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Setting the demons loose: computational irreducibility 

does not guarantee unpredictability or emergence 

ABSTRACT 

A phenomenon resulting from a computationally irreducible (or computationally incompressible) 

process is supposedly unpredictable except via simulation. This notion of unpredictability has 

been deployed to formulate some recent accounts of computational emergence. Via a technical 

analysis of computational irreducibility, I show that computationally irreducibility can establish 

the impossibility of prediction only with respect to maximum standards of precision. By 

articulating the graded nature of prediction, I show that unpredictability to maximum standards is 

not equivalent to being unpredictable in general. I conclude that computational irreducibility fails 

to fulfill its assigned philosophical roles in theories of computational emergence. 
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1 INTRODUCTION 

Predictability is a common area of interest and investigation for both scientists and philosophers. 

It is not surprising, therefore, that some scientific theories on predictability have made their way 

to philosophical discussions. In particular, some philosophers have used computer science 

theories to formulate accounts of emergence that inform critical debates such as the nature of 

mind, the autonomy of the special sciences, or the origin of biological novelty (Bedau 1997; 

Huneman 2008; Humphreys 2016; Huneman 2012). In this paper, I use one of these 

computational theories, Wolfram’s computational irreducibility (Wolfram 2002), or as some call 

it, computational incompressibility (Bedau 2008; Huneman 2008), as a foil to show how these 

theories fail to fulfill some of their assigned philosophical roles.  

 There are two major types of emergence discussed in the literature, weak and strong, with 

two corresponding types of unpredictability. The weakly emergent are reducible to their 

fundamental bases and therefore are unpredictable only in practice, while the strongly emergent 

are irreducible and therefore are unpredictable in principle. There is a third type of emergence in 

the recent literature that sits somewhere between weak and strong emergence. According to 

computational emergence, or as I will call it, ontological weak emergence, emergent phenomena 

are reducible to their bases, yet because of their specific computational characters, namely their 

computational irreducibility, they are, as Bedau puts it, unpredictable in practice in principle.  

 Wolfram (2002) claims that from the computational perspective, the outcomes of 

computationally irreducible processes are unpredictable for any observer. Philosophers such as 

Bedau (1997) and Huneman (2008) have adopted this view to formulate ontological weak 

emergence, according to which emergent phenomena are unpredictable for any observer because 

of the computational irreducibility of the path leading to those phenomena. These computational 
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accounts of emergence supposedly have the best of the two worlds of weak and strong 

emergence, and are doubly attractive for the scientifically minded. They retain the familiar 

scientific metaphysics of weak emergence while they underpin the unpredictability of the 

emergent with an ontological and scientifically backed explanation.  

However, I show that computational irreducibility, no matter how interpreted, guarantees 

unpredictability only with maximal standards of accuracy and precision, while the scientifically 

and practically relevant concept of predictability is graded and submaximal. This creates a 

dilemma for supporters of computational emergence; they cannot have the ontological cake and 

eat it. If they cite computational irreducibility as their ontological guarantee of unpredictability 

of the emergent, they have to stick to the maximal standards of prediction. The unhappy 

consequence, however, would be that all natural phenomena would trivially turn out to be 

unpredictable and “emergent”, and computational emergence would be indiscriminatory, trivial, 

and irrelevant to the intuitive concept of emergence and the practical puzzles it creates.  

On the other hand, if they ease the standards of prediction, computational irreducibility can 

no longer guarantee unpredictability and computational formulations of emergence will be 

sullied by much subjectivity and arbitrariness. Consequently, computational ontological weak 

emergence would not be much different and superior compared to simpler and more flexible 

non-ontological accounts of weak emergence. If successful, the arguments will take ontological 

weak emergence off the table, and we go back to the choice between weak and strong 

emergence. 
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2 COMPUTATIONAL IRREDUCIBILITY  

Wolfram describes the causal or the computational path leading to a phenomenon as an 

algorithm that computes that phenomenon. The original algorithm generating a phenomenon is 

computationally irreducible if it is the shortest possible path to derive that phenomenon 

(Wolfram 2002). As there is no alternative pathway to compute the resulting phenomenon faster 

than the original algorithm, the resulting phenomenon is unpredictable (Figure 1). 

 

Wolfram presents the concept of computational irreducibility in the context of cellular 

automata, although the concept can be extended beyond that context. Cellular automata (from 

now on “CA”) are lattices of cells called the cell-space, where each cell stores a value such as a 

color. Starting from some initial values, the values of cells are updated in consecutive timesteps 

by some updating rules. At each timestep, the updating rule looks at a cell’s own value and its 

neighboring cells’ values and determines the cell’s value in the next timestep. Starting from 

some initial values and following the updating rules, some general patterns of values form on the 

cell-space as time goes by. The value of any single cell in each step is the micro-dynamics of a 

CA, and the overall patterns formed on the cell-space are the macro-states. Various 

Figure 1 A computationally irreducible path to a phenomenon (solid 

line) is the shortest path to that phenomenon 
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combinations of cell shapes, dimensions of cell-space, cell values, and updating rules result in 

different CA (Charbonneau 2017; Berto and Tagliabue 2017).  

Wolfram works with a particular setup of one-dimensional CA. Consider a chessboard 

with all white cells. Start by coloring some of the first top row cells black. In each iteration, 

move one row down and color cells based on the color of their neighboring cells on the 

immediately above row following a set of updating rules. Each cell has three neighbors in the top 

row, and one, two or three of these neighbors might be black, allowing eight different color 

combinations (Figure 2). An updating rule states whether a cell will be colored black or not in 

each of these eight possible combinations. This means that we can have 28 = 256 different 

updating rules. These rules are numbered 0 to 255. Starting from some black and white cell 

configuration on the first row, different rules result in evolution of different general patterns on 

CA. 

 

 Wolfram categorizes these 256 rules into four classes (Figure 3). Class one comprises of 

those rules under which CA converges into a uniform final state, for example, all cells become 

black (e.g. rule 250). Class two are those rules that result in some simple periodic behavior (e.g. 

Eight possible 

color 

combinations 

of the top row 

Color of the 

below cell 

according to 

rule 110 

Figure 2 Overview of Wolfram’s CA set up. Rule 110 is given as an example 
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rule 108), and class three are those that lead to random patterns (e.g. rule 90). Class four 

generates patterns that are a combination of randomness and periodicity (e.g. rule 110).  

  

 

Out of these four classes, the outcome of classes one and two are predictable using simple 

constant or oscillating predicting models. Using such predicting models, there is no need to 

simulate a class one or two CA in order to know its outcome. But when it comes to class three 

and four, Wolfram claims that there are no predicting models and one has no alternative but to 

simulate the CA and watch what happens. Unlike the cases of classes one and two, there are no 

shortcuts, and the fastest way to know the outcome of the CA is going through the CA itself. 

These CA, therefore, are computationally irreducible (Wolfram 2002).  

Computational irreducibility is not limited to CA. Any algorithmic process would be 

computationally irreducible if the computationally most efficient way to know its outcome is 

running the algorithmic process itself. This is a mathematical hard lower bound and no observer 

whatsoever, even a Laplacian demon, can pass it. The output of such an algorithmic process will 

be unpredictable because there is no way to compute its outcome faster than running the 

Rule 250 

Class 1 

Rule 108 

Class 2 

Rule 90 

Class 3 

Rule 110 

Class 4 

Figure 3 Examples of CA in each of Wolfram's four classes 
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algorithm itself. In Wolfram’s words (2002, 739): “Whenever computational irreducibility exists 

in a system it means that in effect there can be no way to predict how the system will behave 

except by going through as many steps of computation as the evolution of the system itself”. 

The above apparently clear statement is in fact utterly ambiguous. Wolfram does not 

precisely clarify what he means by “as many steps of computation” and does not give a formal 

proof for his claim. Therefore, it remains unclear exactly in what sense and why a 

computationally irreducible process is irreducible after all. There are a few options to explain 

these what and why. I explore these options below and examine the type of unpredictability each 

can guarantee. The exploration will show that computational irreducibility can guarantee 

unpredictability only for all cases, in infinite time, or with infinite precision. 

2.1 COMPUTATIONAL IRREDUCIBILITY AS A CASE OF THE HALTING PROBLEM 

Wolfram deduces computational irreducibility from his principle of computational equivalence. 

This principle has multiple components, but one that is the most important for the present 

discussion is the conjecture that any process, in nature or computer, that does not converge to a 

constant or to an oscillating pattern is a universal Turing machine (Mitchell 2009).  

Turing machines are models of computers initially introduced by Alan Turing (1937) and 

now widely used in computer science. A simple Turing machine is composed of an infinite tape 

of individual cells as its memory and a head that points to one of these cells at a time. The head 

can read the cell it is pointing to, write on it, and move to the next neighboring cell on either left 

or right. The machine can be in one of a set of predefined states. The behavior of the head is 

dictated by a transition function based on the current state of the machine and the symbol read on 

the cell. The transition function determines what the head should write on the cell, the direction 
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the head should move to and the state to which the machine should transit. A Turing machine 

begins at a “start” state and halts when it enters one of the “final” states. When the machine 

enters one of the final states, the computation finishes. But it is also possible that the machine 

never enters a final state and infinitely iterates over a loop of non-final states.  

According to the Church-Turing thesis, any computable function is computable by some 

Turing machine. There are “universal” Turing machines that can simulate any other Turing 

machine and therefore, can compute any computable function. Cook has shown that Rule 110 

CA is a universal Turing machine (Aaronson 2002). This means that given the right initial 

conditions, a rule 110 CA can compute any computable function. Figuring out the right initial 

conditions for computing different functions with this CA is extremely hard. But it is in principle 

possible.  

Although only a very limited number of CA are demonstrated to be universal Turing 

machines (Aaronson 2002; Berlekamp, Conway, and Guy 1982; Rendell 2011), Wolfram 

conjectures that any CA that does not converge to a constant or an oscillating pattern is a 

universal Turing machine. And because he sees natural processes as CA, he extends this claim to 

natural processes as well. Any natural process that does not result in a constant or oscillating 

behaviour, therefore, is a universal Turing machine, or so Wolfram claims. Both the initial 

conjecture and the extension to natural processes are open to objection. Nonetheless, let us grant 

both the conjecture and the extension and see where that would lead us.  

Being a universal Turing machine subjects CA to the halting problem. The halting problem 

states that there is no single algorithm that can predict for any arbitrary input whether a universal 

Turing machine will halt. This can be one interpretation of computational irreducibility. On this 

interpretation, some CA are computationally irreducible and hence unpredictable because there is 
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no general algorithm to predict if they will halt given some input. The only way to know whether 

they halt is to run the CA themselves (Ilachinski 2001). For example, there is no single algorithm 

that can predict for any arbitrary initial pattern if Rule 110 will halt or continue to iterate 

indefinitely. 

This unpredictability is not because of some technological limitation or lack of 

mathematical ingenuity. The halting problem dictates that halting or not halting of the 

computationally irreducible CA is unpredictable in principle. No technological breakthrough and 

no mathematical genius can ever devise a path around the halting problem (Yanofsky 2016). 

Even a Laplacian demon would be stalled.  

The conclusion drawn from the halting problem, however, is very restricted. The halting 

problem shows that no single algorithm can predict halting or not halting for all computations 

and for any arbitrary input. But the halting problem does not show that we cannot have multiple 

predicting algorithms that each correctly predicts halting or not halting for a broad subset of 

computations and inputs. Being subject to the halting problem is completely consistent with 

being predictable in many instances. The halting problem only shows that we cannot predict the 

halting or not halting for all and every case.   

In other words, the halting problem shows that there cannot be one single “Grand 

Algorithm of Everything” that predicts the fate of every natural process for all inputs. In this 

way, it seems that there might be a path from the halting problem to the impossibility of a 

“Theory of Everything”. But the halting problem cannot show that particular natural processes 

are necessarily unpredictable by any theory. Scientists can appreciate the halting problem and yet 

go back to their benches and blackboards to make predictions.  
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I believe the recourse to the halting problem is the closest interpretation of computational 

irreducibility to what Wolfram has presented in his works. We saw that the unpredictability we 

can conclude from this interpretation is very restricted. But there are other ways to interpret 

computational irreducibility and those might be more successful in securing unpredictability. Let 

us explore those alternatives. 

2.2 ALGORITHMIC COMPUTATIONAL IRREDUCIBILITY IN TERMS OF 

ALGORITHMIC TIME COMPLEXITY 

Another way to understand Wolfram’s irreducibility is to define it in terms of algorithmic time 

complexity (Zwirn and Delahaye 2013; Rucker 2003; Zwirn 2013; Huneman 2008). I explore a 

number of different versions of this approach in this section. But at their core and on a very 

rough sketch, all of those define a computationally irreducible algorithm as the one with the 

lowest (=best) algorithmic time complexity. It turns out that these formulations can guarantee 

unpredictability only over long times, and with infinite accuracy and precision.  

Algorithmic time complexity is the computer science currency of speed and efficiency. In 

simple terms, it shows how the time needed for an algorithm to solve a problem scales with some 

measure of the input size. The time is estimated by the number of the elementary operations that 

an algorithm goes through to give the solution, and that number varies as a function of the input 

size. Time complexity is the order of this function which is expressed by notations such as the 

big O notation and is used to rank algorithms according to their efficiency.1 The order shows 

 
1 Here I use the time complexity notations very loosely based on the general idea behind them 

and not their precise formalism. I stick with the big O notation as it is a weaker requirement 

compared to the small o notation.  
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how the number of operations scales with the input size. The lower the order, the more efficient 

the algorithm. Although time complexity is initially defined for algorithms, computer science 

usually associates time complexity with problems and not algorithms. The time complexity 

associated with a problem is the time complexity of the most efficient algorithm to solve it. Here, 

however, we need to zoom in, and discuss the time complexity of individual algorithms.  

Here I devise a simple and familiar programming language to write the pseudo-codes. 

INPUT (X) means receiving an input and assigning its value to X. FOR (X) means repeating 

what is contained in the FOR-block X times. The FOR-block is determined by the brackets, the 

first of which is placed on the line immediately following the FOR command. OUTPUT (X) 

means finishing program and returning X as the output. Let us look at an example. Suppose you 

want an algorithm to compute the number of bacteria after n generations starting from a single 

bacterium. For simplicity, assume that no bacterium dies. In every generation, each bacterium 

divides and makes two daughter bacteria. This means that in each generation, one bacterium is 

added to the population per every bacterium in the previous generation. Here is the first 

algorithm (algorithm A) inspired by this observation:  
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To determine the time complexity of this algorithm, we need to count the number of 

operations it performs for input n. The first FOR loop repeats the operations within its brackets 

for n generation. In each generation, the algorithm performs one addition per present bacteria. In 

the first generation, it does one addition, in the second, it does 2, in the third, it does 4 and so 

forth. The total number of additions performed by algorithm A, therefore, can be computed by 

the following formula: 

1 + 2 + 4 + 8 + ⋯ + 2𝑛−1 = ∑ 2𝑖

𝑛−1

𝑖=0

=  2𝑛 − 1 

Algorithm A: 

INPUT (n) 

current number of bacteria = 1 

FOR (n) 

 { 

 number of bacteria in the previous generation = current number of bacteria 

 FOR (number of bacteria in the previous generation)  

  { 

   current number of bacteria = current number of bacteria + 1 

  } 

 } 

OUTPUT (current number of bacteria) 
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The function 2𝑛 − 1  is of order 2𝑛. Therefore, algorithm A has time complexity 𝑂(2𝑛). 

It means that as the number of generations n increases, the number of operations needed to get 

the result, and consequently, the time spent to run the algorithm scales by the order of 2𝑛. This is 

an inefficient time complexity and there are algorithms of lower time complexities to solve this 

problem. For example, noting that the number of bacteria doubles in each generation, one can 

write algorithm B: 

 

Algorithm B has time complexity 𝑂(𝑛), and this is significantly more efficient compared to 

algorithm A. If we understand computational reduction in terms of time complexity, then 

algorithm A is computationally reducible to algorithm B. We can use algorithm B to compute the 

result of algorithm A with a lower time complexity. And as algorithm B is more efficient than 

algorithm A, so the thought goes, we can predict the results of algorithm A using algorithm B. 

Algorithm B: 

INPUT (n) 

current number of bacteria = 1 

FOR (n) 

 { 

 current number of bacteria = 2 × current number of bacteria 

 } 

OUTPUT (current number of bacteria) 
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 There is an even more efficient algorithm to solve this problem. We know that starting 

from one bacterium, the number of bacteria after n generations equals 2𝑛. This translates to the 

following algorithm C: 

 

Note that 2𝑛 is not an elementary operation and itself takes a few steps to compute. We have 

algorithms that compute 2𝑛 with time complexity 𝑂(log(𝑛)).2 Thus, algorithm C has time 

complexity 𝑂(log(𝑛)) that is a lower order compared to algorithm B’s 𝑂(𝑛). Therefore, even 

algorithm B is reducible.  

There is an important difference between algorithm C and the two previous algorithms A 

and B and that difference has inspired one interpretation of computational irreducibility. 

Contrary to algorithms A and B, there is no looping over generations in algorithm C. Algorithms 

A and B walk through the generations of cell division one by one, and they compute the number 

of bacteria for generations 1 to n-1 before they compute the number of bacteria in generation n.  

Algorithm C, on the other hand, does not go through this generation-by-generation path and 

jumps directly to generation n without computing the number of bacteria in the intervening 

 
2 e.g. method of exponentiating by squaring 

Algorithm C: 

INPUT (n) 

current number of bacteria = 2n 

OUTPUT (current number of bacteria) 
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generations. This is why algorithm C can be packaged as a closed-form formula, like a formula 

from physics: 

current number of bacteria = 2𝑛 

Rucker (2003) seems to interpret Wolfram’s computational irreducibility as the 

impossibility of a closed-form formula. On this interpretation, a computationally irreducible 

algorithm is one the result of which cannot be computed by a closed-form formula and therefore, 

one needs to necessarily walk through the steps of the algorithm to know its results. Imagine that 

algorithm C or any other closed-form formula were not possible to solve our bacteria problem, 

and the only way to compute the result were to do the calculations generation-by-generation. 

Then, on Rucker’s interpretation, the bacteria problem would have been computationally 

irreducible.  

The example of the three algorithms above, however, shows that the mere impossibility 

of a closed-form formula is not enough to guarantee irreducibility and unpredictability. Even if 

algorithm C were not possible, algorithms A and B could be ranked according to their time 

complexity with the idea that the result of the more efficient algorithm B can predict the results 

of the less efficient algorithm A.  

 Zwirn and Delahaye (Zwirn and Delahaye 2013) and Zwirn (Zwirn 2013) formalize a 

more detailed definition for algorithmic computational irreducibility in terms of time complexity. 

Here I try to avoid the mathematics of Zwirn’s account as much as possible and emphasize the 

general idea. The mathematical reader is referred to Zwirn’s original paper for the exact 

formalism. Assume an algorithmic process F(n), that computes fn by going through f1 to   fn-1. 

Starting from some initial input value for f1, in each time step i, fi receives the output of fi-1 and 
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computes an output, which in turn will be the input for fi+1.
3 On this setup, Zwirn requires two 

conditions for computational irreducibility of F(n). The first condition requires that given n as 

input, a computationally irreducible F should compute fn with the best possible time complexity. 

There should be no alternative algorithmic process G that computes fn with lower time 

complexity. The second condition requires that any other alternative algorithmic process G that 

computes the same result fn by an alternative function g should necessarily do so by going 

through steps g1 to gn-1 where each gi is an approximation of its corresponding step fi. By 

“approximation” Zwrin means that one can compute fi from gi by a very short computation.4  

Assume, just for the sake of argument, that the above algorithms A and B are the only 

possible algorithms to solve the bacteria problem. This (wrong) assumption guarantees that B has 

the lowest possible time complexity. It also ensures that the single alternative algorithm 

(algorithm A) computes the number of bacteria in generation n by going through steps 1 to n-1, 

and its value in each step can be easily transformed to the value computed by algorithm B (by 

B(n) = A(n)). B, therefore, would be computationally irreducible by Zwirn’s definition. 

 
3 Zwirn takes all fi to be the same function f which runs iteratively, but I think this assumption is 

not necessary. 

4 Zwirn distinguishes strong computational irreducibility from computational irreducibility. The 

former satisfies the two conditions for any n, and the latter for infinitely many n. In this paper I 

use computational irreducibility in the strong sense.  
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Zwirn formulation has limited power to show unpredictability of the computationally 

irreducible. The reason is that having the same/lowest time complexity does not necessarily 

mean having the same/lowest absolute number of computations and the same/lowest run time in 

all conditions. For example, consider algorithm B′ that solves the bacteria problem mentioned 

above as follows: 

 

B′ has the same time complexity as algorithm B, but it has a higher absolute number of 

computations and therefore, it runs slower than B (Figure 4). The difference between B and B′ 

will eventually become insignificant as n increases to infinity. But in finite time, B can compute 

the results faster than B′ and therefore, can predict its outcome. Even more, B′ has a better time 

complexity compared to algorithm A, but until n=10, A has a lower absolute number of 

computations and therefore, runs faster than B′ and can predict its outcome (Figure 4).  

Algorithm B′: 

INPUT (n) 

current number of bacteria = 1 

FOR (n) 

 { 

 current number of bacteria = 
100×101

∑ 𝑖100
𝑖=1

×current number of bacteria 

 } 

OUTPUT (current number of bacteria) 
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It is only when n increases towards infinity that the difference between algorithms of the 

same time complexity diminishes to insignificance and the algorithms with the best time 

complexity is guaranteed to be faster than the alternative algorithms with higher time 

complexities. Therefore, computational irreducibility as defined by Zwirn guarantees 

unpredictability only towards the infinite time. For shorter times, a computationally irreducible 

algorithm might be predictable. Unpredictability based on Zwirn’s definition is also limited by 

the possibility of heuristic solutions that I discuss at the end of this section. 

 On another interpretation, a process is computationally irreducible if predicting its 

outcome is an NP-hard problem (Buss, Papadimitriou, and Tsitsiklis 1990; Huneman 2008). 

Roughly speaking, NP hard problems are those for which we do not yet have a solution with 
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polynomial time complexity (𝑂(𝑛𝛼), 𝛼 > 1).5 For any relatively large input size, it takes a 

prohibitively long time to solve a problem with time complexity of higher than polynomial, and 

therefore, NP-hard problems are practically unsolvable, or as computer scientists call them, 

intractable. Intractability applies not just to us, the humans of the 21st century, but to any natural 

intelligence. For example, consider the Traveling Salesman, a classic NP-hard problem. The 

problem is finding the shortest path to visit each of 𝑛 towns exactly once and come back to the 

starting town. A demon who can use all the atoms of the universe as processing units needs 1062 

centuries to solve the Traveling Salesman problem for an input size of 𝑛 = 100 (Yanofsky 

2016). As an NP-hard problem becomes intractable relatively quickly, we do not need to go 

towards infinite time for the prediction to become practically impossible. 

Nevertheless, being NP-hard is also restricted in what it guarantees to be unpredictable. It 

is only the exact solution for an NP-hard problem that is intractable, and an approximate solution 

might be computable in much less time. In fact, NP-hard problems constitute a good portion of 

practical problems we are dealing with from everyday life to advanced science. Assigning 

wedding guests to seats in a way that friends share a table but foes do not (Lewis and Carroll 

2016), or constructing a phylogenetic tree (Habib and Stacho 2013) are some examples. 

Computer scientists may not be able to provide exact solutions to these problems, but they have 

devised plenty of approximate solutions that are both fast and acceptably accurate. It does not 

even take an intelligent computer scientist to find fast approximate solutions for NP-hard 

 
5 Buss et al (1990) use space complexity rather than time complexity. The two types of 

complexity are closely connected and as far as the arguments of this paper are concerned, there is 

no difference between the two.   
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problems. Zhu et al (2018) have shown that even as humble intelligence as an amoeba can find 

linear time approximate solutions for NP-hard problems. 

 Approximate solutions for NP-hard problems are examples of heuristic approaches that 

find approximate solutions for problems that are hard, or even impossible to solve. One 

particular approach that is specifically relevant to our discussion is coarse-graining of CA. Israeli 

and Goldenfeld (2006) have shown that computationally irreducible CA can be turned into 

reducible ones by coarse-graining. Coarse-graining of CA means combining some neighboring 

cells into one cell. The process results in a lower-resolution and an imprecise re-description of a 

CA pattern. Israeli and Goldenfeld show that the patterns generated by a computationally 

irreducible class 4 rule (e.g. Rule 110) may be re-described as patterns of another rule of a lower 

class after coarse-graining (e.g. Rule 0) that are not computationally irreducible. This means that 

computational irreducibility and its consequent unpredictability hold only for full precision CA. 

No matter how we define computational irreducibility, we lose it when we go to a coarse-grained 

view of CA. 

In summary, different accounts of computational irreducibility based on algorithmic time 

complexity can guarantee unpredictability only for infinite time and infinite precision. Wolfram 

is aware of this problem, and he emphasizes this point in his older papers. He writes (Wolfram 

1984, 424): “The large time limit of the entropy for class 3 and 4 cellular automata would then, 

in general, be non-computable: bounds on it could be given, but there could be no finite 

procedure to compute it to arbitrary precision”. 

But do we need arbitrary precision for predictability? And how far into the future this 

“large time limit” should be? In the next section I argue that to have a predictable phenomenon 
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we do not need arbitrary precision and we do not need to predict until indefinitely long time 

limits.  

3 PREDICTION IS GRADED 

We generally understand prediction as describing a phenomenon before observing it, and we talk 

about “successful” or “failed” predictions, and accordingly, we say something is “predictable” or 

“unpredictable”. These expressions of success, failure, predictability, and unpredictability 

represent prediction as a black and white concept that is either successful, or unsuccessful, 

possible, or not possible. This language usage hides the fact that prediction extends over a 

spectrum, and it is almost always not black or white, but grey. 

This graded nature of prediction is well reflected in the science of prediction. There are 

fields like weather or political forecast where the success of prediction has been subject of heavy 

investigation. The metrics that these fields use to gauge the success of prediction rank various 

predictions on a range between complete success and complete failure. An example is the Brier 

score, one of the most widely used of these metrics (Brier 1950). Brier originally formulated the 

score to measure the goodness of weather predictions, but later the score made its way to studies 

of socio-political predictions as well (Tetlock and Gardner 2016). Brier score has the following 

formula:  

𝐵 =
1

𝑛
∑ ∑(𝑝𝑖𝑗 − 𝐸𝑖𝑗)2

𝑟

𝑗=1

𝑛

𝑖=1

 

The index 𝑗 corresponds to each possible outcome, and 𝑟 shows the total number of possible 

outcomes. For example, it might rain (𝑗 = 1) or not rain (𝑗 = 2) and in this case, 𝑟 = 2. The 

index 𝑖 corresponds to an occasion of prediction, and 𝑛 shows the total number of the predictions 
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made. For example, we may predict whether it rains or not for ten days and in that case 𝑖 =

1, 2, … ,9, 10 and 𝑛 = 10. 𝑝𝑖𝑗 is the probability that the forecaster assigns to outcome 𝑗 on 

occurrence 𝑖. 𝐸𝑖𝑗 indicates whether outcome 𝑗 has happened on an occurrence 𝑖 (𝐸𝑖𝑗 = 1), or not 

(𝐸𝑖𝑗 = 0). The best Brier score is zero, and the lower the Brier score, the better. 

Suppose we have four weather forecasters. The Archangel who predicts all the rainy and 

not rainy days correctly and is always 100% confident about the predicted outcome. The Demon 

who mispredicts all days but is also still 100% confident. The Bold forecaster who correctly 

predicts 60% of the rainy days, but she is always 90% confident about her predictions. And the 

Cautious forecaster who also predicts 60% of rainy days correctly, but she is 60% confident 

about her predictions. Table 1 shows the predictions of these four forecasters over ten 

consecutive rainy days and the corresponding Brier score. 

Table 1 Some predictions and their corresponding Brier scores 

  

The best score is zero, and it goes to Archangel. The worst is 2, and it goes to Demon. 

The interesting point is that the score differentiates between Cautious and Bold, although both 

make the same predictions. The better score of Cautious compared to Bold implies that someone 

who predicts with 60% accuracy should be only 60% confident in her predictions. Bold gets a 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 

10 

Brier 

score 

Archangel 100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

100% 

Rainy 

0 

Demon 100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

100% 

Sunny 

2 

Cautious 60% 

Sunny 

60% 

Rainy 

60% 

Rainy 

60% 

Rainy 

60% 

Sunny 

60% 

Rainy 

60% 

Sunny 

60% 

Rainy 

60% 

Sunny 

60% 

Rainy 

0.48 

Bold 90% 

Sunny 

90% 

Rainy 

90% 

Rainy 

90% 

Rainy 

90% 

Sunny 

90% 

Rainy 

90% 

Sunny 

90% 

Rainy 

90% 

Sunny 

90% 

Rainy 

0.66 
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worse score for being over-confident. The confidence of a prediction is not necessarily a 

subjective perception in the eyes of the forecaster. The probability that a probabilistic natural law 

assigns to an outcome can replace the confidence a forecaster puts in her forecast. In this way, 

the Brier score can rank predictions of alternative probabilistic laws. 

 One might come up with other scores to measure the success of predictions of a law or a 

forecaster. For example, the formulation of the Brier score that I presented is suitable only for 

predictions of binary outcomes such as rain, or no rain. But when the outcome can have a range 

of values, the above formulation of the Brier score would not be sufficient. We would need an 

alternative score that incorporates the precision of the prediction as well. For example, if the 

temperature is 14 Celsius, a prediction of 14.5 Celsius must get a better score than a prediction of 

16 Celsius. The new score should somehow combine accuracy, certainty, and precision. Or one 

might come up with another score that looks also at how far in the future the forecaster can go. A 

forecaster who correctly predicts the weather a year from now should get a better score than a 

forecaster who predicts only tomorrow’s weather. Or another score might incorporate the variety 

of climate types that a forecaster can predict. A forecaster who successfully predicts rainy days 

only for tropical rain forests would get a lower score compared to a forecaster who predicts rainy 

days in various geographic regions. The critical point is that no matter what criteria we add, all 

these alternative scores will put the success of a prediction on a spectrum.  

 Even the most successful scientific predictions fall short of the absolute ends of success 

spectrum for various reasons. For example, most of scientific predictions are never maximally 

certain. The reason is evident if the laws used for prediction are probabilistic. A probabilistic law 

predicts the outcome with a less than one probability and leaves the possibility that the predicted 

outcome does not happen. Some laws of science, such as some quantum mechanical laws are 
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explicitly probabilistic. But even some of the laws that look deterministic on their surface are in 

one way or another probabilistic at their core. For example, chemistry teaches us that carbon 

dioxide interacts with water and produces carbonic acid. But it is more accurate to say that 

carbon dioxide interacts with water and produces carbonic acid only if the molecules collide with 

the correct angle and with sufficient energy. And such a collision is a probabilistic event. Many 

laws of the special sciences are like this. They are stated with a deterministic tone, but a closer 

look shows that they are probabilistic at their core. 

 Scientific predictions are also not maximally accurate and precise because of the noise 

inherent in any measurement and experiment. Part of this noise comes from the random 

fluctuations that are always there in the context of any experiment or measurement. And another 

part comes from the upper cap of precision and accuracy of the measurement devices. But there 

is also a third source of noise that comes from the limited precision of the values stored in 

computers. Regular computers have between 7 to 16 decimal digits of precision. Going to more 

accurate computers mitigates this type of noise but does not reduce it to zero and there is a hard 

upper cap on the precision of even the ultimate hypothetical super-computer (Davies 2004).  

 Scientific predictions also cannot look arbitrarily far into the future. For all the reasons 

discussed, scientific predicting models all have small systematic or non-systematic errors and 

those cause problems for predictor simulations. Given long enough time, small systematic 

deviations will result in humongous differences between the predictions and the actual outcome. 

In very longer time periods, even non-systematic errors might find the chance to happen to 

accrue in one direction at some point of time, and significantly change the course of the outcome 

from then on. And both systematic and non-systematic small deviations might significantly 

deviate the prediction from the actual outcome due to the butterfly effect. Different cases of 
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prediction would be more or less robust over long times and would successfully see further or 

closer into the future. But no real-world prediction goes until infinite time. 

Save the not-yet-found theory of everything, scientific models are also not supposed to 

predict everything, everywhere. All scientific models work within a limited scope and under 

certain assumptions. The wider the scope of a model and the fewer its assumptions, the better is 

the model. But the scope never becomes all-encompassing and the assumptions never go to zero. 

Of course, some level of generality is duly expected from a scientific model. But the generality 

need not expand to every phenomenon and every situation.  

In short, even the best predictions in science are never maximally accurate, precise, and 

certain, and they are not expected to predict until the infinite future. They are also not expected 

to predict everything, everywhere. These less than maximal standards apply even to the 

astonishingly accurate astrophysical predictions and the profoundly accurate scientific devices 

such as atomic clocks. Maximal standards are too much to ask even from the paradigm 

successful predictions.  

 We saw computational irreducibility guarantees impossibility of prediction only for all 

cases, in infinite time, or with infinite precision, accuracy and certainty. The above discussions, 

however, show that lack of prediction under these maximal conditions is not equivalent to being 

unpredictable because maximal standards are not necessary for predictability. It follows that a 

theory like computational irreducibility that shows some phenomenon cannot be predicted with 

maximal standards does not show that the phenomenon is necessarily unpredictable.  
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Computational irreducibility, therefore, cannot provide a basis for unpredictability. We 

see the philosophical importance of this conclusion in more details in the next section in the 

context of computational accounts of emergence. 

4 ONTOLOGICAL WEAK EMERGENCE AND COMPUTATIONAL 

IRREDUCIBILITY 

An emergent phenomenon is a feature of a system in its entirety that looks unpredictable and 

novel given all that we know about the system’s parts. We are confident that we know the micro-

structure of a system well enough to explain and predict its systemic macro properties and 

behaviours. Yet, the system shows some macro-level features that we cannot predict or explain. 

There are different ways to explain this dichotomy between what we expect from the micro-

structure and what we observe on the macro-level. One way is the approach suggested by Darley 

(1994) and Bedau (1997, 2008) and supported and expanded by Huneman (2008, 2012). I call 

this approach ontological weak emergence.6 Due to the heavy reliance of this approach on 

computational concepts, it is also called computational emergence (Huneman 2008). 

Ontological weak emergence sits somewhere between strong and weak emergence. 

Strong emergence suggests that emergent phenomena are ontologically distinct from their 

underlying micro-structure. The most famous example is mind that, according to strong 

emergentists, is of a different nature from the neurological system underneath it (Chalmers 2008; 

1996). Weak emergence, on the other hand, suggests that there is nothing ontologically special 

 
6 Bedau calls his theory weak emergence. I, however, call it ontological weak emergence to 

differentiate it from other accounts of weak emergence. 
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about emergent phenomena, and they look novel and unexpected simply due to our limited 

understanding of the underlying system. On this view, emergence is merely an epistemic 

perspective in the eyes of the beholder, and it will eventually dissolve as the beholder develops a 

better understanding of the system (Hempel and Oppenheim 1948; Chalmers 2008).7  

Weak emergence has a special appeal due to the current popularity of physicalism, as it 

does not introduce any new ontological types and keeps the physicalist ontology clean and tidy. 

Weak emergence, however, does not explain the notorious persistence and prevalence of 

emergent phenomena in so many disciplines, from biology to sociology. The history of science 

shows that many emergent phenomena, such as almost any phenomenon of interest in biology, 

economics, and so on still count as emergent despite significant advances in more fundamental 

sciences. The early supporters of weak emergence, such as Hempel and Oppenheim, had a 

different vision of the future. According to Hempel and Oppenheim (1948), during the course of 

scientific progress, phenomena are only transiently emergent because the theories and facts to 

explain them are yet to be discovered. Once the advances in science provide the necessary 

theories and facts, these would shed light on the phenomenon and dispel the apparent magic of 

emergence. Although there would be times when “Nature and Nature's laws lay hid in night”, but 

the story has a happy ending: “God said, ‘Let Newton be!’ and all was light".8  

This has not happened, and many important phenomena in special sciences are still 

unexplainable and unpredictable by the more fundamental theories (Mitchell 2009). Emergence 

 
7 There are inconsistencies in the field about what is called “weak” or “strong” emergence. I 

define the terms in the text to avoid any confusion. 

8 Epitaph by Alexander Pope  
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in special sciences has proved to be way more resilient than what early weak emergentists 

suggested. This resilience indeed begs an explanation. As Fodor (1997, 160-161) nicely  puts it: 

“Damn near everything we know about the world suggests that unimaginably complicated to-

ings and fro-ings of bits and pieces at the extreme microlevel manage somehow to converge on 

stable macro-level properties … On the other hand, the 'somehow' really is entirely mysterious 

… So, then, why is there anything except physics? … Well, I admit that I don't know why. I 

don't even know how to think about why”. 

This resilience is a good motivation to ask if there is more to emergence than merely the 

transient surprise of the ignorant. In fact, betraying Hempel and Oppenheim’s expectation, not 

only did the advances in science not demystify emergent phenomena but it was those very 

advances that lead to a stronger ontological version of weak emergence. Studies of complex 

systems through the 20th century until today inspired Darley (1994) and Bedau (1997, 2008) to 

suggest a new kind of weak emergence, namely ontological weak emergence, that while it does 

not introduce new ontological types, it blames the unpredictability of emergent phenomena on 

some ontological characteristics of the system. That ontological character is computational 

irreducibility. 

Ontological weak emergence is a property or a behavior of a system that cannot be 

explained, derived, or predicted except via simulation (Darley 1994; Bedau 1997; 2008). Bedau 

defines simulation as derivation of the macro-state of the system by going through the course of 

interactions in its micro-dynamics (Bedau 1997). The course of interactions can be followed in 

the system itself, its physical replica, or a computational simulation. The important point is that 

the only way to derive what comes out of the course of interactions is going through that very 

course of interactions in one setup or another. 
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Note that it is not a necessary fact that we need to go through the micro-level interactions 

to derive the macro-level facts of a system. For example, consider the oscillation of an ideal 

pendulum. To derive the position of the pendulum at time 𝑡 (𝑥(𝑡)), we do not need to crunch 

through all the forces acting on the bob in every swing until 𝑡. We can simply plug the value for 

𝑡 in the following formula and get the position of the pendulum 𝑥(𝑡) (𝐴 is amplitude, and 𝜔 is 

angular frequency).  

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) 

But such shortcuts are not available for the ontologically weakly emergent, and the only 

way to derive them is to go through all the forces step by step. Compare predicting the position 

of a ball in a pinball machine with predicting the position of a bob of a pendulum. Apparently, 

we know everything about the mechanics of pinball machines. But unlike the case of the 

pendulum, we cannot come up with a simple formula to tell the position of the ball at 𝑡. The only 

way to know the position of the ball is to play or simulate each round of pinball. Therefore, the 

position of a ball in a pinball machine at time 𝑡 is ontologically weakly emergent. 

But why is it the case that simulation is the only way to predict the position of the ball in a 

pinball machine? Arguably, before the invention of trigonometry by Hipparchus (180 – 125 BC), 

the shortcut formula for pendulums was not available and simulation was the only way to derive 

the position of the bob. So, what prevents us from hoping that some future genius will come up 

with a formula for predicting the position of the ball in a pinball machine, even if it takes 

devising a whole new branch of mathematics?  

In response to this question, Bedau takes recourse to computational irreducibility. He 

suggests that a phenomenon is ontologically weakly emergent if the path leading to that 
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phenomenon is computationally irreducible. And computational irreducibility guarantees that the 

only way to predict the phenomenon is going through the original path itself. No shortcuts are 

possible. In fact, there is such a tight connection between computational irreducibility and 

ontological weak emergence that Bedau sometimes seems to take the two concepts to be 

identical (Bedau 2002,18): “The behavior of [ontologically] weakly emergent systems cannot be 

determined by any computation that is essentially simpler than the intrinsic natural process by 

which the system’s behavior is generated. Wolfram … terms these systems “computationally 

irreducible” ”.   

Computational irreducibility is an ontological character of the system and therefore, an 

emergence arising from computational irreducibility is tied to the ontology of the system. Thus, 

it is not merely in the eyes of some beholder and is here to remain in face of any future advances. 

Computational irreducibility guarantees that not just us, the mortal humans of the 21st century, 

but no pinball genius in the future, and no pinball Laplacian demon can tell the position of the 

ball without simulating. Forever and everywhere, simulation is the only option. Or so the 

supporters of ontological weak emergence claim.  

At the core of Bedau’s account sits the assumption that computational irreducibility means 

guaranteed observer-independent unpredictability. The discussions of the previous sections, 

however, show that computational irreducibility cannot guarantee unpredictability. 

Computational irreducibility guarantees impossibility of prediction only with maximal standards, 

and we saw that impossibility of prediction with maximal standards is not equivalent to 

unpredictability. Computational irreducibility may be able to demonstrate that one cannot predict 

the position of the ball in a pinball machine under all scenarios, after infinite time, and with 

infinite accuracy, precision, and certainty, unless one simulates the play. But computational 
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irreducibility has nothing to say against the possibility of a pinball genius, let alone a pinball 

demon, predicting the position of the ball with strikingly high, yet sub-maximal standards. 

Computational irreducibility is consistent with the position of the ball being predictable for all 

that matters. 

Avoiding this objection may be the motivation that makes Bedau emphasize accuracy and 

completeness in his relatively more recent formulation of ontological weak emergence, saying 

that it is the accurate and complete derivation of an ontologically weakly emergent phenomenon 

that is impossible except by simulation (Bedau 2008). But the emphasis on accurate and 

complete derivation addresses the objection only by trivializing the concept of unpredictability, 

and consequently the concept of emergence. There is not even a single case of real-world 

prediction in which one predicts the state of a system with perfect completeness and accuracy. It 

trivially holds that the only way to know all future states of any physical system with one 

hundred per cent accuracy and completeness is to run the system itself. But by defining 

emergence in this way, any physical system whatsoever would turn out to be ontologically 

weakly emergent. Such an all-inclusive theory of emergence tells hardly anything interesting 

about the emergent phenomena. 

Huneman adopts Bedau’s idea but goes one step further. He suggests that on top of 

unpredictability except by simulation, the non-trivial cases of ontological weak emergence 

should satisfy one additional criterion. They should show stable higher-level regularities. He 

again refers to computational irreducibility to explain how an unpredictable micro-level results in 

a predictable macro-level regularity. He claims that the micro-level is computationally 

irreducible and hence, unpredictable, but the computational irreducibility is lost once we go to 

the higher-level (Huneman 2008; 2012). For example, we saw that coarse-graining transforms a 
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computationally irreducible system to a computationally reducible one. Through a mechanism 

like coarse-graining, so the explanation goes, we transit from the computationally irreducible 

micro-level to the computationally reducible and hence, predictable macro-level.  

    Similar to Bedau’s, a key assumption in Huneman’s account is that computational 

irreducibility means guaranteed observer-independent unpredictability. It is computational 

irreducibility that supposedly guarantees that emergent phenomena are unpredictable at the 

micro-level. But we saw that this assumption does not hold, and computational irreducibility 

cannot guarantee Huneman’s criteria of unpredictability on the lower level. His account faces the 

same problems as Bedau’s on that level.   

An alternative interpretation of Huneman’s account in which the emphasis shifts from 

predictability on the lower or the higher levels to predictability with maximal or sub-maximal 

standards seems to fare better. On this interpretation, emergence is unpredictability with maximal 

standards because of computational irreducibility, while being predictable with sub-maximal 

standards via processes such as coarse graining that break computational irreducibility. Note that 

the only role that computational irreducibility plays in this version of Huneman’s account is 

guaranteeing unpredictability with maximal standards, and it is a role that it indeed can play. 

This guaranteed unpredictability with maximal standards, however, is useless in delineating 

emergent phenomena in practice, because any natural phenomena you name is practically 

unpredictable with maximal standards.  

This interpretation can at most show a purely theoretical difference between the emergent 

and the non-emergent, and allows the two classes of phenomena to look exactly the same in the 

real world. The view, therefore, cannot explain any observable difference between the emergent 

and the non-emergent phenomena. And the other way round, the practical and observable 
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differences between the emergent and the non-emergent phenomena cannot provide any 

evidence for this purely theoretical view. The emergence debate, however, is motivated by the 

supposedly observable and practical differences between the emergent and the non-emergent. 

With regards to these most eye-catching puzzles of emergence, this purely theoretical approach 

seems irrelevant and inadequate.    

On a third interpretation of Huneman’s account, we can focus on predictability after coarse 

graining rather than unpredictability before it. On this interpretation, we acknowledge that all 

natural phenomena are unpredictable with maximal standards, and we delineate the emergent as 

those special ones that can be made predictable by coarse graining. The immediate challenge 

would be to set a cut off for the amount of coarse graining allowed before an emergent 

phenomenon becomes predictable. To avoid this difficult challenge, we can define emergence as 

a graded concept, suggesting that different phenomena show different amounts of emergence 

depending on the amount of coarse graining needed before they become predictable. It is an 

intuitively appealing idea, and I think it is a step in the correct direction as it introduces a graded 

emergence that reflects the graded nature of predictability. The problem, however, is that it is 

very hard, maybe impossible, to formalize it as a form of computational emergence. In the next 

section, I entertain the idea of graded emergence and show that the theory behind computational 

emergence is too stiff to accompany the moves towards graded emergence.  

5 DEGREES OF EMERGENCE                       

One way to deal with the problems arising from the graded nature of predictability is to 

describe emergence also as a graded concept. The promoters of ontological weak emergence 

have already proposed this idea, though mostly passingly.  For example, in his more recent 
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works Bedau (2008) suggests that ontological weak emergence comes in degrees and phenomena 

can be more or less emergent. This is a move in the correct direction as it mirrors the graded 

nature of prediction. The problem, however, is that computational irreducibility cannot 

accompany emergence in this move. Computational irreducibility works only in the extreme and 

maximal conditions, and it is silent about what falls in the middle. By claiming a graded 

emergence, Bedau loses the ontological support of computational irreducibility for his theory. 

This is a heavy loss. After losing the ontological support of computational irreducibility, it is not 

clear what the advantage of computational emergence would be over the other humbler non-

ontological versions of weak emergence. In fact, other more subjective accounts of weak 

emergence are probably in a better position to define a graded emergence based on grades of 

predictability, because the spectrum of prediction depends not only on the characteristics of the 

object of prediction, but also on the subject’s epistemic goals and capacities. 

The graded version of Huneman’s account faces similar problems. The degrees of 

emergence in Huneman’s account start after coarse graining where we can no longer rely on 

computational irreducibility. We need to devise other computational concepts to formalize and 

quantify the degree to which a phenomenon becomes predictable after coarse graining. Without 

such formalization and quantification, the graded version of Huneman’s account would not have 

any ontological and computational element and hence, would not have any tangible advantage 

over non-ontological types of weak emergence. The non-ontological types of weak emergence 

might be even better suited to describe the degrees to which a phenomenon shows emergence 

after coarse graining because they can more easily accommodate the subjective aspects of 

predictability.        
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Is there a way to formalize and quantify degrees of emergence in Bedau’s or Huneman’s 

accounts? Hovda (2008) has attempted to build such formalization and quantification. His 

attempt, however, more than anything shows the seemingly insurmountable challenges facing 

such formalization and quantification. Hovda adopts Bedau’s notion of emergence as derivability 

only via simulation (s-derivability) and suggests the degree to which a phenomenon is emergent 

corresponds to the amount of simulation, or more precisely, the amount of computation needed 

to derive that phenomenon. The more computation is needed, the more is the phenomenon 

emergent.  

Despite its apparent simplicity, there are serious problems when it comes to the details of 

Hovda’s formalism. The most important problem that Hovda himself explicitly acknowledges is 

that the amount of computation needed to derive a phenomenon depends not just on the nature of 

that phenomenon, but also on somewhat arbitrary choices such as the formal language used to 

describe the system and the way one defines and counts the steps of the simulation. Listing 

various such difficulties, Hovda (2008, 470) concludes that “we must acknowledge that s-

derivability, and amount of simulation required, might be relative to a derivation system” . But 

this means admitting that the amount of emergence a phenomenon shows at least in part depends 

on our somewhat arbitrary and subjective choices on the derivation system. The amount of 

emergence would be a side effect of some arbitrary formalism rather than an ontological fact 

about the phenomenon.  

The dependence of Hovda’s quantity of emergence on the choice of formalism diminishes 

not just its theoretical value in describing the nature of emergence, but also its practical 

usefulness as a measure of emergence. Science uses different formal frameworks to describe 
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different natural phenomena and therefore, it would not be possible to use Hovda’s quantity to 

compare the amount of emergence across different natural phenomena.  

The lessons of Hovda’s example are not peculiar to his particular formalism. His work 

shows how arbitrary and subjective factors bedevil any quantification of weak emergence. 

Considering these arbitrary and subjective factors, it seems impossibly challenging to quantify 

emergence as an ontological computational character of the emergent phenomena.    

6 CONCLUSIONS  

Our exploration of various interpretations of computational irreducibility showed that it can 

guarantee impossibility of prediction only for all cases, or in infinite time, or with infinite 

precision, accuracy, and certainty. Prediction in its best scientific sense, however, does not 

happen in these maximal contexts. Every predicting model scores better or worse in terms of the 

variety of scenarios it can predict, the stretch of time it can look into, and the accuracy, precision, 

and certainty of its predictions. Even the archetypes of scientific predictability do not score 

perfectly on any of these dimensions. Yet, we deem those scientific predictions successful, and 

accordingly, deem the object of their predictions, predictable. Therefore, we cannot conclude 

unpredictability of a phenomenon from a theory like computational irreducibility that shows 

impossibility of prediction only with maximal standards.  

This has important consequences for the philosophical positions such as ontological weak 

emergence that rely on computational irreducibility to guarantee unpredictability. Ontological 

weak emergence defines emergence as unpredictability except via simulation. It is computational 

irreducibility that is supposed to guarantee this unpredictability. Allegedly, computational 

irreducibility provides an objective and ontological anchor for the unpredictability of the 
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emergent and thus, frees weak emergence from being merely in the eyes of some observer. With 

its mathematical power, computational irreducibility acts as the seal of Solomon forcing even the 

Laplacian demons to kneel before the unpredictability of the emergent. Even the demons cannot 

predict the outcome unless they simulate.  

But the discussions above show that until we forge a stronger formulation, the seal will 

remain lost in the sea.9 Computational irreducibility leaves open the possibility that not only the 

Laplacian demons, but even the humble human observers predict the result of a computationally 

irreducible process with sub-maximal, yet acceptable standards. Computational irreducibility 

only shows that we cannot ask for the moon. But we do not need the moon after all.  

  

 

 

 

 

 

 

 
9 The story goes that Solomon possessed a seal ring by means of which he had dominion over all 

demons. A demon once stole the ring and threw it into the sea. Solomon was thus deprived of his 

dominion until he found the ring inside a fish (Jacobs and Seligsohn 1906). 
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