside

the electron and the condition f P( )x0 ≥ Poincaré  inside. If we choose f P R r( )x0 0= −( )Poincaréϑ , the

definition above becomes T u u c P R r0non-EM Poincaré
µν µν µ νη ϑ≡ − − −( ) ( )0 0

2
0/ , in which case T0non-EM

00 0= .

This definition was proposed by Schwinger (1983, 379, eqs. (42)–(43)).
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∂ ∂ ϑ δ0 0 Poincaré 0 Poincarénon-EMj
ij

i

i
T P R r P

x

R
R r= −( ) = − −( )0

0
0 . (6.13)

The divergence of the energy-momentum tensor describing the Poincaré pressure in the

electron’s rest frame is thus given by:

∂
µ

µ δν
µν

0 0
Poincarénon-EM

T
i P

x

R
R r

i=
=

= − −( )






0 0

0
0

:

: .
(6.14)

Comparison of eqs. (6.10) and (6.14) shows that the four-divergence of the electron’s

total energy-momentum tensor vanishes, if

PPoincaré = −
σ
ε

2

02
. (6.15)

This is just the value for the Poincaré pressure that we found in sec. 5 (see eq. (5.25) and

Laue 1911b, 164):

P
U

VPoincaré
EM= −

0

03
. (6.16)

The rest energy U0EM
 of a sphere of radius R with surface charge e is given by:52

U
e

R0

2

08EM
=

πε
. (6.17)

Inserting this value into eq. (6.16), using that V R0
4

3
3= π  and that σ π= e R/ 4 2 , we find:

                                                  

52 To derive eq. (6.17), we start from:

U E d x d x0
1

2 0
2 3 1

2 0
3

EM
grad=∫ =− ⋅∫ε ε ϕE .

Using the relation E E E⋅ = −( )grad div divϕ ϕ ϕ  along with Gauss’ theorem (which tells us that the integral

over div Eϕ( ) vanishes), we can rewrite this as

U d x d x0
1

2 0
3 1

2
3

EM
div= ∫ = ∫ε ϕ ϕ ρE .

The potential ϕ  is equal to e r/ 4 0πε  outside the electron and to e R/ 4 0πε  inside. Using eq. (6.6) for ρ

and switching to spherical coordinates, we arrive at eq. (6.17):

U R r r drd d
e

R

e

R
R

e

R0
2

0
2

2
21

2
2

4 4 8 0
EM

= −∫ =
















 =ϕσδ ϑ ϑ ϕ π

πε π πε
( ) sin .
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P
U

V

e

R R

e

R
Poincaré

EM= − =
( )( )

= − 





 = −

0

0

2

0
3

0
2

2 2

03 8 4

1
2 4 2πε π ε π

σ
ε

, (6.18)

which is indeed the value we found in eq. (6.15) (see also Lorentz 1915, 214; Schwinger

1983, 376–377, eqs. (24) and (34); Rohrlich 1997, 1056, eq. (A.4)). The reader is invited

to compare this straightforward and physically clearly motivated introduction of Poincaré

pressure to (the streamlined version of) Poincaré’s own derivation presented in sec. 5.

We now calculate the contributions of TEM
µν  and Tnon-EM

µν  to the electron’s four-

momentum. We begin with the contribution coming from the electron’s electromagnetic

field:

P
c

T d xEM EM
µ µ= ∫1 0 3 . (6.19)

Using that T Tµν µ
ρ

ν
σ

ρσ= Λ Λ 0  and that d x d x3 3
0= /γ , we can rewrite this as

P
c

T d xEM 0EM

µ µ
ρ σ

ρσ

γ
= ∫1 0 3

0Λ Λ . (6.20)

Eq. (6.4) tells us that there will only be contributions for ρσ = 00  and ρσ = ij . We

denote these contributions as PEM
µ 00( )  and P ijEM

µ ( ) .

For PEM
µ 00( )  we have:

P
c

T d xEM 0EM

µ µ

γ
00

1
00

0 00 3
0( ) = ∫Λ Λ . (6.21)

Since Λµ γ γβ0 0 0= ( ),  ,  ,   (see eq. (2.4)) and the integral over T0EM

00  gives U0EM
, this

turns into:

P
U

c

U

cEM
EM EMµ γ γ00

0 0
2( ) =









,  v . (6.22)

This is just the Lorentz transform of P U c0 0 0 0 0
EM EM

µ = ( )/ ,  ,  ,  . It is the additional

contribution P ijEM
µ ( ) , coming from Tij

0EM
, that is responsible for the fact that the four-

momentum of the electron’s electromagnetic field does not transform as a four-vector.

For P ijEM
µ ( )  we have:
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P ij
c

T d xi j
ij

EM 0EM

µ µ

γ
( ) = ∫

1 0 3
0Λ Λ . (6.23)

The integrand is minus the Maxwell stress tensor in the electron’s rest frame (see eq.

(6.3)):

T

E E E E E E

E E E E E E

E E E E E E

ij
x

y

z

x y x z

y x y z

z x z y

0EM
= −

−

−

−



















ε0

0
2 1

2 0
2

0 0 0 0

0 0 0
2 1

2 0
2

0 0

0 0 0 0 0
2 1

2 0
2

. (6.24)

The integrals over the off-diagonal terms are all zero. The integrals over the three

diagonal terms are equal to one another and given by

ε ε0
1

2 0
2 1

3 0
2 3

0
1

3

1

2 0 0
2 3

0
1

3 0E E d x E d x U−( ) = =∫ ∫ EM
. (6.25)

With the help of this equation and of 1 1 0 00
1

0
1

2/ / ,  ,  ,  γ γ γβ γβµ µ( ) = ( ) = ( )Λ Λ Λ Λi i  (see

eq. (2.4)), eq. (6.23) can be rewritten as

P ij
U

c

U

cEM
EM EMµ γ β γ( ) =











1

3
2 0 1

3
0

2,  v . (6.26)

Adding eqs. (6.22) and (6.26), we find:

P P P ij
U

c

U

cEM EM EM
EM EMµ µ µ γ β γ= ( ) + ( ) = +













00 1

1
3

4
3

2 0 0
2,  v . (6.27)

This is exactly the result we found earlier for the energy and momentum of the

electromagnetic field of Lorentz’s electron (see eqs. (4.6) and (4.15) with l =1 and
′ =U UEM EM0 ).

The calculation of the contributions to the four-momentum coming from Tnon-EM
µν  is

completely analogous to the calculation in eqs. (6.19)–(6.27). We start with:

P
c

T d xnon-EM 0non-EM

µ µ
ρ σ

ρσ

γ
= ∫

1 0 3
0Λ Λ . (6.28)

Since T0non-EM

µν  is diagonal (see eq. (6.12)), there will only be contributions when ρ σ= .

Since Λ0 0 0µ γ γ β= ( ),  ,  ,  , the only contributions will be for ρ σ= = 0  and ρ σ= = 1.
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We denote these by Pnon-EM
µ 00( )  and Pnon-EM

µ 11( ) , respectively, and calculate them

separately.

First, we consider Pnon-EM
µ 00( ) :

P
c

T d xnon-EM 0non-EM

µ µ

γ
00

1
0

0
0

00 3
0( ) = ∫Λ Λ . (6.29)

We can write the integral as

T d x P R r d x P V0 Poincaré Poincarénon-EM
00 3

0 0
3

0 0∫ ∫= − −( ) = −ϑ . (6.30)

With eq. (6.16) for PPoincaré this turns into:

T d x U0non-EM EM
00 3

0 0
1
3∫ = . (6.31)

Inserting this value into eq. (6.29) along with Λµ γ γβ0 0 0= ( ),  ,  ,   (see eq. (2.4)), we

find

P
U

c

U

c
non-EM

EM EMµ γ γ00
1
3

1
3

0 0
2( ) =









,  v . (6.32)

This is the Lorentz transform of P U c0
1

3 0 0 0 0
EM EM

µ = ( )/ ,  ,  ,  .

We now turn to Pnon-EM
µ 11( ) :

P
c

T d xnon-EM 0non-EM

µ µ

γ
11

1
1

0
1

11 3
0( ) = ∫Λ Λ . (6.33)

The integral over Tnon-EM
11  can be computed in the same way as the integral over

Tnon-EM
00  in eqs. (6.30)–(6.31):

T d x
U

V
R r d x U0non-EM

EM
EM

11 3
0

0

0
0

3
0 03

1
3∫ ∫= − −( ) = −ϑ . (6.34)

Inserting this value into eq. (6.33) along with 1 0 01
0
1

2/ ,  ,  ,  γ γβ γβµ( ) = ( )Λ Λ , we find

P
U

c

U

c
non-EM

EM EMµ γβ γ( ) ,  11
1
3

1
3

2 0 0
2

= − −








v . (6.35)
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Comparing eq. (6.35) to eq. (6.26), we see that Pnon-EM
µ 11( ) is exactly the opposite of

P ijEM
µ ( ) :

P ij PEM non-EM
µ µ( ) + ( ) =11 0 . (6.36)

This is a direct consequence of what is known as Laue’s theorem (Miller 1981, 352). This

theorem (Laue 1911a, 539) says that for a “complete [i.e., closed] static system”

(vollständiges statisches System):

T d xij
0

3
0 0

tot∫ = . (6.37)

For the electron we have T T Tij ij ij
0 0 0tot EM non-EM

= + . From eqs. (6.24)–(6.25) we read off

that

T d x
i j

i j U
ij
0

3
0 1

3 0

0

EM
EM

∫ =
≠

=






:

: . (6.38)

Eq. (6.34) and similar equations for the 22- and 33-components tell us

T d x
i j

i j U
ij
0

3
0 1

3 0

0

non-EM
EM

∫ =
≠

= −






:

: . (6.39)

Laue’s theorem thus holds for this system, as it should, and eq. (6.36) is a direct

consequence of this. Since P ijnon-EM
µ ( ) = 0  except when i j= = 1, we can substitute

P ijnon-EM
µ ( ) for Pnon-EM

µ 11( ) in eq. (6.36). Adding this to P ijEM
µ ( )  and using eqs. (6.20)

and (6.28), we find

P ij P ij
c

T T d xi j
ij ij

EM non-EM 0 0EM non-EM

µ µ µ

γ
( ) + ( ) = +( )∫

1 0 3
0Λ Λ (6.40)

which by Laue’s theorem vanishes, as is confirmed explicitly by eqs. (6.38)–(6.39).

Laue’s theorem ensures that the four-momentum of a closed static system transforms

as a four-vector. The total four-momentum of the electron is the sum of four terms (see

eqs. (6.22), (6.26), (6.32), and (6.35)):

P P P P ij Ptot EM non-EM EM non-EM
µ µ µ µ µ= ( ) + ( ) + ( ) + ( )00 00 11 . (6.41)

The last two terms cancel each other because of Laue’s theorem, and all that is left is:
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P P Ptot EM non-EM
µ µ µ= ( ) + ( )00 00 . (6.42)

Using eqs. (6.22) and (6.32) for these two contributions we recover eq. (5.34) for the total

energy and momentum of the electron:

P
U

c

U

c

U

c

U

c
tot

EM EM tot totµ γ γ γ γ=








 =











4
3

4
3

0 0
2

0 0
2,  ,  v v . (6.43)

As we pointed out above (see eqs. (6.11)–(6.12) and note 46), we still have a closed

system if we set the 00-component of T0non-EM

µν  to zero. This does not affect the result for

Pnon-EM
µ 11( ), which only depends on T0non-EM

11  (see eq. (6.33)). Pnon-EM
µ 00( ), however,

will be zero if T0non-EM
00 0=  (see eq. (6.29)). The total four-momentum will still be a four-

vector but compared to eq. (6.43) the system’s rest energy will be smaller by 1

3 0U
EM

:

P P
U

c

U

c
tot EM

EM EMµ µ γ γ= ( ) =








00

0 0
2

, v . (6.44)

To reiterate: if the stabilizing mechanism for the electron does not contribute to the

energy in the rest frame but only to the stresses, T0non-EM

00 0=  and only the first term in eq.

(6.42) contributes to the four-momentum. In this case, the electron’s rest mass is
U c0

2
EM

/  (see eq. (6.44)). If the stabilizing mechanism does contribute to the energy in

the electron’s rest frame, T0non-EM
00 0≠  and both terms in eq. (6.42) contribute to the four-

momentum. If T U V R r0non-EM EM
00 1

3 0 0 0= ( ) −( )/ ϑ , as in Poincaré’s specific model (see

eqs. (6.12) and (6.16)), the electron’s rest mass is  4

3 0
2U c

EM
/  (see eq. (6.43)).53

The arbitrariness of the Lorentz-Poincaré electron is much greater than the freedom

we have in choosing the 00-component of the energy-momentum tensor for the

mechanism stabilizing a spherical surface charge distribution. For starters, we can choose

                                                  

53 As Rohrlich (1997, 1056), following (Schwinger 1983, 374, 379), put it: “The argument over whether

mes [equal to U c0
2

EM
/  in our notation] or m med es= 4 3/  is the “right” answer is thus resolved: […] it

depends on the model; either value as well as any value in between is possible [as are values greater than
med ; cf. note 51 above]. But in all cases, one obtains a four-vector for the stabilized charged sphere”.

Which situation obtains cannot be decided experimentally. The rest mass of the electron can be determined,

but that value can be represented by U c0
2/ , by 4 30

2U c/ , or by some other value by adjusting the radius

of the electron, for instance, which cannot be determined experimentally.
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a (surface or volume) charge distribution of any shape we like—a box, a doughnut, a

banana, etc. As long as this charge distribution is subject to the Lorentz-FitzGerald

contraction, we can turn it into a system with the exact same energy-momentum-mass-

velocity relations as the Lorentz-Poincaré electron by adding the appropriate non-

electromagnetic stabilizing mechanism.54 Of course, as the analysis in this section, based

on (Laue 1911a), shows, any closed static system will have the same energy-momentum-

mass-velocity relations as the Lorentz-Poincaré electron, no matter whether it consists of

charges, electromagnetic fields, and Poincaré pressure or of something else altogether.

The only thing that matters is that whatever the electron is made of satisfies Lorentz-

invariant laws. The restriction to static closed systems, moreover, is completely

unnecessary. Any closed system will do.55 In short, there is nothing we can learn about

the nature and structure of the electron from studying its energy-momentum-mass-

velocity relations.

Lorentz himself emphasized this in lectures he gave at Caltech in 1922. In a section

entitled “Structure of the Electron” in the book based on these lectures and published in

1927, he wrote:

The formula for momentum was found by a theory in which it was supposed that in the
case of the electron the momentum is determined wholly by that of the electromagnetic
field […] This meant that the whole mass of an electron was supposed to be of
electromagnetic nature. Then, when the formula for momentum was verified by
experiment, it was thought at first that it was thereby proved that electrons have no
“material mass.” Now we can no longer say this. Indeed, the formula for momentum is a
general consequence of the principle of relativity, and a verification of that formula is a
verification of the principle and tells us nothing about the nature of mass or of the
structure of the electron. Therefore physicists are absolutely free to form any hypotheses
on the properties and size of electrons that may best suit them. [...] Of course I need
hardly mention that, whatever theory we favor, we must suppose that a motion of
translation will make the electron contract. Indeed, we want to apply the principle of
relativity to the electron also; if then we know what is going on in the electron when it
has no motion of translation, we can deduce from the principle in full detail the state that
will exist when there is such a motion (Lorentz 1927, 125–126).

                                                  

54 This stabilizing system will not be as simple as the Poincaré pressure for the Lorentz-Poincaré electron.

Without the spherical symmetry of this specific model, eq. (6.12) for the non-electromagnetic part of the

energy-momentum tensor will be more complicated. See (Janssen 1995, sec. 2.3.3, especially eq. (2.96))

for another simple example, the stabilizing mechanism for the surface charge distribution on a plate

capacitor, worked out with the help of Tony Duncan.
55 See the discussion following eq. (2.10) and (Janssen 2003, 46–47).
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7. From the electromagnetic view of nature to relativistic continuum mechanics.

Experiment was supposed to be the final arbiter in the debate over the electron models of

Abraham, Lorentz-Poincaré, and Bucherer-Langevin. Later analysis, however, showed

that the results of the experiments of Kaufmann and others were not accurate enough to

decide between the different models. They only “indicated a large qualitative increase of

mass with velocity” (Zahn and Spees 1938).56 All parties involved took these experiments

much too seriously, especially when the data favored their own theories. Abraham hyped

Kaufmann’s results. Lorentz was too eager to believe Bucherer’s results, while his earlier

concern over Kaufmann’s appears to have been somewhat disingenuous. Einstein’s

cavalier attitude toward Kaufmann’s experiments stands in marked contrast to his belief

in later results purporting to prove him right.

In Abraham’s defense, it should be said that he could also be self-deprecating about

his reliance on Kaufmann’s data. At the 78th Versammlung Deutscher Naturforscher und

Ärzte in Stuttgart in 1906, he got quite a few laughs when he joked: “When you look at

the numbers you conclude from them that the deviations from the Lorentz theory are at

least twice as big as mine, so you may say that the [rigid] sphere theory represents the

reflection of β-rays twice as well as the relativity theory [by which Abraham meant

Lorentz’s electron model in this context]” (quoted in Miller 1981, sec. 7.4.3, 221).

In 1906 Lorentz gave a series of lectures at Columbia University in New York, which

were published in 1909. On the face of it, he seems to have taken Kaufmann’s results

quite seriously at the time. He wrote: “His [i.e., Kaufmann’s] new numbers agree within

the limits of experimental errors with the formulae given by Abraham, but [...] are

decidedly unfavourable to the idea of a contraction such as I attempted to work out”

(Lorentz 1915, 212–213; quoted in Miller 1981, sec. 12.4.1). Shortly before his departure

for New York, he had told Poincaré the same thing: “Unfortunately my hypothesis of the

flattening of electrons is in contradiction with Kaufmann’s results, and I must abandon it.

I am therefore at the end of my rope (au bout de mon latin).”57 These passages strongly

                                                  

56 Quoted in (Miller 1981, 331). Inspired by this article, (Rogers et al. 1940) repeated the experiment with

sufficient accuracy to distinguish the relativistic prediction from Abraham’s. Despite this result, (Faragó

and Jánossy 1957), in a subsequent review of the experimental confirmation of the relativistic formula for

the velocity dependence of electron mass, essentially concurred with Zahn and Spees (Battimelli 1981, 149;

note 63 explains the reason for our qualification).
57 Lorentz to Poincaré, March 8, 1906 (see Miller 1981, sec. 12.4.1, for the quotation, and pp. 318–319 for

a reproduction of the letter in facsimile).
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suggest that Lorentz took Kaufmann’s results much more seriously than Einstein. Miller

indeed draws that conclusion. Lorentz expert A. J. Kox, however, has pointed out to one

of us (MJ) that Lorentz’s reaction was probably more ambivalent (see also Hon 1995,

sec. 6). This is suggested by what Lorentz continues to say after acknowledging the

problem with Kaufmann’s data in his New York lectures: “Yet, though it seems very

likely that we shall have to relinquish this idea altogether, it is, I think, worth while

looking into it somewhat more closely” (Lorentz 1915, 213; our italics). Lorentz then

proceeds to discuss his idea at length.

In response to Kaufmann’s alleged refutation of special relativity Einstein wrote in an

oft-quoted passage:58 “Abraham’s and Bucherer’s theories of the motion of the electron

yield curves that are significantly closer to the observed curve than the curve obtained

from the theory of relativity. However, the probability that their theories are correct is

rather small, in my opinion, because their basic assumptions concerning … the moving

electron are not suggested by theoretical systems that encompass larger complexes of

phenomena” (Einstein 1907b, 439). This is a fair assessment of Bucherer’s theory.

Whether it is also a fair assessment of Abraham’s electromagnetic program is debatable.

This will not concern us here. What we want to point out is that Einstein, like Abraham

and Lorentz, took the experimental data much more seriously when they went his way. In

early 1917, Friedrich Adler, detained in Vienna awaiting trial for his assassination of the

Austrian prime minister Count Stürgkh in November 1916, began sending Einstein letters

and manuscripts attacking special relativity.59 He was still at it in the fall of 1918, when

the exchange that is interesting for our purposes took place. Einstein wrote: “for a while

                                                  

58 See, e.g., (Holton 1988, 252–253), (Miller 1981, sec. 12.4.3), (Hon 1995, 208), and (Janssen 2002a, 462,

note 9).
59 See Adler to Einstein, March 9, 1917 (Einstein 1987–2002, Vol. 8, Doc. 307). In 1909 Adler had

supported Einstein’s candidacy for a post at the University of Zurich for which both of them had applied

(see Einstein to Michele Besso, April 29, 1917 [Einstein 1987–2002, Vol. 8, Doc. 331]). Einstein

reciprocated in 1917 by drafting a petition on behalf of a number of Zürich physicists asking the Austrian

authorities for leniency in Adler’s case, even as Adler was busying himself with a critique of his

benefactor’s theories (see the letter to Besso quoted above). Adler’s father, the well-known Austrian social

democrat Victor Adler, considered using his son’s railings against relativity for an insanity defense. His

son, however, was determined to stand by his critique of relativity, even if it meant ending up in front of the

firing squad. Adler was in fact sentenced to death but it was clear to all involved that he would not be

executed. The death sentence was commuted to eighteen years in prison on appeal and Adler was pardoned

immediately after the war. This bizarre story is related in (Fölsing 1997, 402–405). For an analysis of the

psychology behind Adler’s burning martyrdom, see (Ardelt 1984).
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Bucherer advocated a theory that comes down to a different choice for l [see eq. (3.3) and

Fig. 1]. But a different choice for l is out of the question now that the laws of motion of

the electron have been verified with great precision.”60 From his prison cell in Stein an

der Donau Adler replied: “Now, I would be very interested to hear, which experiments

you see as definitively decisive about the laws of motion of the electron. For as far as my

knowledge of the literature goes, I have not found any claim of a final decision.”61 Adler

went on to quote remarks from Laue, Lorentz, and the experimentalist Erich Hupka,

spanning the years 1910–1915, all saying that this was still an open issue.62 In his

response Einstein cited three recent studies (published between 1914 and 1917), which,

he wrote, “have so to speak conclusively shown [sicher bewiesen] that the relativistic

laws of motion of the electron apply (as opposed to, for instance, those of Abraham)”

(Einstein’s emphasis).63 Even considering the context in which it was made, this is a

remarkably strong statement.

Much more interesting than the agreement between theory and experiment or the lack

thereof were the theoretical arguments that Abraham and Lorentz put forward in support

of their models. Lorentz was right in thinking that it was no coincidence that his

contractile electron exhibited exactly the velocity dependence he needed to account for

the absence of ether drift (see the discussion following eq. (4.21)). He could not have

known at the time that this particular velocity dependence is a generic feature of

relativistic closed systems. As the quotation at the end of sec. 6 shows, he did recognize

this later on. Abraham was right that fast electrons call for a new mechanics. His new

electromagnetic mechanics is much closer to relativistic mechanics than to Newtonian

mechanics. Like Lorentz, he just did not realize that this new mechanics reflected a new

                                                  

60 Einstein to Adler, September 29, 1918 (Einstein 1987–2002, Vol. 8, Doc. 628; translation here and in the

following are based on Ann M. Hentschel’s).
61 Adler to Einstein, October 12, 1918 (Einstein 1987–2002, Vol. 8, Doc. 632; Adler’s emphasis).
62 Cf., however, the quotation from Lorentz in note 70 below.
63 Einstein to Adler, October 20, 1918 (Einstein 1987–2002, Vol. 8, Doc. 636). Two of the studies cited by

Einstein involved the deflection of fast electrons as in the experiments of Kaufmann, Bucherer, and others;

the third—by Karl Glitscher (1917), a student of Sommerfeld—used the fine structure of spectral lines to

distinguish between the relativistic and the Abraham prediction for the velocity dependence of the electron

mass. Faragó and Jánossy (1957, sec. 2) give a very favorable review of this study. They write: “Analyzing

the available experimental material, we have come to the conclusion that it is the fine-structure splitting in

the spectra of atoms of the hydrogen type which give [sic] the only high-precision confirmation of the

relativistic law of the variation of electron mass with velocity” (Faragó and Jánossy 1957, 1417; quoted in

Hon 1995, 197).
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kinematics rather than the electromagnetic nature of all matter. Abraham at least came to

accept that Minkowski space-time was the natural setting for his electromagnetic

program.

Proceeding along similar lines as Abraham in developing his electromagnetic

mechanics, we can easily get from Newtonian particle mechanics to relativistic

continuum mechanics and back again. The first step is to read F a= m  as expressing

momentum conservation (cf. the discussion following eq. (2.12) in sec. 2.2). In

continuum mechanics, the differential form of the conservation laws is the fundamental

law and the integral form is a derived law. In other words, the fundamental conservation

laws are expressed in local rather than global terms. This reflects the transition from a

particle ontology to a field ontology. Special relativity integrates the laws of momentum

and energy conservation. These laws, of course, are Lorentz-invariant rather than

Galilean-invariant. We thus arrive at the fundamental law of relativistic continuum

mechanics, the Lorentz-invariant differential law of energy-momentum conservation,

∂ν
µνT = 0. To recap: there are four key elements in the transition from Newtonian

particle mechanics based on F a= m  to relativistic continuum mechanics based on

∂ν
µνT = 0. They are (in no particular order): the transition from Galilean invariance to

Lorentz invariance, the focus on conservation laws rather than force laws, the integration

of the laws of energy and momentum conservation, and the transition from a particle

ontology to a field ontology.

We now show how, once we have relativistic continuum mechanics, we recover

Newtonian particle mechanics. Consider a closed system described by continuous

(classical) fields such that the total energy-momentum tensor Ttot
µν  of the system can be

split into a part describing a localizable particle (e.g., an electron a la Lorentz-Poincaré64)

and a part describing its environment (e.g., an external electromagnetic field):

T T Ttot particle environment
µν µν µν= + . (7.1)

Using our fundamental law, ∂ν
µνTtot = 0, integrated over space, we find

0 3 3 3= = + ∫∫∫ ∂ ∂ ∂ν
µν

ν
µν

ν
µνT d x T d x T d xtot particle environment . (7.2)

                                                  

64 In general we need the fields associated with the particle to be sharply peaked around the worldline of the

particle, a four-dimensional ‘world-tube.’
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As long as Tparticle
µν  drops off faster than 1 2/r  as we go to infinity, Gauss’ theorem tells us

that
∂ µ

i
iT d xparticle

3 0∫ = . (7.3)

For ∂ν
µνTenvironment  we can substitute minus the density fexternal

µ  of the four-force acting

on the particle. The spatial components of eq. (7.2) can thus be written as

∂0
0 3 3T d x f d xi i

particle external= ∫∫ . (7.4)

The right-hand side gives the components of Fexternal. Since P
c

T d xparticle particle
µ µ≡ ∫1 0 3

and x ct0 = , the left-hand side is the time derivative of the particle’s momentum. Eq.

(7.4) is thus equivalent to

d

dt

P
Fparticle

external= . (7.5)

This equation has the same form (and the same transformation properties) as Abraham’s

electromagnetic equation of motion (2.27). In Abraham’s equation, Pparticle is the

electromagnetic momentum of the electron, and Fexternal is the Lorentz force exerted on

the electron by the external fields. Under the appropriate circumstances and with the

appropriate identification of the Newtonian mass m, Abraham’s electromagnetic equation

of motion reduces to Newton’s second law, F a= m  (see eq. (2.34)). The same is true for

our more general eq. (7.5). This equation, however, is not tied to electrodynamics. It is

completely agnostic about the nature of both the particle and the external force. The only

thing that matters is that it describes systems in Minkowski space-time, which obey

relativistic kinematics. Pparticle and Fexternal, like Abraham’s electromagnetic

momentum and the Lorentz force, only transform as vectors under Galilean

transformations in the limit of low velocities, where Lorentz transformations are

indistinguishable from Galilean transformations. They inherit their transformation

properties from ∂ν
µνTparticle and fexternal

µ , respectively, which transform as four-vectors

under Lorentz transformations.

It only makes sense to split the total energy-momentum tensor Ttot
µν  into a particle

part and an environment part, if the interactions holding the particle together are much
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stronger than the interactions of the particle with its environment. Typically, therefore,

the energy-momentum of the particle taken by itself will very nearly be conserved, i.e.,

∂ν
µνTparticle ≈ 0. (7.6)

This means that the particle’s four-momentum will to all intents and purposes transform

as a four-vector under Lorentz transformations and satisfy the relations for a strictly

closed system (see eqs. (2.1)–(2.10)):

P
c

T d x m c mparticle particle
µ µ γ γ≡ ≈ ( )∫1 0 3

0 0, v . (7.7)

Inserting P vparticle = γ m0  into eq. (7.5), we can reduce the problem in relativistic

continuum mechanics that we started from in eq. (7.1) to a problem in the relativistic

mechanics of point particles. In the limit of small velocities, such problems once again

reduce to problems in the Newtonian mechanics of point particles.

To the best of our knowledge, this way of recovering particle mechanics from what

might be called ‘field mechanics’ was first worked out explicitly in the context of general

rather than special relativity (Einstein 1918, Klein 1918).65 Relativistic continuum

mechanics played a crucial role in the development of general relativity. For one thing,

the energy-momentum tensor is the source of the gravitational field in general relativity.66

Even before the development of general relativity, Einstein recognized the importance of

relativistic continuum mechanics. In an unpublished manuscript of 1912, he wrote:

The general validity of the conservation laws and of the law of the inertia of energy […]

suggest that [the symmetric energy-momentum tensor T µν  and the equation

                                                  

65 Einstein and Felix Klein corresponded about this issue in 1918 (Einstein 1987–2002, Vol. 8, Docs. 554,

556, 561, 566, and 581). See also Hermann Weyl to Einstein, 16 November 1918 (Einstein 1987–2002,

Vol. 8, Doc. 657). A precursor to this approach can be found in (Einstein and Grossmann 1913, sec. 4),

where Einstein pointed out that the geodesic equation, which governs the motion of a test particle in a

gravitational field, can be obtained by integrating T µν
ν; =0—the vanishing of the covariant divergence of

T µν , the generalization of ∂ν
µνT = 0 in general relativity—over the ‘worldtube’ of the corresponding

energy-momentum tensor for pressureless dust (“thread of flow” [Stromfaden] is the term Einstein used).

This argument can also be found in the so-called Zurich Notebook (Einstein 1987–2002, Vol. 4, Doc. 10,

[p. 10] and [p. 58]). For analysis of these passages, see (Norton 2000, Appendix C) and “A Commentary on

Einstein’s Zurich Notebook” in (Renn forthcoming (a), sec. 3 and 5.5.10; the relevant pages of the

notebook are referred to as ‘5R’ and ‘43L’).
66 See (Renn and Sauer forthcoming) for extensive discussion of the role of the energy-momentum tensor in

the research that led to general relativity.



60

f Tµ
ν

µν∂=− ] are to be ascribed a general significance, even though they were obtained
in a very special case [i.e., electrodynamics]. We owe this generalization, which is the
most important new advance in the theory of relativity, to the investigations of
Minkowski, Abraham, Planck, and Laue (Einstein 1987–2002, Vol. 4, Doc. 1, [p. 63]; our
emphasis).

Einstein went on to give a clear characterization of relativistic continuum mechanics:

To every kind of material process we want to study, we have to assign a symmetric tensor
( Tµν ) […] Then [ f Tµ

ν
µν∂=− ] must always be satisfied. The problem to be solved

always consists in finding out how ( Tµν ) is to be formed from the variables

characterizing the processes under consideration. If several processes can be isolated in
the energy-momentum balance that take place in the same region, we have to assign to

each individual process its own stress-energy tensor ( Tµν
( )1 ), etc., and set ( Tµν ) equal to

the sum of these individual tensors (ibid.).

As the development of general theory of relativity was demonstrating the importance of

continuum mechanics, developments in quantum theory—the Bohr model and

Sommerfeld’s relativistic corrections to it—rehabilitated particle mechanics, be it of the

Newtonian or of the relativistic variety. As a result, relativistic continuum mechanics

proved less important for subsequent developments in areas of physics other than general

relativity than Einstein thought in 1912 and than our analysis in this paper suggests. The

key factor in this was that it gradually became clear in the 1920s that elementary particles

are point-like and not spatially extended like the electron models discussed in this paper.

That special relativity precludes the existence of rigid bodies is just one of the problems

such models are facing.

In hindsight, Lorentz, the guarded Dutchman, comes out looking much better than

Abraham, his impetuous German counterpart. At one point, for instance, Lorentz (1915,

215) cautioned:

In speculating on the structure of these minute particles we must not forget that there may
be many possibilities not dreamt of at present; it may very well be that other internal
forces serve to ensure the stability of the system, and perhaps, after all, we are wholly on
the wrong track when we apply to the parts of an electron our ordinary notion of force
(Lorentz 1915, 215).

This passage is quoted approvingly by Pais (1972, 83). Even a crude operationalist

argument of the young Wolfgang Pauli, which would have made his godfather Ernst

Mach proud, can look prescient in hindsight. Criticizing the work of later proponents of

the electromagnetic worldview in his review article on relativity, Pauli concluded:

Finally, a conceptual doubt should be mentioned. The continuum theories make direct use
of the ordinary concept of electric field strength, even for the fields in the interior of the
electron. This field strength, however, is defined as the force acting on a test particle, and
since there are no test particles smaller than an electron or a hydrogen nucleus the field
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strength at a given point in the interior of such a particle would seem to be unobservable
by definition, and thus be fictitious and without physical meaning (Pauli 1921, 206).

This moved Valentin Bargmann (1960, 189)—who had accompanied Einstein on his

quest for a classical unified field theory, a quest very much in the spirit of Abraham’s

electromagnetic program—to write in the Pauli memorial volume:

A physicist will feel both pride and humility when he reads Pauli’s remarks today. In the
light of our present knowledge the attempts which Pauli criticizes may seem hopelessly
naïve, although it was certainly sound practice to investigate what the profound new ideas
of general relativity would contribute to the understanding of the thorny problem of
matter (Bargmann 1960, 189).

We conclude our paper by quoting and commenting on two oft-quoted passages that

nicely illustrate some of the key points of our paper. The first is a brief exchange between

Planck and Abraham67 following a lecture by the former at the

Naturforscherversammlung in Stuttgart on September 19, 1906. Planck talked about

“[t]he Kaufmann measurements of the deflectability of β-rays and their relevance for the

dynamics of electrons.” Abraham, Bucherer,68 Kaufmann, and Sommerfeld all took part

in the discussion afterwards. It was Planck who got to the heart of the matter:

Abraham is right when he says that the essential advantage of the sphere theory would be
that it be a purely electrical theory. If this were feasible, it would be very beautiful
indeed, but for the time being it is just a postulate. At the basis of the Lorentz-Einstein
theory lies another postulate, namely that no absolute translation can be detected. These
two postulates, it seems to me, cannot be combined, and what it comes down to is which
postulate one prefers. My sympathies actually lie with the Lorentzian postulate (Planck
1906b, 761).

In response Sommerfeld, pushing forty, quipped: “I suspect that the gentlemen under

forty will prefer the electrodynamical postulate, while those over forty will prefer the

mechanical-relativistic postulate” (Ibid.). The reaction of the assembled physicists to

Sommerfeld’s quick retort has also been preserved in the transcript of this session:

“hilarity” (Heiterkeit). This exchange between Planck and Sommerfeld is perhaps the

clearest statement in the contemporary literature of the dilemma that lies behind the

choice between the electron models of Abraham and Lorentz. Physicists had to decide

what they thought was more important, full relativity of uniform motion or the reduction

of mechanics to electrodynamics. We find it very telling that in 1906 a leader in the field

                                                  

67 This exchange is also discussed, for instance, in (Miller 1981, sec. 7.3.4), (McCormmach 1970,

489–490), and (Jungnickel and McCormmach 1986, 249–250).
68 Understandably, Bucherer took exception to the fact that Planck only discussed the electron models of

Lorentz and Abraham (Planck 1906, 760).
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such as Sommerfeld considered the former the conservative and the latter the progressive

option. Unlike Abraham, Lorentz, and Planck, however, Sommerfeld did not fully

appreciate what was at stake.

First of all, his preference for the “electrodynamical postulate” was mainly because

Lorentz’s contractile electron was incompatible with superluminal velocities. This can be

inferred from a comment on Lorentz’s electron model in (Sommerfeld 1904c). In this

paper—translated into Dutch by Peter Debye, Sommerfeld’s student at the time (Eckert

and Märker 2000, 148), and communicated to the Amsterdam Academy of Sciences by

Lorentz himself—Sommerfeld summarized and simplified his trilogy on electron theory

in the proceedings of the Göttingen Academy (Sommerfeld 1904a, b; 1905a). He wrote:

As is well-known, Lorentz, for very important reasons, has recently formulated the
hypothesis that the shape of the electron is variable, i.e., that for every velocity the
electron takes on the shape of a so-called “Heaviside ellipsoid.” For velocities greater
than that of light this hypothesis cannot be used; one can hardly speak of a “Heaviside
hyperboloid” as the shape of the electron (Sommerfeld 1904c, 433).

Sommerfeld’s objections to Lorentz’s program were thus not nearly as principled as

Abraham’s (cf. the passages from (Abraham 1903) quoted in sec. 4.4).

Moreover, from letters he wrote to Wien and Lorentz in November and December of

1906 (letters 102 and 103 in Eckert and Märker 2000) it appears that Sommerfeld only

became familiar with Einstein’s work after the meeting in Stuttgart. On December 12,

1906, he wrote to Lorentz:

Meanwhile I have also studied Einstein. It is remarkable to see how he arrives at the
exact same results as you do (also with respect to his relative time) despite his very
different epistemological point of departure. However, his deformed time, like your
deformed electron, does not really sit well with me (Eckert and Märker 2000, 258).

This passage suggests that Sommerfeld had not read (Einstein 1905) before the 1906

Naturforscherversammlung. So Sommerfeld may not even have realized at the time that

there was at least one gentleman well under forty, albeit one not in attendance in

Stuttgart, who preferred the “mechanical-relativistic postulate,” nor that the mechanics

involved need not be Newtonian. By the time of the next Naturforscherversammlung, the

following year in Dresden, Sommerfeld (1907), still only 39, had jumped ship and had

joined the relativity camp (Battimelli 1981, 150, note 29).69

                                                  

69 See (Walter 1999a, sec. 3.1) for a more charitable assessment of the development of Sommerfeld’s

views.
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The second passage that we want to look at comes from Lorentz’s important book

The Theory of Electrons, based on his 1906 lectures in New York and first published in

1909. Referring to Einstein and special relativity, Lorentz wrote

His results concerning electromagnetic and optical phenomena (leading to the same
contradiction with Kaufmann’s results that was pointed out in §179[70]) agree in the main with
those which we have obtained in the preceding pages, the chief difference being that Einstein
simply postulates what we have deduced, with some difficulty and not altogether satisfactorily,
from the fundamental equations of the electromagnetic field. (Lorentz 1915, 229–230).

The parenthetical reference to “Kaufmann’s results” suggests that the famous clause that

concludes this sentence—“Einstein simply postulates what we have deduced […] from

the fundamental equations of the electromagnetic field”—refers, at least in part, to

Lorentz’s own struggles with the velocity dependence of electron mass.71 The relativistic

derivation of these relations is mathematically equivalent to Lorentz’s 1899 derivation of

them from the requirement, formally identical to the relativity principle, that ether drift

can never be detected (see sec. 3, eqs. (3.8)–(3.14)). From Lorentz’s point of view, the

relativistic derivation therefore amounted to nothing more than postulating these relations

on the basis of the relativity principle. Lorentz himself had gone to the trouble of

producing a concrete model of the electron such that its mass exhibited exactly the

desired velocity-dependence (see sec. 4, eqs. (4.16)–(4.22)). As we saw at the end of sec.

6, by 1922, if not much earlier, Lorentz had recognized that this had led him on a wild

goose chase: “the formula for momentum [from which those for the velocity dependence

of mass are a direct consequence] is a general consequence of the principle of relativity,

and a verification of that formula is a verification of the principle and tells us nothing

about the nature of mass or of the structure of the electron.” This was Lorentz’s way of

saying what Pais said in the quotation with which we began this paper.
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70 In the second edition, Lorentz added the following footnote at this point: “Later experiments […] have

confirmed [eq. 2.43] for the transverse electromagnetic mass, so that, in all probability, the only objection

that could be raised against the hypothesis of the deformable electron and the principle of relativity has now

been removed” (Lorentz 1915, 339).
71 For more extensive discussion of this passage, see (Janssen 1995, sec. 4.3).
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