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Abstract

Philosophy of climate science has witnessed substantial recent debate over the
existence of a dynamical or “structural” analogue of chaos, which is alleged to
spell trouble for certain uses of climate models. The debate over the analogy
can and should be separated from its alleged epistemic implications: chaos-like
behavior is neither necessary nor sufficient for small dynamical misrepresen-
tations to generate erroneous results. I identify the relevant kind of kind of
sensitivity with a kind of safety failure and argue that the resulting set of
issues has different stakes than the extant debate would indicate.

0 Introduction

To make predictions about the future of a system, we need to know two things: the
initial conditions, or, present state of the system; and the dynamics of the system, or,
how it evolves with time. Chaotic systems present particular difficulties because small
differences in initial conditions amplify into large differences in the end state of the
system. Is there an analogous dynamical property of systems? Intuitively, it seems
like there might be: small differences in the dynamics amplify into large differences
in the end state of the system.

In a series of papers, a group of philosophers and scientists have argued this
analogous dynamical property exists and that it spells epistemic trouble for certain
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hypotheses in climate science. Specifically, they argue that because most climate
models heavily idealize the dynamics of the climate, the possibility that such models
exhibit a dynamical phenomenon analogous to chaos should cause us to have low
confidence in the accuracy of some of the quantitative predictions that rest on them.
An opposed group of critics have argued that the analogy breaks down and that the
epistemic conclusions don’t follow; the possibility of small dynamical errors doesn’t
undermine the general warrant for quantitative climate predictions.

While the mathematical question concerning the alleged analogy with chaos is
interesting on its own terms, the focus on it is misleading from a purely epistemic
perspective: a tight analogy to chaos is neither necessary nor sufficient for the kinds
of epistemic error that motivate the debate. Chaotic behavior involves growth in
physical distance with time; such growth is relevant to the accuracy of a given pre-
diction only when (a) the starting distances are small relative to the desired level of
precision, (b) the later distances large from the same perspective, and (c) the time
frame covered by the prediction the same as that on which the system is chaotic.
The type of epistemic sensitivity relevant to error is better captured by the failure
of a kind of safety condition. And while it is true that there is good reason to worry
about safety failures in climate science, the arguments in question are better seen
as explaining known safety failures than as providing evidence for the existence of
unknown ones.

A more detailed outline is as follows. In sections 1 and 2, I briefly characterize
the debate over dynamical analogues of chaos and argue that it has misfired inso-
far as it presupposes a connection between chaos-like behavior and (the probability
of) error. There’s no real connection here because chaos involves a type of interest-
independent sensitivity, whereas the probability of error is inherently dependent on
our interests. In section 3, I provide an alternative notion of sensitivity that is ap-
propriately interest-dependent. This notion is best expressed in terms of the failure
of a kind of safety principle—essentially, the safety principle fails when a hypothesis
is only justified given an assumption that’s uncertain or risky. Finally, in section
4, I offer a reinterpretation of the original arguments: what they motivate is low
confidence in our ability to substantially increase the precision of model reports.

1 The debate over dynamical analogues of chaos

The debate over dynamical analogues of chaos has largely focused on a particular
minimal condition on chaotic behavior, what’s known as “sensitive dependence on
initial conditions” (SDIC). Roughly speaking, a system exhibits SDIC if “even ar-
bitrarily close initial conditions will follow very different trajectories” through the
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state space that characterizes the system (Frigg et al. 2014, 34). Trivially, SDIC im-
plies that a model that slightly misrepresents the initial conditions of the system will
misrepresent (some) later states of the system to a much larger degree. In a series
of recent papers, a group of philosophers and scientists associated with the London
School of Economics—and thus termed the “LSE group” by their critics—have ar-
gued that “structural model error” (SME) presents epistemological problems similar
to those presented by SDIC (Frigg, Smith, and Stainforth 2013, 2015; Frigg et al.
2014).1

To be precise, it’s important to recognize that SME is not supposed to be directly
analogous to SDIC. On the contrary, SME occurs whenever a model misrepresents
the dynamics of the target system (Frigg et al. 2014, 32). The analogy, according to
the LSE group, is between the behavior of non-linear systems relative to SME and
to the behavior of SDIC-exhibiting systems relative to misrepresentation of initial
conditions. That is: the existence of small amounts of SME will lead a model to dra-
matically misrepresent some later states of a non-linear system in much the same way
that a small misrepresentation of initial conditions will lead a model to dramatically
misrepresent some later states of a chaotic system. In effect, non-linearity induces a
sensitive dependence on dynamical equations. The LSE group then draws the further
conclusion that in at least some cases where climate models are (a) heavily idealized
and (b) non-linear, we should have low confidence in “decision-relevant” probabilistic
climate predictions—though they acknowledge that just how sensitive the models are
to SME is a question the requires further investigation (Frigg et al. 2014, 48).2

The arguments of the LSE group have spawned a series of responses (Goodwin
and Winsberg 2016; Nabergall, Navas, and Winsberg 2019; Winsberg 2018; Winsberg
and Goodwin 2016) from a group of philosophers and scientists associated with the
University of South Florida (who I’ll term the “USF group” for parallel’s sake). The
main contention of the USF group is that the analogy between systems that exhibit
SDIC and what I above termed sensitive dependence on dynamical equations cannot

1Also worth noting are Mayo-Wilson (2015), Smith (2007), and Thompson (2013), who explore
the possibility of a dynamical analogue of chaos without drawing the same epistemic conclusions
vis-a-vis climate science.

2While this way of presenting the LSE group’s arguments is accurate to how they have been
interpreted, it is arguably misleading in a number of respects. In particular, it undersells the exten-
sive detail found in the actual discussion of climate models in Frigg, Smith, and Stainforth (2013,
2015). Though when read together with Frigg et al. (2014), it’s tempting to generalize the revealed
problems to a broad class of climate modeling projects, I’ve come to think that’s not justified based
on a close reading of the text: the LSE group clearly think the details make a difference. More on
this in §4.

3



be made precise for two reasons.3 First, the space of dynamical equations is topologi-
cal but not metrical, meaning that there’s no general way to say what it means to be
an “arbitrarily close” equation (Winsberg and Goodwin 2016, 14). Second, and for
similar reasons, the mathematically well-defined property closest to sensitive depen-
dence on dynamical equations shows only that small dynamical misrepresentations
can amplify into large errors in the representation of later states of the target sys-
tem not that it will (Nabergall, Navas, and Winsberg 2019, 11–12). They conclude
that there’s no general threat to quantitative climate predictions stemming from
“infinitesimally small” dynamical misrepresentations (Nabergall, Navas, and Wins-
berg 2019, 21). Acknowledging, of course, that dynamical misrepresentations do pose
epistemic problems in some cases, they argue that the failure of the analogy means
that we should resist the LSE group’s general conclusions; the epistemic implications
for decision-relevant quantitative climate predictions must be evaluated individually
(Nabergall, Navas, and Winsberg 2019, 20; Winsberg and Goodwin 2016, 16).

2 Chaos and error

Both the LSE and USF groups appear to consider the (alleged) epistemic problem
to be one of error.4 In their central thought experiment, for instance, the LSE group
present the problem associated with SME as one of erroneous probabilistic predic-
tions: the agent facing SME-related problems “regards events that do not happen
as very likely, while he regards what actually happens as very unlikely” (Frigg et
al. 2014, 39). Similarly, in their discussion of the primary motivating case study—a
project involving generating “decision-relevant” probabilistic predictions about the
future climate in Great Britain—they worry that:

Trying to predict the true climate with structurally wrong models is like
trying to predict the trajectory of Mercury with Newtonian models. These

3They have also advanced a number of other objections, most notably that the central motivat-
ing example of the LSE group involves methods that are distinct from those used in much of climate
modeling (see, e.g., Winsberg and Goodwin 2016, 12, 15). The point is well taken—the example
employed by the LSE group is not sufficient to establish general conclusions—but, as we’ll see, the
relevant epistemic worries have nothing to do with the features specific to that example (see also
the previous note).

4That said, in their more careful moments, at least, the LSE group can be read as primarily
concerned with particular sorts of tradeoffs between precision and certainty (see, e.g., Frigg et al.
2014, 50). In light of the arguments presented in this section, I think that the most charitable
interpretation is likely to emphasize this concern over the concern for error. See section 4 for more
details.
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models will invariably make misleading (and likely maladaptive) projec-
tions beyond some lead time, and these errors cannot be removed by
adding a linear discrepancy term derived [solely] from other Newtonian
models. (Frigg, Smith, and Stainforth 2015, 3997)

And the USF group is no different. They echo the language of the LSE group in their
own discussion of the motivating example (Goodwin and Winsberg 2016, 1125), and
more recently, they’ve stated that “only strong versions [of chaos] are usually taken
to have strong epistemological consequences, since they are likely to produce error”
(Nabergall, Navas, and Winsberg 2019, 7, note 13).

To be sure, in the context of the examples employed by the LSE group, introduc-
ing chaos while holding the predictions of the agent fixed at a given level of precision
does increase the probability of error. Introducing sensitive dependence to dynam-
ical equations has the same effect. The USF group are also right that the effect is
only significant for stronger versions of chaos and (we could add) only significant if
the time frames line up in the right way. But these facts don’t imply that there’s a
connection between chaos (or chaos-like behavior) and error in general. If there were
such a connection, the consequence would be that we can’t make accurate and/or
precise predictions about chaotic systems—or (more weakly) that the behavior of
such systems are generally harder to predict than that of non-chaotic systems. But
this simply isn’t the case.

The LSE group’s own analogy illustrates the point nicely. The errors in Newtonian
predictions of the trajectory of Mercury are on the order of mere arcseconds per
century—that is, a prediction of where Mercury will appear in the sky a hundred
years out will exhibit an error roughly 1/40th the apparent width of the moon. It’s
hard to argue that such small errors are genuinely maladaptive. And the solar system
as a whole is chaotic: eventually—that is, approximately five million years from
now—small differences between present conditions will have grown exponentially
larger.5 And yet we’re nevertheless able to make astoundingly precise (and “decision-
relevant”!) predictions about the locations of various stellar bodies, for the simple
reason that the five-million year timescale is totally irrelevant for predictions in
the here-and-now.6 While there are cases in which chaotic behavior creates genuine
problems for predictive accuracy, in other words, it’s simply illegitimate to draw
inferences from either chaotic behavior or the lack thereof to the the existence of

5That is, the “Lyapunov time” of the solar system—the time it takes for distances to grow by
a factor of e—is approximately five million years.

6Well, not totally irrelevant, because the same physical properties that engender the chaotic
behavior of the solar system generate attractors that can affect satellite trajectories; see Wilhelm
(2019).
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such problems without further information.
The same conclusion is suggested by close attention to more precise definitions

of chaotic behavior. Consider the common definition of SDIC in terms of Lyapunov
exponents. Suppose that there is a system characterized by a state space X and
dynamical mapping f : X → X such that xt = f(xt−1). This system exhibits SDIC
if and only if there is some y “arbitrarily” close to x0,

d(xt, yt) > eλtd(x0, y)

where λ, the “Lyapunov exponent,” is positive. Essentially: trajectories that are
currently “nearby” will grow exponentially farther apart. If we interpret d(x0, y) as
the present uncertainty, then SDIC entails that uncertainty will grow exponentially
with time. It’s a significant step from uncertainty growing exponentially with time
to either a high probability of error at a given time or some sort of guarantee of
inaccuracy. To make this step there needs to be a tight relationship between the
relevant timescales and (as we saw above) there’s no guarantee that the timescale
relevant to our predictions will be the same one that’s relevant to chaos. Similar
comments apply to other technical definitions of chaos. Werndl (2009), for example,
shows that a system is “topologically-mixing” if and only if

lim
n→∞

Pr(x0|x−n)− Pr(x0) = 0

which, in English, says that the probablistic relevance of past events to future events
eventually approaches zero. Chaotic systems “lose” information over time, but the
mere fact that information is guaranteed to be lost eventually doesn’t implicate our
ability to make precise or accurate predictions now.

The explanation for the disconnect between chaotic behavior on the one hand
and predictive inaccuracy on the other is that SDIC defines a notion of physical
sensitivity that is independent of human interests. Until we specify a timeframe and
desired level of precision for a hypothesis, we cannot know what implications SDIC
will have for said hypothesis. Since our interests don’t map onto physical distances
in any consistent way—a few centimeters of error is a disaster in a surgical setting
but incredible in astrophysics—SDIC doesn’t have any general implications for ei-
ther error or the probability of error. Similarly, we should expect that the failure of
a system to exhibit SDIC—or an SDIC-like property—also has no general implica-
tions for error. The contested claims about the analogy between SDIC and sensitive
dependence on dynamical equations therefore has no clear or direct implications for
the epistemology of climate modeling; like the solar system, climate models could ex-
hibit exponential growth in the distances between alternative trajectories over time
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frames on the scale of millions of years. Or they could fail to exhibit any growth in
distances between trajectories but the starting uncertainty could be too substantial
to license “decision-relevant” predictions. Insofar as our concern is something like the
probability of error in general, chaos and chaos-like behavior simply aren’t relevant.

3 Failures of safety

To determine whether the presence of dynamical misrepresentations renders “decision-
relevant” quantitative climate predictions untrustworthy, we need a different, interest-
relative, concept of sensitivity to small errors. My view is that the relevant concept
is given by the failure of a kind of safety condition.

Speaking abstractly, when we’re concerned with whether we should believe some
hypothesis, one relevant desideratum is that the justification for the hypothesis
should be safe: the degree of support for the hypothesis should be (nearly) the same
given nearby alternative background assumptions, where a background assumption is
“nearby” to the extent that it has a relatively high probability on the total evidence
available.7 So, for instance: if my evidence for the fact that it is freezing outside is
the reading of my thermometer, then the hypothesis is safer in the situation where
the thermometer reads -5◦C than when it reads -1◦C; the former allows for more
leeway in the background assumptions concerning the accuracy of the thermometer.
When the evidence for a hypothesis rests either fully or partially on a model, the
hypothesis is more or less safe to the extent that sufficiently small changes to the
assumptions of the model don’t (substantially) affect the results or outputs of the
model. The reasoning here is the same. If the hypothesis is only supported by the
model given precise and risky assumptions, then there’s a relatively high chance that
these assumptions don’t hold. By contrast, if the hypothesis is supported regardless
of whether we use the specific assumptions in question or any one of a number of
nearby assumptions, then the hypothesis is safe.

Intuitively, safety is going to be related to the probability of error at least un-
der conditions in which there’s some degree of uncertainty about the quality of the
evidence. Since humans are not ideal reasoners, we’re often in situations in which
we don’t know how likely some hypothesis is on our evidence. So, for instance, we
might know that we should be confident in P if Q is true, but not either whether Q

7This notion of safety is essentially the one found in Reed (2000) and Staley (2004), and is
tightly connected to Smith (2002, 2014)’s discussion of “quam proxime” reasoning. Like other safety
conditions, the best way to define this one precisely is in terms of possible worlds and a distance
measure between them, though what we want is a graded measure that allows for higher and lower
degrees of safety. I take it that how this all works intuitively is clear enough for present purposes.
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is true or what our confidence in P should be given relatively likely alternatives to
Q.8 Why might we be in this situation? One common and relevant reason is that our
evidence relies on an idealized model; since the inner workings of models are often
“opaque” (Humphreys 2004), we can’t know a priori whether or not the idealizations
in question merely serve to simplify the problem in a harmless manner or, by con-
trast, whether they substantially affect the output of the model.9 In other words, we
don’t know whether P is safe, whether it would still be justified given small changes
to the background assumptions. If it is safe, then the evidence is trustworthy and
provides good reason to believe that P ; if it isn’t, then the total evidence does not
provide reason to believe that P . If we accept P , therefore, safety and error will be
inversely correlated: the safer the hypothesis, the higher its overall justification, and
thus the lower the chance that it is has been accepted in error.

The foregoing is highly abstracted from the practices of science. Consider, there-
fore, the derivation of inverse-square gravity from Kepler’s first law.10 Suppose that
Kepler’s first law holds exactly, meaning that sun is at the focus of each planet’s
elliptical orbit and that the distance function between planet and sun is

d = A
(1− ε2)

1− ε cos θ

where A is the long arm of the ellipse and ε the eccentricity. In combination with
some other information about the nature of ellipses, this equation entails that the
acceleration of the planet is proportional to the inverse of square of the distance
(a ∝ d−2). It’s thus possible to derive the inverse-square law from Kepler’s first law.
In the context of the present discussion, however, this derivation faces two problems.
First, there was little evidence available that Kepler’s first law held precisely (and,
in fact, it doesn’t): the difference between an ellipse with the sun at a focus and an
ellipse with the sun at the center is virtually undetectable with 17th century tools.11

8Epistemologists term cases like these instances of “higher-order uncertainty.” There’s disagree-
ment concerning whether we can rationally have higher-order uncertainty (see, e.g., Dorst 2019;
Titlebaum 2015); I won’t take a stance on that here. My concern is that as non-ideal agents we
frequently are uncertain when we would rather not be.

9Isn’t this a case in which we know Q to be false? No, though defending this point adequately
here would take us too far afield. The central idea is that it’s a mistake to read Q as a claim about
the truth of the idealized model rather than as a claim about its “adequacy-for-purpose” (Parker
2009, 2020) or “reliability” (Dethier 2019).

10I’m borrowing this example from Smith (2002). Smith’s point, which is worth emphasizing, is
that the safety failure present in this example provides the best explanation for why Newton himself
didn’t derive the inverse-square law in this manner, preferring instead the evidence provided by the
apsides of the planets (Newton 1727/1999, 802), relative to which the hypothesis is extremely safe.

11Kepler argued for his first law by showing that it held to a high approximation with respect
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The first problem with the derivation, then, is that we’re uncertain whether the
assumptions built into it hold precisely.

The second problem is that the derivation is extremely sensitive to small devi-
ations from Kepler’s first law. As just noted, at low eccentricity, there’s very little
difference between an ellipse with the sun at the focus and one with the sun at the
center. The distance function for the latter is given by

d = A
√

1− ε2 sin2 θ

And this function, in combination the same assumptions about the nature of ellipses,
entails that the acceleration of the planet is proportional to the distance directly
(a ∝ d). The derivation from Kepler’s first law therefore provides extremely poor
evidence for the conclusion in the sense that it relies on a particular assumption
holding precisely when the best evidence available only indicates that the assumption
holds approximately.

This case provides an exemplar of a safety failure in a number of respects. Recall:
safety failures arise because the quality of the evidence varies dramatically with small
changes in background assumptions. Here the changes to background assumptions
are small not because the two equations are nearby in any mathematical sense but
because the evidence makes both assumptions relatively likely. And the difference in
the quality of the evidence is dramatic because of our particular choice of how to
divide up the hypothesis space: what matters is that d and d−2 make for extremely
different theories of gravitation. If our hypothesis was simply that there is some
relationship between distance and acceleration, there would not be a safety failure to
be found. It is also exemplary with regards to effects: the safety failure makes it likely
on our evidence that if we accept the hypothesis, we’re going to do so erroneously—
which is just to say that when the hypothesis fails to be safe, the evidence doesn’t give
us much reason to believe it. (Though, of course, and as evidenced by this example,
other evidence might; see note 10.)

The definition of safety given in this section provides a notion of sensitivity that
is appropriately dependent on human interests. The class of objects that there is
sensitivity to are defined or identified according to our epistemic abilities: in the
modeling context, it’s the class of assumptions that are empirically adequate by
our standards. Similarly, whether or not there is sensitivity to the differences be-
tween these representations depends on our interests and concerns insofar as those
affect how precise we want or need our hypotheses to be. There’s a rough analogy to

to Mars (Miyake 2015); taking it to hold to a high approximation with respect to the other planets
is a relatively risky inductive move—and one that Newton knew his own theory would show to be
invalid (Newton 1727/1999, 817–18).
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SDIC or chaos here in that a safety failure involves a “growth” in “distances” in an
interest-dependent sense: the initial distance is small relative to our ability to distin-
guish between different scenarios and the latter one large relative to our desire for
precision. But this is connection is not mathematically precise. In particular, safety
failures are not analogous to SDIC in the ways that the USF group argues present
problems for the LSE group.12 There’s no interest-independent distance measure to
be placed on either the different starting characterizations of the system or the re-
sulting equations. The different distance equations are similar just in the sense that
they’re both empirically adequate in the given situation; the different relationships
between acceleration and distance are dissimilar in the sense that their broader fit
in the theory is dramatically different. Further, we haven’t shown that any nearby
deviation from Kepler’s laws (or even Kepler’s first law) will lead to an arbitrarily
different relation between acceleration and distance. All that we’ve shown that there
is a particularly salient alternative that has this effect.

This section has provided an appropriate notion of sensitivity to employ in getting
clearer about the debate over chaos. In the next section, I’ll argue for a reinterpre-
tation of the LSE group’s arguments in terms of safety failures.

4 Reinterpreting the LSE group

I think that the arguments presented by the LSE group are important, but they
don’t show that the possibility of small dynamical errors should cause us to lower
our confidence in various claims supported by climate models. Instead, they should
be interpreted as offering an explanation of (empirically-ascertained) levels of model
precision in terms of small dynamical errors—an explanation that, if true, has im-
portant implications for which projects in climate science are likely to be successful.

The main motivation behind this interpretation of the LSE group is that the
arguments that they offer are neither necessary nor sufficient to establish that we
should be less confident in the claims supported by climate models in general. They
are not sufficient because they would need to show that climate scientists have gen-
erally been overconfident in modeling results—but climate scientists are well aware
that climate models can be highly misleading, even in the aggregate (Knutti et al.
2010). They are not necessary because general considerations about safety failures
provide much less powerful (and precise) evidence for caution about specific climate

12There are other disanalogies as well, besides those at issue in the debate surveyed in §1. For
instance, neither initial conditions nor time has any role in this case, though both are essential to
the understanding of SDIC.
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hypotheses than is provided by the empirical evaluation of climate models. Evalua-
tion studies provide evidence not just about the degree of confidence licensed by a
given model, but also about where the models excel, where they struggle, and what
assumptions account for these struggles. Any general considerations about safety
failures are likely to simply be swamped by the empirical evidence from this domain.

Of course, the LSE group is well aware of this empirical literature—as evidenced
by their prior work drawing out the implications of it for decision-making (Oreskes,
Stainforth, and Smith 2010; Stainforth et al. 2007). My suggestion is that we should
read their arguments concerning chaos through the lens of this earlier work.13 Specif-
ically, we should view the combination of small dynamical errors and system com-
plexity as providing an explanation for why climate models are only able to achieve
certain levels of precision and accuracy. In giving this explanation, the LSE group
is stressing that our inability to draw conclusions about local policy from climate
models isn’t a temporary defect of these models. On the contrary, hypotheses about
how climate change is going to affect a town, region, or (small) country are simply
too sensitive to small changes in modeling assumptions, and we’re not likely to reach
a point any time in the near future where we have the ability to determine which of
these assumptions are true. That’s just the nature of the system—a conclusion, I’ll
note, that is widely shared among climate scientists (see, e.g., Knutti and Sedlàček
2013). In other words: hypotheses that we know are unsafe based on our empirical
evaluations of the models are likely to remain unsafe. And thus, as the LSE group
explicitly suggests, we need methods for determining how to make decisions under
conditions where the quality of our evidence is uncertain in precisely this way.

If this is the correct interpretation and the arguments given in prior sections are
correct, then the way that the LSE group has presented their arguments for this con-
clusion is misleading; the analogy to SDIC is largely irrelevant to whether or not the
present and future levels of uncertainty about the dynamics are likely to undermine
the evidence for future climate hypotheses. My experience is that they’re doubly mis-
leading to those unfamiliar with precise definitions of chaos—many of those presented
with the arguments seem to automatically assume that chaotic behavior means that
anything goes. Many of the USF group’s criticisms (particularly those not discussed
above) are aimed directly at this point: the presentation and rhetoric of the analogy
to chaos, they contend, doesn’t align with the more limited conclusions that the LSE
group wants to draw (see Goodwin and Winsberg 2016; Winsberg and Goodwin
2016). As we’ve just seen, however, whatever the disconnect between the rhetoric

13Here I’m following a suggestion made by Greg Lusk and Mike Goldsby in their talk—titled
“The Decision-Relevancy of Climate Model Results: Idle Arguments or Idle Dreams?”—at Models
and Simulations 8.
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and the arguments in the LSE group’s papers, there isn’t a genuine worry that their
arguments might—even if successful—undermine much more than they intend: on
this interpretation, the arguments simply don’t motivate changing our confidence in
any particular results of the models; they motivate “only” changing our confidence
that we’ll be able to get well-justified decision-relevant predictions out of the models
any time soon.

To be clear, I am not arguing that the argument just sketched is correct. Never-
theless, the conclusion is interesting and the arguments itself has the advantages of
fitting nicely with the prior work of the LSE group, not relying on mistakes concern-
ing the relationship between chaos and error, and not—if successful—implicating far
more of climate science than can be plausibly be justified on the evidence appealed
to. We thus have good reason to interpret the LSE group in this manner, even if the
argument ends up being unsound.

5 Conclusion

In this paper, I’ve argued that the details of dynamical analogues of chaos are largely
irrelevant to the epistemological questions raised in the recent debate over them.
Mathematically interesting as the alleged analogy may be, a tight analogy to chaos
is neither necessary nor sufficient for the kinds of epistemic error that motivate the
debate. The type of epistemic sensitivity relevant to error is better captured by failure
of a kind of safety condition: what’s worrying about dynamical misrepresentations
is that they undermine the evidence provided by the model. Once the irrelevance of
chaos is recognized, it becomes clear that the upshot of the debate is not whether
models are likely to be erroneous but an explanation for why models are not more
precise than they in fact are.

References

Dethier, Corey (2019). “How to Do Things with Theory: The Instrumental Role of
Auxiliary Hypotheses in Testing.” Erkenntnis (online first).

Dorst, Kevin (2019). “Higher-Order Uncertainty.” In: Higher-Order Evidence: New
Essays. Ed. by Mattias Skipper and Asbjørn Steglich-Petersen. Oxford: Oxford
University Press: 35–61.

Frigg, Roman, Leonard A. Smith, and David A. Stainforth (Dec. 2013). “The My-
opia of Imperfect Climate Models: The Case of UKCP09.” Philosophy of Science
80.5: 886–97.

12



Frigg, Roman, Leonard A. Smith, and David A. Stainforth (Dec. 2015). “An Assess-
ment of the Foundational Assumptions in High-Resolution Climate Projections:
The Case of UKCP09.” Synthese 192.12: 3919–4008.

Frigg, Roman et al. (Jan. 2014). “Laplace’s Demon and the Adventures of His Ap-
prentices.” The Journal of Philosophy 81.1: 31–59.

Goodwin, William Marc and Eric Winsberg (Dec. 2016). “Missing the Forest for the
Fish: How Much Does the ‘Hawkmoth Effect’ Threaten the Viability of Climate
Projections?” Philosophy of Science 83.5: 1122–32.

Humphreys, Paul (2004). Extending Ourselves: Computational Science, Empiricism,
and Scientific Method. Oxford: Oxford University Press.
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