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How to reconcile modal interpretations of quantum mechanics with relativity 
 

Joseph Berkovitz1, Meir Hemmo2 
 

 
1. Introduction3 
 
Modal interpretations4 are hidden-variable, no-collapse (typically) indeterministic interpretations of 
quantum mechanics that were designed to solve the measurement problem and to reconcile quantum 
mechanics with relativity. But, as recent no-go theorems by Dickson and Clifton (1998), Arntzenius 
(1998) and Myrvold (2002) demonstrate, current modal interpretations are not fundamentally 
relativistic. In this paper, we suggest strategies for how to reconcile the modal interpretation with 
special relativity. We begin by examining Myrvold's theorem (Section 2), which in a sense is a 
generalization of the other two no-go theorems. We then suggest two strategies for circumventing 
these theorems (Section 3), and show how they can be developed into new modal interpretations 
with a dynamics that picks out no preferred foliation of space-time (Section 4).  
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               Figure 1. The spacelike hypersurfaces used in Myrvold’s theorem. 
 
 
 
2. Myrvold's no-go theorem 
 
There are three main types of modal interpretations: The Schmidt-decomposition, the spectral-
resolution and the preferred-observables modal interpretations. In the Schmidt-decomposition 
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modal interpretations, the unique biorthogonal decomposition of pure (non-degenerate) quantum-
mechanical states of systems picks out the values of some observables as definite. In the spectral-
decomposition modal interpretations, which are generalizations of the Schmidt-decomposition 
interpretations to mixed states, the properties of a system are given by the spectral resolution of its 
reduced state. The range of possible properties of a system and their single-time probabilities are 
given by the non-zero diagonal elements of the spectral resolution of the system’s reduced state 
(obtained by partial tracing). Finally, in the preferred-observables modal interpretations, the definite 
properties of a system are given by some preferred (time-independent) observables. 
 
Myrvold (2002) argues that all the above property assignments are incompatible with special 
relativity. The main idea of the argument is the following. Myrvold presupposes that if a modal 
interpretation is to be compatible with relativity, it must satisfy the following condition (Myrvold, 
ibid., p. 1783): 
 

Relativistic Born Rule. Let q and r be any possible values of the quantities Q1 and R2, 
respectively.  For any spacelike hypersurface σ, if the quantum-mechanical state of the 
composite system S1+S2 on σ is ψ(σ), and if Q1=q and R2=r are local definite properties of S1 and 
S2 respectively, then the probability of Q1=q and R2=r on σ is equal to Tr[PQ1(q) PR2(r) ψ(σ)]; 
where PQ1(q) and PR2(r) are the projections onto the eigenspaces Q1=q and R2=r, respectively. 

 
But, argued Myrvold, this condition is incompatible with the above property assignments. The 
reasoning is as follows. Let α and β be two hyperplanes of simultaneity in some reference frame 
(see Figure 1 above). Let xi and yi be small regions on α and β respectively, in which the system Si 
is located. Suppose that x1 is spacelike separated from y2 and x2 is spacelike separated from y1. Let γ 
be a spacelike hypersurface containing y1 and x2 and let δ be a spacelike hypersurface containing x1 
and y2. Let R1 and R2 be quantities associated with the systems S1 and S2 respectively, and let A1 and 
A2 be measurement apparatuses that record the values of R1 and R2. Suppose that the states of 
S1+S2+A1+A2 on α, β γ and δ are the following: 
 
     |ϕ(α)> = 1/2√3(|p1+>|r1+>|r2+>|p2+> − |p1+>|r1+>|r2−>|p2−> −  
              |p1−>|r1−>|r2+>|p2+>| − 3|p1−>|r1−>|r2−>|p2−>)           (1) 
 
     |ϕ(β)>= 1/√3(|p1+>|r1+>|r2−>|p2−> + |p1−>|r1−>|r2+>|p2+>| − |p1+>|r1+>|r2+>|p2+>)                (2)
  
     |ϕ(γ)>= 1/√6(|p1−>|r1−>|r2+>|p2+>| + |p1−>|r1−>|r2−>|p2−> − 2|p1+>|r1+>|r2−>|p2−>)               (3) 
        
     |ϕ(δ)>=1/√6(|p1+>|r1+>|r2−>|p2−> + |p1−>|r1−>|r2−>|p2−> − 2|p1−>|r1−>|r2+>|p2+>|);              (4) 

 
where |ri+> and |ri−> are the eigenstates of R1 and R2 respectively, and |pi+> and |pi−> are the 
eigenstates of pointer observables P1 and P2 associated with the measuring devices A1 and A2, 
respectively. As is easily shown, |ϕ(β)>, |ϕ(γ)> and |ϕ(δ)> are obtained from |ϕ(α)> by applying the 
following Hadamard transformations to the eigenstates of Ri⊗Pi: 
 

Ui |ri+>|pi+>= 1/√2  (|pi+>|ri+> + |pi−>|ri−>)            (5)
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Ui |ri−>|pi−>= 1/√2  (|pi+>|ri+> − |pi−>|ri−>).            
   
That is, ϕ(β)=U1⊗U2|ϕ(α)>, ϕ(γ)=U1⊗I2|ϕ(α)> and ϕ(δ)=I1⊗U2|ϕ(α)>; where I is the identity 
transformation.  
 
According to the spectral-resolution and the Schmidt-decomposition modal interpretations, R1 and 
R2 are definite in the states (1)-(4). Suppose that these observables are also picked out as definite by 
the preferred-observables modal interpretations. Suppose further that the value of Ri correspond to a 
local property of the system Si, so that Ri has the same value on any two space-like hypersurfaces 
that intersect the spacetime region in which Si is located. Then, if the probabilities of the values of 
the Ri are supposed to satisfy the Relativistic Born Rule on all the four hypersurfaces, there must be 
a joint probability distribution over the values of Ri that yields as marginals the (single-time) Born-
rule probabilities for these values on the hypersurfaces α, β, γ and δ. But, such joint probability 
distribution would satisfy certain Bell-like inequalities, which are violated in the states ϕ(α), ϕ(β), 
ϕ(γ) and ϕ(δ) in (1)-(4). This means that the Relativistic Born Rule fails, and more generally, that 
the probabilities of local, possessed properties in modal interpretations cannot be given by the Born 
probabilities along every foliation of spacetime for any arbitrary initial quantum state.5  
 
For example, suppose that on hypersurface α, R1 and R2 have the values (r1+,r2+). Since, by 
assumption, R1 is a local property of S1, it must have the same value on the hypersurface δ. 
Assuming the Relativistic Born Rule, the state on δ, |ϕ(δ)>, assigns probability zero to the pair of 
values (r1+,r2+) and non-zero probability to the pair of values (r1+,r2−). Thus, on δ, the probability 
that R2 has the value r2− is one. Since R2 is a local property of S2, if it has the value r2− on δ, it will 
also have this value on β. A parallel argument leads to the conclusion that if R2 has the values r2+ 
on α, it will have the value r2− on β. Thus, if R1 and R2 have the values (r1+,r2+) on α, the 
probability that these quantities have the values (r1−,r2−) on β is one. By contrast, the Relativistic 
Born Rule, |ϕ(β)> assigns zero probability to these values. Thus, it is impossible to obtain the Born 
probabilities for the values of R1 and R2 on all the four hypersurfaces. 
 
 
3. On the nature of properties   
 
In response to Myrvold’s theorem, one may object to the presupposition that the Relativistic Born 
Rule is a necessary condition for relativistic modal interpretations. This presupposition seems to 
rely on the natural assumption that the probabilities of possessed properties should invariably be 
equal to the Born-rule probabilities. But one may reject this assumption and insist that only the 
probabilities of observable, possessed properties should be equal to the Born-rule probabilities. In 
what follows, we shall suggest two other strategies for circumventing this theorem. As is easily 
seen, Myrvold’s theorem also relies on the following two premises:  
 

(I) The values of the observables R1 and R2 (P1 and P2) are local (intrinsic) properties of 
the subsystems S1 and S2 (A1 and A2), respectively.  

 

                                                
5The scope of Myrvold's theorem is not restricted to modal interpretations. It may also be applicable 
to other no-collapse theories that admit local properties of the type discussed above.   
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(II) The joint probabilities of the values of R1, R2, P1 and P2 are definite on α, β γ and δ 
(henceforth, Joint Probability).  

 
While current modal interpretations satisfy these assumptions for supposedly local properties, we 
shall suggest below modal interpretations that violate them, and accordingly circumvent Myrvold’s 
theorem.  
  
To remain general and to simplify things, we shall work with schematic modal interpretations in 
which the possible properties of a given system and their single-time probabilities are picked out by 
the nonzero diagonal elements of the reduced state in a given basis. Further, as a working 
hypothesis, we shall assume that this property assignment is consistent with the Kochen & Specker-
type theorems, and that it leads to sensible solution of the measurement problem. (In Berkovitz 
2004, 2005), we argue that this working hypothesis can well be motivated in the context of the 
modal interpretations under consideration.) Finally, similarly to most current modal interpretations, 
we shall assume that the so-called ‘property composition’ and ‘property decomposition’ conditions 
fail.  
 

Let H1 and H2 be the Hilbert spaces of the systems S1 and S2, respectively. Let Q1 be an 
observable that pertains to H1 and q be one of its values, let PQ1(q) be a projection onto the 
eigenspace Q1=q, and let I2 be the identity operator for H2. Then: 
 
Property Composition. If S1 has the property (associated with) PQ1(q), then S1+S2 has the 
property (associated with) PQ1(q)⊗I2.  
 
Property Decomposition. If S1+S2 has the property (associated with) PQ1(q)⊗I2, then S1 has 
the property (associated with) PQ1(q). 

 
 
Note that these violations imply that the properties of composite systems are not decomposable into 
the properties of their subsystems. For example, the values of R1 and R2 may be r1+ and r2- 
respectively, whereas the value of R1⊗R2 may be r1−⊗r2+. This means that in order to prove that a 
modal interpretation is compatible with relativity it will be necessary to demonstrate that Myrvold’s 
theorem is inapplicable not only to the values of R1 and R2, but also the values of R1⊗R2. Note also 
that the violations of property composition and property decomposition naturally suggest that the 
composite properties R1⊗R2 are non-local, so that in transformations of the eigenstates of say R2 the 
value of R1⊗R2 may change as a whole: e.g. the value of R1⊗R2 may be r1+⊗r2+ on α and r1−⊗r2+ 
on δ, even though the reduced state of S1 does not change by the Hadamard transformation of the 
eigenstates of R2⊗P2 between α and δ. 
 
 
3.1. The holistic interpretation 
 
In the modal interpretations we have in mind, the possible values of R1⊗R2 are r1+⊗r2+, r1+⊗r2−, 
r1−⊗r2+, and r1−⊗r2− in the state |ϕ(α)>, and r1+⊗r2−, r1−⊗r2+, and r1−⊗r2− in the state |ϕ(δ)> 
(|ϕ(γ)>). Thus, if the value of R1⊗R2 on α is r1+⊗r2+, it has to be different on δ (γ). Myrvold 
assumes that the values of R1 and R2 are local properties of S1 and S2 respectively, and accordingly 
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the value of R1⊗R2 on δ (γ) has to be r1+⊗r2− (r1−⊗r2+).  But, this assumption will be unwarranted 
if we construe the value of R1⊗R2 as a holistic property of the composite system S1+S2, which is not 
decomposable into the properties of S1 and S2; for on such holistic interpretation, the values of 
R1⊗R2 on α, γ and δ are all non-local properties, which are independent of the values of R1 and R2. 
Thus, if the value of R1⊗R2 is interpreted as a holistic, non-decomposable property of the composite 
system S1+S2, Myrvold’s theorem will be inapplicable to the values of R1⊗R2.  
 
If the values of R1 and R2 are unrelated to the values of R1⊗R2, then we can also motivate the 
violation of Joint Probability. Recall that in the modal interpretations under consideration the 
single-time probabilities of properties of a system S are given by the on-diagonal elements of the 
reduced state of S in a given basis. This means that the single-time probabilities of the (possible) 
values of R1 are given by the reduced state of S1, the single-time probabilities of the (possible) 
values of R2 are given by the reduced state of S2 and the single-time probabilities of the (possible) 
values of R1⊗R2 are given by the reduced state of S1+S2. Since the values of R1⊗R2 are unrelated to 
the values of R1 and R2 and the single-time probabilities of the values of R1⊗R2 do not correspond to 
the joint probabilities of the values of R1 and R2, the reduced state of S1+S2 cannot be used to assign 
joint probabilities for the values of R1 and R2. Thus, the holistic modal interpretation has no means 
for assigning joint probabilities for the values of R1 and R2. But if the values of R1 and R2 have no 
joint probabilities, the Relativistic Born Rule will be inapplicable to them. 
 
Based on the above reasoning, it is not difficult to show that Myrvold’s theorem is also inapplicable 
to any other properties assigned by the holistic modal interpretation.  
 
The question whether the holistic interpretation is compatible with the Relativistic Born Rule 
depends on the dynamics of properties. The simplest dynamics that is compatible with this rule is 
one in which the transition probabilities of the properties that a system has on a hypersurface β 
given its properties on a hypersurface α are equal to the single-time probabilities of these properties 
on β. But, as we shall see in the next section, one may develop a more sophisticated dynamics.  
 
The strategy of construing the values of R1⊗R2 as holistic properties can formally be integrated in 
current modal interpretations. But, the challenge is to explicate the nature of these properties. In 
current modal interpretations, the nature of these properties, as well as the failures of property 
composition and property decomposition are largely unexplained (see e.g. Clifton 1996). Further, 
given that the properties of systems are not related in any obvious way to the properties of their 
subsystems, there is also the challenge of explaining how such holistic properties are related to our 
experience.6 
 
 
3.2. The relational interpretation 
 
While one may go along with the formal outline of the holistic interpretation, it is unnecessary to 
endorse the holistic interpretation of properties. Rather, one may interpret the properties assigned by 
modal interpretations as relational. Here, the main idea is that the core-property assignment is of 
                                                
6Clifton’s (1996) discussion of the nature of properties in modal interpretations may be construed as 
an attempt to highlight this difficulty.   



 6 

relational properties, i.e. properties that systems have relative to other systems (rather than intrinsic 
properties). On this alternative interpretation, the failure of property composition and property 
decomposition is explained by the fact that the properties that a system has relative to different 
systems (contexts) may be different and moreover unrelated to each other. For example, the value 
that R1 (R2) has, as a property of S1 (S2), relative to S2+A1+A2 (S1+A1+A2) may be different from the 
value that R1 (R2) has, as a property of S1+S2, relative to A1+A2; and the values that R1 has relative to 
S2+A1+A2 and R2 has relative to S1+A1+A2 do not constrain the values that R1 and R2 have relative to 
A1+A2, and vice versa.  By contrast, the value that R1⊗R2 has relative to A1+A2 is decomposable into 
the values that R1 and R2 each have relative to A1+A2. More generally, properties that are defined 
relative to the same systems (contexts) are related to each other.  
 
Since properties that are related to different contexts are unrelated, they have no joint probabilities 
and accordingly Joint Probability fails. But, similarly to the holistic interpretation, this failure can 
also be motivated on technical grounds. For recall that in the modal interpretations in which the 
properties of systems and their single-time probabilities are derived from reduced states, there are 
no means for assigning probabilities of properties that are related to different contexts. The single-
time probabilities of the values that R1 may have, as a property of S1, relative to S2+A1+A2 are 
determined by the reduced state of S1, and the single-time probabilities of the values that R2 may 
have, as a property of S2, relative to S1+A1+A2 are determined by the reduced state of S2. But the 
joint probabilities of these properties are not given by the reduced state of S1+S2 (or any other 
reduced state); the reduced state of S1+S2 only prescribes the joint probabilities of the values that R1 
and R2 each has relative to A1+A2  (which are unrelated to the joint probabilities of the values that R1 
may have relative to S2+A1+A2 and the values that R2 may have relative to S1+A1+A2). 
 
This failure of Joint Probability means that Myrvold’s theorem does not apply to the values of R1 
relative to S2+A1+A2 and the values of R2 relative to S1+A1+A2. But, Myrvold’s theorem also fails to 
apply to the values that R1 and R2 have relative to A1+A2. And again, as in the holistic interpretation, 
the failure is due to the holistic nature of these properties, though here the holism is due to the 
relational nature of properties rather than to their non-decomposability. The reasoning is as follows. 
Myrvold’s theorem would not be applicable to these relational properties if for example the value of 
R1 (R2) relative to A1+A2 may not be the same on α and on δ (γ). The easiest way to reconcile such 
interpretation with the Relativistic Born Rule is to postulate that the transition probabilities will be 
equal to the corresponding single-time probabilities, e.g. that the probability of R1⊗R2 having the 
value (r1+,r2−) on δ  given that it has the value δ given that it has the value (r1+,r2+) on α is equal to 
the single-time probability of R1⊗R2 having the value (r1+,r2−) on δ. But, as we shall see in the next 
section, a more sophisticated dynamics, where the chance that the value of an observable of a 
system is different on two spacelike hypersurfaces that intersect the space-time region in which the 
system is located depends on the degree of entanglement between the system and other relevant 
systems, could also be reconciled with the Relativistic Born Rule. In this dynamics, the chance that 
the value of e.g. R1 relative to A1+A2 will not be the same on α and on δ depends on the 
entanglement between S1 and S2+A2 and the single-time probabilities of the values of R1 relative to 
A1+A2 on δ. The higher the degree of entanglement is, the higher is the chance that this relational 
value of R1 will not be the same on α and δ. In particular, if there were no entanglement between S1 
and S2+A2, the chance that the value of R1 relative to A1+A2 will not be the same on α and δ is zero. 
This dependence on the degree of entanglement is desirable. For it yields the non-locality in the 
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value of R1 (R2) relative to A1+A2 required for circumventing Myrvold’s theorem, and at the same 
time entails that this non-locality is virtually impossible to observe.   
 
Based on the above reasoning, it is not difficult to show that Myrvold’s theorem will also be 
inapplicable to other relational values of R1 and R2 as well as any other relational properties.  
 
It may be argued that although the relational interpretation evades Myrvold’s theorem, it is not 
genuinely relativistic because it postulates hypersurface-dependent properties, which are frame-
dependent properties in disguise. We believe that this objection is misguided. First, there is a 
conceptual difference between frame-dependent and hypersurface dependent properties (see 
Aharonov and Albert 1981; Fleming and Bennett 1989; Maudlin 1996). Secondly, the properties 
postulated by the relational modal interpretation are not hypersurface dependence per se. Indeed, in 
Myrvold’s set up the value of e.g. R1, as a property of S1+S2, relative to A1+A2 may be not the same 
on the hypersurfaces α and δ. But while this relational value of R1 is highly non-local, it is not 
hypersurface per se, at least not if by hypersurface-dependent properties it is meant properties that 
are defined relative to hypersurfaces; for this value of R1 is not defined relative to hypersurfaces. In 
any case, as is not difficult to see this value of R1 (as well as all the other properties discussed in 
Myrvold’s theorem) are invariant across all inertial reference frames and accordingly are frame 
independent. Moreover, as is not difficult to see from the dynamics below, the relational modal 
interpretation does not pick out any preferred reference frame.  
 
Given that supposedly local properties like pointer position are highly non-local according to the 
relational interpretation, one may wonder how the relational modal interpretation recovers our 
experience. We discuss this question in Berkovitz and Hemmo (2004; 2005) and argue that given 
our proposed dynamics below, such non-locality is unobservable. Here, we only remark that it 
follows from this dynamics that the chance that such non-locality occurs in any experimental 
situation, where macroscopic systems undergo decoherence with the environment, is virtually zero.  
 
  
4. The dynamics  
 
In the previous section, we remarked that a trivial dynamics in which the transition probabilities are 
equal to the corresponding single-time Born probabilities would be compatible with the Relativistic 
Born Rule. In this section, we outline a more sophisticated dynamics, which is applicable to the 
holistic and the relational modal interpretations alike, the transition probabilities depend on the 
degree of entanglement between the relevant systems (a measure that we define below). To simplify 
matters, we first present the outlines of this dynamics in two extreme cases: (i) the dynamics in 
cases of no entanglement; and (ii) the dynamics in cases of maximal entanglement. We then 
propose a generalized dynamics that entails these special cases.  
 
Consider, first, the case of no entanglement. Let SI and SII be a partition of the universe into two 
systems. Let U be a unitary transformation on the state of SI+SII. If the reduced state of SI does not 
change under U, the relational properties of SI relative to SII do not change. If the reduced state of SI 
changes, then the probabilities of the properties that SI may have relative to SII depend on the 
properties that SI has relative to SII and the transformation U. The properties of SI associated with 
projectors that commute with U evolve deterministically, so as to return the single-time Born 
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probabilities; and the properties of SI associated with projectors that do not commute with U evolve 
indeterministically, so as to return the single-time Born probabilities.  
 
While the above transition probabilities resemble the probabilities obtained by a sequential 
application of the Born rule in a collapse theory, the transition probabilities in cases of maximal 
entanglement are very different. In these cases, the transition probabilities of the properties of SI in a 
transformation U on subsystems of SI+SII are proportional to the distance between the (reduced) 
state of SI before and after applying U and the single-time probabilities of the properties of SI after 
applying U. That is, the probability that SI has the property Q=q after applying U, given that it has 
the property R=r before applying U, is equal to (the normalized distance between the (reduced) 
states of SI before and after applying U) times (the single-time probability of Q=q in the (reduced) 
state of SI after applying U). When the degree of entanglement is less than maximal the dynamics is 
a weighted average of the two extreme cases (see (6) below).  
 
There are various measures of entanglement. As an example, we shall use Shimony's (1995) 
measure, where the degree of entanglement between systems Si and Sj is defined in terms of the 
minimal (normalized) distance in Hilbert space norm of the state ψ of the composite Si+Sj from the 
set of all product states in the Hilbert space of Si+Sj. In the case of mixed states, the distance 
between B, a (normalized) mixed state of Si+Sj, and A, any mixed product state in the convex set C 
of all product states of Si+Sj, is defined in the space of the self adjoint operators as Tr(B⊗A). The 
distance between B and the convex set of all the product states of Si+Sj is defined to be the minimal 
distance between B and the states in C.  
 
The relevant systems for measuring the degree of entanglement are determined by the properties 
under consideration. Let SI and SII be a partition of the universe, and let SI* and SI** be a partition 
of SI, and SII* be a subsystem of SII.7 Let U be any unitary transformation on the state of SI*+SII* 
and the identity transformation on the state of all the other subsystems of SI+SII. The effect of U on 
the properties of SI depends on the degree of entanglement between SI*+SII* and SI** in the initial 
state (i.e. before applying U). The higher is the degree of entanglement, the more distanced is the 
dynamics from the dynamics in the case of no-entanglement. The idea here is that when SI** is 
entangled with SI*+SII*, a transformation on SI*+SII* may induce stochastic changes in the 
properties of SI as a whole and not only in the properties of the subsystem SI*, where the 
probabilities of these changes depend on the degree of entanglement between SI** and SI*+SII*. For 
example in the Hadamard transformation on S2+A2 between the hypersurfaces α and δ, SI** is S1, 
SI* is S2, SII* is A2, and the relevant degree of entanglement is the one between S1 and S2+A2 in the 
(reduced) state of S1+S2+A2 on α (obtained by partial tracing from |ϕ(α)>).  
 
We can now give the universal dynamics for all degrees of entanglement. Let |ψ> be the state of 
SI+SII, and d(e) be the degree of entanglement between SI*+SII* and SI** in the state |ψ>. Let 
P(Q=q/R=r) be the probability that SI has the property Q=q relative to SII in the state U|ψ> given 
that it has the property R=r relative to SII in the state |ψ>, and let PME(Q=q/R=r), PNE(Q=q/R=r) and 
PU(Q=q/R=r) denote respectively the value of P(Q=q/R=r) according to the dynamics in cases of 

                                                
7Here, by “a subsystem of SII,” we mean any subsystem of it, including SII itself or the ‘null’ system.   
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maximal entanglement, the dynamics in cases of no entanglement and the universal dynamics. Let 
d(s) be the (normalized) distance between the reduced states of SI in the states |ψ> and U|ψ>. Then:  
 

PU(Q=q/R=r) = d(e) ⋅ d(s) ⋅ PME(Q=q/R=r) + (1 – d(e) ⋅ d(s)) ⋅ PNE(Q=q/R=r).       (6) 
 

If the distribution of properties is given by the single-time Born probabilities on any spacelike 
hypersurface, then (by construction) the dynamics in cases of no entanglement and maximal 
entanglement will both reproduce the single time Born probabilities on any other spacelike 
hypersurface. Accordingly, the universal dynamics (6) will also reproduce the single time Born 
probabilities. 
 
Let us apply the universal dynamics to Myrvold's set-up. In the relational interpretation, the 
universal dynamics entails that the chance that the value of R1 (R2) relative to A1+A2 on α will be 
different from its value on δ (γ) depends on the degree of entanglement between S2+A2 (S1+A1) and 
S1 (S2), and the distance between the reduced states of S1+S2 on α and on δ (γ). In the holistic 
interpretation, the universal dynamics entails that the chance that the value of R1⊗R2 is r1−⊗r2+ or 
r1−⊗r2− (r1+⊗r2− or r1−⊗r2−) on γ (δ) given that it is r1+⊗r2+ on α depends on the degree of 
entanglement between S2+A2 (S1+A1) and S1 (S2), and the distance between the reduced states of 
S1+S2 on α and on δ (γ). As can be shown, in the state ψ(α) the degree of entanglement between S1 
(S2) and S2+A2 (S1+A1) and the distance between the reduced states of S1+S2 on α and on δ (γ) are 
both substantial. Thus, Myrvold’s theorem is inapplicable to the values of R1⊗R2, interpreted as 
either the properties of S1+S2 relative to A1+A2 or holistic non-decomposable properties of S1+S2. 
 
Consider now the value of R1 as either the property of S1 or the property of S1 relative to S2+A1+A2 
and the value of R2 as a property of S2 relative to S1+A1+A2. In the transition from α to δ (γ), these 
values of R1 and R2 evolve according to the dynamics in case of no-entanglement, and accordingly 
they do not change. Yet, since these properties have no joint probabilities, Myrvold’s theorem is 
inapplicable to them.  
 
Based on the considerations above, it is not difficult to show that Myrvold’s theorem will also be 
inapplicable to any other properties postulated by the holistic and the relational modal 
interpretations. 
 
 
5. Conclusions 
 
Myrvold’s theorem demonstrates that current modal interpretations are not genuinely relativistic. 
We argued that Myrvold’s theorem is inapplicable to certain holistic readings of the nature of 
properties assigned by modal interpretations, and that these readings may serve as the basis for new 
modal interpretations – the holistic and the relational modal interpretations. We then equipped these 
interpretations with a dynamics that does not pick out any preferred frame yet reproduces the Born 
probabilities of properties on any spacelike hypersurface. As see Berkovitz and Hemmo (2005), the 
holistic and the relational modal interpretations also get around Dickson and Clifton’s and 
Arntzenius’ no-go theorems. Thus, we conclude that there are good prospects for a genuinely 
relativistic modal interpretation.  
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