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Abstract

Frequentist inference typically is described in terms of hypothetical repeated sam-

pling but there are advantages to an interpretation that uses a single random sample.

Contemporary examples are given that indicate probabilities for random phenom-

ena are interpreted as classical probabilities, and this interpretation of equally likely

chance outcomes is applied to statistical inference using urn models. These are used

to address Bayesian criticisms of frequentist methods. Recent descriptions of p-values,

confidence intervals, and power are viewed through the lens of classical probability

based on a single random sample from the population.

Keywords: classical probability, equally likely outcomes, statistical ensemble, multiset, p-

value, confidence interval.

∗corresponding author: vosp@ecu.edu, Biostatistics, ECU, Greenville NC 27858 USA
†hobertd@ecu.edu

1



1 Introduction

Frequentist inference, as a subset of statistical inference, appears to require hypothetical

repeated sampling. Cox (2006, page 8) describes frequentist inference as follows:

Arguments involving probability only via its (hypothetical) long-run frequency

interpretation are called frequentist. That is, we define procedures for assess-

ing evidence that are calibrated by how they would perform were they used

repeatedly. In that sense they do not differ from other measuring instruments.

The entry “Frequency Interpretation in Probability and Statistical Inference” in the Ency-

clopedia of Statistical Sciences (ESS) also restricts the interpretation to repeated trials.

. . . ordinary people ... [and] many professional people, both statisticians and

physicists, ... will confine themselves to probabilities only in connection with

hypothetically repeated trials. (Sverdrup, 2006)

Without proper context these quotes could misrepresent these authors as only concerned

with long-run behavior. Cox (2006) recognizes the importance of interpreting specific data.

We intend, of course, that this long-run behavior is some assurance that with

our particular data currently under analysis sound conclusions are drawn. This

raises important issues of ensuring, as far as is feasible, the relevance of the long

run to the specific instance.

We contend that the probability used to describe results from a particular study should

not be restricted to the interpretation of hypothetical repeated trials. Studies can be more

effectively described by using probability in the classical sense of equally likely out comes.

2



Bayesians and philosophers see problems with probability interpretations that use hy-

pothetical repeated trials. We describe settings where these problems are lessened, but

we agree that in other cases it is better to interpret probability using equally likely out-

comes. The dialog between frequentist and Bayesian statisticians will improve when fre-

quentists recognize the validity of concerns regarding hypothetical repeated trials, and

when Bayesians recognize that their criticism applies to an interpretation of a frequentist

method and not to the method itself.

The classical interpretation of probability is not without criticism. The entry “Founda-

tions of Probability” in the Encyclopedia of Biostatistics states

Though influential in the early development of the subject, and still valuable in

calculations, the classical view fails because it is seldom applicable. (Lindley,

2005)

When ‘probability’ describes epistemic uncertainty, as it does in Bayesian inference, the

classical view of ’equally likely’ is of limited use. However, stochastic probabilities viewed

as proportions fit naturally in the context of statistical inference. Introductory texts use

‘frequency’ and ‘relative frequency’ interchangeably with ‘count’ and ‘proportion’, respec-

tively.1 In a population, the proportion of individuals having a certain characteristic pro-

vides the same numerical value as the probability that a single randomly chosen individual

will have that characteristic.

Requiring that frequentist inference include repeated trials is unnecessary in all, or

nearly all, situations. Interpreting probabilities simply as proportions will allow frequen-

tists to better communicate p-values and other inferential concepts. In addition, more

1See, for example, Johnson (1996) pages 22 and 23.
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substantial discussions between frequentists and Bayesians will occur when the criticism

that long-run behavior is not relevant to a specific instance is addressed by a probability

interpretation that does not require repeated sampling.

2 Frequentist Statistical Inference

Before discussing how probability interpretations are used in statistical inference, we give a

brief description of the latter. Cox and Hinkley (2000) and Romeijn (2017) provide a more

thorough description of statistical inference. Our description is incomplete but will lay the

groundwork for the role probability interpretations play in frequentist inferential methods.

We note two salient features of frequentist statistical inference: randomization is used to

produce data and probability only describes the data for a given model – not the probability

that the model is true or correct. Probability interpretations that recognize these features

avoid difficulties that arise in more general settings. Section 3 provides details on the

interpretations used in frequentist statistical inference.

2.1 Inference for a Deck of Cards

A standard poker deck consists of 52 cards 13 of which are hearts. There are
(
52
5

)
possible

five-card hands. If X is the number of hearts in a five-card hand then the proportion of

hands with x hearts is given by the hypergeometric distribution

Proportion of hands with x hearts when deck contains 13 hearts =

(
13
x

)(
52−13
5−x

)(
52
5

) .

This becomes an inference problem when we do not know the number of hearts in the
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deck. Consider a simplified deck of 52 cards where the cards are identical on the back and

on the front each card has a unique numeral label from 1 to 52. In addition to the label,

each card may or may not have a heart. We are presented with a deck of 52 cards with no

information regarding the number of hearts in the deck. The deck is thoroughly shuffled

and a five-card hand is dealt, two of which contain a heart, x = 2. What can we infer

about the number of hearts in the deck?

There are 53 possible decks: D0, D1, . . . , D52 where Dh is the deck where h of the cards

are hearts. The deck from which a hand with 2 hearts was dealt, Dpop, cannot be D0 or

D1 because these decks have less than 2 hearts. Likewise, Dpop cannot be D50, D51, or

D52 since these decks have fewer than 3 blank cards. What about the other decks? If the

population deck had just 2 hearts, it is possible but not very likely that these 2 hearts

show up in the hand that was dealt. If the population had 3 hearts, the additional heart

makes the hand with 2 hearts somewhat more likely but still improbable. The hand with

2 hearts provides evidence against the claim that the population has 3 hearts (Dpop = D3),

and more evidence against the claim of 2 hearts (Dpop = D2). Similarly, the hand with 2

hearts provides evidence against the claim of 48 hearts and even more evidence against the

claim of 49 hearts.

The frequentist statistician formalizes these ideas using hypergeometric models for each

of the possible decks

Proportion of hands with 2 hearts when deck contains h hearts =

(
h
2

)(
52−h
5−2

)(
52
5

) ,

where h = 2, 3, . . . , 49. If the population deck has few hearts, say 2 or 3, observing 2 hearts

5



Figure 1: The left most bar presents the distribution of the number of hearts in five-card
hands for D2, the deck with 2 hearts. Nearly all the hands have 0 or 1 hearts (the height
of gray bar gives the proportion of all such hands) and the remainder of the hands have
2 hearts (height of the black bar gives the proportion). Hands with 3, 4, or 5 hearts are
not possible with deck D2. The next bars present the corresponding distributions for decks
D3, D4,..., D48, and D49. Each bar consists of 6 segments, one for each possible value of
X. Since x = 2 was observed we use only two colors: black to represent the observed value
and gray for values that are smaller (0 and 1) or larger (3, 4 or 5). The horizontal line at
0.50 intersects the black bars for decks D17 through D26 indicating the observed value of
2 hearts is the median and so represents no evidence against these models. The remaining
two horizontal lines are at 0.05 and 0.95, the traditional values used to indicate samples
sufficiently extreme as to provide significant evidence against the model.
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is a surprisingly large number of hearts. On the other hand, if the population deck has

many hearts, observing 2 hearts is a surprisingly small number. The observation of 2 hearts

is compared to each of the models by calculating how extreme 2 hearts would be for that

distribution. The evidence of 2 hearts against a particular model is measured by how far

2 hearts is in the tail of that distribution. Specifically, the evidence is measured by the

p-value, the proportion of hands in the tail of the distribution. The observation of 2 hearts

provides evidence against any deck for which the p-value is small.

Note that each hypergeometric model specifies a distribution of cards; it is not used to

model random phenomena. If the cards in Dpop were not randomized, we would not be

justified in treating all five-card hands as equally likely. If the cards were ordered and all

the hearts came first, Dpop = D2, and if all the hearts came last, Dpop = D49
2.

Figure 1 displays the distribution of X for each of the possible models D2 through D49.

For bars on the left, representing decks with a small number of hearts, the p-value is the

height of the black segment together with the gray segment appearing above the black bar

(indicating hands with 3, 4, or 5 hearts). For bars on the right, representing decks with

a large number of hearts, the p-value is the height of the black segment together with the

gray segment appearing below the black bar (indicating hands with 0 or 1 hearts). The

middle bars that intersect the horizontal line where the proportion is 0.50 represent decks

D17 through D26. For these decks, observing 2 hearts is the median, the least extreme

observation, and so observing a hand with 2 hearts provides no evidence against these

decks.

While it would be natural to say the population deck probably is not the deck with only

2There is no way to order the decks D0, D1, D50, D51, and D52 to obtain a hand with 2 hearts, so that
randomization is not required to eliminate these decks as being the population deck. The conclusions
regarding these five decks are obtained by deduction, not statistical inference.
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2 hearts, the frequentist statistician is careful to distinguish when the word ‘probability’

is used to describe random events compared to epistemic uncertainties. This distinction is

made by using the term ‘confidence’. Having observed a hand with 2 hearts, we are 95%

confident that the deck contains at least 5 hearts. Confidence is a technical term that in

this case means: either the deck has 5 or more hearts, or the hand we got is among the

upper 5% of all possible hands. In Figure 1 the observation of a hand with 2 hearts is

above the 95th percentile for the three bars on the left that correspond to decks with less

than 5 hearts. At this point it is useful to describe the other main approach to statistical

inference, Bayesian inference.

If we changed the problem to say that the population deck had been randomly selected

in such a way that each of the 53 decks had an equal chance of being selected, then

the frequentist statistician would use Bayes theorem to find the probability that Dpop =

Dh for h = 0, 1, 2, . . . , 52. Using Bayes theorem in the original problem where we are

given no information on how the population deck was chosen is an example of Bayesian

inference. Bayesian inference does not require that each deck is equally likely, only that

there is a probability distribution over the possible decks and this distribution need not

be generated by randomization. This is the prior distribution. In some contexts, assigning

equal probability to each deck when there has been no randomization, is considered part

of classical probability. This is not how we use that term; classical probability only applies

to equally likely sample outcomes obtained from randomization.

2.2 The P-value and Model Percentiles

Since the p-value is an important tool of frequentist inference and since it is often misun-

derstood, we emphasize two key elements regarding its definition and its interpretation.
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One, the p-value is computed from a model for the population distribution, not the actual

distribution. Two, the p-value measures how extreme the observed sample is compared

to the distribution of values specified by the model and this measure does not involve

randomization.

The p-value is a numerical measure relating an observed sample x1, x2, . . . , xn to a

specified distribution F (the model). The definition is

p-value for F = P ({(y1, y2, . . . , yn) : T (y1, y2, . . . , yn) ≥ T (x1, x2, . . . , xn)})

where T is a real-valued function, P is the set function defined by

P (A) =

∫
A

dF (n),

and F (n) is the product measure defined by the model F 3. Because P satisfies Kolmogorov’s

axioms it is a probability function and so the p-value for F is a probability.

We illustrate these points with an artificial example where there is just one observation

and T (x) = x. Suppose information is transmitted about a patient. The transmission is

incomplete and contains only the person’s age, 45, and their height, 5’ 3”. The person’s

sex is not known. However, if the person were male, he would be rather short. Using the

population of men we can find the proportion of males that are 5’ 3” or shorter. This is the

p-value for the observed height for this population of men. This requires no sampling from

the population as there are tables for the height percentiles of this population (these tables

provide the model). Effectively, we imagine all men are ordered from shortest to tallest

3The sample space of the hypergeometric model used in the card example is finite and so this integral
is a sum.

9



and the height of 5’ 3” specifies a percentile for this distribution. This height is the 2nd

percentile; that is, 2% of all men are 5’ 3” or shorter4. The p-value for the corresponding

population of females will be a larger value, 5’ 3” is not especially short for a woman, but

the interpretation is the same and does not require random sampling. It is reasonable to

infer that this is a female patient since individuals this short are uncommon in the male

population.

It is true that if we repeatedly sampled the male population, the proportion standing

5’ 3” or less would be close to .02 and would equal this value in the limit. But this is

not helpful. Our interest is in the population, not a random process, and stating that 2%

of males in this population are 5’ 3” or less provides a much clearer description of the

population.

The previous example considered inference for an individual and so is not an example

of statistical inference which is concerned with features of a collection of individuals, i.e.,

the population. So we now consider a sample of 50 individuals from a population for

which the distribution of height is unknown. We are interested in the mean height of the

population. There are a few differences from the patient example but the logic is the same.

The sampling distribution of the population consists of all samples of size 50 and these are

ordered from shortest mean height to tallest mean height. We observe just one of these

samples, the others are possible or hypothetical samples that we could have observed. We

use a collection of models, similar to the example with 53 possible decks of cards, that

provide varying distributions for the mean height of samples of size 50. As in the previous

example, we find how extreme the observed sample mean is in the distribution specified by

the model.

4Percentile obtained from https://dqydj.com/height-percentile-calculator-for-men-and-women/.
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What role does randomization play? For the patient example, Campbell and Franklin

(2004) would argue that randomization is not required; all that is required is that there

be no evidence that the selection of the patient was not representative of the population.

Randomization plays a more important role in frequentist statistical inference because

models are constructed under the assumption of randomization. The frequentist statistician

will distinguish between data that were obtained using randomization and data obtained

without randomization, often called observational studies. If randomization is not used,

the analysis is vulnerable to the criticism that the sample was not representative. The

assumption that the data in hand was obtained by random sampling addresses this concern.

However, no hypothetical randomizations are required as the p-value is, by definition, the

tail area associated with a particular percentile of the model.

3 Interpretations of Probability

Hájek (2019) describes many interpretations of probability but we limit our discussion to

two that are applicable to frequentist inference. Before describing these interpretations we

distinguish ‘definition’ from ‘interpretation’.

3.1 Definition versus Interpretation

For our purposes, probability is defined by a mathematical model. A single probability

model may be applied to two or more distinct settings. While the definition of probability

is the same for each setting, the meaning and interpretation will depend on the application.

Different applications will be better served by different interpretations. The distinction we
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make between definition and interpretation is consistent with what is found in Hájek (2019).

This distinction can be understood by considering how different disciplines describe

a ‘vector’. A physicist says a vector is a quantity that has magnitude and direction. A

computer scientist says a vector is a one dimensional array. A mathematician says a

vector is an element of a vector space. While the mathematician’s response may seem glib,

it recognizes the structure that is common to what each of the scientists calls a vector

and excludes any unnecessary descriptions. In particular, the concepts of magnitude and

direction play no role in the definition of a vector space. By making these concepts part

of the interpretation rather than the definition allows the same idea of vector to apply in

computer science and many other fields. It is the interpretation that gives meaning to a

vector, and it is the flexibility of multiple interpretations that allows the notion of a vector

to apply to a variety of disciplines.

The same is true for probability. Instead of the two scientists considered above, we

have a theoretical statistician and an applied statistician. The theoretical statistician says

a probability describes a random process while the applied statistician says a probability

describes a population or other distribution of values. For the mathematician, a probability

is a set function that satisfies Kolmogorov’s axioms. Notably, the definition of a probability

space does not involve randomization.

The example of the two statisticians differs from that of the two scientists in that the

latter are not likely to be in the position of interpreting the same vector. Statisticians may

employ different methods and models to the same data, and this will result in p-values and

other inferences that are in fact, different by definition. Using the vector space analogy,

the methods may result in different vectors in the same vector space or in different vector

spaces. That is not what we consider here. We have two interpretations for the same
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probability model.

To insist that probability only describes random events and to define this in terms of

limiting relative frequencies makes as much sense as requiring that the computer scientist

define vectors as quantities that have magnitude and direction. Instead, interpreting a

vector as a column of numbers is simply a more useful interpretation for computer sci-

ence applications. The same is true for probability: a probability model describes the

distribution of the population and a single random sample is better described in terms

of a proportion (or, a percentile) rather than an infinite limit of frequencies obtained by

hypothetical random samples.

3.2 Two Interpretations

We focus on two interpretations of probability, the classical (equally likely events) and the

limiting relative frequency interpretations, but it is useful to recognize how these relate to

other interpretations. Hájek (2019) describes three main concepts of probability:

1. An epistemological concept, which is meant to measure objective evidential

support relations. ... 2. The concept of an agent’s degree of confidence, a

graded belief. ... 3. A physical concept that applies to various systems in the

world, independently of what anyone thinks.

The two interpretations we consider belong to the third concept of physical probability.

Statisticians are also interested in epistemology because the data provides evidence that

relates to competing models for the population. The physical probabilities describe what

can be learned about the population from the data, but frequentist statisticians do not

assign probabilities to hypothetical models. As described above, statisticians use the word
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‘confidence’ as a technical term and it is not a probability.

Hájek (2019) says the following about classical probability

The guiding idea is that ... probability is shared equally among all the possible

outcomes, so that the classical probability of an event is simply the fraction of

the total number of possibilities in which the event occurs. It seems especially

well suited to those games of chance that by their very design create such

circumstances....

This describes how we use this term. Randomization used in statistical inference is the

same as that used in games of chance, and so is well served by the classical interpretation.

In the card example of Section 2.1 the event is the observation of 2 hearts and the classical

interpretation can be used to describe this probability for each of the models considered.

We do not use classical probability to address questions such as ’What is the probability

that the deck contains h hearts?’ A statistician using Bayesian methods would attempt to

answer this question with a prior distribution.

Finite frequentism is related to the classical interpretation but differs in that only actual

outcomes are considered. Hájek describes finite frequentism as “the probability of an

attribute A in a finite reference class B is the relative frequency of actual occurrences of A

within B.”

The limiting relative frequency interpretation is closely related to hypothetical frequen-

tism which can be described as follows

... we are to identify probability with a hypothetical or counterfactual limiting

relative frequency. We are to imagine hypothetical infinite extensions of an

actual sequence of trials [emphasis added]...Hájek (2019).
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This description applies to how the term limiting relative frequency is applied in many

situations. However, limiting relative frequency can also be used to describe a mathematical

model in which case actual trials are not considered. The use of mathematical models

also addresses the ‘problem of the single case’ that affects both finite and hypothetical

frequentism5. Section 6.3 discusses the role of mathematical models and interpretation.

3.3 Criticism of these Interpretations

This brings us to one of the chief points of controversy regarding the clas-

sical interpretation. Critics accuse the principle of indifference of extracting

information from ignorance. Hájek (2019)

This point involves the epistemological use of probability. We use the classical interpre-

tation only to describe physical probabilities and so avoid this controversy. The deck of

52 cards example shows that frequentist statisticians do not use classical probability for

epistemic uncertainty regarding the population. We would agree with the critic that as-

signing equal probability to the 53 possible decks would be “extracting information from

ignorance.”

Some criticisms of limiting relative frequency do not apply to statistical inference. Hájek

gives an example of this as the reference class problem illustrated by asking what is the

probability that an individual lives to be 80 years old. The problem is that it is not clear to

what population, or class, the individual should be considered a member. This is generally

not an issue with statistical methods where inference is for a population rather than an

5Hájek (2019) provides this description “. . . a coin that is tossed exactly once yields a relative frequency
of heads of either 0 or 1, whatever its bias. . . . Famous enough to merit a name of its own, . . . [this is an
example of] the so-called ‘problem of the single case’.”
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individual.

Hájek claims there is another problem, the reference sequence problem that ‘probabilities

must be relativized not merely to a reference class, but to a sequence within the reference

class’. This could be a problem depending on the setting, but we do not see these criticisms

as a reason to dismiss the limiting relative frequency interpretation outright. Hájek’s

statement regarding the broad interpretation of probability reflects our view of probability

interpretation restricted to frequentist statistical inference.

Each interpretation that we have canvassed seems to capture some crucial in-

sight into a concept of it, yet falls short of doing complete justice to this concept.

Perhaps the full story about probability is something of a patchwork, with par-

tially overlapping pieces and principles about how they ought to relate.

Even within the domain of statistical inference there are overlapping pieces. In Section

5.1, we introduce the concept of scope to identify applications where the limiting relative

frequency interpretation is and is not useful.

4 Common Understanding of Probability

We provide examples to show that, at least in some instances, probability is understood in

terms of a proportion. These examples also serve as a platform for us to introduce the terms

‘scope’ and ‘focus’ of Section 5 to categorize applications as to which interpretation is more

relevant. We make no claims regarding the prevalence of the interpretation of probability

as a proportion but assert that it appears in enough settings to warrant considering it a

common interpretation.
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An argument can be made that the connection between probability and proportions is

stronger than indicated by these examples. Each example interprets probability as a pro-

portion. Conversely, there are examples of a proportion being interpreted as a probability6.

Courant and Robbins (1978, p. 28) who “denote by An the number of primes among the

integers 1,2,3,. . . , n” interpret the proportion An/n as a probability:

The “density” of the primes among the first n integers is given by the ratio

An/n, and may be computed empirically for fairly large values of n. [When

n = 109 this ratio] may be regarded as giving the probability that an integer

picked at random from among the first 109 integers will be prime...

No proof of this is offered. This is noteworthy because the authors emphasize the im-

portance of proving statements that may seem obvious to the layman. That probability

defined on a sample space of equally likely outcomes is a proportion is taken as an intuitive

notion not requiring proof or elaboration.

4.1 ESS Example

The following example appears in the aforementioned ESS entry.

A convict with a death sentence hanging over his head may have a chance of

being pardoned. He is to make a choice between white and black and then draw

a ball randomly from an urn containing 999 white balls and 1 black ball. If the

color agrees with his choice he will be pardoned.

6Another example is Lang(2010, page 11) who motivates the proof for a theorem on the distribution of
primes by writing “Roughly speaking, the idea is that the probability for a positive integer n to be prime
is 1/ log n.”
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Instead of using the proportion of white balls in the urn to describe a single random

selection, the convict considers an unspecified number of hypothetical drawings.

The convict replies that he will choose white because . . . out of many hypo-

thetical drawings he will in 99.9% of the trials be pardoned and in 0.1% of the

trials be executed. . . . the convict . . . attaches 99.9% probability to the single

trial about to be performed.

The article says the convict can attach a probability to a single trial because that

probability is a very real thing to the convict and it is reliably estimated from

past experiences concerning urn drawings.

It would seem we need to add the condition that the convict has sufficient experience with

urn drawings.

Even if that were true, we would expect he would be open to the equally likely interpre-

tation that clearly applies to a random draw from an urn. There is no need for a history

of “past experiences concerning urn drawings” or a hypothetical future where convicts are

executed repeatedly.

4.2 Gambling Examples

The broadcast of the 2018 Final Table in the 49th No-limit Hold-em main event held in

Las Vegas (aired 13 July 2018 on ESPN’s World Series of Poker) listed the player Cada

as having a 14% chance of winning while his opponent Miles had an 86% chance. These

probabilities were based on two cards held by Cada, two held by Miles, and four cards

on the table. These cards were dealt after the deck was thoroughly shuffled so that each
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ordering of the 52 cards was equally likely, or, at least treated as such. There is one more

card to be dealt and the announcer says that Cada has 6 outs – cards that would provide

him with a better hand than Miles. There are 44 cards remaining so the chance that Cada

wins is 6/44 =14%.

North Carolina, like many states, has a lottery where numbers are selected by having

balls jumbled with shots of air in a confined transparent space. The Pick-3 game consists

of three clear boxes each with 10 balls that are labeled with the numerals 0, 1, ..., 9. These

balls are jumbled for a few seconds and then one is allowed to come to the top. The

jumbling is vigorous enough so that each ball is assumed to be equally likely to come up.

While there may have been some players who waited for there to be sufficient history of

Pick-3 drawings before placing a bet, we are confident there are many who did not require

such history and still understood the probability of winning.

4.3 Clinical Trial Example

The examples above each had a known sample space of equally likely outcomes and this

allowed for the calculation of the proportion that provided, under suitable randomization,

the interpretation for probability. For statistical inference, simple random sampling from

the population provides equally likely outcomes so that these probabilities can also be

interpreted as proportions. However, unlike the previous examples, not all population

values are known so that proportions cannot be calculated without specifying a model for

these values.

Consider a trial of 60 participants in which 30 are assigned randomly to treatment A

and the remainder to treatment B. For simplicity we take the response variable to be di-

chotomous with values ’favorable’ and ’unfavorable’. The population is the 60 participants
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and the value for each participant is the ordered pair indicating the outcome, favorable

or unfavorable, under treatment A and under treatment B. Only one value of each pair is

observed. Suppose the number responding favorably to A is 25 and to B is 17.

One way to compare the treatments is by testing the hypothesis that the two treatments

have the same effect on each participant; that is, that the values are identical in each of

the 60 outcome pairs. Under this hypothesis there would be exactly 42 favorable responses

regardless of the treatment assignment. The population values consist of 42 favorable and

18 unfavorable outcomes. By chance 25 of the 42 favorable outcomes were assigned to

treatment A. Each possible assignment of 30 outcomes to A can be enumerated and the

proportion where 25 or more are favorable can be calculated. This proportion is 0.0235.

Likewise, the proportion of 25 or more favorable responses in group B is also 0.0235. The

interpretation is as follows: 4.7% of all possible treatment assignments have a discrepancy

between groups as great or greater than the observed discrepancy of 25 versus 17. Because

the actual assignment was done in a manner such that each possible assignment was equally

likely, this proportion is the probability of an observation as extreme or more extreme than

25 vs 17. That is, the p-value is 0.047 and its interpretation does not require that we

consider additional hypothetical random assignments of subjects to treatments.

5 Relationship between the Interpretations

Randomization and mathematical models are the most important features that distinguish

frequentist statistical inference from more general forms of inference. Each of the examples

we have considered represent these two features. Depending on the particular application,

there may be interest in the results from a single randomization or from many randomiza-
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tions. Scope is used to distinguish settings where interest is in a single instance and those

where repeated randomizations are more relevant7. While frequentist statistical methods

use mathematical models to make inference regarding the population, whether the empha-

sis is on the population or a model will depend on the particular method. Focus is used to

make this distinction.

5.1 Scope - Specific or Generic

The importance of repeatability for an interpretation will depend on specific features of the

application that, for the examples we consider, are closely tied to the intended audience. In

the poker example, if the audience is Cada, the player holding a specific hand, probability

is more usefully described as was done on the broadcast, as a proportion of equally likely

cards. More generally, for casino gambling, if the audience is the house then probability is

usefully described as a limiting relative frequency that describes an unspecified, but very

large, number of hands.

The Lottery example did not include an interpretation of probability. However, if the

audience is a ticket holder, then clearly there is interest in a specific drawing and the proba-

bility is naturally described as a proportion. On the other hand, the Lottery Commission is

more concerned with on-going drawings and so long-run frequencies, obtained by repeated

randomizations, are natural for this audience.

In the ESS example, where the audience is the convict, the proportion of white balls

and the notion of equally likely provide a simpler description than hypothetical repeated

drawings that involve this or other convicts. After a single draw, the convict is not likely

7Hájek (2019) describes unrepeatable events as a problem for the finite frequency interpretation. We
use scope to describe the role of repeatability in the limited context of statistical inference.
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to be interested in repeated drawings, especially if the ball indicates his execution. The

collection of future repeated draws and consequent executions would be relevant to the

state.

For the investigators of the clinical trial or anyone interested in the particular outcome

of the study, the proportion of assignments to treatments resulting in a discrepancy as great

as 25 and 17 provides a simple interpretation for the p-value. For statisticians interested

in calibrating how inference procedures such as Fisher’s exact test “would perform were

they used repeatedly” then significance levels would be specified and probabilities would

be described in terms of limiting relative frequencies of repeated randomizations8.

The common factor in comparing the potential audience in each of these examples is the

scope, either specific or generic, to which the probability extends. For a specific outcome,

be it a hand of cards that could determine whether a player continues in the tournament,

a lottery draw for a ticket holder, a convict whose life depends on a single draw from an

urn, or a physician wanting to assess the evidence from a single study for the merits of

a specific treatment, a proportion provides the natural interpretation for the probability

related to a single randomization.

The scope is generic when the application is described in terms of a collection of out-

comes.For statisticians who are concerned with how their methods perform in general, it

is natural for the scope to be generic. However, results from a specific study will be com-

municated more effectively when statisticians recognize that the scope is specific for their

audience.

Scope is related to Cox’s distinction between “long-run behavior” and a “specific in-

stance” but differs in that the collection of outcomes when the scope is generic need not be

8The quoted material is from the D.R. Cox displayed quote that appears in Section 1
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constructed in the long-run. An interpretation for the confidence interval having generic

scope that does not require repeated sampling is given in Section 7.2.

5.2 Focus - Population or Model

Scope applies to the interpretation of random phenomena whether or not these are used

for inference. Focus is meaningful only in the context of statistical inference where we

are concerned with an unknown distribution of numerical values. We call this distribution,

whether it be measurements on individuals in a population or values obtained from random

phenomena, the population distribution, or simply the population when the context makes

it clear that we are considering a distribution of numerical values rather than a collection

of individuals.

Statistical inference proceeds by positing that a known distribution, the model, is the

same as, or an approximation to, the unknown population distribution. While statistical

inference is always concerned with the population distribution, some inference procedures

address the population directly and others indirectly using one or more models for the

population. That is, the focus of an inference procedure can be on the population or a

model.

The probability calculated for the clinical trial is a p-value and the calculation of any

p-value requires the specification of a model (determined by the null hypothesis along with

other assumptions). Unless the population is the same as the model, it is difficult to

interpret the p-value as directly describing the population.

On the other hand, probability used to describe confidence intervals can have as its

focus either the population or a family of models for the population. For the former, the

interpretation of a 95% confidence interval for the mean, say 0.03 to 41.83, is that this
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interval was the result of an interval generating procedure applied to the population that

has the property that 95% of the intervals from this procedure contain the population

mean. Since 95% describes the procedure and not the specific interval, the scope of this

interpretation is generic and the focus is the population.

Fisher (1949, pages 190-191) provides the following interpretation.

An alternative view of the matter is to consider that variation of the unknown

parameter, µ, generates a continuum of hypotheses each of which might be

regarded as a null hypothesis, which the experiment is capable of testing. In

this case the data of the experiment, and the test of significance based upon

them, have divided this continuum into two portions. One, a region in which µ

lies between the limits 0.03 and 41.83, is accepted by the test of significance, in

the sense that the values of µ within this region are not contradicted by the data,

at the level of significance chosen. The remainder of the continuum, including

all values of µ outside these limits, is rejected by the test of significance.

Here the focus is on a collection of models. The scope is specific because each model is

assessed in terms of how extreme the specific data would be for that model.

6 Urn Models

Urn models are a conceptual construction that provide a convenient tool for describing

inferential results in terms of classical probability. One should conceive of a bowl filled

with N balls that are indistinguishable in regard to their possible selection but completely

distinguishable in terms of at least one feature. This distinguishable feature is needed

to count the balls. The urn model is an example of a multiset which is like a set except
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multiplicities are allowed. For sets, {1, 2}∪{2, 3} = {1, 2, 3} while for urns, b1, 2c∪b2, 3c =

b1, 2, 2, 3c. Unions and other basic set operations used below also hold for multisets.

6.1 Population Urn

A population can be described using the conceptional construction of an urn model. This

model may be thought of as a bowl that contains one ball for each member in the population.

For a variable of interest X, the population urn bXcpop is the bowl where the numerical

value for each member is written on the corresponding ball. In most cases the values on

the balls and the number of balls N are unknown. From the population urn we construct

another urn bXcnpop containing
(
N
n

)
balls. Each ball in bXcnpop represents a unique sample

of size n from the
(
N
n

)
possible samples from bXcpop; this ball is labeled with an n-tuple

of values obtained from the balls of the corresponding sample from bXcpop. The only

restriction on n is that it is a positive integer not greater than N . Notationally, this

conceptual construction is

bXcpop
Cn−→ bXcnpop (1)

where the arrow indicates an enumeration of all possible samples of n balls so that the

observed sample corresponds to a ball (x)obs in bXcnpop.9

6.2 Model Urns

For inference regarding the population, a model is posited for bXcpop and the urn for the

model is written bXcθ because often there will be a set of models indexed by a parameter

θ ∈ Θ. To assess how well bXcθ approximates bXcpop, the observed sample (x)obs from

9Sampling plans other than SRS would require a different enumeration.
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bXcnpop is compared to the possible samples in the model, bXcnθ , where

bXcθ
Cn−→ bXcnθ . (2)

Unlike bXcnpop, the n-tuples on all balls in bXcnθ are known.10

The samples in bXcnθ are compared to the observed sample using a test statistic Tθ,

a real valued function on Rn. Simple test statistics such as the sample mean will not be

a function of the parameter so we write T = Tθ for notational simplicity. The value of

the observed test statistic is tobs = T (x)obs. The plausibility of a specific model bXcθo

as an approximation to bXcpop is assessed by comparing (x)obs to the samples in bXcnθo .

Specifically, by finding the proportion of balls whose test statistic value is greater than or

equal to tobs. This proportion is written as

PrbT ≥ tobscnθo (3)

where

PrbT ≥ tcnθ =
| {b ∈ bXcnθ : T (b) ≥ t} |

|bXcnθ |
. (4)

No randomizations were used to construct the model urn bXcnθo . However, for the propor-

tion in (3) to be meaningful as a probability, the observed sample must have been obtained

using a simple random sample (SRS) from the population. Given this randomization, the

proportion in (3) is the p-value for testing Ho : bXcpop = bXcθo using the test statistic T .

10The number of balls in model urn bXcθ need not equal the number in the population urn. The relevant
features are proportions rather than counts.
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The (1 − α)100% confidence interval11 for θ obtained from (x)obs is found by allowing

θo in (3) to range over all possible values for θ,

Cα
(x)obs

=
{
θ : PrbT ≥ tobscnθ ≥ α

}
. (5)

The interval in (5) represents all the models, indexed by θ, for which the observed data

would not be in the most extreme α100% observations as measured by the ordering of the

test statistic T . Even though the confidence interval Cα
(x)obs

involves many models there is

still only one randomization that is required – the randomization used to obtain the data

from the population.

The procedural interpretation of the confidence interval can be described using an urn

of confidence intervals

bXcnpop ←→ bCαcnpop (6)

where the urn on the right is obtained by letting (x)obs in (5) range over all possible samples

of size n from bXcpop.

6.3 Compared to Repeated Sampling

The sampling urns for the population and for models are constructed using enumeration12.

In contrast, the limiting relative frequency interpretation involves the conceptual construc-

tion of an infinite sequence where each term in the sequence is obtained by a hypothetical

11This notation and interpretation allow generalizing to a confidence region.
12This enumeration is conceptual to describe the relationship between a model and the sampling distri-

bution obtained from the model. Both the model and the sampling distribution are mathematical objects
that simply exist and do not require enumeration or construction.
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random sample. Notationally,

bXcpop
SRSn−→ (x)1, (x)2, . . . (7)

where (x)i is the n-tuple obtained from the ith hypothetical sample. Because these are

random samples, another sequence

bXcpop
SRSn−→ (x)′1, (x)′2, . . . (8)

could be used. The sequences in (7) and (8) are different but have the same limiting relative

frequency.

It is important to remember that bXcpop represents the collection of values obtained from

the population, so that (7) and (8) represent repeated random samples from a collection of

numbers, not from the actual population. Imagining sampling from the actual population

is hypothetical frequentism where frequencies are counterfactuals. Our discussion concerns

mathematics not metaphysics.

While the sampling of (7) and (8) describe mathematics, the mathematics that is in-

volved goes beyond measure theory. The notion of an infinite random sequence is required

and there is no single accepted mathematical model for randomness. Chapter 2 of Khren-

nikov (2016) discusses three distinct models for classical randomness and a separate chapter

comparing these to quantum randomness.

In addition to putting the discussion on shaky foundational ground, there is little payoff

in terms of intuition or understanding. When we conceptualize a very large number of

random samples of size n from a population of size N , the limiting relative frequency of

28



each of the possible samples is just 1/
(
N
n

)
. This is precisely the frequency distribution of

bXcnpop . So why cloud this message with the language of hypothetical repeated samples?

7 Confidence Intervals

The Fisher interpretation for the observed interval is naturally described without repeated

sampling using Cα
(x)obs

. The interpretation of a confidence interval as having been produced

by a procedure is typically described using repeated sampling. Section 7.1 shows that, in

fact, a single random sample can be used for the procedural interpretation. Sections 7.2

and 7.3 compare the single random sample interpretations of Cα
(x)obs

and bCαcnpop.

7.1 bCαcnpop

Greenland et al. (2016) provide the following interpretation for the 95% confidence interval,

. . . the 95% refers only to how often 95% confidence intervals computed from

very many studies would contain the true effect if all the assumptions used to

compute the intervals were correct.

It seems the word “only” is used to discourage other procedural interpretations since earlier

in their paper the observed confidence interval is described in terms of testing which we

understand to be Fisher’s interpretation.

Even if the word “only” applies just to the procedural interpretation, this statement is

too strong. As the urn models show, this interpretation need not be described in terms of

limiting relative frequency. When the family of models contains the true model, bXcpop =

bXcθ∗ for some θ∗, then the urn bC .05cnpop defined by (6) has the property that 95% of

29



these intervals contain the true parameter value, θ∗. The proportion 0.95 is a probability

when each interval in bC .05cnpop is given an equally likely chance of being selected; i.e., the

observed data were obtained by an SRS from the population. The procedural interpretation

for the confidence interval does not require the procedure to be repeated many times, just

as understanding Cada’s probability of winning did not require repeatedly shuffling the

remaining poker cards.

7.2 Comparing the Interpretations

In terms of scope and focus the interpretations represented by Cα
(x)obs

and bCαcnpop are very

different. The interval Cα
(x)obs

is specific to the data that was observed, (x)obs, and the focus

is on a collection of models. Figure 1 shows these models for the card example and Figure

2 in the next section shows these models for the clinical trial example. The collection

of intervals bCαcnpop can be represented by a table of all possible confidence intervals with

proportions obtained from the population. Table 1 shows this for the clinical trial example.

This table is generic, confidence intervals for all possible observations are considered, and

the focus is on the population when the additional assumption is made that there is a model

with parameter θ∗ such that bXcθ∗ is a close approximation to bXcpop. This assumption is

not required for the interpretation represented by Cα
(x)obs

.

Coverage probability and expected length apply to bCαcnpop but not to Cα
(x)obs

. When

intervals are defined with these two criteria in mind but without inverting a test, there

is great flexibility in how individual intervals are chosen. As a result, observed intervals

can have poor properties when interpreted in terms of testing.13 To maintain fidelity to

13This issue arises when the sample space is discrete and the intervals are considered too conservative in
terms of coverage probability. See, for example, Vos and Hudson (2008).
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the Fisher interpretation, Vos and Hudson (2005) introduce the criteria p-confidence and

p-bias that apply to Cα
(x)obs

.

7.3 Clinical Trial Example Revisited

We return to the clinical trial considered above in which 30 of 60 patients were randomly

assigned to treatment A and the remaining patients received treatment B. The study

resulted in 25 and 17 favorable responses for treatments A and B, respectively. The p-

value 0.047 calculated above is the probability of a discrepancy as large as 25 and 17 when

a total of 42 favorable responses were observed if the probability of a favorable response

is the same for the two treatments, i.e., pA = pB. The assumption pA = pB provides a

mathematical model for the probability for each of the 19 possible results given that there

were a total of 42 favorable responses: (12, 30), (13, 29), · · · , (29, 13), (30, 12). Because the

total number of favorable responses is fixed, it is enough to record X, the number of

favorable responses for treatment A.

Confidence intervals describe models where the two success probabilities differ. For all

possible values of pA and pB the distribution of X depends only on the odds ratio

θ =
pA/(1− pA)

pB/(1− pB)
.

The 95% confidence interval for the odds ratio when X = 25 is all the values for θ from 1.01

to 16.0. We compare the interpretations Cα
(x)obs

and bCαcnpop applied to this 95% confidence

interval: 1.01 < θ < 16.0.

Figure 2 illustrates the interpretation Cα
(x)obs

where (x)obs = 25 and α = 0.05. In this

interpretation each value for the odds ratio specifies a distribution for X and the values for
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θ between 1.01 and 16.0 are those for which observing X = 25 is not among the 5% most

extreme (2.5% for one tail). Distributions for θ = 1.01 and θ = 16.0 appear as vertical

white lines in Figure 2. Vertical bars were used in Figure 1 to show the distribution for

each of the models. Bars are replaced with lines because there are infinitely many models

for the clinical trial example. While the number of favorable responses under Treatment

A could have been a value other than 25, these are not considered in this interpretation.

The scope is specific to the data actually observed and is useful for anyone interested in

this particular study.

Table 1 illustrates the interpretation bCαcnpop where α = 0.05. The fact that the value

observed for X was 25 is not required. This interpretation is useful for anyone interested

in methodology, in this case, that of confidence intervals for the odds ratio. The scope

of this interpretation is generic – it applies to any randomized trial with two treatment

groups each of size 30 in which there are 42 total favorable responses. Table 1 lists the 95%

confidence interval for each value for X. While there are only 19 different intervals, the

proportion of each is a function of θ since the distribution of X is a function of θ. Table

1 provides the distribution for bCαcnθ where θ can be any value larger than 014. These

intervals have the property that the proportion of intervals that contain θ is at least 95%

for every θ > 0. With the added assumption that one of the models indexed by θ is the

population model, that is, there is a value θpop such that bC .05cnθpop = bC .05cpop, the focus

can be changed from an infinite collection of models to the population. We don’t need to

know the population distribution to know that at least 95% of the intervals will contain

14For bCαcnθ to be a finite urn requires θ to be rational. This is not a limitation since any real number
can be approximated to arbitrary precision by a rational number. Also, the important point here is that
the model provides a distribution for a collection, possibly infinite, of numerical values rather than a model
for random phenomena.
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x 95% CI for θ Proportion P (X = x; θ)

12 0 to 0.1147 k
(
30
12

)(
30
30

)
θ12

13 0.0006 to 0.2141 k
(
30
13

)(
30
29

)
θ13

14 0.0065 to 0.3386 k
(
30
14

)(
30
28

)
θ14

...
...

...

25 1.0146 to 15.9881 k
(
30
25

)(
30
17

)
θ25

...
...

...

29 4.6706 to 1622.2 k
(
30
29

)(
30
13

)
θ29

30 8.7200 to ∞ k
(
30
30

)(
30
12

)
θ30

Table 1: bC0.05cnpop = bC0.05cθpop . The Proportion column specifies the distribution of X,
the number of favorable responses under treatment A, for the model where the odds ratio
is θ; k = k(θ) is the proportionality constant chosen so that the sum of this column is
1. For every possible value of θ, the proportion of intervals that contain θ is at least
95%. For example, if θ = 0.0005 then only the first interval contains θ which means
k
(
30
12

)(
30
30

)
0.000512 ≥ 0.95. If θ = 2, it can be checked that only intervals corresponding

to x = 20 to x = 26 contain the value 2 which means that the sum of the proportions
for these intervals is at least 0.95: k

∑26
x=20

(
30
x

)(
30

42−x

)
2x ≥ 0.95. Since this property holds

for all possible values for θ, if the population is described by one of these values then this
property holds for the population.

θpop.

We compare these interpretations with the standard frequentist interpretation: the ob-

served 95% confidence interval 1.01 < θ < 16.0 either does or does not contain θpop, 95%

refers to the procedure that generated this interval and this procedure produces intervals

that cover the population parameter value θpop at least 95% of the time. Difficulties arise

when “95% of the time” is explained in terms of repeatedly applying the procedure. When

applied to a single study, these repeated applications are subject to the criticism of hypo-

thetical frequentism. In particular, for the 60 patients in this study, what would it mean

to repeatedly randomize to treatment groups? Having received a treatment, a patient is
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Figure 2: C0.05
(x)obs

consists of the models with odds ratio between 1.01 and 16.0. Horizontal
dashed white lines are at 0.025 and 0.975. The vertical white line at θ = 1.01 shows
the distribution of X for the model where the odds of success with Treatment A are 1.01
times that of Treatment B and the total number of successes observed is 42. For this
model, the observation of 25 favorable responses for Treatment A is in the upper 2.5% of
possible values for X making the observation significantly larger than would be expected.
Because patients were randomly assigned to treatments, the distribution of X given by the
model with odds ratio θ = 1.01 provides the probability of observing 25 or more favorable
responses for treatment A. Vertical lines where θ > 1.01 show this probability increases
for these models. The vertical white line at θ = 16.0 shows the distribution of X for the
model where the odds of success with Treatment A are 16.0 times that of Treatment B.
For this model, the observation of 25 favorable responses for Treatment A is in the lower
2.5% of possible values for X making the observation significantly smaller than would be
expected – the probability of observing 25 or fewer favorable responses for treatment A is
0.025. Vertical lines where θ < 16.0 show this probability increases for these models. The
95% confidence interval for θ consists of value between 1.01 and 16.0.
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no longer the same – the population has changed. This explanation works better from the

perspective of the theoretical statistician: the procedure is applied to many studies but

only once to each study15. The scope for the theoretical statistician is generic, this inter-

pretation is problematic when the scope is specific, when interest is in only one particular

study.

The interpretation bC .05cpop differs from the standard interpretation in that there is no

need to use the notion of “95% of the time” which is not essential to interpreting probability.

The urn model bC .05cpop consists of balls labelled with confidence intervals such that at

least 95% of these contain θpop, the results of the randomized trial is equivalent to a single

random selection from this urn. The distinction between these interpretations can be

understood with the simple example of the probability of rolling a ’6’ with a fair die. The

probability is 1/6 because if you roll the die repeatedly the proportion of times that the

face with ’6’ comes up will be come very close to 1/6. Or, the probability is 1/6 because

it is equivalent to a random selection from an urn where exactly one of 6 balls is labelled

with ’6’. The distinction in this simple example is less useful since repeatedly rolling a die

is less problematic than repeatedly conducting the same randomized trial.

Bayesian criticism that frequentist inference is hypothetical frequentism is valid for the

frequentist interpretation that uses repeated sampling. bCαcpop which does not use repeated

sampling shows that this criticism does not apply to frequentist methods. The conversation

between Bayesians and frequentists will be improved when the distinction between a model

and its interpretation is recognized, and when frequentists provide better explanations for

their methods, especially when applied to the results of a specific study.

15Procedures are constructed that apply to numbers of patients, nA and nB , and success totals, nT ,
other than nA = 30, nB = 30, and nT = 42 so these apply more generally.
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Another Bayesian criticism of frequentist inference is that there is no reference to the

data actually observed. This is a valid criticism of the interpretation bCαcpop which is

ill-suited when the scope is specific, but not of frequentist inference as the interpretation

Cα
(x)obs

uses the observed value (x)obs to conduct inference for each model labelled by the

parameter. As Figure 2 shows, this interpretation is more than a simple dichotomization

of models as having parameter values either in or outside the confidence interval. The

observation X = 25 is farther in the tails of the distribution for models with parameters

near the endpoints of the interval than for those having parameter values near the center

of the interval.

Frequentist methods can be described without hypothetical frequentism and with direct

reference to the observed data. These observations will not resolve the disagreements

between Bayesians and frequentists but will move the discussion to more productive areas.

Ideally, the adjectives ’Bayesian’ and ’frequentist’ could be moved from ’statistician’ to

’methods’ so that statisticians would discuss the role of Bayesian and frequentist methods

in specific applications.

8 P -values

Confidence intervals allow for an interpretation that is population focused. Interpreting

p-values in terms of population focus can lead to problems associated with hypothetical

frequentism. As an example we consider the issue of potential comparisons raised by

Gelman (2016) who claims

. . . to compute a valid p-value you need to know what analyses would have

been done had the data been different. Even if the researchers only did a single
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analysis of the data at hand, they well could’ve done other analyses had the

data been different.

Gelman considers repeated sampling from the population but the p-value is a probability

that describes a model – generally, a model thought to be a poor candidate for the unknown

population distribution16. Comments by Fisher (1959, page 44) apply here

In general tests of significance are based on hypothetical probabilities calcu-

lated from the null hypotheses. They do not generally lead to any probability

statements about the real world, but to a rational and well-defined measure of

reluctance to the acceptance of the hypotheses they test.

Certainly p-values can be misused but Gelman’s statement is too strong because it makes

p-values invalid even when there has been no actual misuse. A potential misuse of a p-value,

or any inference procedure, does not invalidate a single instance of proper use. Consider

the following example from Texas Hold’em Poker. A gambler calculates the probability of

making a specific hand based on the proportion of unseen cards. This calculation is done

under the following conditions: he is well rested, sober, and knows the dealer, and he has

no reason to suspect cheating. The result of this calculation is a valid probability. The

gambler’s wife might say that if he were to play too much poker, then he would become

sleepy, drink too much, and gamble at shady establishments. Regarding the long run

outcome of his gambling, these are legitimate concerns that bring the validity (utility) of

future probability calculations into questions. However, these potentialities do not affect

the gambler’s specific calculation made under the actual conditions. The scope for the

gambler is specific while for his wife it is generic.

16If Gelman is describing the actual population rather than the unknown distribution of population
values, then this is hypothetical frequentism.
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The reader might find differences between our example and the discussion of potential

comparisons. Our hope is that we could agree that hypothetical long run sampling is prob-

lematic when used to address a specific instance, and our point is that repeated sampling

is not required to interpret inference for the data actually observed.

9 Power

We have seen that confidence intervals and p-values can be interpreted using a single random

sample. Power calculations are done before data have been collected and do not require

any randomization or hypothetical repetitions. This is in contrast to how power is often

discussed. For example, Greenland et al. (2016) describe power as a probability “defined

over repetitions of the same study design and so is a frequency probability.”

Power can be described using the population of men’s heights and the population of

women’s heights from Section 2.2 An inference regarding the sex of an individual will be

made using the following procedure: select an individual at random from one of the two

populations (we do not know which) and obtain their height, if the height is less than 5’

4”17, infer that the individual is a woman, otherwise infer that the individual is a man.

This procedure is described by two probabilities: the probability of correctly identifying

an individual as a man, p1, and the probability of correctly identifying an individual as a

woman, p2. In the language of hypothesis testing, if the null hypothesis is the claim that

the individual is a man, then the significance level of the test is 1− p1 and the power is p2.

While randomization is part of the procedure, power calculations are done before a

study is conducted; that is, before any randomization. Using the distribution of heights, p1

17The procedure could be defined using any height. This particular height was chosen so that the
probability is 0.05 of incorrectly identifying the individual as a woman.
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is the proportion of men who are taller than 5’4” and p2 is the proportion of women who

are shorter than 5’4”. Using data collected from the 2015-16 National Health and Nutrition

Examination Survey as models for these two populations, p1 = 0.95 and p2 = .5518. The

single randomization specified by the procedure makes these proportions meaningful as

probabilities. Repeated randomizations are not required.

Urn models can be used to extend the height example to a general setting. Power

calculations are done by comparing the model specified by a null hypothesis to a competing

model. The urn bXcno of the null model is compared to the urn bXcn1 of the competing

model in terms of a test statistic To. Specifically, the significance level α for a test To where

large values are evidence against the null model defines a value t∗ such that

PrbTo ≥ t∗cno = α

and the power β is given by

PrbTo ≥ t∗cn1 = β.

Both α and β are proportions. The power is the proportion of all samples of size n

from the competing model (posited as an approximation to the population) that are more

extreme than t∗. These proportions are meaningful as probabilities and useful for inference

regarding the population when the observed data is obtained by an actual randomization

from the population. Hypothetical repetitions from the population or one of the models

are not required.

182015-16 NHANES data is used for the website https://dqydj.com/

height-percentile-calculator-for-men-and-women/
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10 Discussion

Describing the observed confidence interval as having been obtained from a procedure

is often the only interpretation that is considered, but there are authors who recognize

Fisher’s interpretation. Examples include, Kempthorne and Folks (1971) who call Fisher’s

interpretation a consonance interval and Mayo (2018) who describes inference in terms of

severe testing that appears to be very close to Fisher’s interpretation.

Other authors also see pitfalls with the introduction of the concept of infinity. For

example, Hacking (1976, p. 7) “However much they have been a help, I shall argue that

hypothetical infinite populations only hinder full understanding of the very property von

Mises and Fisher did so much to elucidate.”

We have restricted urns to be finite for simplicity. Allowing an urn to have an infinite

number of balls results in a statistical ensemble. According to the Wikipedia entry (2021)

... an ensemble (also statistical ensemble) is an idealization consisting of a

large number of virtual copies (sometimes infinitely many) of a system, consid-

ered all at once, each of which represents a possible state that the real system

might be in.

A single simple random sample of n individuals from a population creates a statistical

ensemble where the possible states consist exactly of the possible samples of size n from

the population.

The conceptualization of a statistical ensemble differs from repeated sampling in that a

large number is considered all at once and this idea avoids several pitfalls associated with

repeated sampling. Repeated sampling and terms such as “long run” introduce the notion

of time even though time is not included in the definition of probability. Adding to the

40



confusion is that when the scope is generic, such as a statistician defining procedures in

terms of “how they would perform were they used repeatedly”, time fits naturally in that

particular interpretation. Furthermore, repetition generates a sequence and the order of this

sequence has nothing to do with the structure of the collection so the idea of independence

is needed to appropriately describe a random sequence. By considering the collection all at

once, whether it is balls in an urn or states of an ensemble, these complications are avoided.

A statistical ensemble can be applied when the scope is generic or specific but is especially

useful in the latter case.

Recognizing that the focus can be either the population or the model sheds light on

the role of randomization in statistical inference. Using a model for inference is justified

by using a single actual random sample from the population. The model specifies a distri-

bution of possible samples to which the observed sample is compared and the relationship

between these is expressed in terms of a tail proportion or percentile, neither of which

involves randomization. Hypothetical repeated randomizations may be introduced as a

means to interpret the percentile, but these hypothetical randomizations, and the conse-

quent confusion with the required randomization from the population, can be avoided by

using classical probability described by urn models.
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