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Abstract: In place of the just-so stories and intuition mongering
of analytical metaphysicians, I offer a program for understanding
the relationship between credence and chance in quantum physics
and show how a version of the program can be implemented with
the help of some representation theorems.

1 Introduction: a short, depressing history
of the Principal Principle

Forty some years ago David Lewis (1980) proposed a principle, dubbed the
Principal Principle (PP), connecting rational credence and chance. A crude
example that requires much refining is nevertheless helpful in conveying the
intuitive idea. Imagine that you are observing a coin flipping experiment.
Suppose that you learn– for the nonce never mind how– that the objective
chance of Heads on the next flip is 1/2. The PP asserts that rationality
demands that when you update your credence function on said information
your degree of belief in Heads-on-the-next-flip should equal 1/2, and this is
so regardless of other information you may have about the coin, such as that,
of the 100 flips you have observed so far, 72 of the outcomes were Tails.
The large and ever expanding philosophical literature that has grown

up around the PP exhibits a number of curious, disturbing, and sometimes
jaw-dropping features.1 To begin, there is a failure to engage with the thresh-
old issue of whether there is a legitimate subject matter to be investigated.
Bruno de Finetti’s (1990, p. x) bombastic pronouncement that “THERE

1Here is a sample that conveys the flavor the literature: Arntzenius and Hall (2003);
Bigelow, Collins, and Pargeter (1993); Black (1998); Haddock (2011); Hall (1994, 2004);
Ismael (2008); Meacham (2010); Pettigrew (2012); Roberts (2001, 2013); Strevens (1995);
Thau (1994); Vranus (2002, 2004).
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IS NO PROBABILITY” was his way of asserting that there is no objec-
tive chance, only subjective or personal degrees of belief, and hence there
is no need to try to build a bridge connecting credence to a mythical en-
tity. Leaving doctrinaire subjectivism aside for the moment and assuming
there is objective chance brings us to the next curious feature of the lit-
erature: the failure to engage with substantive theories of chance, despite
the fact that various fundamental theories of modern physics– in particular,
quantum theory– ostensibly speak of objective chance. Of course, as soon
as one utters this complaint the de Finetti issue resurfaces since interpre-
tive principles are needed to tease a theory of chance from a textbook on a
theory of physics, and de Finetti’s heirs– the self-styled quantum Bayesians
(QBians)– maintain that the probability statements that the quantum the-
ory provide are to be given a personalistic interpretation.2 And this leads
to the next curious and disturbing feature of the literature. The bulk of
the philosophical discussion is couched in terms of classical probability the-
ory, without any apparent recognition of the facts that quantum probability
theory is not classical probability theory and that the way in which quan-
tum probabilities are generated offers ways of linking credence and chance
that have a bearing on the PP. The lack of engagement with substantive
theories of chance also enables the avoidance of issue of whether and how
it is possible learn what the objective chances are. Lacking an account of
how the learning of chances is possible, the PP has the airy-fairy quality of
a Principle of Revelation that requires that when a rational agent acquires
knowledge of El Qanna’s favorability ranking– never mind how she acquires
such knowledge– she aligns her credence in X with how favorably El Qanna
looks upon X.
If this parade of horribles were not already long enough there is another

overriding concern: a lack of clarity about what the PP is. I refer not just to
the fact that there are several competing formulations of the PP but to the
more fundamental fact that there is an ambiguity in what is being claimed
by any given formulation. To lay out this complaint in more detail a little
more groundwork is helpful.
The vicissitudes of PP are best discussed in the setting of what I will

call normative Bayesianism. There are two forms– classical and quantum–
that take into account the differences in the event structures of classical and
quantum settings. There are two matching tenets from the two forms involv-

2For an accessible introduction to QBism see von Baeyer (2016).
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ing, respectively, synchronic and diachronic constraints on rational degrees
of belief. The synchronic constraint requires that rational degrees of belief
conform to the probability axioms– classical or quantum as the case may be.
The diachronic constraint requires that updating proceeds in the classical
case by Bayes conditionalization and in the quantum case by Lüders condi-
tonalization. In both cases the diachronic constraint is silent about how an
agent should update on zero-probabilty events, an issue that will be set aside
here.3

The first way of construing the PP is that it is proposing an additional
constraint on rational credence. It contemplates that there are credence
functions that satisfy the tenets of normative Bayesianism but fail to align
with objective chance when knowledge of its values is obtained, and it would
label such credence functions as irrational despite their Bayesian pedigree.
Alleged norms require justification. There are multiple justifications for the
synchronic norm of Bayesianism: Dutch book arguments, scoring rule ar-
guments, decision theoretic arguments, and more. The justification for the
diachronic constraint is much thinner. As far as I am aware the only half-way
convincing argument involves a diachronic Dutch book construction that has
been subjected to much criticism. But for present purposes the diachronic
constraint can be taken on board since what is at issue is whether there
needs to be a further constraint linking credence and chance. If the PP is
to serve as an additional normative constraint it requires justification. The
only serious attempt to this effect I am aware of is a scoring rule argument
(see Pettigrew 2012). It gets credit for ingenuity, but it is question begging.
The scoring is given in terms of a measure of how well personal degree of
belief tracks objective chance. But precisely what is at issue is how and why
rational credence should track objective chance.
The second way to construe the PP is to take it not as proposing a new

principle of rationality but rather as providing a kind of functional character-
ization of chance: whatever chance turns out to be, it is that which has the
power to command credence in the way the PP contemplates. This point of
view can serve as a useful heuristic when trying to interpret a physical theory
so as to yield verdicts about objective chance. But adamantly refusing to
apply the label ‘chance’unless it fits the functional characterization provided
by the PP turns it into prophecy that will either be empty or self-fulfilling.
Time to pack it in? Not yet. Another line of investigation is worth pur-

3See Earman (2020) for a discussion of this issue in classical and quantum probability.

3



suing: it seeks to give a more constructive content to the idea that objective
chance is that which commands rational credence.

2 The program

The program starts from the sentiment that questions about the relation of
credence and chance should be relativized to a substantive theory of chance,
and it is open to the possibility that the answers may vary from theory to
theory. It is up front in admitting that a theory of chance cannot be read off
a textbook theory of physics but requires interpretational principles. Such
principles are bound to be controversial– what did you expect! But the
controversies will be of a form that is part and parcel of the philosophy of
physics, and reducing issues about the PP to such a form is to be counted as
progress. The goal of the program is to prove theorems about how rational
credence is related to chance as embodied in the considered theory of chance.
Taking to heart the pessimism about justifying the PP as a new principle of
rationality, the program takes “rational credence”to mean simply credence
satisfying the two norms of normative Bayesianism– no additional norms are
to be appealed to. Then the chips are left to fall where they may. If some of
the theorems can be plausibly construed as fulfilling the intuition that David
Lewis had, score one– a big one– for David. But don’t celebrate too much
unless the considered theory of chance lends itself to an account of how agents
can come to learn what the chances are. On the other hand, if no appropriate
theorems are forthcoming then conclude that, as far as the considered theory
of chance is concerned, the PP is to be put in the litter bin of untenable
philosophical conceits. But continue the program by investigating how the
PP fares in alternative substantive theories of chance.
What kind of theorem should we hope to prove if such a program is to lead

to a vindication of the PP? Here I take my inspiration from two sources. The
first is the theory of rational decision making under uncertainty, where the
goal is to prove a representation theorem of the form: If an agent’s preferences
satisfy such-and-such rationality constraints then they can be represented as
if she has a utility function and a probability function such that her decisions
conform to the rule of maximizing expected utility. Second, I take to heart
Jenann Ismael’s (2008) insight that behind squabbles about specific formu-
lations of the PP there is the more general principle that rational credence
is, or as I would prefer to say, can be represented as subjective uncertainty
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about what the objective chances are. This generalized PP explains why
achieving subjective certainty about the objective chances brings credences
into line with (what the agent takes to be) chance, as the special PP requires.
With these guidelines in mind, the desired theorem should take the form

of a representation theorem: Rational credence in an event E can be rep-
resented as a weighted average of the possible objective chances, where the
weight given to a chance value is the agent’s personal probability of the
proposition that the chance takes the specified value. Again “rational cre-
dence” is to mean simply credence satisfying the two norms of normative
Bayesianism, and the representation theorem can be either an object level
theorem or a meta-theorem of the considered theory of chance. The theorem
should entail as a corollary that when updated on F (by Bayes conditional-
ization in the case of classical probability or by Lüders conditonalization in
the case of quantum probability) the agent’s new rational credence in E can
again be represented as a weighted average of the possible objective chances,
where now the weight given to a chance value is agent’s F -updated personal
probability assigned to the proposition that the chance takes the specified
value. And from this it should follow that updating on the proposition that
the chances are so-and-so brings the agent’s credence of an event E into align-
ment with said chance of E. Obviously, in order to enable the sought after
representation theorem the considered theory of chance must contain propo-
sitions, in the domain of both credence functions and chance functions, that
can play the contemplated role in the weighting of chances by the subjective
credences assigned to the corresponding propositions. This is something that
needs to be demonstrated, not assumed.
One potential glitch in implementing this program is an ambiguity in

the synchronic norm of normative Bayesianism that went unremarked above.
The additivity axiom for probabilities, classical or quantum, comes in dif-
ferent strengths– finite, countable, and complete additivity– and the differ-
ent justifications for the synchronic norm mentioned above support different
strengths of additivity. My tactic here is admittedly self-serving: use what-
ever strength of additivity is needed to get a representation theorem and
then afterwards revisit the issue of how the needed form of additivity can be
justified as a constraint on rational credence.
As an illustration of how the program can be implemented in the quantum

context I will propose an account of how chance works in ordinary QM and
show how it enables a representation theorem of the desired form. Before
turning to this account it will be helpful consider in more detail what the
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philosophical literature would lead us to expect by way of a representation
theorem.

3 The PP of philosophers’dreams

Philosophers who write about credence and chance in the classical setting
use expressions like ch(•) to stand for a “chance function” that assigns
chances to propositions in its domain, and expressions like Cch to stand for
the proposition that the chances are given by the chance function ch(•).
Presumably Cch and Cch′ are to be regarded as logically incompatible when
ch 6= ch′. In this notation the special PP would require that

If Cr is a rational credence function then for any chance function
ch such that Cr(Cch) 6= 0

Cr(E/Cch) = ch(E) (SPP)

where E is any proposition in the domain of both the credence
function Cr and the chance functions, and ‘/’ denotes Bayes

conditionalization (i.e. Cr(E/F ) =
Cr(EF )

Cr(F )
), provided that

Cr(F ) 6= 0.)

Note that (SPP) requires that rational credence functions have the same
additivity profile as chance functions. So if some chance functions are merely
finitely additive while others are countably additive, or some are merely
countably additive while others are completely additive, then no rational
agent can satisfy (SPP) unless she denies chance by setting Cr(Cch) = 0 for
all ch, thereby satisfying (SPP) vacuously.4 So unless some explanation is
forthcoming as to why all chance functions have the same additivity profile,
(SPP) is a non-starter.
Using the same notation, Ismael’s general PP for representing credence

as epistemic uncertainty about objective chance would take the form

4And even here there is a problem. If the disjunction of the Cch over all chance functions
is a proposition in the domain of Cr then (SPP) implies that a rational credence function
cannot be completely additive.
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If Cr is a rational credence function then

Cr(E) =
∑
{ch}

ch(E)Cr(Cch) (GPP)∑
{ch}

Cr(Cch) = 1 and Cr(CchCch′) = 0 when ch 6= ch′

where the sum is taken over the class {ch} of all chance functions.

Since presumably the Bayes updated credence functionCr(•/F ), whereCr(F ) 6=
0, is rational if Cr is, we should have from (GPP) that

Cr(E/F ) =
∑
{ch}

ch(E)Cr(Cch/F ).

And for F = Cch∗ for some particular chance function ch∗ we get back the
(SPP): Cr(E/Cch∗) = ch∗(E) when Cr(Cch∗) 6= 0.
I emphasize that (GPP) is simply hypothesized or imposed as a ratio-

nality constraint, and as far as I am aware there is no attempt to prove a
representation theorem of the form (GPP) from a theory of classical chance.
The optimistic agenda is now set for understanding the relation between

credence and quantum chance: Produce an account of quantum chance that
yields quantum analogs of (SPP) and (GPP) as theorems for credence func-
tions satisfying the norms of normative Bayesianism. The account should
explain how it is possible to learn what the chances are, and should also
explain why all chances satisfy the same form of additivity. Due to the dif-
ference in the event structure for classical and quantum events it would be
surprising if this agenda could be attained in a completely straightforward
manner. What we will find is that while there is a straightforward quan-
tum analog of (SPP), the quantum analog of (GPP) has to be more nuanced
due to the non-commutative nature of quantum events; specifically, there
are many ways to parse quantum chances, and while there is always a way
that yields a direct analog of the classical (GPP), in general the representa-
tion of credence as epistemic uncertainty about quantum chance contains an
additional non-classical term that embodies quantum interference effects.

4 Proof of concept

The account I will offer of how chance works in ordinary QM is, I think,
plausible. I will not attempt to defend it because it is on offer only as an
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illustration of how it is at least plausible that the program outlined above
can be carried to fruition.

4.1 Sketch of the account of quantum chance for ordi-
nary QM.

The algebra of observables isB(H), the von Neumann algebra of all bounded
operators acting on the Hilbert space H. The events or propositions to
which probabilities are assigned are members of P(B(H)), the projection
lattice of B(H).5 Quantum probability theory is then viewed as the study of
quantum probability measure on P(B(H)) where such a measure is a map
Pr : P(B(H)) → [0, 1] such that Pr(I) = 1 and Pr(E1 ∨ E2) = Pr(E1) +
Pr(E2) when E1, E2 ∈ P(B(H)) are mutually orthogonal.6
A quantum state ω are normed positive linear functional ω : B(H) →

C. Any such state ω induces on P(B(H)) a quantum probability measure
Prω(E) := ω(E) for any E ∈ P(B(H)). I adopt the widely shared attitude
that the physically realizable states are the normal states, where ω is normal
means that ω is completely additive on any family of mutually orthogonal
projections or, equivalently, ω admits a density operator representation.7 A
vector state is a state ψ such that there is a unit vector |ψ〉 ∈ H with
ω(A) = 〈ψ|A|ψ〉 for all A ∈ B(H). That ω is a mixed (or impure) state
means that it can be expressed as a convex linear combination of other states,
viz. ω = λ1ξ1 + λ2ξ2 with 0 < λ1, λ2 < 1, λ1 + λ2 = 1, and ξ1 6= ξ2. A pure
state is a non-mixed state, and for B(H) the normal pure states coincide
with the vector states.
The key interpretational principle used here is that the probability mea-

sure induced by a normal pure state gives the chances for events in P(B(H))
5An element E ∈ P(B(H)) is a self-adjoint operator such that E2 = I (the identity

operator). In the literature projections are referred to as Yes-No questions as well as events
or propositions.

6For details see Hamhalter (2003). When E1, E2 ∈ P(B(H)) are mutually orthogonal
E1 ∨ E2 = E1 + E2.

7The complete additivity of a quantum probability measure on P(B(H)) means that
Pr(
∑
a
Ea) =

∑
a
Pr(Ea) for any family {Ea} of mutually orthogonal projections. When the

sum
∑
a
Pr(Ea) is over an uncountable index set I, as can occur when the Hilbert space is

non-separable, it is understood as limF
∑
a∈F Pr(Ea) where the F are finite subsets of I,

and limF
∑
a∈F Pr(Ea) = L means that for any ε > 0 there is a finite F0 ⊂ I such that

for any finite F with I ⊃ F ⊃ F0, |
∑
a∈F Pr(Ea)− L| < ε.
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when the system at issue is in said state. The support projection for a nor-
mal pure state Sψ ∈ P(B(H)) serves as the proposition that the chances are
those induced by ψ.8

Updating is done by Lüders conditionalization, denoted by ‘//’to distin-
guish it from Bayes conditionalization. It is defined for a quantum probability
measure Pr on P(B(H)) that extends uniquely to a normal state ω onB(H),
in which case Pr(E//F ) :=

ω(FEF )

ω(F )
=
ω(FEF )

Pr(F )
for all E,F ∈ P(B(H))

such that ω(F ) 6= 0. When E and F commute Lüders conditionalization
reduced to Bayes conditionalization since then FEF = EF 2 = EF and

Pr(E//F ) =
Pr(E ∧ F )
Pr(F )

=
Pr(EF )

Pr(F )
. The case for Lüders conditionalization

as the proper analog of Bayes’conditionalization for a non-abelian algebra is
strong and will not be reviewed here (see Bub 1977 and Cassinelli and Zanghi
1983). For dim(H) > 2 the generalized Gleason theorem implies that any
completely additive probability measure Pr on P(B(H)) extends uniquely
to a normal state ω on B(H).9 The exceptional case of dim(H) = 2 will be
discussed below in Section 5.4
There is a fairly strong case for the assumption that physically realizable

states must be normal (see Ruetsche 2011 and Earman and Ruetsche 2020).
If this assumption is taken on board it explains why all chances have the
same additivity profile; for any normal state on B(H) induces on P(B(H))
a probability measure that is completely additive. Complete additivity re-
duces to finite additivity when dim(H) is finite and to countably additivity
if dim(H) = ∞ and H is separable. The further assumption that only pure
normal states induce chances will be addressed below in Section 5.
All the ingredients needed to give a proof of concept in the form of a

representation theorem for quantum chances are in place. In fact I will offer
two.

8The support projection Sψ of a normal state ψ is the smallest projection to which ψ
assigns probability 1. For a normal pure state (= vector state for the algebra B(H)) the
support projection is the projection onto the ray spanned by the unit vector corresponding
to ψ.

9Gleason’s theorem was originally proved for separable H and countably additive Pr.
It has been extended to: If H is a Hilbert space, separable or non-separable, dim(H) ≥ 3,
and Pr is a quantum probability measure on P(B(H)) then Pr extends to a unique state
on B(H); if Pr is completely additive it extends to a unique normal state on B(H). And
the theorem has been further extended to include more general von Neumann algebras.
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4.2 Representation theorems.

For the classical (GPP) the sum that represents an agent’s credence Cr(E) in
E as an epistemically weighted average

∑
{ch}

ch(E)Cr(Cch) of possible chances

of E is taken over the entire class {ch} of classical chance functions since the
Cch are logically incompatible and all of these mutually exclusive possibilities
have to be taken into account for an accurate representation.
In the quantum case it would make no sense to sum over all possible

chance making states (= normal pure states). The closest analog would be a
sum over a set {ψa} of chance-inducing normal pure states whose support pro-
jections {Sψa} form a partition of P(B(H)); specifically, SψaSψa′ = O when
a 6= a′ (orthogonality of the different support projections) and

∑
a

Sψa = I

(completeness). The orthogonality of the Sψa is the closest quantum analog
of the logical incompatibility of the Cch. There is a different sense of incom-
patibility in QM that has no classical analog and, as will be discussed below
in Section 5.3, this is responsible for the fact that there is a non-trivial sense
of transition probability quantum probability for non-orthogonal states that
has no counterpart in classical probability.
The first representation theorem shows that, with a mild restriction on

the Hilbert space, there always exists a privileged partition {Sψa} that apes
as closely as possible the (GPP) of classical probability.

Theorem 1. Let Pr be a completely additive quantum probability
measure on the projection lattice P(B(H)) where dim(H) ≥ 3.
Then there exists a countable set {ψa} of mutually orthogonal
normal pure states on B(H) such that for all E ∈ P(B(H))

Pr(E) =
∑
a

ψa(E) Pr(Sψa) (QGPP)∑
a

Pr(Sψa) = 1, Pr(SψaSψa′ ) = 0 for a 6= a′,
∑
a

Sψa = I

where Sψa ∈ P(B(H)) is the support projection for ψa.

Proof: The proof of the theorem is an easy consequence of combining Glea-
son’s theorem with Theorem 7.1.12 of Kadison and Ringrose (1997). For a
Pr satisfying the conditions of the Theorem, Gleason’s theorem shows that
Pr extends uniquely to a normal state ω on B(H). For B(H) the nor-
mal pure states are vector states, and the Kadison and Ringrose theorem
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shows that for any normal state– and, thus, for the state ω in question–
there is a countable family {ψa} of normal pure states (= vector states
on B(H)) whose corresponding unit vectors {|ψa〉} are mutually orthogo-
nal such that ω =

∑
a

λaψa, where the limit is understood in the sense of

norm convergence and where
∑
a

λa = 1 and 0 < λa < 1. Since ψa′(Sψa) = 0

for a′ 6= a, we have ω(Sψa′ ) = λa′ and, thus, ω(A) =
∑
a

ω(Sψa)ψa(A) for

A ∈ B(H). Since ω(Sψa) = Pr(Sψa) and ω(E) = Pr(E) for E ∈ P(B(H))
we have Pr(E) =

∑
a

ψa(E) Pr(Sψa). Finally,
∑
a

Pr(Sψa) =
∑
a

λa = 1;

Pr(SψaSψa′ ) = 0 for a 6= a′ since SψaSψa′ is the null projection; and without
loss of generality the {|ψa〉} can be expanded if necessary to form a complete
ON basis so that

∑
a

Sψa = I.

When H is non-separable there is an uncountable number of mutually or-
thogonal normal pure states. Why then is the representation theorem able
to get away with summing over a countable subset? The short answer is that
a non-zero probability can be assigned to only a countable number of the
members of the uncountable set {Sψa} of support projections.
If the Pr of Theorem 1 interpreted as the credence function of a Bayesian

agent who assigns degrees of belief to the elements of P(B(H))– and nothing
in the formal apparatus prevents such an interpretation– then apart from the
restriction dim(H) ≥ 3 this theorem fulfills the wish list of expectations for
a representation theorem that vindicates the present construal of the PP
for QM. It remains to discuss how an agent can learn what the quantum
chances are. The short answer is that, in principle, she can do a Yes-No
experiment for the support projection Sψ for a normal pure state state ψ. If
she receives a Yes answer she can be (subjectively) certain that the chances
are those induced by ψ. The need for the restriction to dim(H) ≥ 3 and the
diffi culty this poses for the quantum Principal Principle for dim(H) = 2 will
be discussed in Section 5 below.
To explore the differences in the relation between credence and chance in

the classical vs. quantum cases, call a family {ψa} of mutually orthogonal
normal pure states amenable to a quantum probability Pr if it instantiates
(QGPP) for Pr. In general, different quantum probability functions, encod-
ing the credences of different rational agents, have different amenable fam-
ilies. Similarly, the family {ψa} of mutually orthogonal normal pure states
amenable to Pr encoding an agent’s initial credences in quantum events may
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not be amenable to that agent’s Lüders updated Pr(•//F ) credences for
an F ∈ P(B(H)) such that Pr(F ) 6= 0. The updated Pr(•//F ) has an
amenable family {ψb}, but this may not be the same as the family {ψa} that
is amenable to the initial Pr.
Further differences with the classical case emerge from asking how the

credences of an agent are related to chances when those chances are not
amenable to the agent’s credence function. The answer is given by the fol-
lowing version of the quantum general PP:

Theorem 2. Let Pr be a completely additive quantum probability
measure on the projection lattice P(B(H)) where dim(H) ≥ 3. If
{|ϕa〉} is an arbitrary ON basis for H with corresponding normal
states {ϕa} and support projections {Sϕa} then

Pr(E) =
∑
a

ϕa(E) Pr(Sϕa) (QGPP′)

+
∑
b 6=c

ω(SϕbESϕc)

for all E ∈ P(B(H)), where ω is the unique normal state that
extends Pr to B(H).

Proof: By Gleason’s theorem Pr extends uniquely to a normal state ω on
B(H). Use the fact that

∑
a

Sϕa = I and, thus, ω(E) = ω((
∑
a

Sϕa)E(
∑
b

Sϕb)).

From the normality and linearity of ω it follows that ω((
∑
a

Sϕa)E(
∑
b

Sϕb)) =∑
a

ω(SϕaESϕa)+
∑
b 6=c

ω(SϕbESϕc). Since ω(SϕaESϕa) = 0 when ω(Sϕa) = 0

any such terms can be left out of the first sum, and for each of the remaining

terms in this sum ω(SϕaESϕa) =
ω(SϕaESϕa)

ω(Sϕa)
ω(Sϕa). Next use the filter

property of the support projection Sψ for a normal pure state ψ, viz. if ω

is any normal state such that ω(Sψ) 6= 0 then
ω(SψASψ)

ω(Sψ)
= ψ(A) for all

A ∈ B(H) (see Earman and Ruetsche 2020). By the filter property of the

Sϕa,
ω(SϕaESϕa)

ω(Sϕa)
= ϕa(E), and together with ω(Sϕa) = Pr(Sϕa) this gives∑

a

ω(SϕaESϕa) =
∑
a

ϕa(E) Pr(Sϕa). Collecting these results yields (QGPP
′).
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Thus, for an arbitrary way of partitioning quantum chance-making nor-
mal pure states into a mutually orthogonal and exhaustive family {ϕa},
the credence Pr(E) in E is represented as a sum of two terms: a sum
over the possible objective chances ϕa(E) of E weighted by their respec-
tive subjective probabilities Pr(Sϕa), plus a term that can be interpreted as
a kind of interference between the chances. Note that the ω(SϕbESϕc) terms
on the rhs of (QGPP′) cannot in general be written as Pr(SϕbESϕc) since
(SϕbESϕc) /∈ P(B(H)) when the projections do not commute. (QGPP′) re-
duces to (QGPP) when the basis {|ϕa〉} is amenable to Pr. That there always
is an amenable basis follows from Theorem 1. The basis is amenable when
the density operator corresponding to the normal state ω extending Pr diag-
onalizes in the basis {|ϕa〉} and, consequently, the ω(SϕbESϕc) terms vanish.
And, of course, (QGPP′), reduces to (QGPP) when the algebra is classical
(= abelian) since then the

∑
b6=c

ω(SϕbESϕc) term vanishes for any mutually

orthogonal family {ϕa}.
The more complicated form of the quantum general PP given in Theo-

rem 2 may be viewed as a drawback, but on the other hand there would be
something very suspicious if the non-abelian nature of quantum events did
not make itself felt in the relation between credence and quantum chance.
To appreciate this point the reader is invited to do the following exercise.
Analyze the two slit experiment using classical probability and Bayes condi-
tioning to get an expression for the probability of a hit in some region of the
screen when both slits are open. The classical prediction is just the sum of
what one would expect when the left slit only is open, plus what would ex-
pect when right slit only is open. This, of course, is not what the experiment
yields. Now repeat the probability calculation using Lüders conditioning in
place of Bayes. One gets an analog of the classical prediction plus an extra
ω-term of a similar form as in representation Theorem 2.
If (QGPP′) deserves to be called a quantum general PP then it should

have the quantum special PP as a corollary. This is indeed the case.

Cor. Let Pr be a completely additive quantum probability mea-
sure on the projection lattice P(B(H)) where dim(H) ≥ 3. And
let ψ be any normal pure state such that Pr(Sψ) 6= 0. Then

Pr(E//Sψ) = ψ(E) for all E ∈ P(B(H)). (QSPP)
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Proof: If Pr satisfies the hypotheses of Theorem 2 then so does Pr(•//F ),
F ∈ P(B(H)), provided that Pr(F ) 6= 0. So if Pr(Sψ) 6= 0 Theorem 2 implies
that for any ON basis {|ϕa〉}

Pr(E//Sψ) =
∑
a

ϕa(E) Pr(Sϕa//Sψ)

+
∑
b 6=c

ω′(SϕbESϕc)

where ω′ is the normal state that extends Pr(E//Sψ). Choose the basis
{|ϕa〉} so that one of the basis vectors defines the normal pure state ψ. With
this choice the ω′ term vanishes and

∑
a

ϕa(E) Pr(Sϕa//Sψ) = ψ(E).10

5 Reflections

1. The account of quantum chance. The account outlined above can be at-
tacked in multiple ways. The most head-on attack comes from the QBians
who want to do a de Finetti number on QM. Their basic tactic is a judo
move: the Gleason theorem which was used to prove the representation the-
orems (QGPP) and (QGPP′) can be used to support the view that quantum
states are simply bookkeeping devices used to represent and track the cre-
dence functions of Bayesian agents. For a skeptical assessment of QBians see
Earman (2019). Other philosophers of physics who are open to the idea of
objective chance will find different faults with my account. Let the battles
begin. When the smoke clears one can hope that one or another result will
stand out: if the QBians are victorious then as far as QM goes the relation
between credence and chance is a non-topic; if the QBians are vanquished
and there emerges an account of quantum chance different and better than
the one on offer here, then see whether it can serve as a basis for proving
the desired representation theorems and draw conclusions accordingly for the
status of the quantum PP.

2. Why are chances induced by pure states and not by mixed states? The
answer has several interrelated components. The main response is that if, as
is being assumed here, Lewis’PP serves as a functional characterization of
chance then the probabilities induced on P(B(H)) by mixed states on B(H)
10A proof of the (QSPP) can also be obtained by combining Gleason’s theorem with the

filter property of the support projection of a normal pure state.
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do not qualify as chances, for they do not lend themselves to theorems such
as (QSPP), (QGPP), and (QGPP′).
If this response is regarded as too self-serving, additional considerations

can be brought to bear. (i) Whatever else chances are they are objective,
observer-independent probabilities. All observers attending the Yes-No mea-
surement of the support projection for a normal pure state ψ can agree when
there is a Yes answer, and in these circumstances they can agree that the
state ψ has been prepared. The probability values induced by ψ can be com-
pared to the frequencies of outcomes in repeated measurements when the
system is repeatedly re-prepared in the same initial state. The close match
that is obtained in actual experiments is evidence of the objective nature of
the probabilities induced by pure states. If mixed states did induce chances
then we could not learn what the chances are in the way we learn what the
pure-state chances are by preparing the normal pure state by doing a Yes-No
experiment and, if receiving a Yes answer, by calculating the probabilities
induced by said state. This is because mixed states do not have filters (see
Ruetsche and Earman 2020), so there is no Yes-No measurement we can do
for some element of P(B(H)) whose Yes outcome establishes that the mixed
state ξ has been prepared. The support projection Sξ of an impure normal
state does not distinguish between ξ and a family of different mixed states
(see Reflection 3 below). (ii) Whatever else chance is, it is a non-epistemic

probability. Consider the mixed state ξ :=
1

2
ψ1 +

1

2
ψ2 where ψ1 and ψ2 are

normal pure states corresponding to the orthogonal unit vectors |ψ1〉 and
|ψ2〉 respectively. This state can be created by programming a robot to flip
a classical fair coin and then prepare state ψ1 (respectively, state ψ2) if the
coin lands Heads (respectively, if the coin lands Tails). An agent who is
told the robot’s procedure but not the outcome of the coin flip will give an
epistemic reading to the 1/2 mixture weights in the state ξ. If, on the other
hand, the agent is simply presented with the mixed state ξ and not told
how it has been prepared she will not know how to identify the epistemic
component of the probabilities induced by ξ, for ξ can be expressed in many
ways as a mixture over different pure states. But the stance adopted here
is that the fact that there can be an epistemic component is enough to dis-
qualify ξ as inducing true chances. The reader is reminded that the physics
literature on quantum entanglement takes a similar stance: a quantum state
for a system is not counted as inducing true quantum entanglement between
the observables associated with two subsystems if said state can be written
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as a mixture of unentangled (= product) states. The motivation is similar:
the mixture weights can be given an epistemic interpretation, in which case
the correlation between the subsystems is the result of the ignorance about
which product state is the actual one. Nor is this stance gainsaid by the
fact that the mixture can be written in different ways, as different mixtures
over different product states. (iii) A property often attributed to chance is
that chances are irreducible probabilities. One way to cash in this notion
is that information specifying the chances is maximally specific in the sense
that there is no further information compatible with said specification that
changes the probabilities. In the present context this feature is captured by
the fact that the support projection Sψ for a normal pure state ψ is minimal
in the projection lattice, i.e. for any E ∈ P(B(H)) if E ≤ Sψ (E implies Sψ)
then E = Sψ. (iv) Finally, the next section indicates why normal pure states
are the receivers as well as the givers of chances.

3. Transition probabilities and other chances. The quantum representa-
tion theorems of Section 4 use a family of mutually orthogonal normal pure
states. But to contrast the difference between quantum and classical chance
it is useful to consider the chances that arise from non-orthogonal pure states.
The support projection Sψ for normal pure state ψ onB(H) is the projection
E|ψ〉 onto the ray spanned by a vector |ψ〉 ∈ H corresponding to ψ. For nor-
mal pure states ψ and ψ′ the expression ψ′(Sψ), giving the chances of a Yes
answer to a Yes-No measurement of Sψ when performed on a system in state
ψ′ agrees with the standard expression for transition probability from ψ′ to
ψ: ψ′(Sψ) = ψ′(E|ψ〉) = 〈ψ′|E|ψ〉|ψ′〉 = 〈ψ′|E2|ψ〉|ψ

′〉 = ||E|ψ〉|ψ′〉||2 = |〈ψ′|ψ〉|2.
Of course, when |ψ〉 and |ψ′〉 are orthogonal the transition probability is flatly
zero.
Here it is worth noting that two different senses of quantum incompati-

bility for elements of the projection lattice P(B(H)) in general, and for the
support projections Sψ and Sψ′ for normal pure states in particular, can be
distinguished: the first is that Sψ and Sψ′ are orthogonal, which holds iff
Sψ Sψ′ = Sψ′Sψ = 0, implying transition probabilities ψ′(Sψ) and ψ(Sψ′)
are both 0. The second is that Sψ and Sψ′ are non-commuting, SψSψ′ 6=
Sψ′Sψ, in which case quantum doctrine declares that co-determination (or co-
measurability) is impossible; in this case the transition probabilities ψ′(Sψ)
and ψ(Sψ′) are non-zero. Transition probabilities for non-orthogonal normal
pure states deserve to be numbered as a kind of quantum chance.
In the classical case the abelian event structure means that there is no
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analog of the second sense of quantum compatibility and, hence, no corre-
sponding notion of transition probability for classical chances. This a con-
clusion that can also be reached by conjuring with the notation philosophers
use and applying the classical (SPP). For any credence function Cr obeying
the axioms of classical probability we have that for any chance function ch′

such that Cr(Cch′) 6= 0, Cr(Cch/Cch′) =
Cr(CchCch′)

Cr(Cch′)
= 0 when ch′ 6= ch

since then Cch and Cch′ are logically incompatible. But the (SPP) says
that Bayes conditionalizing on Cch′ is supposed to bring rational credence
in line with ch′-chances so that Cr(Cch/Cch′) = ch′(Cch), with the upshot
that ch′(Cch) = 0 whenever ch 6= ch′ (as long as there is a credence function
such that Cr(Cch′) 6= 0). This blocks the obvious route to non-trivial transi-
tion probabilities in the classical setting.11 The lack of a notion of transition
probability in the classical setting should not be surprising if the only classi-
cal chances are the 0− 1, a conclusion that can be derived from the abelian
structure of classical events (see Reflection 7 below).
Finally, although the expression ψ(Sϕ) is mathematically well-defined for

any normal states ψ and ϕ it would be untoward to try to interpret it as a
transition probability from ψ to ϕ when ϕ is impure. This is a consequence of
the fact noted above that there are no filters for impure states. To illustrate
the problem consider the impure state ϕ = λ1ξ1 + λ2ξ2 where ξ1 and ξ2 are
orthogonal vector states and λ1 + λ2 = 1, 0 < λ1, λ2 < 1. The support
projection Sϕ for this state is the projection onto the subspace spanned by
the vectors corresponding to ξ1 and ξ2. Thus, ψ(Sϕ) does not distinguish
between the transition from ψ to ϕ vs. the transition to any other impure
state ϕ = λ1ξ1 + λ2ξ2 with λ1 + λ2 = 1, 0 < λ1, λ2 < 1, and λ1 6= λ1 and
λ2 6= λ2. It is a normal pure state that giveth chance, and it is a normal pure
state that receiveth transition chances.
There are undoubtedly other senses of quantum chance worth studying.

My program is does not exclude them but is committed to the stance that
they are best studied within the framework outlined above.
4. What goes wrong when dim(H) = 2? When dim(H) = 2 Gleason’s

theorem fails and there are quantum probability measures on P(B(H)) that
do not extend to any state on B(H) and, as a result, they cannot be rep-
11Some philosophers who write about classical chance want to allow for the possibility

of “self-undermining” chance functions where ch(Cch) < 1 and, thus, for the possibility
that ch(Cch′) 6= 0 when ch 6= ch′. To allow for such possibilities (SPP) would need to be
modified; see Section 6.2 below.
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resented as weighted averages of objective chances in the way required by
the desired representation theorem. So do we conclude that here the PP
fails? This would be too hasty. Recall that what we want to show if that
if a Pr satisfies the norms of normative Bayesianism then a representation
of Pr as epistemic uncertainty about chance values is a theorem of the the-
ory of quantum chance. The synchronic norm of normative Bayesianism is
satisfied since Pr is finitely additive for dim(H) = 2. But what about the
diachronic norm? Recall: When Pr extends to the state ω and Pr(F ) 6= 0

Lüders conditionalization is given by Pr(E//F ) :=
ω(FEF )

ω(F )
=

ω(FEF )

Pr(F )
.

The numerator cannot be written as Pr(EFE) since when E and F do not
commute, EFE /∈ P(B(H)) and no Pr value is assigned to EFE. So when
Pr does not extend to a state onB(H) Lüders conditionaliztion is undefined.
Should this be described by saying that the diachronic norm is moot for such
a Pr, or should we say that such a Pr fails the norm?
The reason that in the dim(H) = 2 case there are probability measures

on P(B(H)) that fail to extend to a state onB(H) is that such measures are
not continuous in the strong or weak operator topology, which they would
have to be if they were induced by a normal state, all states being normal
for dim(H) = 2. Perhaps such continuity of credence functions on P(B(H))
can be justified as a norm of rationality. But that remains to be seen, for
none of the familiar Bayesian rationales seem to do the job.

5. The additivity requirement. When H is an infinite dimensional separa-
ble space the representation theorems require that Pr is countably additive.
Some, but not all, of the justifications for finite additivity as a rationality
constraint can be extended to cover countable additivity. There are, however
probabilists– including de Finetti and his heirs– who insist that anything be-
yond finite additivity is not justified as a rationality constraint, and for them
Theorems 1 and 2 do not vindicate a quantum PP. When H is non-separable
the theorems require that Pr is completely additive, and some of the justifi-
cations for this requirement are fraught (see Skyrms 1992 for a hitch in using
a Dutch book argument to justify complete additivity). But for probability
measures on P(B(H)) countable additivity suffi ces for all practical purposes
since a countably additive Pr is completely additive unless dim(H) is as great
as the least measurable cardinal (see Eilers and Horst 1975). There are no
known applications of QM that require such high dimensional Hilbert spaces.

6. Beyond ordinary QM. What are the prospects for the desired represen-
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tation theorem when the algebra of observables is more exotic than B(H)?
Gleason’s theorem can be extended to cover much more general von Neumann
algebras than the plain vanilla B(H) of ordinary QM. But these more exotic
algebras have features that raise tricky issues about the nature of quantum
chance, e.g. the Type III von Neumann algebras encountered in relativistic
QFT admit no normal pure states. Such issues will have to be discussed
elsewhere (see Earman and Ruetsche 2020 for some pertinent remarks).

7. Classical chance. What are the prospects of carrying out for classical
probability the program illustrated above for quantum probability? They
are either excellent or dismal depending on your account of classical chance.
They will seem excellent if you belong to the venerable, but much criticized,
school that says the only genuine classical chances are the degenerate ones,
i.e. those that assign 0 − 1 probabilities to all events, all other probability
measures expressing epistemic uncertainty about the exact state of the sys-
tem which confers 0− 1 probabilities. This result can be obtained from the
above apparatus by viewing classical probability as concerned with the spe-
cial case where the von Neumann algebra is abelian and, thus, the projection
lattice is a Boolean lattice. Any pure state on such an abelian von Neumann
algebra induces 0− 1 measures on its Boolean projection lattice. The above
representation theorems apply, the only differences being that in the Boolean
case the chances ψa(E) in both Theorem 1 and 2 are always 0 or 1 and the
ω-term in Theorem 2 is always 0.
For those who find repugnant the use of Hilbert space apparatus to treat

classical probability there is a way to shed some of the trappings of Hilbert
space and make connections with the more familiar nomenclature of classical
probability. It begins with the Gelfand-Naimark theorem which shows that
an abelian von Neumann algebra is ∗-isomorphic to C(X), the algebra of con-
tinuous functions on a compact Hausdorff space X, the sum and product of
functions being defined pointwise.12 The projections P(C(X)) are character-
istic functions κY of subsets Y ⊆ X,13 and they form a Boolean algebra. For
any pure state φ on C(X) and any f ∈ P(C(X)), φ(f) ∈ {0, 1}. Further if φ
is a pure state then there is a unique xφ ∈ X such that φ(f) = f(xφ) so that
pure states can be identified with points of X or the extreme point-measures
on C(X). For a pure state φ and κY ∈ P(C(X)), φ(κY ) = κY (xφ) = 1 if
xφ ∈ Y and 0 if not. Borel probability measures on X are mixtures of these

12I.e. (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for f, g ∈ C(X) and x ∈ X.
13(κY κY )(x) = κY (x)κY (x) = κY (x) for x ∈ X and Y ⊆ X.
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extreme point-measures, each of which induces classical chances of 0− 1.
Needless to say, some philosophers will reject this account of classical

chance. I urge them to develop their alternative account of classical chance
and to use it to prove representation theorems of the kind studied above.

6 Twisted knickers

The analytical metaphysicians who write about the PP get their knickers
twisted about a number of issues. I will comment on five of them.

1. Admissible evidence. Recall the opening example of coin flipping and
the “...regardless of other information you may have”clause. The idea is that
information of the objective chance of Heads trumps other information you
may have about the behavior of the coin, including information about the
frequency of Heads in past flips. But exactly which information is trumped
and why? There is a wrangle about this in the philosophical literature– not
surprising since the discussion takes place in the absence of a substantive
theory of chance.
Given the account of quantum chance on offer the answer is straightfor-

ward answer to what counts as admissible evidence. If the “other informa-
tion”is already incorporated in the agent’s credence function Pr then unless
Pr(Sψ) = 0 for the support projection for a normal pure state ψ, the infor-
mation that the proposition Sψ is true and, hence, that the chances are those
induced by ψ trumps the “other information”since then Pr(E//Sψ) = ψ(E)
for all E ∈ P(B(H)). If on the other hand the “other information” that
F ∈ P(B(H)) is true is acquired at the same time as the information that
Sψ is true then standard quantum doctrine takes over, at least if the in-
formation is acquired by measurement. For standard doctrine says that F
and Sψ are simultaneously measurable iff they commute. And if Pr(SψF ) =
Pr(FSψ) 6= 0 then FSψ = SψF 6= 0. But since Sψ is a minimal projection
FSψ = SψF = Sψ, so again Sψ trumps and Pr(E//SψF ) = Pr(E//FSψ) =
Pr(E//Sψ) = ψ(E) for all F ∈ P(B(H)) such that Pr(SψF ) = Pr(FSψ) 6= 0.
2. Self-undermining chances and the New Principal Principle. In the

philosophical literature on the PP a chance function ch is said to be self-
undermining if ch(Cch) < 1. Self-undermining chances are odd. Just as
it would be odd to say in the same breath that “It is raining, but there
is a chance that it is not raining,” so it is odd to say “The chances are
given by ch, but there is a ch-chance that the chances are not given by ch.”
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(SPP) does not permit such oddities because rules against self-undermining
chances. Presumably, for any chance function ch there is a rational cre-
dence function Cr such that Cr(Cch) > 0. It then follows from (SPP) that
Cr(Cch/Cch) = 1 = ch(Cch). But for any oddity the chances are good that
there are analytical metaphysicians who will take it seriously. Thus, it is
not surprising to find proposals for a New Principal Principle that modifies
the PP so as to allow for self-undermining chances (see Hall 1994 and Thau
1994). Fortunately, there is no need to open this can of worms here since
quantum chances are never self undermining: for any pure normal state ψ
(and indeed for any normal state, pure or impure) ψ(Sψ) = 1.

3. Humean grounding of quantum chances? In discussing the relation of
credence and chance David Lewis climbed aboard another of his hobby horses,
Humeanism (see Lewis 1994). A Humean world is one devoid of all of the
hidden springs, powers, and potentialities which Hume found so distasteful;
at base it is world consisting of prosaic local particular facts– this electron
now has spin up, that electron had spin down 10 secs. ago, etc.– and any
other fact about such a world must be grounded in the base of Humean facts.
(In some formulations the grounding is explained in terms of reducibility, in
others supervenience takes the place of reduction. I will not open this can
of worms here.) But how can such a world accommodate objective chance
which smacks of non-Humean powers?
The standard answer in the literature is that in order to satisfy Humean

strictures chance must be grounded in facts about patterns of Humean events,
such as relative frequencies (see, for example, Schwarz 2016 and Hoefer 2019).
This answer is given in apparent innocence of how chance works in quantum
theory where the truth makers for quantum chances are not facts about
frequencies or other patterns of events but facts about the support projections
for normal pure states. If it is a fact that a Yes-No measurement of the
support projection Sψ for the normal pure ψ has just yielded a Yes answer
then the chance that a Yes-No measurement E ∈ P(B(H)) would yield a
Yes is ψ(E), and this is so even if the world is such that E is never measured
and there are no frequencies of Yes outcomes for E to ground its chances.
Of course, there is a connection here with frequencies; but it involves po-

tential frequencies, and the connection is epistemic rather than ontic. Sup-
pose that the system were to be prepared over and over again in the state
ψ and that after each such preparation a Yes-No measurement is made of
E. Since the trials are independent and identically distributed the classical
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law of large numbers can be invoked to conclude that in almost all outcome
sequences the relative frequency of Yes outcomes will converge to ψ(E) as the
number of trials goes to infinity. But strict Humeans will find distasteful the
resort to hypothetical or potential frequencies. And even in the measure-zero
cases where the frequency of Yes outcomes either does not converge or con-
verges to a value different from ψ(E) it is nevertheless true that the chance
of E is ψ(E).
Will the Humean guard admit the proposed truth makers for quantum

chances into the Humean base? Or will the guards turn them away, thereby
turning their backs on quantum chances? If the latter I will tear up my
Humean membership card but nevertheless maintain that I can believe in
quantum chances while continuing to be a good (liberal) empiricist since the
truth makers for quantum chances can in principle be verified by experiment,
although not usually by direct observation.

4. The usefulness of the quantum principal principle. The above ac-
count of the grounding of quantum chances provides an escape from one of
the gripes against Lewis’PP. Assuming, as most writers do, that Humean
chances are grounded in either limiting relative frequencies or finite frequen-
cies involving future events, it is hard to see how bounded agents who do not
have a God’s-eye-view of the universe can ever be in a position to put the
PP into action. In the case of quantum chances the assumption is wrong; fi-
nite observers do have access to the facts that ground quantum chances, and
these agents can put the PP into action by conditionalizing their degrees of
belief on the grounding facts.

5. Are quantum chances lawlike? Humeans are modally challenged. The
modality ‘It is a law of nature that ...’ poses a particular challenge: to
dismiss it runs afoul of modern science which seems to accept a distinction
between mere regularities and regularities that are backed by natural laws14;
to accommodate it requires the Humeans to produce an account of how
laws are grounded on Humean facts and to show that the account accords
with scientists’ usage of the modality. Taking his cue from unpublished
work of Frank Ramsey, David Lewis proposed to answer the challenge with
the “best system” analysis of laws. With non-probabilistic laws in mind,
the initial idea was that the laws of nature are the truths expressed by the
axioms or theorems of the best deductive system, where ‘best’means the
best compromise between the simplicity of the axioms and their strength

14For dissenting views see van Fraassen (1989) and Giere (1999).
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(or information content). In order to accommodate probabilistic laws the
criteria for ‘best system’have to be broadened to include some condition on
the fit between probabilities and frequencies, the details of which need not
concern us here. If we take scientific theorizing as striving towards the best
system for the actual world then an explanation is at hand for why scientists
tend to cite the axioms and theorems of their most fundamental theories as
examples laws of nature.
I want to think that, if the quantum theory is true, quantum chances

have a lawlike character; and I think that there is compelling evidence that
the theory is true. I am also a would-be Humean who does not see a better
Humean alternative to the best system analysis of laws. So I should believe–
as indeed I do– that, if true, the quantum theory is the best system for
describing phenomena in its domain of application. Consequently, I have to
accept that although the truth makers of chance assertions (e.g. ‘The chance
is 1/2 that this photon will be reflected by a half-silvered mirror’) are not
facts about frequencies of events, the lawlike character of these assertions is,
at least in part, grounded in facts about frequencies.15

Non-Humeans will be unimpressed by the thin nature of the lawlike char-
acter that Humeans attribute to quantum chances: the lawlikeness does not
travel with the truth of the quantum theory since the theory can be true in
but not the best system of other possible worlds.16 Humeans take this as
a virtue of the best systems analysis since modalities must be thin to pass
their muster. Although as a would-be Humean I wish Humeanism could ac-
commodate a thicker sense of lawlikeness, I will settle for the thin spread if
I cannot have the thicker one.

7 Conclusion

The program I have recommended for understanding the relation between
credence and quantum chance can be described as an exercise in naturalized
metaphysics– metaphysics transmuted into the meta-physics, the enterprise
of interpreting theories of physics. The conclusions it draws about the nature
of quantum chance and its relation to rational credence are every bit as
fragile and problematic as the interpretational principles it employs– very

15‘In part’ because because the quantum theory has many non-probabilistic conse-
quences, e.g. the energy levels of atoms.
16I owe this remark to Laura Ruetsche.

23



fragile and problematic, especially so since quantum theory has so many
hotly debated interpretations. But even if my conclusions are rejected I
believe that an engagement with the issues I have outlined here are more
likely to produce progress in understanding the relation between credence
and chance than trying to adjudicate the clash of competing intuitions that
characterizes much of the analytical metaphysics literature; and in any case,
refusing to come to grips with the differences between classical and quantum
probability and the ramifications of these differences for credence and chance
is not a prescription for progress.
In closing I want to underscore an obvious but overlooked point about

Lewis’PP that applies both the classical and quantum probability but is
especially potent in the quantum case. Bayesians who worry about the ob-
jectivity of inductive inference are apt to cite merger of opinion results: yes,
different Bayesian agents can have wildly different prior, but as more and
more evidence is accumulated and the agents update their priors there is a
tendency of their posterior probabilities to merge. A close look at the merger
of opinion results reveal strong limitations; for example, the merger theorems
are often in the form of long run or limit results but, as Keynes famously
remarked, in the long run we are all dead. The PP offers a remedy, at least if
agents can be in a position to conditionalize on propositions about chances.
The result is especially striking in the quantum case when the agents have the
ability to do Yes-No experiments for the elements of the projection lattice.
Suppose that a Yes-No experiment is performed on the support projection

Sψ for a normal pure state ψ, and suppose that all the agents who witness the
experiment agree that the outcome of the experiment is a Yes answer. The
(QSPP) guarantees that the subset of those agents whose prior probability
for Sψ is non-zero will find that when they update their credence function
by Lüders conditionization on Sψ they agree on their posterior credences for
every element of the projection lattice, no matter how otherwise divergent
their prior credences were. And this is quite independent of whether learning
Sψ is parsed as learning that the objective chances are those induced by ψ or
whether the learning is given some less metaphysically loaded reading. The
remaining subset of agents who assigned flatly zero prior credence to Sψ will
be in a quandary about what their new credences should be since Lüders
conditionalization, like its classical counterpart of Bayes conditionalization,
is undefined for zero probability events. But if they resolve their quandary
by agreeing that their new credence functions should assign credence 1 to Sψ
then they too will find that their new credences align perfectly with all of
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their fellow Bayesian agents, for Prnew(Sψ) = 1 implies that Prnew(E) = ψ(E)
for all F ∈ P(B(H)). Call it chance or call it by another name, the thing
that lies behind this coup de foudre merger of opinion deserves to be studied
more carefully.

Acknowledgement : I am grateful to Laura Ruetsche for helpful suggestions
on an earlier draft of this paper. Needless to say, this does not imply that
she agrees with any of the opinions expressed herein (although she should).
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