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Abstract: The propensity nature of evolutionary fitness has long been appreciated and is 

nowadays amply discussed (Abrams, 2009, 2012; Ariew and Ernst, 2009; Ariew and 

Lewontin, 2004; Beatty and Finsen, 1989; Brandon, 1978; Drouet and Merlin, 2015; 

Mills and Beatty, 1979; Millstein, 2003, 2016; Pence and Ramsey, 2013; Sober, 1984, 

2001, 2013, 2019; Walsh, 2010; Walsh, Ariew, Matthen, 2016; etc). The discussion has, 

however, on occasion followed long standing conflations in the philosophy of 

probability literature between propensities, probabilities, and frequencies. In this paper, 

I apply a more recent conception of propensities in modelling practice (the ‘complex 

nexus of chance’, CNC) to some of the key issues, regarding the mathematical 

representation of fitness and how it may be regarded as explanatory. The ensuing 

complex nexus of fitness (CNF) emphasises the distinction between biological 

propensities and the probability distributions over offspring numbers that they give rise 

to; and how critical it is to distinguish the possession conditions of the underlying 

dispositional (physical and biological) properties from those of their probabilistic 

manifestations.  
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1. Introducing the Complex Nexus of Fitness 

 

In evolutionary biology, fitness has long been appreciated by many to be a 

probabilistic disposition, or propensity, to reproduce successfully (Popper, 1983, pp. 

358ff.; but see particularly Brandon, 1978; and Mills and Beatty, 1979). This propensity 

interpretation of fitness (PIF) is part of a larger tradition in evolutionary thinking that 

takes fitness or adaptiveness to be a causally explanatory concept (Sober, 1984, 2011) – 

and one moreover that can be proudly traced back to the pioneering introduction of the 

concept of probabilistic or indeterministic causation more generally (Fisher, 1934). Yet, 

there has been little consensus as to the specific kind of propensity fitness is. On the 

contrary, there is much disagreement in the field as to how to formally represent fitness, 

how exactly it is an explanatory concept, and what exactly it explains. Critics have been 

quick to latch onto such disagreements to argue that fitness is not causally explanatory 

after all (Walsh, Ariew, Matthen, 2016), that it does not reflect causal relations (Walsh, 
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2010), and that there are no propensities underlying adaptation phenomena in 

evolutionary biology (Ariew and Ernst, 2009). 

 

 The current impasse suggests that there are some fundamental issues at stake 

regarding the nature of propensity and its explanatory power that stand yet to be 

clarified. In a recent state of the art paper, Millstein (2016) argues that there is 

conceptual work to do; and that debates in the philosophy of probability may feed 

profitably into the discussion of the nature of fitness. This paper takes up Millstein’s 

suggestion and offers a more complex and nuanced framework than is typically 

assumed for modelling chancy phenomena in general, the ‘complex nexus of chance’ 

(CNC). 1 Contrary to what has been conventional in the philosophy of probability, this 

approach clearly distinguishes propensities from both probabilities and the finite 

frequency data that are used to test them. The distinction allows us to cast significant 

issues that are already discussed in the field in a fresh light – such as the debate about 

whether fitness is long-term or short-term, and the question regarding what the 

appropriate mathematical representation of propensities is. My claim is not that 

applying CNC to fitness solves all outstanding problems in the field, but the more 

modest claim that it bears significantly on a few important problems currently discussed 

in relation with the propensity interpretation of fitness (PIF). I argue merely that CNC 

casts both extant problems and avowed solutions within a different and hopefully more 

promising framework. 

 

I shall focus upon the propensity interpretation of fitness; the name itself follows 

the standard convention in the philosophy of probability, in line with Popper’s (1959) 

renowned propensity interpretation of probability. Here the word “interpretation” is to 

be taken seriously – propensities are meant to provide the ‘semantics’ for (objective) 

probabilities; in other words, they are meant to provide a model for what sort of entities 

probabilities are – one that moreover makes probability statement true. In other words, 

this identity thesis supposes that propensities provide the truth makers for probability 

statements. It is, however, riddled with difficulties, as is by now well known 

(Humphreys, 1985; Eagle, 2004; Suárez, 2013). More specifically, the reduction of 

probability to propensity that it involves can be proven to generate several paradoxes 

 
1 The CNC is developed fully in Suárez (2020), although the ‘tripartite conception’ of objective 
probability that lies at its core goes back to Suárez (2011, 2013, 2017). 
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and contradictions, most prominently what is known as Humphrey’s paradox 

(Humphreys, 1985). This explains why Popper’s original version of the propensity 

interpretation has few champions in the philosophy of probability nowadays – even 

amongst those few of us who continue to defend a role for propensities in science 

generally. 

 

The CNC is one amongst other recent developments in the philosophy of probability 

that rejects Popper’s reduction of probability to propensity. But, unlike other rejections 

of Popper’s views, the CNC does not reject the concept of propensity altogether: It does 

not throw the baby out with the bathwater. Instead, CNC embraces a plural 

metaphysics, where propensities exist independently and give rise in appropriate 

environments to single case chances or objective probabilities. It is these single case 

chances – represented as probability distributions within statistical models – which in 

turn account for frequencies in the data. This ‘tripartite distinction’ between 

propensities, probabilities and frequencies is unusual in the philosophy of probability 

literature, since it explicitly abandons the propensity identity at the heart of Popper’s 

view. It favours a distinct and more substantial role for propensities to play in the 

explanation (rather than merely the interpretation) of probabilities. While most 

defenders of propensities believe them to explain observed frequencies, the claim that 

they also explain single case chances is much rarer in the philosophy of probability 

literature – and has to my knowledge never been applied to evolutionary fitness. 

 

In this paper, I argue that the application of this framework to evolutionary biology 

yields what may be called the complex nexus of fitness (CNF), which by necessity 

starts from the assumption that ‘fitness’ is an ambiguous term referring to i) statistical 

data regarding organisms’ actual offspring numbers and their frequencies; ii) probability 

distributions within population models representing expected or hypothetical 

reproductive successes; and iii) the physical and biological supervenience bases of such 

model-based probabilities, which are taken to include the dispositional properties of the 

relevant organisms. It is critical that CNF does not collapse ii) into iii) as does Popper’s 

identity thesis, and as is often assumed for propensity probabilities (Suárez, 2017; 

2018). The claim at the heart of the CNF is thus that, in considering evolutionary 

fitness, we must at all points keep neatly distinct the propensities from the single case 

chances that they give rise to, and then both in turn from the frequencies that may be 



 5 

observed. I then argue that the careful application of this ‘tripartite conception’ allows 

CNF to overcome some of the objections raised against the PIF, by making it explicit 

that propensities cannot be merely in the business of interpreting probabilities, as 

suggested by the identity thesis, but that they must be invoked as separate explanatory 

entities with respect to single-case chances. 

 

 

2. Fitness as a Propensity to Adapt: The Issues 

 

My aim is thus to inject some conceptual clarity into the discussion, by offering new 

light on some of the extant answers to the outstanding objections to PIF. The first 

objection I shall focus on concerns the exact formal or mathematical representation of 

fitness as propensity. The relevant discussion here broaches two technical aspects of 

statistical modelling, informing what are sometimes known as the moments problem and 

the delayed selection problem (Sober, 1984; Beatty and Finsen, 1989; Pence and 

Ramsey, 2013). On the one hand there is the demonstrable empirical fact that fitness is 

often sensitive to higher moments of the statistical distribution for reproductive success. 

Hence identifying fitness with just the statistical mean average (the expected value, or 

expectation) of a probability distribution will often miss out critical differences down 

the lineage. The differences can be so critical as to entirely reverse judgements of 

relative fitness between individual organisms (or traits, or genes – more about this 

later). But the idea that fitness, understood as a propensity, must necessarily be 

identified with some or other moment of a probability distribution presupposes that all 

propensities are statistical functions, or formal moments of these distributions. This 

would be in accordance with the conventional wisdom deriving from Popper, but it is 

nowadays questionable in the philosophy of probability, and it is indeed rejected by the 

CNC.  In section four of the paper, I consequently suggest that CNF accounts for the 

statistical modelling of fitness without such assumptions, and thus delivers us from the 

problem of moments. 2 

 

 
2 As a referee points out, Sober (2001, 2011) already addresses the problem and provides a similar 
solution for it; and there are similar views voiced in Beatty and Finsen (1989), Brandon (1990) and 
Millstein (2003, 2016). However, the complex nexus of chance (CNC) allows us to systematize the 
solution properly within a general philosophical account of probability.  
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The second narrow technical issue concerns whether fitness is short or long term, 

i.e., whether it involves reproductive success in the most proximate generations, or 

perhaps even just the next generation; or whether, by contrast, fitness refers 

meaningfully only to reproductive success down the generations – or perhaps even 

hypothetical success in some infinite reproductive limit. On a propensity interpretation, 

the issue may at first sight seem merely a version of the debate regarding ‘single case’ 

versus ‘long run’ propensity interpretations of probability (Gillies, 2000). If so, the 

delayed selection problem would boil down merely to a difference regarding the 

appropriate type of propensity involved, where those advocating long term fitness 

would be implicitly if not explicitly adopting a ‘long run’ propensity account. However, 

I argue in section five of this paper that these distinctions are in fact tangential. Long 

term fitnesses are perfectly compatible with ‘single case’ propensities, as advocated by 

the CNC. This has consequences for the precise mathematical definitions that are 

appropriate when modelling fitness in different contexts, and whether they issue in 

contradictions.  

 

Then there is the second and more general issue, namely the explanatory role of 

fitness. Advocates of the PIF typically defend the view that fitness is a causally 

explanatory property of biological entities – and for this reason they are sometimes 

known as ‘causalists’ (Abrams, 2012). Critics of the PIF by contrast, tend to view 

fitness as not particularly an explanatory concept – certainly not a causally explanatory 

one –, but rather a descriptive or generalising concept. 3 In the last substantial section 

six of the paper, I argue that CNF shows both ‘causalists’ and ‘statisticalists’ to be in 

 
3 See Matthen and Ariew (2009), and Walsh, Ariew and Matthen (2016), but also Sober (1984, Ch. 3) 
which arguably anticipates the statisticalist view in his critique of the causal role of fitness. In more recent 
work Sober (2011) develops his view and argues that some of the causal explanations provided by 
evolutionary fitness are a priori. Sober appeals to precisely the sort of powers that I invoke as part of 
propensity explanations of single case chances, i.e. dispositional properties (akin to Molière’s ‘dormitive 
virtue’). However, as Sober points out, these dispositions are probabilistic: Given the appropriate testing 
circumstances these powers give rise not to particular events (as in Molière style deterministic 
dispositions), but to the probabilities of particular events (Mellor, 2005; Suárez, 2014).  Sober’s further 
distinction between sources and consequences of fitness differences is also grist to my mill: On a CNC 
account, ‘fitness differences’ amount to differences in single case chances for survival and for 
reproductive success. The sources of such differences are propensities, which – as in Sober’s view –, may 
be said to ground and causally explain such chances a priori; while the consequences of fitness 
differences are the observed or predicted differences in traits -- which are of course the ultimate empirical 
facts, and explananda, in evolutionary biology. Thus Sober (1984, 2011) anticipates the tripartite 
conception, and the CNF may be understood to be systematizing and providing precision for some of his 
distinctions. 
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part right. 4 Propensities are indeed explanatory entities but, in accordance with CNC 

they explain not only the frequencies in data: They also explain the single case chances 

that they give rise to within given chance set-ups. However, these explanations are of a 

very different type: While propensities may be said to causally explain frequencies, they 

cannot, on pain of contradiction (Humphreys, 1985; Suárez, 2013), be said to cause 

single case chances. 5  Instead, propensities may be said to ground such chances 

(Suárez, 2018). Thus ‘fitness’ is indeed often a name for explanatory propensities, but 

these are typically a set of properties that are explanatory in diverse ways. In addition, 

‘fitness’ is also a name used for the formal probability distributions within statistical 

models that are adequate for the purpose of representing the single case chances 

manifested by those propensities. Here statisticalists are surely right: Such formal 

probabilities are bereft of any causal powers. Finally, ‘fitness’ is also sometimes 

somewhat confusingly used by practicing biologists to refer to the finite frequencies in 

the data for reproductive success that propensities aim to explain. Thus, the 

disambiguation of these three distinct but mutually related uses of fitness is essential for 

a better understanding of its explanatory power. 

 

My proposal of a complex nexus of fitness is a straightforward application of a 

particular approach to objective chance within the philosophy of probability, the 

complex nexus of chance (CNC). Therefore, it helps to first provide some background 

and motivation on the CNC, as it emerges in discussions over the last decade within the 

philosophy of probability and statistical modelling. The next section introduces some of 

the relevant considerations in the foundations of probability that motivate CNC in the 

first place. It turns out that many of the objections to the propensity account of 

evolutionary fitness are similar to those raised against the propensity and frequency 

interpretations of probability over the decades. These objections have led many to 

abandoning both propensity and frequency interpretations of probability (for a 

 
4 This follows Millstein’s (2006) strategy to combine some claims from each of the ‘causalist’ and 
‘statisticalist’ camps, although the CNF combines them differently – not at the level of the natural 
selection of populations versus the level of individual organisms, but by insisting that propensities at 
either level non-causally ground single case chances. 
5 Contrary to what e.g., Brandon and Beatty (1984) are led to assert in their response to Rosenberg 
(1982). More generally, any monistic account that follows Popper’s identity thesis will inevitably be led 
to assert that propensities explain causally whatever frequencies they explain; and there is nothing over 
and above for them to explain in any other way. 
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compendium of the reasons, see Hájek, 1997, 2009; Eagle, 2004; and many of the 

essays contained in Hájek and Hitchcock, 2016).  

 

CNC answers the objections by following original leads from Paul Humphreys 

himself (1985): It abandons the interpretation of objective Kolmogorov probabilities as 

propensities (thus rejecting the flawed identity thesis); yet it refuses to discard the 

notion of propensity altogether. Instead, CNC recommends using propensities 

differently, as the explanatory grounds for objective single case chances, and this retort 

gets around the objections to propensities in general (Suárez, 2013; 2017; 2018, 2020). 

It is thus unsurprising that the same retort also serves to respond to some of the 

objections to earlier propensity interpretations of fitness. Indeed, my purpose in this 

essay is to construct an alternative CNF view of fitness that not only dispenses with the 

objections to the propensity interpretation (PIF), but systematically rationalises the 

responses that have been offered to such objections, by showing them to be proper 

application of a more nuanced and complex framework for understanding objective 

probability in science in general.  

 

 

3. The Complex Nexus of Chance in the Philosophy of Probability 

 

 It is nowadays widely accepted 6 that probability is formally defined through the 

four classical Kolmogorov axioms, which can be non-technically summarised (in the 

discrete and finite case) as follows: 

 
Axiom 1:  Probability is a mathematical function or mapping from the domain of a 
   logically closed set of propositions {A} onto the range of the unit 
   interval of the real numbers: . 
 
Axiom 2:  The probability of a tautology (a logical truth) is always 1:    
 
Axioma 3: The probability of a logical disjunction of mutually exclusive elements  
  (say a and b, where each one rules the other out) is the sum of the 

 
6 Widely but not universally accepted, as is made clear by the raging debates regarding probabilities 
based upon fuzzy, quantum, and intuitionist logic. There is also considerable debate regarding the fourth 
axiom for conditional probability which is ill-defined when the conditioned upon proposition has zero 
probability (i.e. when P(B)=0) – see Hájek (2003) for discussion. 

f : {A}→ [0,1]⊆ℜ

P Taut( ) =1
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   probability of each disjunct: . (This axiom has a  
  notorious generalisation to the infinite or infinitesimal case, in the so 
   called axiom of countable additivity).  
 
 
Axiom 4:  The conditional probability of some proposition A given another 
   proposition B is given by Bayes’ theorem:  
 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∧ 𝐵)
𝑃(𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)  

  
 

The philosophical debates have traditionally concerned the interpretation of this 

probability function. According to one school, all probability is subjective degree of 

belief, hence a measure of agents’ ignorance regarding events (or the initial conditions 

that would give rise to such events in a deterministic or Laplacean universe). We shall 

instead assume here that probability at least partly – at least in some domains –, refers to 

the objective chances of events, which they possess independently of any agents’ 

knowledge of them. (The assumption that there are such chances is innocuous for our 

purposes, since routine in most natural sciences, including evolutionary biology). But 

what is objective chance, and how can it be an interpretation of probability?  

 

The two main philosophical approaches are the frequency and the propensity 

interpretations. Both have played some role in debates regarding the nature of 

evolutionary fitness. On a frequency interpretation, probability is identified with a ratio 

of outcomes of a type within the full sequence of all outcomes. We may refer to this as 

the frequency identity of probability (Reichenbach 1934 / 1949). Thus, the probability 

that a coin may land heads, on this interpretation, is simply the ratio or frequency of 

head outcomes in the full set of (either heads or tails) outcomes. If the coin is fair, then 

that ratio is just ½. However, there are some very serious problems with this attempt to 

interpret probability, which are by now well known to philosophers, and which many of 

us think make any frequency interpretation untenable. 7  

 

One problem that I like to emphasise (Suárez, 2020, pp. 36-49) is the explanatory 

circularity problem: frequencies cannot explain other frequencies, so the frequency 

identity renders probabilities explanatorily ineffective vis a vis frequency data. This 

 
7 See Hájek (2009) or Suárez (2020) for a description of this and other problems.  

P a∨b( ) = P a( )+P b( )
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seems contrary to the statistical modelling practice to invoke probabilities precisely to 

explain frequencies in the data. The problem is, as we shall see, acute for the kinds of 

probabilities involved in evolutionary fitness. Another classic objection is the reference 

class problem: the fact that the relevant class of outcome events within which one 

should seek a ratio or frequency of the salient type is always underdetermined. Consider 

the coin toss example again: Is the outcome space the set of all outcomes of all tosses of 

all coins, of just some subset of coins, of just the one coin? Should we include the 

outcomes where the coin bounces off, or rebounds, or falls on the edge, or is simply not 

tossed? Should we include all possible outcomes of a similar kind, since any set of 

actual outcomes is finite and may always diverge from the underlying probability (a 

phenomenon known as frequency tolerance)?  

 

An alternative that gets around such problems is the propensity interpretation of 

probability, advocated by philosophers such as Karl Popper (1959). On this view, 

probability is not to be identified with any frequency but with the underlying 

propensities or dispositional properties (what we have called above the propensity 

identity). In the case of a coin toss, this identifies the chances with either the full set of 

physical properties of the coin, or the toss, or some subset of both. It is often claimed 

that the propensity interpretation is explanatory in a way that the frequency 

interpretation cannot be since it is firmly linked to the conditions or underlying 

properties that give rise to the frequencies in the first place. Change the conditions, or 

the properties of the coin (or the coin toss, or its setup), and you will also change the 

frequencies. Yet, whilst the propensity identity overcomes some of the objections to the 

frequency identity, it has problems of its own too, related to what is known in the 

literature as Humphreys’ paradox.  

 

Paul Humphreys (1985) produced an influential argument that the explanatory 

asymmetries that characterize propensities cannot be represented in terms of classical 

Kolmogorov conditional probabilities – and that this renders impossible any propensity 

identity. More generally the propensity identity fails both ways (Suárez, 2013, 2014), as 

follows. Probabilities are inversible via the fourth axiom of conditional probability: if P 

(A ï B) is well defined then so is P (B ï A). Yet, if the former has a propensity 

interpretation, whereby B describes the conditions, or dispositional properties of the 

chance setup, and P (Aï B) represents the probability that the chance setup yields 
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outcome A, then P (B ï A) does not have a propensity interpretation, and in fact has no 

meaning at all from a propensity point of view, as the coin toss example illustrates: 

whatever properties of the coin explain its probability of heads, they are not themselves 

explained, or determined by, the heads outcome. On the other hand, Humphreys’ 

ingenious thought experiment (involving subatomic particles being transmitted through 

a half-silver mirror) shows that some, perhaps most propensities fail to have a coherent 

representation in terms of conditional probabilities. There are some responses to 

Humphreys’ argument, but the most convincing ones (including Humphreys’ own) 

abandon any attempt to reduce at least some of the relevant physical probabilities to 

propensities or vice-versa.  

 

The complex nexus of chance (CNC) is on board with these recent rejections of the 

frequency and propensity identities. Instead of trying to reduce the notion of probability 

to either frequency or propensity, CNC fully embraces metaphysical pluralism 

regarding objective chance, accepting the need for propensities, single case chances, 

and frequencies (Mellor, 2005; Suárez, 2011, 2014, 2017). They are all required to 

make full sense of the diverse uses of chance in the practice of model building: 

Propensities give rise to the probability distributions in models standing for single case 

chances that are then empirically confirmed by the frequency data obtained in 

observational and experimental trials. 8 The point of a philosophy of science in practice 

is not to interpret away these categories, but to understand them, and, if necessary, to 

suggest changes in their intricate and productive synergies within the practice of model 

building (Suárez, 2020). In this spirit I now turn to attempts to represent fitness 

probabilities as either frequencies or propensities, to some of the problems they give 

rise to, and to my argument that an account of fitness as a more complex nexus (CNF) 

involving all three of them is required.  

 
8 It is important here to understand that while frequency ratios within observed – hence finite – sequences 
of outcomes can provide evidence for or against propensity and single case chance ascriptions, this is not 
their only function. Those frequency ratios do of course objectively independently exist, and they provide 
factual knowledge of the phenomena regardless. In including those frequencies within the tripartite 
division that makes up the complex nexus of chance, I am thus not including the means of testing 
propensity ascriptions within the concept. It is true that such testing will typically involve comparison of 
the probability distributions that represent the theoretical single case chances with observed frequencies 
(also sometimes known as ‘experimental probabilities’), but the comparison is not part of the concepts 
involved. (This consequently has the implication that, in the CNF, ‘fitness’ does not include the means of 
‘testing’ it; even if the term aptly refers also to those experimental probabilities that biologists label 
‘measured’, ‘observed’ or ‘experimental’ fitness. I thank a referee for pressing me on this point). 
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4. Momentous Paradoxes and the Nature of Statistical Distributions 

 

 One initial difficulty in finding an appropriate mathematical representation of 

fitness is the inconvenient fact that there are different statistics that fitness may quite 

generally be identified with. The first attempts at a propensity interpretation of fitness 

(PIF) identified fitness with the expected value or expectation of the statistical 

distribution for offspring (Brandon, 1978; Mills and Beatty, 1979). Suppose the possible 

offspring of an organism O1 are given by Qi with i= 0, 1,…,n. The statistical distribution 

over O1’s possible offspring {Q0, Q1, …, Qn} in some environment E is then given by 

some probability function indexed to organism and environment and defined over the 

possible offspring numbers: 𝑃𝑟𝑜𝑏!!&#(𝑄$). The expected value or expectation of this 

probability function is its average, or population mean µ, the so-called first central 

moment of the distribution (Krzanoswki, 1998, pp. 14ff.; Grimmett and Stirzaker, 1982, 

p. 51):  

 

  𝜇!!&# = 𝐸𝑥𝑝!!&#{𝑄} = ∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ 𝑄$. 

 

Suppose the organism O1 in question has in the given environment either no 

offspring or two offspring with probability ½ in each case. The expected value of O1’s 

offspring in environment E is then exactly one since: ∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ 𝑄$ =	 !" ∙ 0 +
!
" ∙

2 = "
" = 1. The original definition of the propensity interpretation of fitness (PIF) then 

states that the fitness of organism O1 in environment E is its expected offspring value, 

namely, in this case, one. 

 

Yet, this definition has come under heavy criticism ever since originally expressed 

(Abrams, 2009; Mills and Beatty, 1979; Sober, 2001 and 2013; etc). Many of the 

objections rely upon what may be called the underdetermination of statistical 

distributions, the well-known fact in statistics that an indefinite number of different 

probability distributions may have the same expected value, i.e., yield the same 
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expectation over a range of outcomes. 9 As an illustration, consider another organism O2 

in the same environment E with a distinct statistical distribution over its offspring, 

defined by a different probability function: 	𝑃𝑟𝑜𝑏!"&#(𝑄$). This organism can only 

have exactly one offspring with certainty, i.e., with probability one. Nevertheless, the 

expected value of O2’s offspring is the same as O1’s, since ∑ 𝑃𝑟𝑜𝑏!"&#(𝑄$)$ ∙ 𝑄$ = 	1 ∙

1 = 1.  

 

It stands to reason, however, that these two organisms, O1 and O2, are 

constitutionally distinct, and they differ in their capacities or propensities to reproduce 

in the given environment. Hence, there should be significant differences in fitness 

relative to one another, contrary to the definition provided by the original (PIF). This is 

borne out when considering the higher moments of the respective statistical 

distributions. The second moment about the mean of a distribution is the statistic known 

as the dispersion parameter s2 of the distribution:   𝜎!!&#
% = 	𝐸𝑥𝑝	 ;<𝑄$ − 𝜇!!&#>

%? =

∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ <𝑄$ − 𝜇!!&#>
%. This is a representation of what is known as the 

variance about the mean in a population (roughly: how large on average the spread of 

values is about the mean). The variance is always positive – since it is a squared 

quantity – and it is sometimes replaced by another quantity, the standard deviation s, 

which is simply its square root. The larger a variance about a mean, the larger the 

spread of values exhibited by the random variable. A zero standard deviation or 

variance signals a distribution in which all values coincide with the mean.  

 

The most common empirical models for fitness show that variance in offspring 

statistical distributions with identical expectations can have considerable differential 

effects on reproductive success (Beatty and Finsen, 1989, pp. 24ff.; Sober, 2001, pp. 30-

34; see also Millstein, 2009, p.609ff. for an excellent review; many of the examples 

discussed originate in Gillespie, 1974, 1977). In these examples two organisms O1 and 

O2 have distinct offspring distribution functions with the same expectation: 𝜇!!&# =

𝜇!"&#, because ∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ 𝑄$ = ∑ 𝑃𝑟𝑜𝑏!"&#(𝑄$)$ ∙ 𝑄$. Yet, the variance in O1’s 

 
9 Although the objections ride upon such mathematical facts, they are not essentially mathematical but 
biological, and aim to show that the predictive and explanatory power of fitness differences would be left 
unaccounted for (Sober, 2013). They thus take the form: ‘Given such mathematical facts, if fitness were 
associated with expected value, differences in fitness would not be explanatory or predictive since they 
would miss out other relevant statistics of the distribution’. 
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offspring distribution is larger than that in O2’s , pointing to the fact that the first 

distribution is more widely spread about the mean:  𝜎!!&#
% > 𝜎!"&#

% , because 

∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ <𝑄$ − 𝜇!!&#>
% > ∑ 𝑃𝑟𝑜𝑏!"&#(𝑄$)$ ∙ <𝑄$ − 𝜇!"&#>

%. The generic 

difference in variance between two distributions with the same mean is illustrated by the 

two curves (with equal expected mean value µ = 6,5 in both cases, yet differing 

considerably in variance) in figure 1 below: 

 

 
 

Figure 1: Distributions with different variance but equal mean (© The author) 

 

The mode of both distributions (the ‘peak’) is at the mean value of 6,5, but in the 

interval of integer numbers one of the curves only ranges from having three offspring to 

having nine, while the other ranges all the way from having one to twelve and has a 

standard deviation twice as large. It is by now well known that there is often greater 

reproductive advantage for those organisms (or traits, or genotypes) that have the 

narrower spread, i.e., the smaller variance or standard deviation. Intuitively, a more 

regular reproductive pattern, or a spatially or temporally denser reproductive strategy is 

superior because the advantage brought about by high offspring in any given location 

(or period, say on a given year) does not balance out the disadvantage incurred in the 

lower reproductive success in other locations (or over longer periods). Thus a “lowering 

in the variance in the offspring number […] can only raise the probability of leaving 

offspring behind” (Gillespie, 1974, p. 605). Elliott Sober (2001, pp. 33-34) explains 

these cases as failures of the commutativity of expectations, on the one hand, and 
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quotients or ratios on the other. Quite generally, the expectation of a ratio of two 

quantities is not the same as the ratio of the expectations of such quantities. Since 

frequencies are ratios, or proportions of attributes in populations, the expectation of a 

certain frequency in the population is not identical to the ratio of the expectations (of 

attribute, and overall population). This is helpful as an illustration of the general 

phenomenon, particularly for trait fitness. It shows that the phenomenon of variance-

dependence of fitness is general, and it does not demand any interpretation of the 

probabilities at stake. Rather, as I shall argue, the phenomenon calls for an explicit 

distinction between propensities and their probabilistic manifestations in single case 

chances, regardless of how we interpret those chances. 10 

 

In fact, the phenomena are more complex still since the effects of variance (in 

distributions with identical expectations) on reproductive success are often confounded 

by even higher moments of the statistical distribution. The third moment about the mean 

of a distribution is its skewness, referred to as g, which serves to pick out asymmetries in 

the tails of the distribution either side of the mean. Formally, the third moment of the 

statistical offspring distribution for organism O1 is expressed as (Krzanowski, 1998, p. 

16-17) : 𝛾!!&# = 	𝐸𝑥𝑝	 ;<𝑄$ − 𝜇!!&#>
&? = ∑ 𝑃𝑟𝑜𝑏!!&#(𝑄$)$ ∙ <𝑄$ − 𝜇!!&#>

&. A 

distribution with g = 0 is symmetrical about the mean; one with g > 0 will exhibit a long 

tail of high values and a bunched-up tail of low values; another one with g < 0, will be 

bunched in the high values with a longer tail in the low values (see figure 2). Yet both 

variance and expectation (mean) can remain the same in all three.  

 

 
10 I have in the past defended a Sober (2010) style no-theory theory of single case chances, but my claims 
are more generally compatible with any sufficiently deflationary account of objective probability (Suárez, 
2020, chapter 10).  
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Figure 2: Distributions with different skewness and median but equal mean (© Diva 

Jain under a CC BY-SA 4.0 license) 

 

It turns out that those distributions with larger skewness tend to correspond to 

organisms with greater reproductive success (Beatty and Finsen, 1989; see also the 

informed discussion in Millstein, 2016, pp. 609ff). There are even cases where larger 

skewness trumps lower variance, which in turn may trump higher expectation. In other 

words, lower variance and higher skewness can indicate greater reproductive success, 

and hence greater fitness, regardless of the expectations. The intuitive way around such 

difficulties is to relinquish the identification of fitness with the expected value of the 

statistical distribution for offspring. Instead, one may suppose that fitness ought to be 

identified with the distribution as a whole – not any one statistic thereof. And this is 

moreover a natural move in thinking of the fitness of an organism (or a trait, or a 

genotype) along the lines of a propensity interpretation of probability. Most current 

versions of the propensity interpretation of fitness (PIF) decisively move in this 

direction, and away from identifying fitness with expectation (Brandon, 1990; Beatty 

and Finsen, 1989; Pence and Ramsey, 2013; Sober, 2001, 2011, 2013). This move away 

from the identity with frequencies is, of course, entirely natural within the CNF – it is in 

fact a requirement for any application of the CNC to fitness. 

 

The next section raises more general issues and difficulties with current propensity 

interpretations of the entire statistical distribution for offspring. But it is worth noting 

already that it is compromised by even more complex phenomena regarding the higher 

moments of the distribution.  Not only do higher moments determine fitness for 

otherwise statistically identical distributions of reproductive offspring. More remarkable 
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still is that the higher moments can occasionally trump the lower ones. Thus, a smaller 

variance can compensate for a smaller expectation, as the organism with the lowest 

expected value turns out to be more reproductively successful if its variance is 

considerably smaller; similarly higher skewness can occasionally trump larger variance 

in distributions with identical expectation (Beatty and Finsen, 1989, p. 24; Millstein, 

2016, p. 609-10). In none of these cases is the expected value of a distribution a good 

measure of fitness. Rather the fact that larger skewness can trump lower variance, which 

in turn can trump higher expectation, suggests instead a certain ‘trumping’ hierarchy, 

with expected value at the lowest level, as it were: expected value à variance à 

skewness.  

 

In other words, whether expected value is or not correlated with fitness will in fact 

depend on the context. Within some environments, as just noted, for some systems, 

expected value may even be negatively correlated with fitness. This entails that taking 

the entire distribution, without further qualification, as the propensity fitness of the 

organism is a mistake; the fitness of an organism, for instance, seems always relative to 

a context, since it reflects the effect of the environment on the delicate balance of the 

diverse statistical moments. 11 No pre-determined hierarchy of the features or functions 

of the offspring distribution, taken by themselves, seems sufficient as a reliable 

indicator of fitness. Thus, something more complex and context dependent will be 

required in the relation between probability distributions and the underlying 

propensities. And that is just what CNF can offer. 12 

 

On a complex nexus of fitness (CNF) view this sort of radical dependence upon 

extrinsic environmental factors, as well as the intrinsic features of the mechanisms of 

 
11 The point is, if anything, more acute if we consider fitness to be a property of traits, not single 
individual organisms, as in Sober (2013, 2020) – an option discussed later in the paper. In that case, rather 
than thinking of propensities as the underlying physical and biological properties of an organism, one 
ought to think of fitness propensities as the underlying physical and biological properties of a trait, and as 
long as traits are not defined merely extensionally, the CNF follows: the propensities give rise to 
probabilities (single case chances) for particular traits to reproduce and survive within given 
environments; and such propensities are tested by the usual means by comparison with observed trait 
frequencies. On a CNF account there is no need to reject the view that trait fitness is a propensity. 
12 I do not claim priority: Others, such as Brandon (1990), have offered similar solutions, and Millstein 
(2016) endorses Brandon’s approach to distinguish the mathematical representation of fitness from its 
ontology. But the CNF systematises such solutions, which follow naturally from a conception of 
propensities as clearly distinct from the single-case chances they give rise to. The former are properties of 
systems, -- relational or otherwise --, while the latter are mathematically representable as probabilities, by 
definition – and no further distinctions are called for. 
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reproduction, is only natural. 13 The key is, recall, in the distinction between the 

underlying propensities and the various probability distributions that these may give rise 

to in different contexts. The probability distribution that emerges in each context is as 

responsive to the environmental conditions as to the system’s propensities. 14 Note in 

addition that the propensities themselves may be more or less intrinsic to a particular 

organism or population – there are also environmental systems, for instance in ecology, 

which possess holistic propensities of their own – nothing in the account rules out such 

holo-bionts, or any other complex holistic systems. At any rate, the critical point is that 

the underlying propensities first determine the space of possible outcomes, and then 

define the probability distributions over such outcomes. 15  On this picture, it is not 

surprising that the environment will often influence how the higher moments of a 

distribution relate to the lower ones in effecting changes in the reproductive success of 

organisms. In a different environmental context, there may be different extrinsic 

propensities, and those that are intrinsic may manifest themselves in different 

probability distributions. This is certainly so for long term reproductive success, but 

often also in very short generational terms.   

 

 

5. Varieties of Propensity and Fitness: The Long Term and the Long Run 

 
13 There has been an attempt, by Peter Godfrey-Smith, to revive the ‘extrinsic’ / ‘intrinsic’ distinction in 
evolutionary biology, albeit without any substantive ontological implications (Godfrey Smith, 2009, p. 
53). Intrinsic biological features or organisms (or traits, or genotypes) are those that “do not depend on 
the existence and arrangement of others”. While they are not more real than extrinsic features, Godfrey 
Smith claims that intrinsic features are indicative of more paradigmatically Darwinian evolutions by 
natural selection. He even introduces a measure S of supervenience upon intrinsic properties. A high S is 
indicative of a high degree of supervenience of reproductive success upon the intrinsic propensities of 
organisms (traits or genotypes); a low S indicates that reproductive success rather depends on extrinsic 
features, whether they be relational propensities of the environment, including entire ecosystems, or the 
conditions required for the manifestation of the underlying propensities. On the CNF view, biological 
propensities may be intrinsic or extrinsic, in this terminology, depending on the system and nature of the 
case, but there is no sense in which they are more or less ‘Darwinian’. By contrast, the single case 
chances that manifest those propensities are always necessarily ‘extrinsic’, since they are reliant on the 
environmental context and other ‘triggering’ factors.  
14 Note that this is not the usual claim about the variety of fitnesses (for which see e.g., Millstein, 2016, p. 
612). It rather states that even with the same underlying propensities, an organism would exhibit different 
offspring distribution in different environments. The propensities do not vary with the probabilities here, 
because, as already pointed out, the CNF keeps propensities and probabilities (single case chances) 
distinct. So, the regimentation of the language is novel, and the concepts employed are filled in 
differently. 
15 See Suárez (2018), which also suggests an indexical formulation of the probability distributions to keep 
out any variables representing the propensities out of the chance functions, thus avoiding Humphreys’ 
like paradoxes. The propensities set up the probabilities and their outcome spaces, thus delimiting the 
regime of the possible - not the other way around. 
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The literature on propensities distinguishes long run and single case varieties of the 

propensity interpretation of probability (Hacking, 1965). Long run views are inspired by 

empiricist accounts of evidence, concept formation, and belief (Gillies, 2000), and stay 

as close as possible to frequency interpretations such as Von Mises’ (1928). In a long 

run version, propensities generate stable frequencies in long, limiting, or infinite 

sequences of outcomes (depending on the type of long run propensity interpretation). 

The standard illustration employs the tossing of a fair coin: A long run theory ascribes 

propensities to the conditions that generate a 50-50 frequency in a long, limiting, or 

infinite sequence of outcomes of the coin toss. While long-run propensities are 

ostensibly identified with the conditions that generate sequences and not with the 

sequences themselves, the sequences must be a version of what Von Mises called a 

“collective”: A random sequence with a well-defined limit and no possible selection 

function picking out any subsequence within it with a different limit. It can thus be 

argued that long run propensities are indistinguishable in practice from frequencies 

(Suárez, 2014, p. 219). 

 

A single case interpretation, by contrast, identifies propensities with conditions that 

uniquely generate the probabilities that obtain in every single experimental trial, 

regardless of whether they are actualised in any actual or imaginary sequence of 

outcomes. In the coin toss example, propensities are identified with the conditions 

required to generate a probability distribution over the possible outcomes of any given 

single experimental trial on a chance setup. In any given coin toss, if the coin is fair, the 

probability of heads / tails is ½. The propensity in this case is the set of those properties 

of the chance setup (including the coin) that make it the case that the probability is 

indeed ½ for any given toss. Whether or not this is a random sequence (or a Von Mises’ 

collective) is immaterial to both propensity and probability.  

 

In other words, in a coherent single case theory propensities and probabilities are 

distinct – the propensities give rise to the probabilities, and both concepts are required 

to make sense of objectively chancy phenomena. Moreover, testing a single case 

propensity requires displaying some experimental frequency that may support or 

contradict the probability distribution that it prescribes. Hence single case propensities, 

if they are in principle to have empirical manifestations and be subject to test – as surely 
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most if not all scientific propensities must be – need recourse to empirical finite 

frequencies as the result of experimental trials. In other words, adopting a single case 

propensity theory makes it possible to appreciate the three distinct ingredients in any 

meaningful ascription of objective chance in scientific modelling, namely: propensities, 

probabilities, and frequencies. I refer to this tripartite conception together with their 

inter-relations, as the “complex nexus of chance”, and advocate employing it as an 

appropriate tool for the analysis of biological fitness. 16 

 

The rejection of long run varieties of the propensity theory, in favour of the single 

case variety, does not necessarily conflict or contradict the view that biological fitness is 

best understood as “long term” as opposed to “short term”. A long-term view of fitness 

is not just compatible with a single case propensity interpretation of fitness but, I urge, 

it is best understood in its light: Long-term fitness is not long run propensity.  

 

Fitness is viewed as a short-term property of an organism (or a population or a trait 

– more about the differences later), when it entails reproductive success in the short 

term, and possibly in the next generation only. Thus, two organisms O1 and O2 have 

different relative fitness if their expected (next generation) reproductive success is 

different. This is straightforward only post facto, and in fact only under substantial 

assumptions. Suppose that throughout their existence O1 has two offspring, and O2 only 

one offspring; and suppose only natural selection was acting (no drift, mutation, 

migration): On a short-term view of fitness, O1 is then necessarily fitter than O2.  

 

However, it is well known that the short-term definition of fitness has several 

paradoxical or counterintuitive consequences (Abrams, 2009; Beatty and Finsen, 1989; 

Sober, 2001). There are certain scenarios and environments where short-term 

reproductive success leads to long term failure and vice-versa (Gillespie, 1977; Pence 

and Ramsey (2016, p. 857) refer to this as the delayed selection problem). The initially 

least successful organism may enjoy greater reproductive success down the road, and go 

on to gain selective advantage, if there are environmental reasons why an early 

overpopulation may turn out to be deleterious in the long term. Thus, suppose that 

resources suddenly and temporarily become very scarce at the next generation. Having 

 
16 See Mellor (2005) for an exposition of single case propensities, and Suárez (2017, 2020) for a defence 
of the tripartite conception in statistical modelling. 



 21 

to feed and protect equally for two offspring may become more costly, to the point 

perhaps that it may lead to the early extinction of both. In this scenario, and 

environment, having only one offspring at an earlier point in time may lead to greater 

reproductive success down the generations, when resources recover.  

 

Even in a two-generation model, with scant environmental variation, it is possible 

for O1 to have greater reproductive success in the short term, as above, while having 

less reproductive success in the slightly longer two-generation term. The classic case is 

the mutation found in some species of drosophila (Crow and Kimura, 1956). If both of 

O1’s offspring die before reproducing, but O2’s sole offspring survives and goes on to 

reproduce, O2 already has reproductive advantage over O1 within two generations. It is 

obvious that such reversals are more likely the larger the number of generations 

envisaged, in whatever complex scenarios or environments, particularly if overlapping 

generations are allowed.17 

 

Fitness is therefore often best understood to be long term. But how long is ‘long’? 

The phenomenon of later (i.e., two or more generations down the road) reversals in 

reproductive success is well established (Sober, 2001), and it is hard to see what would 

constitute an insurmountable number of generations, or generational threshold, beyond 

which no reversals are biologically possible. 18  For this reason, some defenders of long-

term fitness define it in an infinite limit. For example, Pence and Ramsey (2016, p. 862) 

define it in terms of Tuljapurkar’s (1990) asymptotic sequences of random, non-

negative matrices:  

 

𝐹 = 𝑒𝑥𝑝 Dlim
'→)

*
' ∫ 𝑃𝑟(𝜙(𝑤) ∙ ln𝜙(𝑤, 𝑡))	
,∈. 𝑑𝑤O    (Infinite Fitness) 

 

Nonetheless, such limits only obtain under stringent conditions. For instance, Pence 

and Ramsey’s (Infinite Fitness) equation above demands: i) weak ergodicity, ii) that the 

logarithmic moment of the growth rate be bounded and, most importantly for our 

purposes, iii) that the probability function be generated by a stationary random process. 

 
17 In as much as an entire lineage may be wiped out if the organism reproduces early in what Godfrey-
Smith (2009, p. 51) calls a ‘strongly competitive’ intergenerational environment. 
18 Biologists tend to define fitness in the long but finite term and remain uncommitted about how long 
that is, which is fine empiricist methodology, but leaves the conceptual questions unanswered.  
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Roughly, a random process, i.e., Brownian motion, is one where the values of the 

dynamical variables at a given time do not determine the next values; it is stationary if it 

converges towards its mean or average value. The assumption therefore entails that 

while no daughter population determines any of its direct descendant populations, the 

series converges towards its mean or average. While this does not amount to (PIF), as 

usually expressed, it does impose a requirement on the evolution of populations that 

may not always be satisfied in stochastic dynamics. 

 

It has in addition been argued (Sober, 2001; Abrams, 2009) that short-term fitnesses 

also have their uses, and can claim legitimately to be real too. It stands to reason that the 

knowledge that O1’s short-term fitness is greater than O2’s, even if only for the next 

generation, may be very useful for purposes of both prediction and explanation 

regardless of whether in the longer term O1’s reproductive success continues to be 

greater. Or, to take a more extreme example, suppose that the environment is such as to 

generate mass extinction within two generations, anyway; it follows that the only 

concept that is explanatory and predictive in that environment is short-term fitness. The 

pluralist would be able to accept both short-term and long-term fitness. This strikes me 

as correct: It is not sound scientific methodology, and certainly not sensible pragmatic 

policy, to do away with a concept that has its uses – however limited. And there is no 

better hallmark of reality for any concept than finding use within scientific practice.  

 

 Yet, if fitness is identified with long run propensity, in accordance with the 

propensity identity, there could be no such uses of short-term fitness: nothing short of 

the long run would have any reliable expectation value. So, anyone who accepts Sober’s 

and Abrams’ point regarding the uses of short-term fitness is bound to reject long run 

propensity accounts of fitness. There are yet more general reasons to reject them, and 

most importantly, the tripartite conception at the heart of CNF is perfectly compatible 

with both long-term and short-term fitness. For, recall, the propensities that are 

employed by the CNF, and the related CNC account of chance, are not identified with 

probabilities. Instead, propensities are employed to partly explain the probabilities that 

emerge in those contexts in which chance setups operate. While such a distinction 

(between the probabilities for reproductive success and the propensities of the chance 

setup that generate them) makes no sense in a frequency or long run propensity 

interpretation of probability, it makes perfect sense in a CNC. This means that the 
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propensities, or probabilistic dispositions, of the organism within its environment may 

ground all the expected values for its reproductive successes – whether short or long 

term. In cases where the limiting value of fitness can be calculated – as in the equation 

(Infinite fitness) above, whenever all its three assumptions apply –, the probability 

distribution that obtains in each generational “trial” is indeed given by (Infinite fitness), 

and the values of reproductive success at each generation are simply the random 

outcomes at each single trial that are consistent with that probability in the limit. The 

phenomenon does not then differ in any significant way from the case of a fair coin, i.e., 

one whose propensities display a single case chance to land heads and tails with equal 

probability ½ in each trial – even though obviously in every trial either heads or tails 

obtains. 19 

 

The tripartite conception within the CNF thus resolves the conundrum between 

short-term and long-term fitness by making it clear that fitness is a complex notion, that 

includes propensities and expected values of all statistical distributions for offspring, 

whether short or long term. On this view the fitness of an organism (or a trait, or a 

genotype) is not identified with any of the distribution functions. Neither is it identified 

with the propensities that give rise to the distributions; fitness is rather the combination 

of both within each context. Now, this sort of pluralism regarding short versus long 

term fitness is, of course, not entirely new. It is in fact in line with similar views 

espoused by Beatty and Finsen (1989, p. 20), Sober (2001, pp. 29ff), Abrams (2009, pp. 

754ff), and Millstein (2016, pp. 612ff.). Yet, there are some significant differences. 

While all these authors emphasise the plurality of expectations, and how fitness cannot 

be reduced to either short or long term, the CNF emphasises the plurality of chance 

itself, and how a set of propensities in a chance setup may give rise to different 

probabilities in different environments, both short and long term. 20 An issue 

undoubtedly remains regarding the explanatory nature of the relation between the 

underlying propensities, on the one hand, and the probabilities of reproductive success 

 
19 Defenders of the most sophisticated recent versions of (PIF) are not always entirely clear whether they 
mean to identify fitness with a long run propensities or single-case ones. One may take my argument 
above as confirming that they must mean the single case.  
20 Sober comes perhaps close to this view when he asserts (2013, p. 337): “Mixing is routine in models of 
evolution where some probabilities represent actual frequencies and others do not”. While agreeing with 
the need to mix different probabilities, CNF would nonetheless go beyond it in explicitly distinguishing 
the propensities (dispositional properties) from probabilities (single case chances).   
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that they give rise to, on the other. But nothing particularly hinges on whether success is 

short or long term, as both can be accommodated within CNF. 

 
 

6. The Explanatory Role of Fitness 

 

The generic CNC account takes propensities to be dispositional properties of 

systems or chance setups with probabilistic manifestations that can be tested against 

frequency data. The possession conditions for propensities are thus not the same as 

those for the properties that manifest them, as is more generally the case for any 

dispositional property (think of the possession conditions for the fragility of an object, 

typically describing its internal composition and architecture, which do not coincide 

with the conditions, typically including environmental factors, for the breaking of the 

object). But, in addition, propensities – unlike sure-fire dispositions—, manifest 

themselves only probabilistically. It is then possible to test the probabilities manifested 

against frequency data – and this provides reasons, typically of an abductive sort, as is 

common for theoretical properties, for or against the ascription of the propensities. 

 

The CNC account fits in better with the practice of statistical modelling, including 

in biology, where parametrization of the phenomena plays a critical role. 21 It is easier to 

see the practice of parametrization as reliant upon propensities understood as 

dispositional properties; the probability distributions as the emergent properties that get 

modelled by means of the probability distributions; and the experimental outcomes as 

the frequency data that can be used to test them (Suárez, 2017, 2020). 22 The sorts of 

model explanations that are typical in statistical modelling fall out as applications of the 

parametrizations of the probability distributions to the frequency data. It is a plausible 

conjecture that all explanatory uses of evolutionary fitness in practice can be understood 

in this way, as cases of statistical model explanations. If so, I suggest that fitness 

 
21 Abrams (2012, forthcoming), while not necessarily endorsing the CNF, are excellent accounts of the 
practice of parametrization in evolutionary biology. Rice (2008) puts parametrization to work in the 
development of a stochastic version of Price’s equation. 
22 The idea again finds a correlate in evolutionary biology modelling practice, for instance, explicitly in 
the calculation of relative and marginal fitnesses (Rice, 2004, pp. 7ff), which assumes a primitive 
probability for an allele to be found in a certain genotype. As noted above, the present paper is devoted to 
introducing the CNF framework, and to placing it within the philosophy of probability literature. And 
while the paper is a call for further study of the modelling practice, any more detailed application must 
await subsequent publications. 
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properly speaking is not merely propensity, but it is rather to be identified with the 

whole complex nexus of chance, involving fully the tripartite distinction between 

propensities, probability distributions, and frequency data.  

 

It would be beyond the scope of this paper to attempt a complete analysis and study 

of the modelling methodologies in evolutionary biology that bear the conjecture out. I 

will more modestly explore some of the relative advantages of the conception of 

propensities within the CNF as regards some of the recent controversies in the 

philosophical literature. CNF accepts that dispositional properties play a role, so it bears 

superficial similarities with causal dispositional accounts of fitness. The critical 

difference is that CNF rejects any reduction of fitness to dispositions, embracing instead 

a tripartite conception of fitness. 23 More generally, ‘causal dispositionalism’ (Mumford 

and Anjum, 2011) is a monistic doctrine about the metaphysics of dispositions, which 

attempts to reduce probability to causal dispositions. By contrast, the complex nexus of 

chance (CNC) and its application to fitness (CNF) take a pluralistic view of chancy 

phenomena, attempting no reduction of either fitness to probability, or of probability to 

dispositions (or propensities).  

 

CNF instead recommends considering fitness a generalisation over all those 

physical and biological properties that make some organisms ‘fitter’. The probability 

distributions over offspring – and their statistical moments – supervene upon those 

dispositional properties, or propensities.24 But, as noted earlier, the properties are not 

the cause of the probability distributions, which are merely the grounded representations 

of the overall expectation of reproductive success. What the properties of organisms do 

cause (at least partly) is of course further properties in themselves and other organisms 

as they evolve (they can also influence their environments, as is nowadays accepted to 

be the norm in niche construction). There has been a tendency in the literature to 

identify fitness with either the frequencies of observed reproductive success (as in early 

circular conceptions of fitness); the probability distributions or their expectations (as in 

the PIF we just reviewed in previous sections), or the underlying properties in the 

 
23 Triviño and de la Rosa (2016) defend causal dispositionalism, which Drouet and Merlin (2015) rightly 
reject. Sober (1984, 2013) is implicitly a defence of propensities as distinct from frequencies, hence 
incompatible with causal dispositionalism, yet closest to my views. 
24 For overall fitness as a supervenient property, see Sober (1984, Ch.3). Peter Godfrey-Smith (2009, p. 
30) also recommends thinking of fitness as “a compression of a full specification of causal factors”. 
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supervenience base (as is the case amongst defenders of causal dispositionalism). I urge 

the view that fitness properly understood is all of these taken together – and moreover 

taken in their very productive connection in the practice of modelling the phenomena. 25 

 

 I have argued that the pluralism inherent in CNF is the key to its distinct way of 

answering some recalcitrant objections to PIF. CNF recommends explicitly embracing 

propensities not as an interpretation of evolutionary probabilities, but an explanation of 

how they come about. The best way to illustrate the explanatory power of fitness on the 

CNF account is then precisely to run through its way of responding to some of these 

issues. I will consider here only two issues, but the conjecture is that other discussions 

and issues in the field may take a different form in view of CNF, thus casting the 

approaches that have been proposed in response in an interesting new light. I first 

consider the argument that the PIF does not capture the proper objects of fitness 

(whether they are token organisms or genes, or token traits or populations). Then I 

move to the objection that population level properties affect reproductive success rates, 

yet cannot be said to cause them, which would see PIF fail too. 26 In neither case do I 

claim priority for the way the CNF resolves the issues, but I do urge that casting 

proposed solutions to these issues in terms of the CNF has the promise to resolve 

tensions, answer objections, and provide greater detail regarding the explanatory role of 

propensities in fitness. 

 

i) The objects of fitness 

 

 
25 CNF chimes in with a number of recent accounts in the philosophy of biology literature that there is no 
space here to discuss in full. Besides being on board with Elliott Sober’s pluralism regarding probabilities 
(Sober, 2013) and sympathetic to his minimalism about single case chances (Sober, 2010), CNF was 
noted to chime in well with the pluralism in Beatty and Finsen (1989), and Millstein (2003, 2016). True, 
it does not restrict it to propensities in the way they do (one could say that Beatty and Finsen, and 
Millstein, embrace horizontal pluralism only as regards different probability distributions; while CNF 
pluralism is in addition vertical, since it distinguishes three layers in one complex notion of fitness). Still, 
as we shall see, the CNF echoes Millstein’s (2006) prising apart of ‘causalist’ and ‘statisticalist’ claims. I 
also believe that Marshall Abrams’ (2012, 2014, 2015) nuanced distinctions between tendential / 
parametric fitness, mathematical / statistical fitness, and measurable fitness can be subsumed under the 
tripartite conception in the CNF. Finally, CNF is also evidently in line with Peter Godfrey Smith’s (2009) 
emphasis on the plural practices of modelling fitness. 
26 Amongst the many other issues that may be cast in a new light, those regarding causation in 
evolutionary biology naturally stand out. For instance, Walsh (2010) has recently objected that PIF entails 
Simpson-like paradoxes (reversals of conditional probability in subpopulations) and that fitness – and 
natural selection to boot – can therefore not be said to be a cause of evolution. From a CNF perspective 
such Simpson reversals are innocuous, since they only affect the probability distributions that emerge in 
distinct contexts, and not the underlying propensities and their causal effects. 



 27 

 Mills and Beatty (1979) distinguished between fitness1 and fitness2, where the 

former is the fitness of an organism, and the latter is the fitness of the type of organisms 

that share some trait. They then identified fitness1 with the expectation or expected 

value of the organism’s offspring distribution – a definition we rejected in section three 

(following Beatty and Finsen’s (1989) own subsequent arguments). Nevertheless, if a 

trait T is defined extensionally as the set of organisms that share T (call this set {T}), 

then the fitness2 of trait T is simply the average of the fitnesses1 of the organisms in the 

set {T}. As Sober (2013, p. 336) puts it: “the fitness of a trait is the average fitness of 

the individuals that have that trait”. The full definition makes it explicit that fitness1 is 

relative to a population P and an environment E, and therefore so is fitness2 since it is 

built upon it. Sober (2013) then goes to argue that neither fitness1 nor fitness2 can be 

understood as propensities, but changes or variations in fitness2 may be. For only the 

latter exhibit the required causal asymmetries, and sensitivity to population and 

environmental conditions. The starting point of CNF, by contrast, is that neither fitness1 

nor fitness2 can be identified with propensities – on pain of running propensities and 

probabilities together in a way that conflicts with the tripartite distinctions within CNC. 

Rather Mills and Beatty’s fitness1 and fitness2 are in my terminology the displays (or 

manifestations) of underlying propensities. But are they displaying the underlying 

propensities of organisms, sets of organisms, or traits?  

 

 The question is whether traits are just averages over the properties of the 

individuals that make up the set of those organisms that share the trait. If so, since a set 

is extensionally merely the collection of the elements that compose it, only individual 

organisms may be said to display propensities – the ‘propensities’ of traits would be 

merely epiphenomenal. 27 Mills and Beatty’s ‘fitness1’ and ‘fitness2’ are then simply the 

expectation values of the distributions for token organisms, and for sets of token 

organisms, respectively, and they all answer to the underlying propensities of individual 

organisms. The CNF would go along with this and ascribe all relevant propensities to 

the individual organisms. If, on the other hand, traits are alternatively defined non-

 
27 This relies on the above extensional definition of traits as types of organisms. Sober himself makes it 
clear that the mathematical models of trait fitness variation introduce selection coefficients in modeling 
the strength of selection that are not themselves functions of expectations; only the responses to selection 
are expected values (Sober, 2013, p. 340). So Sober does not really think of ‘traits’ extensionally, as 
merely the set of the organisms that share them, but rather claims that different traits may well be co-
extensive. 



 28 

extensionally to be primitive token properties, the CNF would apply the tripartite 

distinction directly on traits, invoking separate (emergent) propensities, their 

manifestations in single chances for those traits, and the observed frequencies of such 

traits, without attempting any further reduction. 28 And since we are no longer defining 

fitness in terms of expected value, or expectation – but rather as a complex nexus of 

propensities, probabilities, and frequencies, as modelled relative to a population and 

environment –, it no longer follows that the fitness of the trait is the average of the 

fitness of the member organisms.  

 

 The same argument goes through mutatis mutandis for genes. We can again 

consider fitness1 (G) to be a property of some token allele G, and fitness2 ({G}) to be a 

property of the population of organisms {G} that carry a given genotype. Since CNF no 

longer defines fitness1 to be simply the expectation of the offspring distribution for G, it 

follows that fitness2 is neither the arithmetic average of the expectations. Rather the 

fitness of an individual allele, or a genotype, when it can be defined at all, is a complex 

three-layered notion that includes the propensities of the token allele or genotype, the 

probabilities (single case chances) generated by them in their given context, and the 

frequency data it gives rise to when experimentally probed. 29  

 

 To sum up, CNF is neutral on the issue of whether fitness applies to individual 

organisms or traits, whether at type or token level. It can be freely applied to token 

organisms, and to traits regarded as types with emergent properties of their own.  On the 

other hand, if traits are treated extensionally, as mere statistical collections, then 

naturally CNF ascribes propensities to the token organisms, or individual alleles, only. 

But that latter option seems uncalled for, since traits are better thought of non-

extensionally anyway. 

 

 
28 This assumes that Beatty and Mill’s definition of trait fitness as the average of the organisms’ fitnesses, 
follows through regardless of whether traits are defined extensionally or not. Indeed, Sober (2013, p. 336) 
derives their definition from independent premises, namely i) the identity of an organism’s fitness with 
the fitness of its total trait complex, and ii) that at least some of the single case chances be identical to 
measurable frequencies, as befits the fact that they are testable (I thank a referee for pressing me to state 
this explicitly).  
29 Except perhaps for fitness regarded as a property of an arbitrary population, which by necessity must 
be defined as some statistical function over the arbitrary set of elements in the population. However, the 
concept of fitness as applied to an arbitrary population – unlike populations naturally defined by traits – is 
of no use in understanding evolution by natural selection.  
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ii) Properties of Populations and Reproductive Success 

 

 Ariew and Ernst (2009) argue that the Gillespie examples discussed in section 

three, which show sensitive dependence on higher moments of the offspring 

distribution, already by themselves demonstrate that evolutionary fitness cannot be 

understood as a propensity. 30 On their account PIF requires fitness to be “a function of 

the properties of individual members of the population within their local environmental 

conditions” (what they refer to as desiderata (C) on any viable PIF). 31 It follows, on 

their account, that Darwinian natural selection (of the fittest) is not an explanatory 

cause, but merely a statistical phenomenon. Their reasoning is straightforward: Since 

variance is a population level property, which critically depends on population size, it 

cannot be understood to lie in any individual organism. Gillespie (1977) showed fitness 

wi to rely on population size n according to what we may call Gillespie’s equation: 

𝑤$ = 𝜇$ −
𝜎$% 𝑛Q , where µi is the fitness in reproductive output, and si is the variance 

within a generation. This entails that we can increase population size – and therefore 

variance – by adding members even if they “do not causally interact with the existing 

members of the population at all” (Ariew and Ernst, 2009, p. 294). Yet variance can 

have a decisive role in determining reproductive success, so it follows that the 

explanation of natural selection involves non-causal, merely statistical features of 

populations at large.  

 

 The argument does not apply to CNF, which is not committed to (C). It is firstly, 

as just noted, not committed to only taking token organisms as the recipients or units of 

propensity ascriptions. But, in addition, even when applied to individual organisms as 

the appropriate units, CNF is not committed to identifying fitness with any one physical 

property of those organisms, at the expense of the probability distributions, and the 

frequencies observed. Rather CNF takes fitness to be the complex combination of all of 

them, and their interconnections. 

 

 
30 See also Matthen and Ariew (2002, 2009) for related arguments, and Millstein (2006) for a perceptive 
response that emphasises natural selection at the population level. The CNF largely agrees with Millstein 
here, except for her claim that population-level propensities are causal, since, as explained earlier, on the 
tripartite conception within the CNC, generally, propensities do not cause but rather ground single case 
chances.  
31 Ariew and Ernst (2009, p. 291). Okasha (2006) provides a good overview of population genetics. 
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 Nevertheless, Ariew and Ernst make the additional point that even if (C) is 

abandoned as a desideratum, there are two other essential desiderata on PIF that cannot 

be jointly satisfied in any case, namely (A): “a fitness concept must be able to explain 

why one trait is expected to be better represented in a population under the influence of 

natural selection”; and (B): “a fitness concept must enable us to compare the degree to 

which natural selection will favour the spread of one trait over another, alternative trait” 

(Ariew and Ernst, 2009, p. 290). Yet, their reasons for thinking that (A) and (B) are not 

co-satisfiable is the fact that for any given evolutionary explanation of reproductive 

success, there is more than one statistic, even more than one distribution, that is 

appropriate in different cases, depending on the environment, the population, and the 

trait or type of organism considered. 32 Since there can be no unique comparison, there 

is no univocal explanation. Ariew and Ernst are therefore reading (B) in a particular 

robust way, as implying that any comparative measure must be unique, at any rate for 

any given set of environmental conditions.  

 

By contrast, CNF embraces pluralism for the statistical distributions that manifest 

underlying propensities – the tripartite conception is in fact of a piece with the thought 

that differences in the environmental conditions, and within populations, bring out 

different probabilistic manifestations of the underlying propensities. An arbitrary 

change in the membership of the population would not affect the underlying 

propensities of the organisms already included in the population, but it would alter their 

probabilistic manifestation in the group as well as obviously their relative frequencies in 

the set. Ariew and Ernst’s critique relies on conflating such distinctions. If, by contrast, 

desideratum (B) is understood to already imply pluralism then the CNF naturally fulfils 

it, since it enables many different comparisons of the degrees to which natural selection 

favours one trait over another, depending sensitively on trait, population, environment, 

and underlying propensity ascriptions to either organisms, genotypes, or traits (or any of 

their sets). Ariew and Ernst’s difficulties with the explanatory character of fitness are 

 
32 As they write: “no single unified account of fitness that satisfies conditions A and B can be found” 
(Ariew and Ernst, 2009, p. 298). This is echoed in another well-known paper by Ariew and Lewontin 
(2004, p. 348): “any attempt to introduce a unitary analogous concept of ‘reproductive fitness’ into 
dynamical models as a scalar ordinal, which will explain or predict quantitative changes in the frequency 
of types, must fail”. If by ‘unitary’ it is meant an account that identifies fitness precisely with one and 
only one property of the organisms involved in each case, I agree. However, such an account of fitness 
would be anathema to the plural character of CNF explored here. It does not follow though that there are 
no propensities involved in fitness, or that they do not have an explanatory role. 
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thus seen to be a consequence of their underlying identification of fitness with the 

probability distributions that make up only a part of a necessarily more complex 

concept.  

 

 

7. Conclusions 

 

 In this paper I have defended a new approach to evolutionary fitness in terms of 

what I call the complex nexus of chance (CNC). The resulting complex nexus of fitness 

(CNF) clarifies some of the commitments of a propensity account of fitness. It does not 

attempt to reduce fitness to the concept of propensity, nor does it think of propensity as 

a mere interpretation of probability. Nevertheless, propensities play a critical 

explanatory role in the account, and the tripartite distinction at the heart of the CNF is in 

close agreement with modelling practice. I first showed that the CNF overcomes the 

“momentous objection” regarding the influence of higher moments of the offspring 

distribution. I then argued that it renders superfluous the debate over whether fitness is 

properly long or short term. I finally argued that the explanatory power of fitness as a 

complex chancy nexus is revealed by a careful application to a range of issues and 

contemporary debates within the philosophy of biology; and I provided two such 

instances in the debates surrounding the objects of selection and the effects of 

population size on fitness. 

 

 

References 

 

Abrams, M. (2009), “The Unity of Fitness”, Philosophy of Science, 76, pp. 750-761. 

 

Abrams, M. (2012), “Measured, Modelled, and Causal Conceptions of Fitness”, 

Frontiers in Genetics, 3 (196), pp. 1-12.  

 

Abrams, M. (2014), “Environmental Grain, Organism Fitness, and Type Fitness”, in 

Barker, Desjardins, and Pearce, eds., Entangled Life: Organism and Environment in the 

Biological and Social Sciences, Springer, pp. 127-151. 

 



 32 

Abrams, M. (2015), “Probability and Manipulation: Evolution and Simulation in 

Applied Population Genetics”, Erkenntnis 80, pp. 519-549. 

 

Abrams, M. (forthcoming), Evolution and the Machinery of Chance, Chicago: 

University of Chicago Press.  

 

Ariew, A. and R. C. Lewontin (2004), “The Confusion of Fitness”, British Journal for 

the Philosophy of Science 55, pp. 347-363.  

 

Ariew, A. and Z. Ernst (2009), “What Fitness Can’t Be”, Erkenntnis 71 (3), pp. 289-

301. 

 

Beatty, J. and S. Finsen (1989), “Rethinking the Propensity Interpretation: A Peek 

Inside Pandora’s Box”, in M. Ruse (ed.), What the Philosophy of Biology is, Kluwer 

Academic Publishers, pp. 17-30. 

 

Brandon, R. N. (1978), “Adaptation and Evolutionary Theory”, Studies in History and 

Philosophy of Science, 9, pp. 181-206. 

 

Brandon, R. N. (1990), Adaptation and Environment, Princeton University Press.  

 

Brandon, R. N. and J. Beatty (1984), “The Propensity Interpretation of ‘fitness’ – No 

Interpretation is no Substitute”, Philosophy of Science, 51 (2), pp. 342-347. 

 

Crow, J. and Kimura, M. (1956), “Some Genetic Problems in Natural Populations”, 

Proceedings of the Third Berkeley Symposium on Mathematical Statistics and 

Probability, 4, pp. 1-22. 

 

Drouet, I. and F. Merlin (2015), “The Propensity Interpretation of Fitness and the 

Propensity Interpretation of Probability”, Erkenntnis, 80, pp. 457-468.  

 

Eagle, A. (2004), “Twenty-one Arguments against Propensity Analyses of Probability”, 

Erkenntnis, 60, pp. 371-416. 

 



 33 

Fisher, R. A. (1934), “Indeterminism and Natural Selection”, Philosophy of Science, 1 

(1), pp. 99-117. 

 

Gillespie, J. H. (1974), “Natural Selection for Within-Generation Variance in Offspring 

Number”, Genetics, 76, pp. 601-606. 

 

Gillespie, J. H. (1977), “Natural Selection for Variances in Offspring Numbers: A New 

Evolutionary Principle”, American Naturalist 111, pp. 1010-1014. 

 

Gillies, D. (2000), Philosophical Theories of Probability, London: Routledge.  

 

Godfrey-Smith, Peter (2009), Darwinian Populations and Natural Selection, Oxford 

University Press. 

 

Grimmett, G. and D. Stirzaker (1982), Probability and Random Processes, Oxford: 

Oxford University Press. 

 

Hacking, I. (1965), The Logic of Statistical Inference, Cambridge: Cambridge 

University Press. 

 

Hájek, A. (1997), “’Mises-Redux’ - Redux: Fifteen Arguments Against Finite 

Frequentism”, Erkenntnis, 49, pp. 209-227. 

 

Hájek, A. (2003), “What conditional probability could not be”, Synthese 137 (3), pp. 

273-323. 

 

Hájek, A. (2009), “Fifteen Arguments against Hypothetical Frequentism”, Erkenntnis, 

70 (2), pp. 211-235. 

 

Hájek, A. and C. Hitchcock, Eds., (2016), The Oxford Handbook of Probability and 

Philosophy, Oxford University Press.  

 

Humphreys, P. (1985), “Why Propensities Cannot be Probabilities”, The Philosophical 

Review, 94 (4), pp. 557-570. 



 34 

 

Krzanowski, W. J. (1998), An Introduction to Statistical Modelling, London: Wiley and 

Sons.  

 

Matthen, M. and A. Ariew (2002), “Two Ways of Thinking about Fitness and Natural 

Selection”, The Journal of Philosophy, XCIX (2), pp. 55,83. 

 

Matthen, M. and A. Ariew (2009), “Selection and Causation”, Philosophy of Science, 

76, pp. 201-224.  

 

Mellor, H. (2005), Probability: A Philosophical Introduction, London: Routledge.  

 

Mills, S. and J. Beatty (1979), “The Propensity Interpretation of Fitness”, Philosophy of 

Science, 46 (2), pp. 263-286.  

 

Millstein, R., (2003), “Interpretations of Probability in Evolutionary Theory”, 

Philosophy of Science, 70 (5), pp. 1317-1328. 

 

Millstein, R. (2006), “Natural Selection as a Population-Level Causal Process”, British 

Journal for the Philosophy of Science, 57, pp. 627-653. 

 

Millstein, R. (2016), “Probability in Biology: The Case of Fitness”, in Hájek and 

Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy, Oxford 

University Press, pp. 601-622. 

 

Mumford, S. and R. Anjum (2011), Causes out of Powers, Oxford: Oxford University 

Press. 

 

Okasha, S. (2006), “Population Genetics”, Stanford Encyclopaedia of Philosophy.  

 

Pence, C. and G. Ramsey (2013), “A New Foundation for the Propensity Interpretation 

of Fitness”, British Journal for the Philosophy of Science 64, pp. 851-881. 

 



 35 

Popper, K. (1959), “The Propensity Interpretation of Probability”, British Journal for 

the Philosophy of Science, 10 (37), pp. 25-42. 

 

Reichenbach, H. (1934/1949), The Theory of Probability: An Inquiry into the Logical 

and Mathematical Foundations of the Calculus of Probability, University of California 

Press.  

 

Rice, S. (2004), Evolutionary Theory: Mathematical and Conceptual Foundations, 

Sunderland MA: Sinauer Associates Publishers. 

 

Rice, S. (2008), “A stochastic version of the Price equation reveals the interplay of 

deterministic and stochastic processes in evolution”, BMC Evolutionary Biology 8, pp. 

262ff. 

 

Rosenberg, A. (1982), “On the Propensity Definition of Fitness”, Philosophy of Science 

45, pp. 263-286. 

 

Sober, E. (1984), The Nature of Selection, University of Chicago Press. 

 

Sober, E. (2001), “The Two Faces of Fitness”, in R. Singh, D. Paul, C. Krimbas and J. 

Beatty (eds.), Thinking about Evolution: Historical, Philosophical, and Political 

Perspectives, Cambridge University Press, pp. 309-321.  

 

Sober, E. (2010), “Evolutionary Theory and the Reality of Macro-Probabilities”, in E. 

Eells and J. H. Fetzer, eds., The Place of Probability in Science, Boston Studies in the 

Philosophy of Science, 84, pp. 133-161. 

 

Sober, E. (2011), “A Priori Causal Models of Natural Selection”, Australasian Journal 

of Philosophy, 89 (4), 571-589. 

 

Sober, E. (2013), “Trait Fitness is not a Propensity, but Fitness Variation is”, Studies in 

History and Philosophy of Biological and Biomedical Sciences, 44, pp. 336-341.  

 



 36 

Sober, E. (2020), “Fitness and the Twins”, Philosophy, Theory, and Practice in Biology, 

12 (1): pp. 1-13.  

 

Suárez, M. (2011), “Four theses on Probabilities, Causes, Propensities”, in M. Suárez, 

Ed., Probabilities, Causes and Propensities in Physics, Synthese Library, Springer, pp. 

1-41. 

 

Suárez, M. (2013), “Propensities and Pragmatism”, The Journal of Philosophy, 110 (2), 

pp. 61-92. 

 

Suárez, M. (2014), “A Critique of Empiricist Propensity Theories”, European Journal 

for the Philosophy of Science, 4 (2), pp. 215-231. 

 

Suárez, M. (2017), “Propensities, Probabilities and Experimental Statistics”, in M. 

Massimi et al., EPSA15 Selected Papers: European Studies in the Philosophy of 

Science, 6, pp. 335-345. 

 

Suárez, M. (2018), “The Chances of Propensities”, British Journal for the Philosophy of 

Science, 69, pp. 1155-1177. First published online August 2017. 

 

Suárez, M. (2020), Philosophy of Probability and Statistical Modelling, Cambridge 

Elements, Cambridge University Press. 

 

Triviño, V. and L. de la Rosa (2016), “A Causal Dispositional Account of Fitness”, 

History and Philosophy of Life Sciences, 38 (6), pp. 1-18. 

 

Von Mises, R. (1928/1953), Probability, Statistics and Truth, New York: Dover 

Publications. 

 

Walsh, D., Ariew, A., and D. Matthen (2016), “Four Pillars of Statisticalism”, Philos. 

Theor. Pract Biol, 9 (1), pp. 1-18. 

 

Walsh, D. (2010), “Not a Sure Thing: Fitness, Probability and Causation”, Philosophy 

of Science 77 (2), pp. 147-171. 


