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Abstract

According to Bayesians, agents should respond to evidence by conditionalizing
their prior degrees of belief on what they learn. The main aim of this paper is to
demonstrate that there are common scenarios in which Bayesian conditionalization is
less rational—both from an ecological and an internal perspective—than other theo-
retically well-motivated belief updating strategies, even in very simple situations and
even for an “ideal” agent who is computationally unbounded. The examples also
serve to demarcate the narrow conditions under which Bayesian conditionalization is
guaranteed to be ecologically optimal. A second aim of the paper is to argue for a
broader notion of rationality than what is typically assumed in formal epistemology.
On this broader understanding of rationality, classical decision theoretic principles
such as expected utility maximization play a less important role.

1 Introduction
Although there are notable alternatives,1 the most influential formal framework in epis-
temology is Bayesianism. According to Bayesians, a rational agent’s degrees of belief
should be summarizable in the form of a probability function, and whenever new evidence
is learned, the agent should “conditionalize” and set the new posterior probability of any
given proposition to equal the prior conditional probability of the proposition given the
evidence.2 Conditionalization is just one of a number of possible strategies that agents
can follow when they are deciding how to respond to evidence, but Bayesians claim that

1For example, ranking theory (Spohn, 2012) and the AGM model of belief revision (Alchourrón et al.,
1985).

2A more formal statement of conditionalization is given in Section 2.
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it is the only strategy that is rational—at least for ideal agents who are unencumbered by
computational or time constraints. The main goal of this paper is to refute the preced-
ing claim and to formulate alternative well-justified updating rules that are more rational
than Bayesian conditionalization under plausible—indeed common—conditions. At the
same time, the paper aims to argue for an account of rationality that is broader and more
context-dependent than the account typically assumed among formal epistemologists. On
the broader account, classical decision theoretic principles like dominance and expected
utility maximization will be shown to play a more limited role.

Loosely following Gigerenzer and Todd (2012) and Todd and Brighton (2015), I will
say that a strategy is “ecologically rational” (epistemically or practically) for an agent in
proportion to how effective the strategy is in helping the agent attain its goals in the given
environment. Note that this characterization conceives of rationality as something that
comes in degrees rather than being a binary property. Note also that the characterization is
somewhat vaguely stated, since what it means for a strategy to be “effective”, in particular,
is left imprecise. In general, the appropriate precisification is context-dependent.

Ecological rationality is an “externalist” notion of rationality in the sense that whether
an agent is rational is determined by whether the agent’s behavior in fact is effective in
the agent’s environment, regardless of what the agent may believe. As a complementary
notion, I will therefore say that a strategy is “internally” rational for an agent if and only if
the strategy appears to be ecologically rational from the agent’s point of view.3 As in the
case of ecological rationality, I will argue later that the way in which internal rationality
should be spelled out is context-dependent.

The preceding goals-oriented and context-sensitive characterizations of rationality may
be contrasted with a different conception that is popular in epistemology. Many proponents
of Bayesianism hold that updating one’s degrees of belief in a way that violates Bayesian
conditionalization is irrational in a manner that is similar to the way in which believing a
proposition and its negation at the same time is irrational. That is, it is irrational, not pri-
marily because it will lower your chance of attaining your goals (although most Bayesians
think it will), but because it is a fundamentally incoherent way of responding to evidence.
On this view, Bayesian conditionalization is not merely an instrumentally valuable tool
that happens to work well in a wide variety of circumstances; instead, it is a structural
norm that is binding even if following the norm would lead you to be less successful. Fur-
thermore, this conception of rationality is binary: an agent whose degrees of belief violate
the probability axioms is not merely less rational than an agent whose degrees of belief do
not; instead, such an agent is irrational, full stop.4 I will call this context-independent and

3Easwaran (2021) also draws a distinction between ecological and internal rationality. Easwaran’s dis-
tinction roughly maps onto the distinction I draw below between ecological and formal rationality.

4Although there are notable attempts to make this kind of conception of rationality graded rather than
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binary conception of rationality “formal rationality.”
Bayesians are well aware that formal and ecological rationality can come apart (Greaves,

2013). For example, suppose I give you a gold coin every time you have degrees of beliefs
that are non-probabilistic. Presuming your (only) goal is to amass as many gold coins
as possible, the ecologically rational strategy for you will probably be to have degrees of
belief that are non-probabilistic, even though doing so may be formally irrational.

There are other, more ordinary examples where ecological and formal rationality point
in different directions. In particular, Bayesian computations are very time-consuming and
difficult. Hence, in practice it may often be ecologically rational to use heuristics rather
than rigorous calculations to form informed degrees of belief and make decisions (Tver-
sky and Kahneman, 1974, Marsh et al., 2004, Vranas, 2000, Gigerenzer and Todd, 2012).5

Along similar lines, Bacchus et al. (1990) give examples that show how learning a piece of
evidence may lead (bounded) agents to realize that their earlier expectations of what evi-
dence they would see were mistaken, which may in turn make it rational for those agents to
change their beliefs in a way that disagrees with Bayesian conditionalization. Because of
counter-examples of this sort, it is not uncommon to maintain that Bayesian norms are op-
timal for “ideal” reasoners who are not encumbered by computational limitations, while
conceding that more limited agents may sometimes need to take shortcuts or otherwise
deviate from Bayesian conditionalization. However, insofar as these shortcuts and devia-
tions are justified, Bayesians often maintain that this is in part because they approximate
the Bayesian ideal.

By contrast, the main goal of this paper is to show that Bayesian updating is some-
times not ecologically optimal even for “ideal” reasoners. More particularly, the paper
will argue that there are several commonplace scenarios, where computational limits are
not an obstacle, in which there are updating rules that are more ecologically rational than
conditionalization, and not just because they are imperfect approximations of a Bayesian
ideal. The arguments in this paper are congenial to Douven (2020), who gives an example
that he claims demonstrates that explanationist updating strikes a better balance between
accuracy and speed, given an imagined scenario where the goal is to save patients in an
Intensive Care Unit. Douven points out that, in his example, even an ideal agent (not com-
putationally limited) would be better off not using Bayesian updating. However, Douven’s
example still presupposes that time is a resource constraint. By contrast, the examples
presented in this paper will show that there are circumstances where Bayesian condition-
alization is suboptimal even if there are no resource constraints of any kind.

binary; see, e.g., Zynda (1996), Bona and Staffel (2017), De Bona and Staffel (2018).
5Modern Bayesian statistics is itself only possible because of sophisticated approximations and quite

recent advances in computing. But even with modern computing power, Bayesian calculations are often too
demanding.
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In order for the examples to be convincing, they arguably need to satisfy two require-
ments. First, the way we “score” the extent to which a strategy is rational should not be
rigged against Bayesian conditionalization in the way that the above-mentioned example
(where I pay you to have non-probabilistic degrees of belief) is rigged against probabil-
ism. Indeed, Pettigrew (2021) argues that some of Douven’s examples are flawed in pre-
cisely this way. Second, any alternative updating rule that is purported to be ecologically
more rational than Bayesian conditionalization should have some independent theoretical
motivation. It should not just be an ad hoc updating rule that has been designed to beat
Bayesian conditionalization in one particular situation; instead, there should be clear, prin-
cipled reasons why we would expect the updating rule to be more ecologically rational than
Bayesian conditionalization in a wide range of similar scenarios, and the proposed updat-
ing rule should ideally be grounded in a sound theoretical framework. This paper will use
a “minimum divergence framework” that has been gaining prominence in several disci-
plines in recent years as a general metaframework for motivating and comparing updating
rules.

It is worth noting that there is growing empirical evidence from statistics that Bayesian
conditionalization can perform poorly in applied contexts. For example, if data are “overdis-
persed” —i.e., the variance exhibited by the data is greater than that expected by one’s sta-
tistical model—then Bayesian conditionalization can result in posterior distributions that
are overly confident (Holmes and Walker, 2017).6 Grünwald and van Ommen (2017) give
examples from linear regression that show that Bayesian conditionalization can yield poor
predictions. Finally, using Bayesian conditionalization to assign a probabilities to statis-
tical models has serious challenges, as the resulting posterior probabilities are often very
sensitive to the prior probabilities assigned to parameters inside the models. Yao et al.
(2018) show that a technique they call “Bayesian stacking” (and which will be discussed
below) often produces dramatically better predictions than standard Bayesian conditional-
ization.

Epistemologists may be apt to dismiss the empirical shortcomings of Bayesianism as
practical issues in applied statistics that have little relevance to the standing of Bayesianism
as a normative framework for epistemology. By analogy, utilitarianism is hard to apply
in many of the kinds of complex moral quandaries that arise in practice, but that does
not mean that utilitarianism is not ultimately the correct theoretical framework for ethical
reasoning.7 I personally think this kind of attitude is a mistake (both in epistemology
and ethcis), but I concede that it has some force. Hence, my goal is to provide simple—
but representative—examples where Bayesian conditionalization is less ecologically and

6“Overly confident” in the sense that the posterior distribution is much more sharply concentrated than it
would be if one had the true statistical model.

7I am grateful to Frank Cabrera for emphasizing this analogy to me.
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internally rational than other well-motivated belief updating strategies.
The plan of the paper is as follows. Section 2 introduces the minimum divergence

framework. Section 3 argues that Bayesian conditionalization is not always ecologically
optimal or internally rational if we are unsure whether the hypotheses under consideration
form a partition. Section 4 gives a simple example that shows that Bayesian condition-
alization can be ecologically suboptimal and internally irrational even if we know that
the hypotheses under consideration form a partition. Section 5 details the conditions un-
der which Bayesian conditionalization is guaranteed to be ecologically optimal. Finally,
Section 6 ends the paper with a few concluding remarks.

2 A minimum divergence perspective on Bayesian updat-
ing

Bayesian conditionalization says that an agent’s posterior degrees of belief should be re-
lated to the agent’s prior conditional degrees of belief in the following way:

Bayesian conditionalization: If p is a probability function that quantifies a
rational agent’s degrees of belief, p(H) is the agent’s prior degree of belief in
H , and the agent learns E (and nothing else), then the agent’s posterior degree
of belief, pE(H), is equal to the agent’s prior degree of belief inH conditional
on E:

pE(H) = p(H|E) (2.1)

In practice, the agent’s prior conditional degree of belief in H given E, p(H|E), is
usually calculated via the following version of Bayes’s formula, which relates p(H|E) to
the likelihood p(E|H) and prior probability p(H) of H:

p(H|E) = p(E|H)p(H)∑
i p(E|Hi)p(Hi)

(2.2)

Note that the denominator of 2.2 assumes that H belongs to a partition, i.e., an exhaus-
tive set of mutually exclusive propositions {Hi}.

Although there are several justifications for Bayesianism, a particularly powerful and
general foundation is provided by the minimum divergence framework ((Bernardo (1979),
van Fraassen (1981), Diaconis and Zabell (1982), Berger et al. (2009), Bissiri et al. (2016),
Eva and Hartmann (2018)). In the minimum divergence framework, belief updating is re-
garded as a balancing act: when we receive new evidence, we should adjust our beliefs,
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but we should do so gradually and incrementally; we should not let our beliefs be com-
pletely dictated by whatever the latest news is. In Bayesian terminology, what we want is
for our posterior degrees to belief to stay relatively close to our prior degrees of belief, all
while according due weight to our evidence. The minimum divergence framework formal-
izes the preceding ideas mathematically. The starting point is a classical result that traces
back to Williams (1980) and was generalized by Diaconis and Zabell (1982), which shows
that Bayesian conditionalization uniquely solves the following optimization problem: find
the joint posterior distribution that is as close as possible—in terms of a certain measure
of statistical distance called the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951)—to the joint prior distribution, subject to the constraint that the posterior probabil-
ity of the evidence equal one. More formally, the optimization problem can be formulated
as finding the posterior probability function pE that minimizes the following expression,
subject to the constraint that pE(E) = 1:

KL(pE, p) =
∑
i

∑
j

pE(Hi, Ej) log
pE(Hi, Ej)

p(Hi, Ej)
(2.3)

If we use the fact that pE(E) = 1, we can simplify the above expression and write it
in the following alternative manner (indeed, some authors (e.g., Bissiri et al. (2016)) have
2.4 as their starting point):

Optim(pE) =
∑
i

pE(Hi) log
pE(Hi)

p(Hi)
−
∑
i

pE(Hi) log p(E|Hi) (2.4)

Here, we see that the KL divergence between the joint posterior and joint prior is
really made up of two components: the first component is the KL divergence between
the posterior and prior probability distributions over the hypotheses under consideration,
while the second component is a sum (weighted by the posterior distribution) of the log
likelihood of each hypothesis on the evidence. Although 2.4 may look complicated—
and perhaps no more illuminating than 2.3—it provides a valuable perspective on what
the posterior distribution actually is. In words, it is a compromise between two different
goals: the first goal is to stay close (in terms of Kullback-Leibler divergence) to the prior
distribution—this is what the first term in 2.4 ensures; the second goal—quantified by
the second term in 2.4—is to assign a high posterior probability to hypothesis that have
accurately predicted the evidence, where predictive accuracy is measured by way of the
“logarithmic scoring rule”, which scores the predictive accuracy of a hypothesis, H on
evidence E as log p(E|H). The Bayesian posterior distribution is the distribution that
uniquely balances these two goals in an optimal way, given that the goals are quantified
in terms of minimizing expression 2.4. Regarding the Bayesian posterior distribution as
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a solution to a certain optimization problem is useful because it immediately suggests
the possibility that different situations and different values may make us want to solve
optimization problems other than 2.4. Below we will see concrete examples where this is
arguably the case.

3 Case 1: The agent is unsure whether the propositions
under consideration form a partition

As was mentioned earlier, calculating the quantity p(H|E) usually involves using formula
2.2, which assumes that the hypotheses under consideration form a partition. However, in
many situations—both everyday and scientific—it is not easy to determine whether this
assumption is satisfied. For example, there are various purported explanations for why
the dinosaurs went extinct, including that there was an asteroid strike and that the climate
changed. A scientist who wanted to do a Bayesian analysis to determine which hypothesis
is most plausible would have to assume that these explanations form a partition, but it is
hardly unthinkable that there might be some other explanation that the scientific literature
has not considered. In general, there is no way of knowing whether one of the hypotheses
under consideration is true, unless the hypotheses form a logical partition that guarantees
that one of them must be true (e.g., the hypotheses are of the form {A,¬A}).

In the Bayesian statistical literature, the situation where we are not sure whether our
hypotheses form a partition is called the “M -open” case (Bernardo and Smith, 1994); in
the philosophical literature, it is sometimes known as the problem of unconceived alter-
natives (Stanford, 2006). In both literatures, it is recognized as a significant problem for
Bayesianism,8 both theoretically and in practice. Arguably, it is a problem that would arise
even for a hypothetical computationally unbounded agent, unless the agent were literally
omniscient—if the set of hypotheses do not form a logical partition, then it seems there is
no way of knowing whether one of the hypotheses is true without knowing what the true
hypothesis is.

There are two standard proposals for how Bayesians might solve the problem of un-
conceived alternatives. The first proposal is to add a a “catchall” alternative hypothesis to
the set of hypotheses that says that none of them are true, i.e., C = ¬(H1∨H2∨ . . .∨Hn)
Shimony (1970). Adding C to the set of hypotheses will logically guarantee that the set
forms a partition, so Bayesian conditionalization can now proceed unhindered—at least
in theory. However, there are major problems with this proposal: including C in the set
of hypotheses means we will have to assign it a prior probability distribution and a likeli-

8Although it is by no means only a problem for Bayesianism.
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hood on the evidence. It is by no means clear how this is to be done in a way that is not
completely arbitrary (see, e.g., Chapter 1 of Sober (2008) for detailed discussion).

A second—and more promising—solution to the problem of the unconceived alter-
native is simply to concede that our degrees of belief are always relative to the set of
hypotheses under consideration—our degrees of belief are usually conditional rather than
unconditional (Salmon, 1990). Or, to use Sprenger’s (2019) terminology, our degrees of
belief are typically (implicitly if not always explicitly) suppositional rather than actual:
thus, p(Hi) is our degree of belief that Hi is true, conditional on the supposition that one
of the hypotheses we are considering is true. Sometimes we are fairly confident that this
supposition is true and sometimes we have no idea, but (outside of simple scenarios) we
are rarely 100 % sure.

I think this response to the problem of unconceived alternatives is correct, but the fol-
lowing question now arises: should the way we manage our degrees of belief be sensitive
to the possibility that none of the hypotheses under consideration is correct? Or, put differ-
ently, should suppositional degrees of belief be updated in the same way as actual degrees
of belief? The standard (albeit usually implicit) answer among epistemologists appears to
be “yes”—as far as updating one’s degrees of belief is concerned, there is no distinction
between knowing that something is true and supposing that it is true. More formally, we
can phrase what is arguably the standard view as follows: If K represents the knowledge
that our background assumptions are correct and S represents the supposition that our
assumptions are correct, then: pE(Hi|S) = pE(Hi|K).

This view is arguably standard among Bayesian statisticians as well, most of whom
use Bayesian conditionalization in the M -open case. However, at the same time, Bayesian
statisticians generally acknowledge that, if the posterior probability of a hypothesis is con-
ditional on suppositions that may be wrong, then those suppositions—and inferences made
on the basis of the supposition—need to be independently checked, since an inference
made on the basis of a seriously mistaken assumption may be misleading. Thus, even
if we grant that pE(Hi|S) and pE(Hi|K) should numerically agree, that does not mean
we must hold that they have the same epistemic status: it is rational to maintain some
degree of higher-level skepticism towards the former degree of belief. On this picture,
Bayesian conditionalization plays a part in how one should manage one’s degrees of belief
in the face of the possibility that none of the hypotheses under consideration is true (or
even close to true), but it is only a part of the story: Bayesian conditionalization must be
supplemented with independent (non-Bayesian) checks.9

An alternative (and complementary) idea is that suppositional and actual degrees of

9This perspective is adopted in influential textbooks in Bayesian statistics, including Gelman et al. (2013)
and McElreath (2016). An accessible and brief overview of this approach to Bayesian statistics is given in
Gelman and Shalizi (2013).
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belief should not necessarily be updated in the same way. The idea that it might some-
times be rational to update probabilities in a non-Bayesian way has been gaining traction
in Bayesian statistics in recent years (e.g., Zhang (2006), Bissiri et al. (2016), Grünwald
and van Ommen (2017)), and there are several papers that appear to show that Bayesian
updating may be improved upon in certain contexts and given certain inferential or predic-
tive goals agents may have. Bissiri et al. (2016) attempt to give a general framework for
how to update probability distributions in a way that replaces the likelihood with a user-
specified loss function. In the philosophical literature, Douven (2013, 2016) and Douven
and Wenmackers (2017) argue that an updating method based on Inference to the Best Ex-
planation is often better than Bayesian conditionalization, given certain aims agents may
have. Vassend (2019) attempts to give a general framework that subsumes the framework
in Bissiri et al. (2016) as well as other non-Bayesian updating rules, such as updating
based on Inference to the Best Explanation.

The rest of this section is in the spirit of this recent work. The goal is to show a concrete
example of a theoretically well-motivated updating rule that we have strong reasons to be-
lieve will be more rational than Bayesian conditionalization in certain simple and mundane
situations in which we are unsure whether our hypotheses form a partition. In the type of
scenario that will be discussed, the focus is not primarily on finding which hypothesisHi is
true; instead, the goal is to make accurate predictions about various states of the world, and
the hypotheses under consideration are regarded as tools for prediction rather than being
of intrinsic interest. This is not some sort of esoteric scenario. Much of our thinking both
in everyday life and—especially—in the sciences proceeds in this way: we are wondering
whether some state of the world S is true (e.g., whether it will rain tomorrow, whether
the butler is guilty, whether someone is lying to us), but we have no way of assessing
S’s plausibility directly. Hence, we form alternative hypotheses, each of which confers a
(more readily assessable) probability on S, and then we evaluate the relative plausibility
of the competing hypotheses in response to evidence and form a final assessment of S’s
plausibility by using the law of total probability, i.e.,

∑
i p(S|Hi)pE(Hi).

The preceding points may be obvious, but I emphasize them because some Bayesians
may be inclined to claim that if it is S that is of interest, then we should just condition
p(S) on E directly and not go via a set of hypotheses Hi. In practice, however, our rea-
soning will often necessarily involve hypotheses that are not, in themselves, of interest,
but which we must use in order to form informed degrees of belief about the propositions
we care about. In fact, there are good reasons for thinking that prediction is necessarily
mediated by theories and models. Sterkenburg and Grünwald (2021) argue that few (per-
haps none) of the standard machine learning algorithms are “purely data-driven,” in the
sense of providing a prediction of states of the world S on the basis of evidence E alone.
Instead, they generally require a model of some sort as an additional input. Furthermore,
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this is not a coincidental state of affairs, but is instead due to the fact that no prediction
method works well under all circumstances (this is known as the “no-free-lunch” the-
orem (Wolpert, 1996)). Hence, there are good reasons for thinking that even an ideal
reasoner—logically omniscient and computationally unbounded—would still reason and
form predictions in a model-mediated manner.

Let me be clear in saying the claim is not that Bayesian conditionalization is always
ecologically irrational if it is uncertain whether the true hypothesis is under consideration—
I believe there are probably many scenarios where Bayesian conditionalization is ecolog-
ically rational, even if the standard assumptions of Bayesian conditionalization are not
satisfied. The claim is just that there are certain cases where Bayesian conditionaliza-
tion will not be ecologically optimal, for reasons that are relatively easy to understand.
And because those cases can be anticipated by agents, Bayesian conditionalization is also
internally suboptimal in these examples.

To start, note that an important property of Bayesian conditionalization is that–as the
amount of evidence increases—it will almost always concentrate all of the posterior prob-
ability on the single hypothesis that has been most predictively accurate. This is clear
from 2.4 because as the evidence accumulates, 2.4 will be increasingly dominated by the
second term, and the second term—in turn—will be increasingly dominated by the single
hypothesis that has the best log score on the evidence. Thus, in the limit, Bayesian con-
ditionalization converges on the single hypothesis that has the best log score. But what
we are interested in is finding the posterior distribution that will result in the best possible
predictive distribution, i.e., we would like

∑
i p(S|Hi)pE(Hi) to be maximally accurate

(e.g., have an optimal log score). If one of the hypotheses under consideration is true, then
these two goals coincide: the best predictive distribution is simply the one that assigns all
its probability to the truth.10 But if the truth is not under consideration or we are not sure
whether it is, then the two goals may diverge.

For example, suppose that we have two rival weather models, m1 and m2, that we will
use to predict the probability of rain,R. The Bayesian prediction is p(R|m1, E)p(m1|E)+
p(R|m2, E)p(m2|E) and requires us to come up with posterior (suppositional) degrees of
beliefs in m1 and m2. Suppose it turns out that, on the evidence so far, one of the models
has systematically overpredicted the probability of rain while the other model systemat-
ically has underpredicted the probability of rain. If there is a lot of evidence, Bayesian
conditionalization will still concentrate all its probability on one of the hypotheses—
whichever has the best log score on the evidence—and will consequently dictate that our
(suppositional) degree of belief in that hypothesis should be 1 (or close to 1). But this does

10As long as we assume that the hypotheses are fully specified—i.e., they are not statistical models that
contain adjustable parameters. On limited data, a true model with adjustable parameters may well not be the
most predictively accurate model available (Forster and Sober, 1994).
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not seem reasonable. Given that our evidence so far strongly suggests that the two models
are biased in opposite directions, it seems better to strike some sort of balance: we should
have a higher degree of belief in the model that has been more accurate, but we should
still maintain some degree of belief in the less predictively accurate model, and our best
estimate of whether it is going to rain in the future should be some compromise between
the predictions made by the two models.

Looking at 2.4 again makes it clear that Bayesian updating does not actually solve the
optimization problem in which we are primarily interested, at least not directly, if what
we would like to do is maximize the accuracy of the posterior predictive distribution. For-
mally, the optimization problem we really want to solve is to find the posterior distribution
that minimizes the following expression:

Optim(pE) =
∑
i

pE(Hi) log
pE(Hi)

p(Hi)
− log

∑
i

pE(Hi)p(E|Hi) (3.1)

The difference between 2.4 and 3.1 is subtle, but important: in the second term of 2.4
we are scoring the posterior distribution pE by its ability to assign high probabilities to
hypotheses that have a good log score on the evidence; in 3.1, on the other hand, we are
scoring pE by its ability to produce a predictive distribution that has a good log score on
the evidence. It is also possible to consider generalizations of 3.1, where, for example, we
assign different weights to the first and second terms. The problem of finding the posterior
that minimizes 3.1 is closely related to what Yao et al. (2018) refer to as the Bayesian
“stacking problem”: the Bayesian stacking problem, as discussed in Yao et al. (2018), is
the problem of finding the probability distribution that minimizes the second term in 3.1.
Because the stacking problem may be regarded as a special case of 3.1 (where we are
assigning the first term of 3.1 a weight of 0), I will refer to the posterior distribution that
minimizes 3.1 as the “stacking posterior.” In Yao et al. (2018), Bayesian stacking is pre-
sented as an ad hoc way of averaging multiple predictive distributions that is empirically
superior to Bayesian conditionalization. A major point in favor of the minimum diver-
gence framework is that it provides a theoretical unification of the two methods, since we
can see that Bayesian conditionalization and Bayesian stacking may in fact be regarded as
solving closely related (but still importantly different) optimization problems.

If the true hypothesis is not under consideration, then the stacking posterior may well
be different from the Bayesian posterior. On the other hand, if the true hypothesis is under
consideration, then—as more and more evidence accumulates—the posterior that concen-
trates all of its probability on the true hypothesis will optimize both 2.4 and 3.1. Overall,
then, we have reason to think that optimizing 3.1 is the more robust option if we are unsure
whether the true hypothesis is under consideration in the sense that the stacking posterior
predictive distribution will be roughly as accurate as the Bayesian posterior predictive dis-
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tribution if the true hypothesis is under consideration and that it will be more accurate
otherwise.

Let us look at a simple example, where the hypotheses under considerations concern
the chance that some event will occur.11 To make the example more concrete, we can think
of the hypotheses as being about the possible biases of a coin. We consider the following
four hypotheses about the value of the bias: {0.05, 0.35, 0.65, 0.95}. We now consider
two different ways of generating the true value of the bias. In the first, well-specified case,
the true bias is selected (with uniform probability) to be one of the four hypotheses under
consideration. In the second, misspecified case, the true bias is selected, with uniform
probability, to be any number between 0 and 1. Note that in the misspecified case there
is a probability of 1 that the true bias of the coin will not be one of the hypotheses under
consideration. Given the true value of the bias, we generate n training data points and
1000 test data points, where n ranges from 1 to 200. We assume that the prior over the four
hypotheses under consideration is uniform and we update the prior on the evidence using
Bayesian conditionalization and stacking updating. Figure 1 compares the log score of the
Bayesian posterior predictive distribution and the stacking posterior predictive distribution
as a function of n in both the well-specified and misspecified situations. Note that each
data point in the figure is a result of averaging the results from 100 independent executions
of the simulation.

Figure 1: The Bayesian posterior predictive distribution vs the stacking posterior predic-
tive distribution in two scenarios.

11All the simulations in this paper are done using the statistical programming language R (R Core Team,
2020).
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In the well-specified case, both the Bayesian posterior and the stacking posterior con-
verge on having the same accuracy, although the Bayesian posterior does so somewhat
faster. In the misspecified case, the stacking posterior and the Bayesian posterior do not
converge on having the same accuracy, and the stacking posterior is clearly superior. These
results are in line with what we would expect based on the preceding theoretical discussion.
For an agent who is in the misspecified case, the stacking posterior is straightforwardly
more ecologically rational than the Bayesian posterior, since it yields more accurate pre-
dictions on average for every possible sample size. It is also clear that, from the point of
view of an agent who knows that they are in the misspecified case, the stacking posterior
will be more rational than the Bayesian posterior regardless of the agent’s prior distribu-
tion, provided that the agent knows that they will receive a large number of data. This is
because asymptotically—regardless of the agent’s prior distribution over the hypotheses
under consideration—the results in Figure 1 will be the same: i.e., in the misspecified case,
the stacking posterior will converge on a predictive distribution that is more predictively
accurate than the Bayesian predictive distribution. Finally, if the agent does not know
whether they are in the misspecified or well-specified case—i.e., they are in the “M -open”
case—the stacking posterior again seems more internally rational than the Bayesian poste-
rior, because the stacking posterior is only slightly less accurate in the well-specified case,
but much more accurate in the misspecified case.

The above conclusions might seem inconsistent with various arguments that purport to
show that Bayesian updating is uniquely rational. For reasons of space, I cannot discuss
each of these arguments in detail, but for the purposes of illustration, let me single out one
of the most prominent ones. If we assume that expected utility maximization is rational,
then a result due to Greaves and Wallace (2006) purports to show that, for any agent,
Bayesian conditionalization is uniquely rational from that agent’s point of view because
it has a higher expected utility than any other updating rule, provided that the expectation
is calculated relative to the agent’s own prior distribution.12 However, closer inspection
shows that Greaves and Wallace’s (2006) argument assumes that the hypotheses under
consideration (or states of the world) form a partition, and this assumption is violated in
the misspecified case. Indeed, any expectation over a set of possibilities implicitly assumes
that one of the possibilities is true, and if this assumption is violated the relevance of the
calculation is clearly in doubt. Suppose I will roll a die with faces numbered 1 through
n several times and I ask you to estimate the average number it will land on. On the
assumption that it is a normal die with six faces, the expected value of the die roll is 3.5,
and this is a good guess as to the average number the die will show in the long run. But if
I tell you that the die does not have six faces, the calculated expectation is not necessarily

12And provided the utility function is “proper”—this condition is discussed in the next section of this
paper.
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a good basis on which to formulate predictions or make decisions. It might not be useless,
provided that the actual number of faces is close to six. But it is clearly not rational to
wager a significant amount of money on your guess, because your guess is based on an
assumption you know to be wrong.

The more general point is that expected utility calculations are not necessarily a good
guide for rational decision making and belief formation if the calculations are based on
incorrect assumptions, and this same point carries over to the case where you do not
know whether the requisite assumptions are satisfied, e.g., if you are in the “M -open case”
and do not know whether the possibilities under consideration form a partition. In either
case, expected utility calculations should be taken with a grain of salt, and for that reason
Greaves and Wallace’s (2006) argument arguably loses much of its force.

Of course, Greaves and Wallace’s (2006) argument is not the only one that has been
advanced on behalf of conditionalization. A more recent argument shows that Bayesian
conditionalization “dominates” all other updating rules, where a strategy is said to dom-
inate another one if and only if it is better (or at least not worse) in all possible worlds
according to some metric (Pettigrew, 2021). For reasons of space, I will not go into a de-
tailed discussion of the argument. However, I will point out that dominance reasoning—
like expected utility maximization—is arguably suspect if we do not know whether we are
considering a partition of possibilities. The fact that A dominates B across a set of pos-
sibilities under consideration does not necessarily mean that A will be ecologically more
rational than B, if we have neglected to consider important possibilities. An alternative
to using either expected utility maximization or dominance reasoning—both of which are
arguably not robust in either the misspecified or M -open case—is to use a more informal
and context-specific method to evaluate and compare the merit of various strategies, as we
did a few paragraphs ago.

The example in this section is admittedly simple. However, one might have expected
Bayesian updating to have an especially good shot at being ecologically optimal precisely
because the example is so simple: this is not a computationally complex example where
a Bayesian calculation is intractable, nor is it hard to come up with well-justified priors
or likelihoods. Indeed, the flat prior is arguably the objectively optimal prior over the
given hypothesis space, because the four hypotheses do, indeed, have the same probability
(density) of being chosen. In any case, the basic results will remain the same regardless
of which prior distributions we use because the biggest difference between the Bayesian
posterior and the stacking posterior in the misspecified case shows up when the amount of
data gets large, i.e., when the influence of the prior becomes small.

As was mentioned earlier, 3.1 is a generalized version of what Yao et al. (2018) refer
to as the Bayesian stacking problem. Yao et al. (2018) give several examples that show
that Bayesian stacking is superior to Bayesian conditionalization, if the goal is to maxi-
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mize predictive accuracy. Bayesian stacking, in turn, is an instance of a broader class of
statistical model combination techniques referred to simply as “stacking,” which traces its
roots to Wolpert (1992) and Breiman (1996) and is a state-of-the art method for combining
predictive models in statistics and machine learning. Given these facts, it is not surprising
that the stacking posterior would outperform the Bayesian posterior in the simple example
we have considered.

To summarize, if we are unsure whether one of the hypotheses under consideration
is true, it may not be rational to concentrate all of our degree of belief on the single hy-
pothesis that has proven to be best, which is what Bayesian conditionalization will often
lead us to do. The stacking posterior is a principled way of updating suppositional degrees
of belief in a way that is more cautious. Theoretically, the stacking posterior has a firm
grounding in the minimum divergence framework; empirically, it outperforms Bayesian
conditionalization in many scenarios, including the simple example provided in this sec-
tion. Overall, then, there is strong reason to think that it is more rational than Bayesian
conditionalization—both ecologically and from an internal perspective—in the kind of
case we have discussed in this section.

4 Case 2: The agent values certain regions of the poste-
rior distribution over others

Suppose we know that one of the propositions we are considering is true. Is Bayesian up-
dating guaranteed to be ecologically optimal in this case? Not necessarily. To demonstrate
how Bayesian conditionalization may fail to be ecologically optimal even under such fa-
vorable conditions, we can use the same example as in the previous section, except we
now let the set of hypotheses consist of 100 equally spaced numbers from 0.01 to 0.99,
one of which is the true bias, b. Suppose our goal is to maximize the accuracy of our
estimate of the value of the bias, where we will use as our estimate the posterior expected
value of the bias. In mathematical terms, then, our goal is to maximize the accuracy of
EpE [H] =

∑
iHipE(Hi), where the possible values of Hi are the possible values of the

true bias. A natural way of measuring the accuracy of a proposed estimate is to take the
absolute distance between the estimate and the actual value of the bias, i.e. |EpE [H]− b|.13

As in the previous section, we suppose that the prior distribution is uniform over the set
of possible biases, which we now know form a partition. Given the results from the pre-
ceding section, we know that the Bayesian posterior is going to be better than the stacking

13There are many other measures of accuracy one might use, but my experience is that—for our current
purposes—they all give the same qualitative results.
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posterior in this kind of example, but is there another updating rule that could beat both? I
will argue that the answer is yes, provided that we have certain values.

More precisely, suppose that we care more about the value of the bias if its value is
close to either 0 or 1. Given these priorities, there is reason to think that Bayesian updat-
ing might not to be optimal. As 2.4 makes clear, Bayesian conditionalization implicitly
penalizes hypotheses by their logarithmic score on the evidence, and the logarithmic score
is very sensitive to small prediction mistakes. For example, if a hypothesis assigns an
event that happens a probability of 0.1, then the hypothesis receives a log score of 2.3; if
it assigns the event a probability of 0.01, then its score is instead 4.6—twice the penalty.
The log score therefore has a built-in conservatism in that it will usually prefer hypotheses
that do not assign very low or very high probabilities to events, unless there is a lot of
evidence.14 Not all scoring rules have this property. For example, if a probability distribu-
tion (over a binary partition) assigns a probability of f to the event that happens, then the
quadratic score—also known as the Brier score—of the distribution is (1−f)2. Note that if
we use the Brier score, the penalties assigned to f = 0.1 and f = 0.01 are much closer in
magnitude. There is therefore reason to think that the Brier score will be somewhat more
efficient than the log score at finding the value of the true bias, if that value is close to 0
or 1. It is easy to verify in simulations that this is the case (and, indeed, the simulations I
provide below can be taken to demonstrate precisely this fact). Let us therefore create an
updating rule that is based on the quadratic score rather than the log score. We can do so
easily by replacing the first term of 2.4 with the quadratic divergence between pE(Hi) and
p(Hi) and the second term of 2.4 with a weighted sum of the Brier scores of all the hy-
potheses on the evidence. That is, we consider the following optimization problem, where
B(Hi, E) is the Brier score of Hi on evidence E:

Optim(pE) =
∑
i

(pE(Hi)− p(Hi))
2 −

∑
i

pE(Hi)B(Hi, E) (4.1)

Let us call the posterior distribution that minimizes expression 4.1 the “quadratic pos-
terior” and the associated updating rule “quadratic updating.” Figure 2 plots the absolute
distance between the true value of the bias and the quadratic posterior predictive estimate,
and the absolute distance between the true value of the bias and the Bayesian posterior
estimate, for every possible value of the true bias and given that the posterior distributions
have been arrived at through updating the (uniform) prior distribution on 10 data points,
20 data points, 50 data points, and 100 data points. Note that each point in the figure is an
average of 1000 executions of the simulation.

After 100 data points—or even just 50—the two posteriors converge on having roughly

14This feature of the log score is discussed in detail by Selten (1998) and Vassend (2018).
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Figure 2: The distance of the Bayesian posterior predictive estimate and quadratic poste-
rior predictive estimate from the actual probability, for each possible value of the actual
probability.

the same accuracy, for every possible value of the bias. But for smaller data sets, it is clear
that the two posteriors have a different profile, with the quadratic posterior being more
accurate on the extremes (roughly for values of the bias below 0.2 or above 0.8) and the
Bayesian posterior being more accurate in the middle of the range. If we value accuracy
at the extremes of the range over accuracy in the middle of the range, we therefore have
reason to prefer the quadratic posterior to the Bayesian posterior.

An objection might be that we should use whichever posterior predictive distribution
has the highest expected accuracy, because in this example, we know that the hypotheses
under consideration form a partition, and so the problems with using expected utility the-
ory that were discussed in the preceding section do not apply. Since we are assuming that
the prior is flat, the expected accuracy of each distribution can be calculated easily simply
by averaging the accuracy of each distribution over all possible values of the true bias in
Figure 2. It’s straightforward to verify that Bayesian conditionalization has a higher ex-
pected accuracy than quadratic updating, if expected accuracy is calculated in this way.
And, indeed, the aforementioned theoretical result due to Greaves and Wallace (2006)
guarantees that this must be the case.

Nevertheless, I believe the fact that Bayesian conditionalization has a higher expected
utility than quadratic updating is less impressive than it might seem for two important rea-
sons. First, note that we are calculating the expected utility of each posterior with respect
to our flat prior distribution. However, if the flat prior distribution does not reflect accu-
rately the actual chances of events in the world, then a high expected utility with respect
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Figure 3: The actual probability of each value of the bias.

to the prior distribution is no guarantee of ecological optimality. Although this may seem
an obvious point, its impact is often underestimated. Suppose the actual probability of
each of the possible biases follows the distribution shown in Figure 3. As is clear from the
figure, the probability distribution is very nearly flat, except that values of the bias that are
on the extremes of the scale are somewhat more probable than values in the middle of the
scale.15 In other words, our flat prior distribution reflects the objective probability distri-
bution very well, but it is slightly misspecified. Obviously, the objective distribution rather
than our prior is what is going to determine which of the quadratic and Bayesian posteriors
will be more ecologically rational. So which posterior distribution has the higher expected
accuracy if we use the objective probability distribution to calculate the expectation? The
answer is the quadratic posterior, which has an estimated expected inaccuracy of approxi-
mately 0.057 whereas the Bayesian posterior has an expected inaccuracy of approximately
0.06.

Obviously, we typically cannot know the objective probabilities of the hypotheses
we are considering (assuming that the hypotheses have objective probabilities in the first
place), but the point is this: unless we know that our prior probability function tracks the
objective probability distribution extremely closely, we do not have good reason to think
that strategies that maximize expected utility relative to our prior probability distribution
are going to be successful in the actual world, since (as this example shows) even slight
misspecification of the prior can render a strategy ecologically suboptimal.

15Mathematically, the distribution is proportional to 1√
(b(1−b))

, where b is the true bias of the coin.
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Figure 4: The utility of the Bayesian poste-
rior predictive distribution and the quadratic
posterior predictive distribution for each pos-
sible value of the parameter being estimated.
The prior distribution is uniform and 20 data
points generated from the true distribution are
used for updating each distribution. Each
data point is the result of averaging 1000 sim-
ulations.

The traditional Bayesian response to
this issue is to perform a sensitivity anal-
ysis, where the dependence of the opti-
mal decision on minor perturbations to
the prior distribution is studied. However,
an arguably equally rational response is
to evaluate the various possible acts by a
contextually appropriate and targeted deci-
sion criterion that we have reason to think
will be more robust than expected util-
ity maximization. For instance, a strong
point that favors the Brier posterior over
the Bayesian posterior in the example we
have been considering is that it is more ac-
curate for values of the bias close to 0 or
1. If we value accuracy on those regions
of the probability scale, then we have a
strong reason to favor the quadratic pos-
terior, even though the Bayesian posterior
has a slightly greater expected utility rela-
tive to our flat prior.

But suppose we decide to go with ex-
pected utility maximization anyway. If we
do, it is important that the utility function
we use reflects our actual values, and the
accuracy measure I have been using so far
in this section arguably does not, because it implicitly treats an error on any part of the
probability scale as equally severe, but we started the discussion of this example by as-
suming that errors on the extreme ends of the scale are worse. So let us consider an
alternative utility function that better reflects our values. The following utility function
serves as an example: −|EpE [H]− b|/(b(1− b)) (where higher values are now better than
lower ones). Figure 4 shows the utility of each posterior distribution at each possible value
of the true bias, given that the posteriors have been updated on 20 data points.

It is clear from Figure 4 that the quadratic posterior has a much higher utility for
extreme values of the bias, whereas the distributions have a similar utility in the middle
of the range (because the utility function downplays mistakes in that range). We can
also calculate an estimate of the expected utility of using either the Bayesian posterior or
the quadratic posterior given that 20 data points are observed by calculating the average
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utility of each posterior over all possible values of the bias in Figure 4. For the quadratic
posterior, the resulting expected utility is roughly -0.5 and for the Bayesian posterior the
expected utility is roughly -0.6, so the quadratic posterior has a higher expected utility than
the Bayesian posterior.

This result seems to fly in the face of Greaves and Wallace’s (2006) aforementioned
result, but closer inspection reveals that there is no conflict . Greaves and Wallace’s result
establishes that the Bayesian posterior distribution maximizes expected utility given that
the utility function is “proper”, where a utility function is proper if and only if the expected
utility of p relative to some distribution q, i.e.,

∑
i q(Si)∗U(Si, p), is maximized by setting

q = p. The utility function used in Figure 4 is not proper, and this is sufficient to explain
why it is possible for the quadratic posterior to have a higher expected utility than the
Bayesian posterior.

Propriety is a reasonable requirement to make of utility functions in certain contexts.
For example, if the true hypothesis is one of the hypotheses under consideration and the in-
coming evidence is independent, then—as the amount of evidence increases—the average
utility of the true hypothesis will be maximal only if the utility function is proper. Conse-
quently, if we use our utility function to compare different hypotheses under consideration
in the light of evidence, then—in the limit of increasing evidence—we will successfully
identify the true hypothesis only if the utility function we use is proper. Hence, it makes
sense to use a proper utility function as the basis of any updating rule, since only then
will the updating rule be able to correctly identify the true hypothesis given increasing
amounts of evidence. The quadratic posterior and the associated quadratic updating rule
jointly satisfy this requirement since the Brier score is, indeed, a proper utility function.

But the fact that proper utility functions arguably are desirable for some purposes does
not mean that improper utility functions are always inappropriate. An important distinction
must be made between using a utility function for optimization purposes as opposed to
using it purely for evaluative purposes. Because the utility function used in Figure 4 is
improper, it is not a good idea to use it as the basis for an updating rule—that is, it is not
a good idea to plug it in for the second term in 2.4 and solve the resulting optimization
problem. The resulting updating rule is likely to perform quite poorly. But that does not
mean that the utility function in Figure 4 is somehow illegitimate for assessing the utility
of posterior distributions that have been generated via theoretically sound updating rules.

An analogy may be helpful. Suppose we are estimating the mean, µ of a normal dis-
tribution. There are strong statistical reasons for using the maximum likelihood estimate,
which in this case will be the estimate that minimizes squared distance from data. How-
ever, given that we have an estimate in hand, the absolute distance is a perfectly sensible—
and indeed more readily interpretable—measure of the accuracy of our estimate. In this
case, the squared distance is the correct measure for optimization purposes, but the abso-
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lute distance is a better measure for evaluation purposes. Similarly, even though the utility
function used in Figure 4 arguably should not be used to select an estimate, it is a perfectly
sensible utility function to use given that we have an estimate in hand and care more about
being accurate for values of the bias close to 0 or 1. Indeed, if we insist on always using
proper scoring rules to evaluate the epistemic utility of our probability functions, we will
be severely limited in what values we are allowed to have.

In conclusion, even if we know that one of the hypotheses under consideration is true,
Bayesian conditionalization may still not be the rationally optimal updating method from
either an ecological or internal perspective. If the goal is to accurately estimate some
probability, and it is important to have an accurate estimate given that the value of the
probability is extreme, then there are good reasons for thinking that an updating method
based on the Brier score rather than on the logarithmic score will do better. Greaves and
Wallace’s (2006) result implies that the Bayesian posterior is guaranteed to have a higher
expected utility if utility is measured with a utility function that is proper, but we have
seen reasons for thinking that this result is less impressive than it initially seems: first, the
argument hinges on measuring utility with a proper utility function, which arguably does
not adequately reflect the actual utilities in the example; second, if maximizing ecological
rationality is a priority, then the expected utility calculated relative to an agent’s subjective
probability distribution is of limited value, unless the agent’s distribution is known to be
close to the actual probability distribution (assuming such a distribution exists).

The argument in this section is admittedly weaker than the argument in the preceding
section, because whereas the stacking posterior implements a well-known state-of-the art
prediction averaging method that has proven its worth in many real-world applications,
the “quadratic posterior” that I suggest in this section has to my knowledge never been
suggested in the published literature. It therefore remains to be seen whether the merits of
quadratic updating extend beyond the very simple kind of example we have considered in
this section.

5 When is Bayesian conditionalization guaranteed to be
ecologically optimal?

The examples in the preceding sections show that there are theoretically well-motivated
updating rules that are arguably more rational—both ecologically and from the agent’s
own point of view—than Bayesian conditionalization, at least under certain conditions.
In fact, we can use the examples from those sections to demarcate more precisely when
we might expect Bayesian conditionalization to be optimal. In particular, if any of the
following conditions are violated, then Bayesian conditionalization is not guaranteed to be
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ecologically optimal:

1. The hypotheses under consideration form a partition.

2. The agent’s joint distribution over the hypotheses and evidence accurately
reflects the objective probability distribution, if one exists.

3. The agent’s goal is to maximize expected utility with respect to a proper
utility function.

To see why satisfying each of (1)-(3) is necessary for Bayesian conditionalization to
be guaranteed to be ecologically optimal, note that the example in Section 3 violates (1)
and (2). Similarly, the example in Section 4 shows that Bayesian conditionalization is
not necessarily ecologically optimal if either (2) or (3) is violated. Therefore, (1)-(3) are
necessary conditions for conditionalization to be guaranteed to be ecologically rational.

Is satisfying (1)-(3) sufficient to guarantee that Bayesian conditionalization will be eco-
logically optimal? There is reason to think that the answer is yes. First, if (1) and (3) are
satisfied, then the arguments against using expected utility maximization that were pre-
sented in sections 3 and 4 do not go through. Furthermore, on the condition that expected
utility maximization is performed with a proper utility function, we know from Greaves
and Wallace (2006) that conditionalization will be an optimal act.

Hence, there are good reasons for thinking that (1)-(3) are jointly necessary and suf-
ficient for Bayesian conditionalization to be guaranteed to be ecologically optimal. Of
course, one may question the importance of such a finding, since a strategy need not be
ecologically optimal in order to be ecologically rational for an agent—if the strategy effec-
tively achieves the agent’s goals, then it is arguably rational even if it fails to be optimal.
My guess is that Bayesian conditionalizations and approximations thereof may indeed of-
ten be adequate even in cases where they fail to be optimal. For example, it’s clear from
Figure 2 that the difference between Bayesian conditionalization and quadratic updating
is probably not going to be significant in many contexts.

However, I think the findings in this section should still be of interest, because it is
common for Bayesian epistemologists to think that Bayesianism is not just one option
among many, but that it instead is the uniquely rational option regardless of agents’ values
or epistemic situation. The findings in this section push heavily against such a conception.

6 Concluding remarks
The paper has argued that Bayesian conditionalization fails to be ecologically optimal
and internally rational in scenarios that are arguably quite common in practice. Along
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the way, we have seen reasons to be skeptical of the utility of common decision making
rules, especially expected utility maximization. We have also seen that the conditions
under which Bayesian conditionalization is guaranteed to be optimal are quite narrow. The
standard picture, according to which Bayesian conditionalization is the uniquely rational
updating rule, is false—even for ideal reasoners who face no resource constraints.

Readers may worry that the alternative picture that we end up with is hopelessly messy
and context-sensitive, where nothing of any generality can be said about how rational
agents should respond to evidence (cf. Carr (2021)). I think there is good reason to
think that this will not be the case. The minimum divergence metaframework gives us a
principled way of evaluating the cogency of probabilistic belief updating rules in specific
contexts. This metaframework may in turn be regarded as a specific implementation of an
“optimization” approach to epistemology, which holds that epistemic strategies should be
evaluated by seeing whether they optimize some given epistemic target (cf. Schurz (2021),
who argues for an “optimization” framework for epistemic justification and discusses sev-
eral applications). There is therefore reason to think there is plenty of middle ground
between an “ideal” monolithic conception of rationality and a radically context-sensitive
one.
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