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Abstract

J.M.G. Fell and other authors have asserted that an elementary par-
ticle has only one ‘intrinsic’ state. I will argue that this claim is not con-
sistent with the mathematical structures and objects used to represent an
elementary particle in relativistic quantum theory.

1 Introduction

To understand the issue at stake, let us begin with some background on the
representation of elementary particles in modern mathematical physics.

In relativistic quantum theory, the two basic types of thing which are repre-
sented to exist are matter fields and gauge force fields. A gauge force field me-
diates the interactions between the matter fields. Relativistic quantum theory
is obtained by applying quantization procedures to classical relativistic parti-
cle mechanics and classical relativistic field theory. The quantization procedure
can be broken down into first-quantization and second-quantization. In first-
quantization, it is possible to represent interacting fields in a tractable math-
ematical manner. The first-quantized approach is empirically adequate to the
extent that it enables one to accurately represent many of the structural fea-
tures of the physical world. Second-quantization, quantum field theory proper,
is required to generate quantitatively accurate predictions, but quantum field
theory proper is incapable of directly representing interacting fields.

In the first-quantized theory, a matter field can be represented by a cross-
section of a vector bundle, and a gauge force field can be represented by a
connection upon a principal fibre bundle. This is rather curious because the
matter fields are obtained by quantizing the point-like objects of classical rela-
tivistic particle mechanics, whilst, at first sight, the gauge fields have undergone
no quantization at all. If one treats the first-quantized matter fields as classical
fields, and if one treats the matter fields as interacting with classical gauge fields,
then there is no inconsistency. However, on both counts, such a treatment may
be misleading. Given that the matter fields in the first-quantized theory are the
upshot of quantizing classical particles, they are interpretable as wave-functions
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i.e vectors in a quantum state space. One of the outputs from the first quan-
tized theory is a state space for each type of elementary particle, which becomes
the so-called ‘one-particle subspace’ of the second-quantized theory. The vector
bundle cross-sections which represent a matter field in the first-quantized the-
ory, are vectors from the one-particle subspace of the second-quantized theory.
The connections which represent a gauge field can be shown, under a type of
symmetry breaking called a ‘choice of gauge’, to correspond to cross-sections
of a direct sum of vector bundles, (Derdzinski 1992, p91). The cross-sections
of the individual direct summands are vectors from the one-particle subspaces
of particles called ‘interaction carriers’, or ‘gauge bosons’. Hence, neither the
matter fields nor the gauge fields of the first-quantized theory can be unambigu-
ously treated as classical fields. Given these complexities, the terms ‘particle’
and ‘field’ will be used interchangeably throughout this paper, without the in-
tention of conveying any interpretational connotations.

A particle is an elementary particle in a theory if it is not represented to
be composed of other particles. All particles, including elementary particles,
are divided into fermions and bosons according to the value they possess of a
property called ‘intrinsic spin’. If a particle possesses a non-integral value of
intrinsic spin, it is referred to as a fermion, whilst if it possesses an integral
value, it is referred to as a boson. The elementary matter fields are fermions
and the interaction carriers of the gauge force fields are bosons. The elementary
fermions number six leptons and six quarks. The six leptons consist of the
electron and electron-neutrino (e, νe), the muon and muon-neutrino (µ, νµ), and
the tauon and tauon-neutrino (τ, ντ ). The six quarks consist of the up-quark
and down-quark (u, d), the charm-quark and strange-quark (c, s), and the top-
quark and bottom-quark (t, b). The six leptons have six anti-leptons, (e+, νe),
(µ+, νµ), (τ+, ντ ), and the six quarks have six anti-quarks (u, d), (c, s), (t, b).
These fermions are partitioned into three generations. The first generation,
(e, νe, u, d), and its anti-particles, is responsible for most of the macroscopic
phenomena we observe. Triples of up and down quarks bind together with the
strong force to form protons and neutrons. Residual strong forces between these
hadrons bind them together to form atomic nuclei. The electromagnetic forces
between nuclei and electrons leads to the formation of atoms and molecules.
(Manin 1988, p3).

Free matter fields (‘free particles’) are matter fields which are idealized to be
free from interaction with force fields. To specify the free elementary particles
which can exist in a universe. i.e. the free elementary ‘particle ontology’ of
a universe, one specifies the projective, infinite-dimensional, irreducible unitary
representations of the ‘local’ symmetry group of space-time.

The large-scale structure of a universe is represented by a pseudo-
Riemannian manifold (M, g). The dimension n of the manifold M, and the
signature (p, q) of the metric g, determine the largest possible local symmetry
group of the space-time. The automorphism group of a tangent vector space
TxM, equipped with the inner product 〈 , 〉 = gx( , ), defines the largest
possible local symmetry group of such a space-time, the semi-direct product
O(p, q) s Rp,q. If there is no reason to restrict to a subgroup of this, then one
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specifies the possible free elementary particles in such a universe by specify-
ing the projective, infinite-dimensional, irreducible unitary representations of
O(p, q) s Rp,q.

In the case of our universe, the dimension n = 4, and the signature
(p, q) = (3, 1), indicating three spatial dimensions and one time dimension.
An n-dimensional pseudo-Riemannian manifold such as this, with a signa-
ture of (n − 1, 1), is said to be a Lorentzian manifold. Each tangent vec-
tor space of a 4-dimensional Lorentzian manifold is isomorphic to Minkowski
space-time, hence the automorphism group of such a tangent vector space is
the Poincare group, O(3, 1) s R3,1, the largest possible symmetry group of
Minkowski space-time. In the case of our universe the actual local space-time
symmetry group is a subgroup of the Poincare group, called the restricted
Poincare group, SO0(3, 1) s R3,1. The projective, infinite-dimensional, irre-
ducible unitary representations of the restricted Poincare group correspond to
the infinite-dimensional, irreducible unitary representations of its universal cov-
ering group, SL(2,C) s R3,1. Hence, one specifies the free elementary particle
ontology of our universe by specifying the infinite-dimensional, irreducible uni-
tary representations of SL(2,C) s R3,1.

It is assumed, or reasoned, that the free particle ontology of a universe equals
the interacting particle ontology. In other words, although a realistic represen-
tation of particles involves representing their interaction with force fields, it is
assumed, or reasoned, that the set of particle types which exists in a universe
can be determined from the free particle ontology.

It is also assumed, or reasoned, that representations of the local symmetry
group of space-time are an adequate means of determining the free elementary
particle ontology. One could reason that elementary particles exist at small
length scales, and the strong equivalence principle of general relativity holds
that Minkowski space-time, and its symmetries, are valid on small length scales.
i.e. the strong equivalence principle holds that the global symmetry group of
Minkowski space-time is the local symmetry group of a general space-time. One
can choose a neighbourhood U about any point in a general space-time, which
is sufficiently small that the gravitational field within the neighbourhood is
uniform to some agreed degree of approximation, (Torretti 1983, p136). Such
neighbourhoods provide the domains of ‘local Lorentz charts’. A chart in a
4-dimensional manifold provides a diffeomorphic map φ : U → R4. If R4 is
equipped with the Minkowski metric, a local Lorentz chart provides a map
which is almost isometric, to some agreed degree of approximation, (ibid., p147).
Unless the gravitational field is very strong, one can treat each elementary
particle as ‘living in’ the domain of a local Lorentz chart within a general space-
time (M, g). Unless the gravitational field is very strong, the fibre bundles
employed in relativistic quantum theory are assumed to be fibre bundles over
Minkowski space-time. This is done with the understanding that the base space
of such bundles represents the domain of an arbitrary local Lorentz chart, rather
than the whole of space-time. Hence, with the exception of the regions where
the gravitational field is very strong, the elementary particles which exist in a
general Lorentzian space-time still transform under the global symmetry group
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of Minkowski space-time, namely the Poincare group, or a subgroup thereof.
With the exception of regions where the gravitational field is very strong, a

fully realistic representation of each individual elementary particle would begin
with a Lorentzian manifold (M, g) which represents the entire universe, and
would then identify a small local Lorentz chart which the particle ‘lives in’.
The particle would then be represented by the cross-sections and connections of
vector bundles over this small local Lorentz chart. In terms of practical physics,
this would be an act of representational largesse, but in terms of ontological
considerations, it is important to bear in mind.

Where the gravitational field is very strong (i.e. where the space-time cur-
vature is very large), it is no longer valid to assume that the gravitational field
is uniform on the length scales at which elementary particles exist. Note that
because gravity is geometrized in general relativity, it is consistent to speak
of free elementary particles in a gravitational field. Where the gravitational
field is very strong, it is not valid to assume that free elementary particles
transform under the global symmetry group of Minkowski space-time. Where
the gravitational field is very strong, elementary particles are represented, in
the first-quantized theory, by fibre bundles over general, curved space-times.
Again, this is done with the understanding that the base space of such bundles
represents a small region of space-time, rather than the whole universe. These
considerations weaken the assumption that the representations of the Poincare
group are an adequate means of determining the free elementary particle ontol-
ogy in a universe. However, one might still be able to reason that the identity
of elementary particles remains unchanged by a strong gravitational field, hence
one can identify the free elementary particle ontology by studying the ontol-
ogy under less extreme conditions. Suppose, for the sake of argument, that
the particle ontology does change in a region of curved space-time: in a gen-
eral curved space-time, there might well be no isometry group at all, hence the
possible elementary particles in such a space-time region could not be classified
by the irreducible unitary representations of that region’s space-time symmetry
group. If the free elementary particle ontology is not determined in all regions
of space-time by the irreducible unitary representations of the local symmetry
group in the regions of weak gravitational field, then one would have to aban-
don a classification scheme based upon representations of space-time symmetry
groups.

Given the absence, in general, of a symmetry group for a curved space-time,
practitioners of quantum field theory in curved space-time take the linear field
equations associated with particles of mass m and spin s in the Minkowski space-
time ‘configuration representation’, and generalise them to curved space-times.
The solutions of these equations can be considered to represent first-quantized
free particles of mass m and spin s in curved space-time. Whilst the solutions
of these linear equations correspond to unitary irreducible representations of
the space-time symmetry group in the case of Minkowksi space-time, no such
correspondence exists for the generalised equations. Moreover, for s > 1, there
are reasons for thinking the solutions to these equations do not satisfy physical
criteria. For example, such equations do not have a well-posed initial-value
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formulation (Wald 1984, p375). If particles of s > 1 can exist in regions of weak
gravitational field, one presumes they can wander into regions of curved space-
time, hence one should not conclude that s > 1 particles cannot exist in curved
space-time. It is possible that the generalised equations provide the physically
correct description of s > 1 particles in curved space-time, but do not provide
the same degree of tractability as their Minkowski space-time counterparts.
Alternatively, it is possible that the correct representation of s > 1 particles in
curved space-time has not yet been found.

The irreducible unitary representations of SL(2,C) s R3,1 are parameter-
ized by mass m and spin s. One can present these representations in either
the momentum representation (the Wigner representation), or the configura-
tion representation. In the Wigner approach, free particles of mass m and spin
s correspond to vector bundles E±

m,s over mass hyperboloids/light cones V ±m in
Minkowski (energy-)momentum space T ∗xM. It is the Hilbert spaces Hm,s of
square-integrable cross-sections of these vector bundles E±

m,s which provide the
irreducible unitary representations of SL(2,C) s R3,1.

In the configuration representation, each irreducible unitary representation
is constructed from a space of mass-m solutions, of either positive or negative en-
ergy, to a linear differential equation over Minkowski space-timeM. The Hilbert
space of a unitary irreducible representation in the configuration representation
is provided by the completion of a space of mass-m, positive or negative energy
solutions, which can be Fourier-transformed into square-integrable objects in
Minkowski energy-momentum space.

Whilst the Wigner approach deals directly with the irreducible unitary rep-
resentations of SL(2,C) s R3,1, the configuration space approach requires two
steps to arrive at such a representation. In the configuration space approach, for
each possible spin s, one initially deals with a non-irreducible, mass-independent
representation of SL(2,C) s R3,1. For each spin s, there is a finite-dimensional
vector space Vs, such that the mass-independent representation can be taken as
the space of cross-sections Γ(η) of a vector bundle η over M with typical fibre
Vs.

The representations of SL(2,C) s R3,1 upon such Γ(η) can be defined by
a combination of the finite-dimensional irreducible representations of SL(2,C),
and the action of SL(2,C) s R3,1 upon the base space M. The complex, finite-
dimensional, irreducible representations of SL(2,C) are indexed by the set of
all ordered pairs (s1, s2), (Bleecker 1981, p77), with

(s1, s2) ∈ 1
2
Z+ × 1

2
Z+ .

In other words, the irreducible representations of SL(2,C) form a family Ds1,s2 ,
where s1 and s2 run independently over the set {0, 1/2, 1, 3/2, 2, ...}. The num-
ber s1 + s2 is called the spin of the representation.

Now one can define, for each possible spin s, an infinite-dimensional, mass-
independent representation of SL(2,C) s R3,1 upon Γ(η). Letting ψ(x) denote
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an element of Γ(η), the representation is defined as

ψ(x) → ψ′(x) = Ds1,s2(A) · ψ(Λ−1(x− a)) ,

where it is understood that A ∈ SL(2,C), a ∈ R3,1, Λ is shorthand for Λ(A),
and Λ is the covering homomorphism Λ : SL(2,C) → SO0(3, 1).

These non-irreducible, mass-independent representations do not correspond
to single particle species. Each space of vector bundle cross-sections repre-
sents many different particle species. To obtain the mass m, spin-s irreducible
unitary representations of SL(2,C) s R3,1 in the configuration representa-
tion, one introduces linear differential equations, such as the Dirac equation
or Klein-Gordon equation, which contain mass as a parameter. These differen-
tial equations are imposed upon the cross-sections in the non-irreducible, mass-
independent, spin-s representation. Each individual particle species corresponds
to cross-sections for a particular value of mass.

In terms of the Wigner representation, first quantization is the process of
obtaining a Hilbert space of cross-sections of a vector bundle over V ±m . In terms
of the configuration representation, first quantization is the two-step process
of obtaining a vector bundle over M, and then identifying a space of mass-m
solutions.

There are two mathematical directions one can go after first quantization.
Firstly, one can treat the Hilbert space obtained as the ‘one-particle’ state space,
and one can use this Hilbert space to construct a Fock space. This is the process
of second quantization. One defines creation and annihilation operators upon
the Fock space, and thence one defines scattering operators. One can use the
scattering operators to calculate the transition amplitudes between incoming
and outgoing free states of a system involved in a collision process. Calculation
of these transition amplitudes requires the so-called ‘regularization’ and ‘renor-
malization’ of perturbation series, but these calculations do enable one to obtain
empirically adequate predictions. Nevertheless, a Fock space is a space of states
for a free system. In the configuration representation, the space of 1-particle
states is a linear vector space precisely because it is a space of solutions to the
linear differential equation for a free system.

Although one could use either the Wigner representation or the configuration
representation, second quantization conventionally uses a Wigner representation
for the one-particle Hilbert spaces.

Given the single-particle Hilbert space Hm,s for a bosonic system, the Fock
space is

Fm,s =
∞⊕

n=0

H ¯n
m,s ,

where H ¯n
m,s is the n-fold symmetric tensor product of Hm,s.

Given the single-particle Hilbert spaceHm,s for a fermionic system, the Fock
space is
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Fm,s =
∞⊕

n=0

H ∧n
m,s ,

where H ∧n
m,s is the n-fold anti-symmetric tensor product of Hm,s.

In both cases H 0 = C1, the so-called vacuum sector, containing a distin-
guished non-zero vector 1 ∈ C1, called the vacuum vector.

The irreducible, unitary representation of SL(2,C) s R3,1 on the single-
particle space extends to a unitary representation on the Fock space, albeit a
non-irreducible representation.

The other mathematical direction one can go, which conventionally uses the
configuration representation, is to treat first-quantization as an end in itself.
In the fibre bundle approach, a mass m, spin s particle can be represented by
the mass-m cross-sections of a spin-s bundle η. This mass-independent bun-
dle η can, following Derdzinski (1992), be referred to as a free-particle bundle.
One can associate a vector bundle δ with a gauge field, which can, again fol-
lowing Derdzinski, be referred to as an interaction bundle. One can take the
free-particle bundle η, and with the interaction bundle δ, one can construct an
interacting particle bundle α. The mass-m cross-sections of this bundle repre-
sent the particle in the presence of the gauge field. This is the route of the
first-quantized interacting theory. The first-quantized interacting theory is not
empirically adequate, and it is not possible to subject the first-quantized inter-
acting theory to second-quantization because the state space of an interacting
system is not a linear vector space; in the configuration representation, the
space of states for an interacting 1-particle system consists of vector bundle
cross-sections which satisfy a non-linear differential equation. Hence, there is
no Fock space for an interacting system.

2 Intrinsic states and elementary particles

The state of a physical object is the set of all properties possessed by that
object. Let us agree to define an intrinsic property of an object to be a property
which the object possesses independently of its relationships to other objects,
and let us also agree to define an extrinsic property of an object to be a property
which the object possesses depending upon its relationships with other objects.
If the value of a quantity possessed by an object can change under a change of
reference frame, then the value of that quantity must be an extrinsic property
of the object, not an intrinsic property. The value of such a quantity must be
a relationship between the object and a reference frame, and under a change of
reference frame, that relationship can change.

When the intrinsic state of an object doesn’t change, it means that the in-
trinsic properties of the object don’t change. The extrinsic properties of an
object, its relationships with other objects, in particular its relationships with
a reference frame, can change even if the intrinsic properties of the object don’t
change. Hence, the intrinsic state of an object can remain unchanged even
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though the overall state of the object, taking into account its extrinsic proper-
ties, does change.

Recall that each free particle corresponds to a unitary representation of the
local, external (space-time) symmetry group SL(2,C) s R3,1. In the ‘passive’
approach to external symmetries, SL(2,C) s R3,1 acts upon the set of (local)
inertial reference frames. Each g ∈ SL(2,C) s R3,1 maps a reference frame σ
to a reference frame gσ. For each type of free particle, the group element g is
represented by a unitary linear operator Tg on a Hilbert space. If v is the state
of a system as observed from a reference frame σ, then w = Tgv will be the
state of the system as observed from the reference frame gσ. J.M.G. Fell argues
that if v and w are a pair of unit vectors in a Hilbert space such that w = Tgv
for some g ∈ SL(2,C) s R3,1, then “in a sense,” v and w, “(or rather the rays
through them) describe the same ‘intrinsic state’...for the transition from one
state to the other can be exactly duplicated by a change in the standpoint of
the observer,” (Fell and Doran 1988, p30-31).

One can propose that the intrinsic properties of a physical system are those
which are invariant under the action of the physical symmetry group, and the
extrinsic properties are those which are not. Implicitly assuming that spatial
translations belong to the physical symmetry group, Sternberg argues that “we
may wish to regard a particle as unchanged if we pick it up and place it down
at some other location...Thus, the location of a particle...is not an ‘intrinsic’
property of a particle,” (Sternberg 1994, p148-149). In his well-known text
Symmetry, Weyl appears to propose that intrinsic properties are those which
are invariant under the action of the symmetry group, (1952, p127-133). For
example, believing at the time that spatial reflections were physical symmetries,
Weyl asserts that the physical symmetry group “contains the reflections because
no law of nature indicates an intrinsic difference between left and right,” (ibid.,
p129, with my italics).

Weyl, however, appeared to conflate the notion of intrinsic properties with
the notion of objective properties, stating that “objectivity means invariance
with respect to the group of [physical] automorphisms,” (ibid., p132). When
Weyl speaks of two congruent squares in the same plane which “may show many
differences when one regards their relation to each other,” (ibid., p127), he then
states that “if each is taken by itself, any objective statement made about one
will hold for the other,” (ibid., p128). In other words, Weyl believes that identity
of intrinsic properties entails identity of objective properties.

If one accepts that the extrinsic properties of objects, the relationships be-
tween objects, can also be objective, then one would reject the claim that the
only objective properties of objects are those which are invariant under the ac-
tion of the physical symmetry group. For example, the speed of a particle is
an objective extrinsic property of a particle, an objective relationship between
that particle and a reference frame. The fact that the speed of a particle is not
invariant under a change of reference frame does not entail that the speed of a
particle is not an objective property.

Whilst Weyl seems to propose that the intrinsic properties of an object are
those which are invariant under the action of the physical symmetry group,
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Wigner proposed that an elementary particle corresponds to an irreducible rep-
resentation of that symmetry group. In combination, these ideas entail that the
intrinsic properties of an elementary particle are those which are invariant under
an irreducible representation of the physical symmetry group. The idea which
I wish to address in the rest of this paper is a distinct but closely related idea,
most clearly expressed by J.M.G. Fell in the introduction to a mathematical
text. Fell claims that an elementary particle has only one ‘intrinsic’ state, (Fell
and Doran 1988, p29-32).1 To claim that an object has only one intrinsic state,
means that it can only possess one particular set of intrinsic properties.

This idea can be found elsewhere in the physics and philosophy of physics
literature, albeit not necessarily in such an explicit form. For example, Steven
French equates state-independent properties such as mass, charge and spin,
with intrinsic properties, (French and Rickles 2003, p3 and p11), and equates
state-dependent properties with non-intrinsic properties (French and Rickles
2003, p18, and French 2000, Section 4). If one equates intrinsic properties
with state-independent properties, then this entails that there can only be one
intrinsic state. There is, indeed, a distinction between the state-independent
properties of a particle, which define the particle type, and the state-dependent
properties of a particle, which are variable for a fixed type of particle; and there
are, indeed, some intrinsic properties, such as mass, charge and spin, which
are state-independent, but this does not entail that all intrinsic properties are
state-independent.

Fell adopts Wigner’s notion that the irreducibility of a representation is
the defining characteristic of an elementary particle representation, and argues
that the group action is “essentially” transitive upon the state space of such a
representation. He argues, therefore, that an elementary particle has only one
‘intrinsic’ state. “It can never undergo any intrinsic change. Any change which
it appears to undergo (change in position, velocity, etc.) can be ‘cancelled out’
by an appropriate change in the frame of reference of the observer. Such a
material system is called an elementary system or an elementary particle. The
word ‘elementary’ reflects our preconception that, if a physical system undergoes
an intrinsic change, it must be that the system is ‘composite’, and that the
change consists in some rearrangement of the ‘elementary parts’,” (Fell and
Doran 1988, p31). Fell implies that when an elementary system is observed to
undergo a change within some reference frame σ, it is the particle’s relationship
to the reference frame σ which changes, not any of the particle’s intrinsic, non-
relational properties.

The first objection to this argument is that the unitary, irreducible repre-
sentations of SL(2,C) s R3,1 in the one-particle, first-quantized theory can be
used to represent stable, composite systems as well as elementary systems. A
composite system of spin s and mass m can be represented, in the configuration
space approach, by those cross-sections of a spin-s free-particle bundle which
provide mass m solutions to the relevant differential equation. The Hilbert space
constructed from these cross-sections is, under Fourier transform, the Hilbert

1Private communication with R.S.Doran
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space for a spin s, mass m particle in the Wigner approach. Thus, a composite
system of spin s and mass m can be represented by Wigner’s spin s, mass m, uni-
tary, irreducible representation of SL(2,C) s R3,1. One might conclude from
this that the unitary, irreducible representations of SL(2,C) s R3,1 specify not
merely the possible free elementary particles which can exist in a universe, but
all the possible free stable particles which can exist in a universe, whether they
be elementary or composite. One might also conclude that the irreducibility of
a representation of SL(2,C) s R3,1 does not entail the elementarity of the cor-
responding particle. Moreover, if irreducibility entails only one intrinsic state,
then stable, composite systems would also have only one intrinsic state.

The second objection is that the Fock spaces used to represent elementary
particles in the second-quantized theory do not possess irreducible representa-
tions of SL(2,C) s R3,1. This objection is mitigated by the fact that Fock
spaces are often interpreted as multi-particle spaces. However, if one were to
represent a scattering event between two elementary particles, such as an elec-
tron and a photon, one would use a Fock spaceFme,1/2 to represent the electron,
a Fock space F0,1 to represent the photon, and each free asymptotic incoming
state, and each free asymptotic outgoing state of the joint system, would be rep-
resented by a vector in the tensor product Fme,1/2 ⊗F0,1. The definition of a
scattering operator on the tensor product Fock space then enables one to calcu-
late transition probabilities between asymptotic incoming states and asymptotic
outgoing states. It is a matter of interpretation whether Fock spaces represent
aggregates of elementary particles, (something which could be appropriately
dubbed a quantum field), or whether they simply provide a ‘black-box’ instru-
ment for calculating transition probabilities between the incoming and outgoing
free states of individual elementary particles.2

The argument that irreducibility itself entails only one intrinsic state is
flawed anyway. The argument only has plausibility if one thinks in terms of
classical particle mechanics. In quantum theory, there is no reason why the
irreducibility of a particle representation should entail that there is only one
intrinsic state. The field-like aspects of particles in quantum theory make for an
infinite-dimensional state space. This is true in non-relativistic quantum me-
chanics, first-quantized relativistic quantum theory and second-quantized rela-
tivistic quantum theory. Because a free elementary particle is represented in
the first-quantized theory by an infinite-dimensional irreducible representation
of SL(2,C) s R3,1, the finite-dimensional space-time symmetry group cannot
act transitively upon the state space. SL(2,C) s R3,1 is ten-dimensional, hence
the orbits of its action on a state-space are, at most, ten-dimensional. Given
that the state spaces are infinite-dimensional, this means that there is an un-
countable infinity of orbits of the symmetry group SL(2,C) s R3,1. If one
accepts that intrinsic properties are those invariant under the symmetry group,
this means that each different orbit corresponds to a different intrinsic state.
There are many changes in the state of an elementary particle which cannot

2See Chapter Six of Teller (1995) for a more detailed discussion of scattering in quantum
field theory.
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be cancelled out by a change in observational standpoint. In fact, there is an
uncountable infinity of such changes! This is essentially because the state of an
elementary particle, (in the first-quantized, one-particle theory), is represented
by a field-like object, a cross-section of a vector bundle, and the value of the
cross-section can change in an independent fashion at different points of space-
time. A change of reference frame, in the special relativistic sense mandated by
SL(2,C) s R3,1, is a more rigid, global transformation. SL(2,C) acts transi-
tively3 upon the set of one-dimensional subspaces in the typical fibre of a free
particle bundle η, but the transformation

ψ(x) 7→ ψ′(x) = Ds1,s2(A) · ψ(Λ−1(x− a))

permits only a global SL-symmetry in each fibre, and a global shift in reference
frame, a global shift in the field values assigned to coordinate quadruples. The
idea that an elementary particle has only one intrinsic state is destroyed by the
infinite-dimensional nature of particle representations in quantum theory.

Mathematically, it is quite possible to introduce an infinite-dimensional
group of external symmetries. Each fibre of a free particle bundle η is equipped
with an SL(2,C) structure, hence one has an automorphism bundle SL(η), con-
sisting of all the automorphisms in each fibre of η. The typical fibre of SL(η) is
isomorphic to SL(2,C). The space of cross-sections E = Γ(SL(η)) is the group
of vertical bundle automorphisms of η. E provides an infinite-dimensional group
which acts upon the cross-sections of the free-particle bundle η. Given a cross-
section ψ(x) of η, and an element a(x) of E , the cross-section is simply mapped
to a(x)ψ(x). It seems reasonable to call E = Γ(SL(η)) a group of external
(space-time) symmetries because it provides a double cover of Γ(SO0(TM)),
the infinite-dimensional group of local oriented Lorentz transformations. This
is the group of vertical automorphisms of the oriented Lorentz frame bundle.
The latter consists of all the orthonormal bases {eµ : µ = 0, 1, 2, 3} of the
tangent spaces at all the points of the manifold M, such that each e0 is a
future-pointing, timelike vector, and such that each {ei : i = 1, 2, 3} is a right-
handed triple of spacelike vectors. This principal fibre bundle has the restricted
Lorentz group SO0(1, 3) as its structure group. A cross-section of the automor-
phism bundle SO0(TM) selects a linear isometry of the tangent space at each
point, and thereby maps an oriented Lorentz frame at each point into another
oriented Lorentz frame.

To reiterate, whilst SL(2,C) s R3,1 does act upon cross-sections of η as
well as the base space, Minkowski space-time M, it does not act transitively
upon the space of cross-sections. Given that SL(2,C) acts transitively upon the
set of one-dimensional subspaces in the typical fibre of η, and given that the
choice of SL-symmetry in the infinite-dimensional group E = Γ(SL(η)) is locally
variable, one needs to take a combination of E with a group of transformations
of the base space M, to obtain a group which does act transitively upon the
space of cross-sections. Consider SL(2,C) s R3,1, treated purely as point
transformations of the base space. In this sense, SL(2,C) s R3,1 consists

3Private communication with Shlomo Sternberg
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of the ‘active’ counterparts of the group of transformations between inertial
reference frames. The combination of E with this group acts transitively upon
the set of cross-sections in η representing free particle states. Hence, if E and
SL(2,C) s R3,1 were both physical symmetry groups of a free elementary
particle, then a free elementary particle, (in the first-quantized theory), would
only have one intrinsic state.

Recall, however, that a free particle bundle η houses many different particle
species. The various Hm,s which are constructed out of cross-sections of η
are not invariant under the action of the infinite-dimensional group E . Whilst
one particular particle may be represented by the space constructed from the
mass m, positive-energy solutions of a differential equation in η, the group E is
more than capable of mapping such cross-sections into objects which solve that
differential equation for a different mass value, or which don’t solve the equation
at all. The automorphism group of each Hm,s is the unitary group U (Hm,s),
into which SL(2,C) s R3,1 is mapped, as manifested under Fourier transform
in the Wigner representation. E is not a group of automorphisms of any Hm,s,
even if it is the group of vertical automorphisms of η.

Note that Fell includes changes of velocity, i.e. accelerations, amongst the
things which can be cancelled out by a change of reference frame. This implies
that Fell is not merely thinking of the transformations between inertial reference
frames provided by SL(2,C) s R3,1, but general coordinate transformations.
It also implies that he considers an interacting elementary particle to only have
one intrinsic state. By definition, a free particle cannot undergo acceleration,
hence a representation of SL(2,C) s R3,1 is quite adequate to define a free
particle.

In the case of an interacting, first-quantized, elementary fermion, one forms,
in the simplest case, an interacting particle bundle η ⊗ δ, and in contrast with
the free-particle case, one does use the infinite-dimensional group of vertical au-
tomorphisms of δ as a physical symmetry group. This is a significant difference
between external symmetries and internal symmetries. The internal symme-
try group is the infinite-dimensional group of cross-sections G = Γ(G(δ)) of
an automorphism bundle G(δ). This means that any change in the internal
degrees of freedom of an interacting particle, even if the change occurs in an
independent fashion at different points in space-time, can be cancelled out by
an internal symmetry (gauge transformation). This allows the group of internal
symmetries to act transitively upon the infinite-dimensional space of internal
states of an interacting particle. The gauge groups SU(3), U(2), SU(2), and
U(1) act transitively4 upon the set of one-dimensional subspaces in the typical
fibres of the relevant interaction bundles, and because an internal symmetry
is, in each case, a locally varying cross-section of the corresponding G(δ), the
infinite-dimensional group G = Γ(G(δ)) of internal symmetries acts transitively
upon the space of internal states of an interacting elementary particle. It is
the external degrees of freedom which prevent an elementary particle, free or
interacting, from having only one intrinsic state.

4Private communication with Shlomo Sternberg
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To reiterate, an interacting elementary particle can undergo accelerations,
so in addition to E and G, one would require general coordinate transformations
to cancel out all possible changes. Given that the base space M is Minkowski
space-time, one can assume that all the physical reference frames correspond to
global charts. The general coordinate transformations between physical refer-
ence frames in Minkowski space-time form an infinite-dimensional subgroup of
the diffeomorphism group of R4, Diff(R4). The active counterparts of these
particular coordinate transformations form an infinite-dimensional subgroup of
Diff(M). The groups of vertical bundle automorphisms, E and G, can be com-
bined with this subgroup of Diff(M). For an interacting elementary particle
to have only one intrinsic state, E , G and this subgroup of Diff(M), would all
have to be physical symmetry groups. The fact that this subgroup of Diff(M)
is not a physical symmetry group entails that an acceleration is an intrinsic
change of state.

Fell claims that a composite object can possess different intrinsic properties
at different times, but he also appears to hold what philosophers would call
an ‘endurantist’ notion of the persistence of an object through time. The en-
durantist position holds that the same whole object is capable of possessing a
property at one time, and not possessing that property at another time. One
popular endurantist account of change holds that properties which are capable
of being possessed by an object at one time, and not being possessed at another
time, are properties which are possessed in relation to certain times, (Weath-
erson 2002, Section 1.1). As Hawley puts it, “objects change by standing in
different relations to different times,” (Hawley 2004, Section 3). If moments of
time correspond to the state of other objects in the universe, then one might
argue that properties which are possessed by an object in relation to certain
times, must be extrinsic properties. Under this argument, then, the endurantist
position entails that all properties capable of change must be extrinsic proper-
ties. Under the endurantist view, one might have to concede that the changing
properties of all objects, composite or elementary, are extrinsic properties.

To render the notion of variable intrinsic properties consistent with enduran-
tism may require one of the following lines of attack: one might argue that an
object can possess an ‘internal’ clock, hence the claim that an object can only
possess a changing property in relation to certain times does not entail that such
properties are only possessed by an object depending upon its relationships with
other objects. In addition, one might argue that a changing property can be
an intrinsic property even if the times at which it is possessed by an object
are relationships between that object and other objects in the universe. The
intrinsic-ness of a property, one might argue, is not affected by the relationships
which are necessary to define the times at which it is possessed.

There is an alternative to endurantism, dubbed the ‘perdurantist’ view,
which holds that an object has temporal parts, and different temporal parts
can possess different properties. In particular, under the perdurantist view the
different temporal parts can possess different intrinsic properties. On the per-

13



durantist view, the persistence of an object through time is analogous to the
extension of an object in space, and the different temporal parts can possess
different properties just as much as the different spatial parts of an object can
possess different properties, (Hawley 2004, Section 1).

In perdurantism, the ascription of a property to an object at a particular
time corresponds to the ascription of a property to a temporal part of a 4-
dimensional object. The proposition ‘x possesses F at time t’ means that ‘x’
is a 4-dimensional object which has a temporal part ‘t’ possessing the property
‘F’. Quentin Smith describes the notion of temporal parts in these terms: “If an
object x is a whole of temporal parts, then x is composed of distinct particulars,
each of which exists at one instant only, such that whatever property x is said
to have at a certain time is [possessed by] the particular (temporal part) that
exists at that time,” (Smith 1995, p84). With the notion of temporal parts, an
object can be defined to undergo change if “one temporal part of x possesses a
certain property F at one time and...another temporal part of x does not possess
F at another time,” (ibid., p84). Smith contrasts the ‘temporal parts’ notion of
change with the endurantist notion of change that “the particular that possesses
the property at one time is identical with the particular that does not possess
the property at another time,” (ibid., p84).

One might claim that any object, composite or elementary, can possess dif-
ferent intrinsic properties at different times. If endurantism cannot be rendered
consistent with the notion of variable intrinsic properties, then this, and Fell’s
claim that only a composite object can possess different intrinsic properties at
different times, is inconsistent with endurantism, but consistent with perduran-
tism.
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