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Abstract

In a recent article in this journal, Sus purports to account for what have
been identified as the ‘two miracles’ of general relativity—that (1) the local
symmetries of all dynamical equations for matter fields coincide, and (2) the
symmetries of the dynamical equations governing matter fields coincide lo-
cally with the symmetries of the metric field—by application of the familiar
result that every symmetry of the action is also a symmetry of the resulting
equations of motion. In this reply, we argue that, while otherwise exemplary
in its clarity, Sus’ paper fails in this regard, for it rests upon a illegitimate
application of the aforementioned result. Thus, we conclude, pace Sus, that
these two miracles persist in general relativity.
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1 Introduction
In a recent article in this journal [23], Sus argues that what Read et al.
[20] dub the ‘two miracles’ of general relativity—that (1) the local sym-
metries of all dynamical equations for matter fields coincide, and (2) the
symmetries of the dynamical equations governing matter fields coincide lo-
cally with the symmetries of the metric field—are after all derivable from
innocuous assumptions on the matter sector of that theory. In Sus’ words,

the Einstein field equation constrains the equations for the non-
gravitational fields by imposing that, insofar as such fields are
sources for the gravitational fields, such equations must be lo-
cally Poincaré invariant, and the motion of force-free bodies is
approximately geodesic. This provides content to the attempts
at explaining the constraints of the non-gravitational laws by the
metric, carried out in the [geometrical approach], in a way that it
does not presuppose any mysterious a priori connection and that
is relevant to accounting for the miracles. [23, p. 16]

The purpose of this response article is to demonstrate that Sus’ argument
does not go through as intended; as we will argue, he makes illegitimate
assumptions regarding the action of the matter sector from whose (local) in-
variance under the Poincaré transformations the (local) Poincaré invariance
of the matter field equations is taken to follow. In particular, Sus appeals
to the familiar result that every variational symmetry (i.e., symmetry of the
action) is also a dynamical symmetry (i.e., symmetry of the equation of mo-
tion). (See, for instance, [2] and [7, §9.3].) However, as we will see, Sus
applies this result to the on-shell action (i.e., assuming the equations of mo-
tion to hold), whereas in fact the result holds only for the off-shell action
(i.e., without assuming the equations of motion to hold). This turns out to
be fatal for Sus’ purported derivation of the miracles.

In the remainder of this paper, we elaborate on this in detail. In §2, we
expose the lacuna in Sus’ reasoning regarding the symmetry theorem. In §3,
we give an explicit example demonstrating that Sus’ inferences fail.

There is one further comment which we should make before we be-
gin. One might legitimately raise the concern that all work on the ‘two
miracles’ of general relativity is stymied by the lack of precision in these
discussions—in particular, regarding the notion of ‘local symmetries’ which
these discussions deploy. (See, for example, [24, §3.1] for a pointed critique
in this regard.) Although in our view appeal to recent work such as [8] can
go some way to resolving these issues, for the purposes of this note we do
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not engage with these discussions: rather, our focus lies solely on Sus’ ar-
gument, as presented in [23], and we accept the shared premises of Read et
al. and Sus—in particular, regarding the meaningfulness of the centrally-
employed notion of ‘local symmetry’ in the sense of form-invariance of
mathematical structures defined at each point of the manifold under specific
coordinate transformations, such as those of the Poincaré group.1

2 A problematic inference
Recall that the metric field equations and matter field equations of general
relativity can be obtained by extremising the action S = SG + SM, where
SG =

∫
R
√
−gd4x and SM =

∫
LM

(
gab,φ

i
)√
−gd4x. SG is, of course, the

Einstein-Hilbert action. Recall also that the variation of SM reads

δSM =
∫

δ (LM
√
−g)

δgab
δgabd4x+

∫
δLM

δφi
δφi
√
−gd4x

=
∫ (

δLM

δgab
+

1
2

gabLM

)
δgab
√
−gd4x+

∫
δLM

δφi
δφi
√
−gd4x. (1)

Sus’ strategy is to derive the Poincaré invariance of the equations of
motion for the matter fields φi via the following steps:

1. Assume that the equations of motion for (all) φi hold. Thereby, the
second term in (1) can be dropped and we obtain

δSon-shell for φi
M =

∫
T ab

δgab
√
−gd4x, (2)

where the definition of the Hilbert stress-energy tensor

T ab :=
δLM

δgab
+

1
2

gabLM (3)

has been used. (There are three salient points to be made here. First,
in the following, one should distinguish Son-shell for φi

M and SM. Second,
Sus neglects the second term in the Hilbert stress-energy tensor (3); we
further discuss this matter in §3 in the context of a consideration of the
symmetries of (2). And third, locally, the Hilbert stress-energy tensor
does not always coincide with a locally-derived Noether stress-energy
tensor—see our discussion in §3.)

1See the appendix of [20] for details.
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2. Show then that δSon-shell for φi
M is (locally) invariant (up to boundary

terms) under Poincaré transformations.

3. Infer from the premise that δSon-shell for φi
M is (locally) invariant (up

to boundary terms) under Poincaré transformations to the conclusion
that the equations of motion for (all) φi are (locally) invariant under
Poincaré transformations.

Although it is not the focus on our arguments in this paper, let us say
something on Sus’ methodology in the second of these steps. It is first argued
that matter fields which source the Einstein equation Gab = 8πTab must have
stress-energy tensors Tab which satisfy ∇aTab = 0. This is taken to mean that
there are ten locally conserved currents T abωb, associated respectively with
ten approximate local Killing vector fields ωb relative to gab—so that we
have

∂a

(
T ab

ωb

)
= 0, (4)

for any normal coordinate system (note that, given that ∇ is induced by
a Lorentzian metric, there is at least a whole class of normal coordinate
systems associated to one another via local Poincaré transformations).2

Sus alludes to using the converse of Noether’s first theorem at this stage
to make statements about the symmetry group of the action:

... one can derive the transformation properties of an action in-
tegral from the existence of divergences of some quantities by
applying the converse of Noether’s first theorem. This is how it
would work out in this case. ... [23, p. 19]

If these ten currents are associated to the matter sector of the theory—i.e. the
theory encoded by the action SM—then one can indeed use the converse
of Noether’s first theorem to assert the (local) invariance of SM under ten
corresponding continuous (local) symmetries. Note that this would still not
mean that these ten locally conserved currents are necessarily associated
with the local Poincaré symmetry group; after all, the conventional wisdom
that a conserved current (e.g. energy-momentum) is always connected to the
same kind of symmetry transformation has been demonstrated to be false
[22].

But it is in particular the antecedent of the above conditional claim which
can be problematic. These ten currents seem to be associated to the mat-
ter sector if the metric gab relative to which the Killing vectors in these

2Here (to fill in some details absent in Sus’ discussion at [23, p. 18]), one can regard ∂a as a
‘coordinate derivative operator’—see [12, p. 64]. If one prefers, one could make the same point
by writing (4) in coordinates.
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currents—and thus the currents themselves—are defined is the unambigu-
ous metric structure ‘seen’ by the matter sector. However, as we will see in
§3, gae∇eTab = 0 can obtain without the matter Lagrangian from which Tab
is derived featuring the metric gab in any straightforward sense, and more-
over without the equations of motion exhibiting local Poincaré symmetries.
In such a case, there is then no physical motivation to ascribe any physical
meaning to (matter) currents obtained from Killing vectors that are associ-
ated to gab.

All of the above being said, one can argue by other means (and, indeed,
Sus accomplishes this in [23, §5]—clearly, without using the converse of
Noether’s first theorem) that Son-shell for φi

M is locally Poincaré invariant. As
we will continue to argue below, Son-shell for φi

M does not contain the decisive
information about the matter sector which would allow one to derive the
(local) Poincaré invariance of the matter equations of motion; this constitutes
a fatal blow to Sus’ argument.

In the third step above, Sus makes appeal to the statement that all sym-
metry transformations that leave the action invariant (up to boundary terms)
also leave invariant all the equations of motion that follow via Hamilton’s
principle from that action [23, fn. 44]. However, showing via this state-
ment that the equations of motion for the fields φi are (locally) Poincaré
invariant requires showing the (local) invariance of all terms in the action
SM involving φi under the Poincaré symmetry transformation—not just that
of Son-shell for φi

M , i.e. not just of that part of SM which remains when the equa-
tions of motion for the φi are applied to the action (see e.g. [2]). In other
words, one could say that Sus’ above reasoning involves an illegitimate step
between (2) and (3), namely:

2.5. Infer from the premise that δSon-shell for φi
M is (locally) invariant (up to

boundary terms) under Poincaré transformations to the conclusion that
δSM is (locally) invariant (up to boundary terms) under Poincaré trans-
formations.

Heuristically speaking, the problem then lies in disregarding the fact that the
information about the equations of motion (including their symmetry struc-
ture) is first and foremost to be found in their corresponding action term
(i.e., the action terms from which the equations of motion of interest actu-
ally follow from a variational principle—which would be SM in the given
case, rather than Son-shell for φi

M ). To make the point as tangible as possible, we
provide in §3 a clear counterexample to the soundness of step (3). Before
doing so, however, we demonstrate in the remainder of this section some
difficulties regarding other perhaps prima facie innocuous assumptions and
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claims made in Sus’ paper.
An important passage in Sus’ article comes in footnote 39, where he

recognises that “...one could restrict further the symmetries of matter laws
through the introduction of fixed fields that break local Poincaré invari-
ance”, but questions whether the resulting theory “would be GR anymore”
[23, fn. 39]. If theories featuring fixed fields are precluded by fiat, then
since Sus is also dealing with general relativity—and, hence, theories with
a Lorentzian metric field appearing in the associated action principles—one
might think that, by stipulation, Sus is dealing with theories in which the
off-shell action has local Poincaré symmetries, and in turn (after varying
the action) that δSon-shell for φi

M is invariant locally under Poincaré transforma-
tions.3

We have seen that step (2.5) is a problematic inference in general. Given
the above, however, we are now in a position to see that Sus has (at least on
this reading) in fact sought to secure the consequent (viz., the local Poincaré
invariance of δSM) by other means—i.e., by stipulating that theories fea-
turing fixed fields in their action are precluded. But this, in turn, allows us
to conclude two things. First: Sus’ reasoning via the symmetry theorem (as
presented in §2), is a red herring: what he seeks to demonstrate is, in fact, as-
sumed—albeit implicitly—in footnote 39. Insofar as this (the thought might
go) precludes by fiat miracle-violating scenarios, one could argue that Sus
has, in fact, not derived these miracles within the framework of general rel-
ativity; rather, he too presupposes them.

In fact, however, this reasoning itself is problematic—for the preclusion
of fixed fields in a theory with a Lorentzian metric field gab appearing in its
action does not necessarily yield local Poincaré invariance—think of a case
in which terms in action also couple to an unfixed but timelike vector field
λ a; such a theory will be discussed explicitly in §3.4 Thus, the correct thing
to say here, ultimately, is this: Sus’ reasoning regarding the symmetry theo-

3Read et al. [20], Sus [23], and ourselves all make use of the notion of a fixed field presented
by Pooley in [15, p. 115]—such an object is a field fixed identically in all kinematical possibilities
of a theory. In addition, all three parties can be taken to accept the understanding of diffeomor-
phism invariance presented by Pooley [15, p. 117], for which the salient transformations are those
which transform dynamical fields, but not fixed fields. For further details on all these assumed
background notions, see [15, 16, 19].

4Notably, such a condition does not have to violate the diffeomorphism invariance of the theory
in question, for the space of kinematical possibilities 〈M,gab,λ

a,Φ〉 of some theory T , where Φ

is a placeholder for material fields, will partition into equivalence classes under diffeomorphisms
in which the vector field λ a is timelike, spacelike, or null. By contrast, fixing λ a privileges a
representative of (some) of the above-mentioned equivalence classes, and thereby breaks the dif-
feomorphism invariance of the theory.
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rem fails; moreover, the restrictions made in footnote 39 are still insufficient
to secure that which Sus is after.

Finally, even if it were the case that the assumptions made in that foot-
note were sufficient to secure the miracles, there still seems to be room to
argue (potentially with Sus) that general relativity, correctly understood, in-
deed assumes (if only implicitly) the contents of footnote 39: one could
maintain that the preclusion of fixed fields is a kinematical constraint of
general relativity, delimiting the range of what is possible according to that
theory. Proponents of the ‘dynamical view’ promulgated by Brown and Poo-
ley [3, 5, 6] are unlikely to be convinced—for their concern is this: why is it
the case, in the actual, physical world, that material fields are such that they
all obey dynamical equations of a certain kind? From the point of view of
these theorists, abstract modal talk of the kinematical possibilities according
to some theory does nothing to resolve this physical question.

In sum: in our view, Sus’ work does not afford the possibility of ‘relativ-
ity without miracles’, for (a) the specific reasoning deployed in his paper—
proceeding via the implicit assumption of (2.5)—is flawed on technical grounds,
(b) the assumptions presented in footnote 39 of Sus’ paper might be seen as
begging the question by (the thought might go) assuming the content of the
miracles, and (c) even then, these assumptions are, in fact, insufficient to
guarantee the miracles. There remains one further point to be made in this
article. In the interests of clarity, it would be valuable to present a theory
which demonstrates the illegitimacy of the inference in (2.5), as presented
in §2. Such a theory we now present.

3 A problem case for Sus’ argument
We consider a ‘Newtonian’ variant of the Jacobson-Mattingly theory (which
in turn was introduced in [10], and later exposed to the philosophical litera-
ture in [20, §6]). First recall that the equation of motion for the gravitational
potential ϕ of Newtonian gravity is the Newton-Poisson equation,

hab
∇a∇bϕ = 4πGNρ, (5)

where hab is a degenerate metric field of signature (0,1,1,1) [12, ch. 4]; for
simplicity in the ensuing, we will set Newton’s constant GN = 1, and will
also assume a constant and normalised matter density content (ρ = 1)—
although the latter is a significant restriction, this will not compromise the
point which we seek to make in this section. Now, letting λ a be some unfixed
normalised timelike vector field, recall that we can define hab in terms of the
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(inverse) metric field gab, as

hab = gab +λ
a
λ

b. (6)

Treating hab in (5) as shorthand for (6), and moreover interpreting ϕ as a
matter sector scalar field, we can write down the matter sector Lagrangian
as

LM =
1
2

hab
∇aϕ∇bϕ +4πϕ, (7)

where ∇ is the Levi-Civita derivative operator associated with gab. Since
λ a is unfixed, this action is still diffeomorphism invariant (see footnote
4); accordingly, the response equality ∇aTab = 0 (‘conservation of energy-
momentum’) obtains.5 Indeed, this covariant conservation of the stress-
energy tensor can be shown explicitly—to do so, note first that the equations
of motion for λ a and ϕ are, respectively,

λ
a
∇aϕ∇bϕ = 0, (8)

∇a

(
hab

∇bϕ

)
= 4π; (9)

in particular, (8) implies λ a∇aϕ = 0, so ∇aϕ is orthogonal to λ a. Further-
more, the Hilbert stress-energy tensor can be computed to be

Tab =
1
2

∇aϕ∇bϕ− 1
4

gabhcd
∇cϕ∇dϕ− 1

2
gab(4π)ϕ. (10)

Using (8)-(10), one can thereby compute:

gea
∇eTab =

1
2

gea (∇e∇aϕ)∇bϕ +
1
2

gea
∇aϕ∇e∇bϕ− 1

2
gabgeagcd (∇e∇cϕ)∇dϕ

− 1
4

gabgea
∇e

(
λ

c
λ

d
)

∇cϕ∇dϕ− 1
2

gabgea
λ

c
λ

d (∇e∇cϕ)∇dϕ

− 1
2

gabgea (4π)∇eϕ

=
1
2
(gea

∇e∇aϕ−4π)∇bϕ− 1
4

∇b

(
λ

c
λ

d
)

∇cϕ∇dϕ

− 1
2

λ
c
λ

d(∇b∇cϕ)∇dϕ

= 0. (11)

5See [4, §5] for an elaboration on the relationship between diffeomorphism invariance and the
covariant conservation of the stress-energy tensor. Of course, the response equation can also be
shown straightforwardly to obtain using the matter field equations of motion, as discussed in the
main text to follow. Finally, note that whether this response equation truly represents conserva-
tion of energy-momentum is a difficult question: see e.g. [9, 11, 13, 18] for recent philosophical
discussion.
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where both equations of motion (8) and (9) were used in the final step.
In this theory, the presence of the timelike vector field λ a means that

locally this Lagrangian is invariant not under the Poincaré group, but rather
under the Leibniz group (see [14, §3.1] for an explicit presentation of this
group). Indeed, the matter action SM =

∫
LM
√
−gd4x is also invariant under

Leibniz transformations, as locally the volume element takes the form of
the unimodular condition

√
−g = 1; one can compute explicitly that this

condition is preserved under Leibniz transformations. This (and only this)
Leibniz invariance obtains also for the equation of motion (5) derived from
the matter action via a variational principle.

At the same time, one can compute

δSon-shell for ϕ , λ a

M =
1
2

∫ (
∇

a
ϕ∇

b
ϕ +gabLM

)
δgab
√
−gd4x. (12)

In particular, note that (12) is invariant under local Poincaré transformations.
After all, for local Poincaré transformations, one has δgab = ∇(aωb) where
ωa is one of the ten approximate local Killing vector fields associated with
gab. Then, one has

δSon-shell for ϕ , λ a

M =
1
2

∫ (
∇

a
ϕ∇

b
ϕ +gabLM

)on-shell for ϕ , λ a

∇(aωb)
√
−gd4x

= 0, (13)

where the term vanishes because ωa is a (local) Killing field. But this means
that, according to the selfsame methodology presented by Sus at [23, pp. 19-
20], the equations of motion for ϕ would have to count as (locally) Poincaré
invariant—something which is evidently not the case in this example: for
recall (5).

A final word on the theory currently under consideration. This consti-
tutes an example of a theory for which a locally-defined gauge-invariant
Noetherian stress-energy tensor and the localised Hilbertian stress-energy
tensor do not even agree up to a constant factor (cf. related examples in
the context of Minkowski spacetime considered in [1]): Locally, the Hilbert
stress-energy tensor for the theory under consideration is

T Hilbert, local
µν =

1
2

∂µϕ∂νϕ− 1
4

ηµν∂iϕ∂
i
ϕ− 1

2
ηµν(4π)ϕ, (14)

where i, j,k, . . . range only over spatial indices. By contrast, using that
L local

M = 1
2 ∂iϕ∂ iϕ+4πϕ , we obtain the following expression for the Noether
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stress-energy tensor:

1
2

T Noether, local
µν =

1
2

∂L local
M

∂ (∂ µϕ)
∂νϕ− 1

2
ηµνL local

M

=−1
2

δ0µδ0ν∂0ϕ∂0ϕ +
1
2

∂µϕ∂νϕ− 1
4

ηµν∂iϕ∂
i
ϕ− 1

2
ηµν(4π)ϕ.

(15)

Notably though, both T Hilbert, local
µν and T Noether, local

µν are conserved just in case
one of them is conserved, as they agree on-shell up to a constant factor.
More concretely, requiring the local version of the equation of motion for
λ a to hold—i.e., requiring that ∂0ϕ = 0—is sufficient to show equality up to
a constant factor.6

4 Closing remarks
Sus’ paper constitutes perhaps the best attempt yet to provide an account of
the miracles of general relativity from within the framework of that theory.
If Sus’ project were successful, then we agree that it would offer “a richer
perspective” on the miracles [23, fn. 61]. However, its success is cast into
doubt by the fact that Sus makes an incorrect inference regarding the vari-
ational symmetry theorem (§2). As Sus himself concedes, this implies that
their miraculous status continues to obtain (“... seeing the coincidence of all
the symmetries of laws as a mere coincidence [is an option which] must be
taken when there is no dynamically determined interaction that can be used
to derive the constraints” [23, p. 27]). At least to us, it is not clear how the
above-identified issues with Sus’ argument can be overcome; in the absence
of such a resolution, it remains the case that the best accounts of the miracles
of general relativity (and ones which would be acceptable to proponents of
the dynamical approach) lie in successor theories—such as spin-2 gravity
[21], or theories of quantum gravity [17].
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(eds.), Thinking About Space and Time: 100 Years of Applying and
Interpreting General Relativity, Springer, 2020.

[9] Carl Hoefer, “Energy Conservation in GTR”, in Studies in the History
and Philosophy of Modern Physics 31(2), 2000.

[10] Ted Jacobson and David Mattingly, “Gravity with a Dynamical Pre-
ferred Frame”, Physical Review D 64, 024028, 2001.

[11] Vincent Lam, “Gravitational and Nongravitational Energy: The Need
for Background Structures”, Philosophy of Science 78(5), 2011.

11



[12] David Malament, Topics in the Foundations of General Relativity
and Newtonian Gravitation Theory, Chicago, IL: Chicago University
Press, 2012.

[13] J. Brian Pitts, “Gauge-Invariant Localization of Infinitely Many Gravi-
tational Energies from All Possible Auxiliary Structures”, General Rel-
ativity and Gravitation 42, 2010.

[14] Oliver Pooley, “Substantivalist and Relationist Approaches to Space-
time”, in R. Batterman (ed.), The Oxford Handbook of Philosophy of
Physics, Oxford University Press, 2013.

[15] Oliver Pooley, “Background Independence, Diffeomorphism Invari-
ance and the Meaning of Coordinates”, in D. Lehmkuhl, G. Schie-
mann and E. Scholz (eds.), Towards a Theory of Spacetime Theories,
Basel: Birkhäuser, 2017.
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