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ABSTRACT

In light of its empirical undetectability, physicists have attempted to establish Hawk-
ing radiation as universal—as a phenomenon that should appear regardless of the
possible details of quantum gravity, whatever those details might be. But, as pointed
out in a recent article by Gryb, Palacios, and Thébault (2019), these universality argu-
ments for Hawking radiation seem broadly unconvincing compared to the Wilsonian
renormalization-group universality arguments for condensed matter physics.

Motivated by their apparent failure, compared with the overwhelming success of
universality arguments in so many other contexts, I address the question: in which
situations should we expect to be able to construct successful universality arguments?
In other words, which situations are ‘universality-argument-apt’?

I distinguish between two notions of success for a universality argument: ‘strength’
and ‘relevance’. I argue that we should only expect to be able to construct universal-
ity arguments that are successful in the sense of being significantly relevant to a given
domain if 1 we know enough about how that domain’s micro-physics is structured,
or 2 we are able to empirically test the domain’s macro-behaviour, or if we are in
both situations at once. These conditions are useful, most obviously, as a clarification
of what universality arguments are capable of. But I argue that they are also useful
for two less direct reasons: they clarify the status of analogue experimentation, and
thereby show us where we stand in our search for empirical confirmation of Hawking
radiation.
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1 Introduction

Universality arguments for Hawking radiation have recently been employed in the
philosophy literature as a tool to provide analogue black hole experiments with
confirmatory power (Dardashti, Hartmann et al. [2019]). And yet, as shown by Gryb
et al. ([2020]), none of the existing proposed universality arguments for Hawking
radiation seem nearly as convincing as the well-established Wilsonian
renormalization-group arguments in condensed matter physics.

Their apparent weakness, contrasted with the clear success of universality arguments
in so many other fields, highlights the need for a more detailed analysis of whether we
should even expect universality arguments to navigate empirically uncharted territory.
This paper aims to fill that gap, by articulating in-principle limits on the domains for
which we should expect to be capable of constructing successful universality arguments.

I begin in Section 2 by assessing the connection between universality arguments and
analogue experiments. Section 2.1 summarizes the existing literature on universality
arguments and analogue experiments, both in general (Section 2.1.1) and for Hawking
radiation in particular (Section 2.1.2). Section 2.2 attempts to articulate the
ingredients—both formal and practical—that we need to have at our disposal in order to
gain confirmatory power from analogue experiments using the Bayesian framework
established in Dardashti, Hartmann et al. ([2019]).

I distinguish between two interpretations of this framework—one in which it requires
us to have a particular universality argument in mind (Section 2.2.1), and one in which it
does not (Section 2.2.2)—and I argue that only the first is viable. Therefore, we at least
need to have such an argument at hand in order to gain some degree of confirmation
from an analogue experiment. But, I suggest, further conditions need to hold for that
confirmation to be significant: in particular, we need to be confident that our universality
argument is significantly positively relevant to both the source and target systems. This
translates into formal probability constraints on the variables in the Bayesian framework.

Section 3 goes one step further to ask: in which situations can we have that
confidence? After distinguishing between two components of success for a universality
argument—strength and relevance—in Section 3.1, and comparing our knowledge of
condensed matter physics with our knowledge of quantum gravity in Section 3.2, I
suggest in Section 3.3 that we should only expect to be able to construct a significantly
relevant universality argument within a given domain if either

1 we know that the micro-physics of the physical systems in question—i.e. the
physical systems that supposedly all exhibit the same macro-phenomenon—are of
the same type in key respects; or

2 we are able to empirically access those systems’ macro-behaviour,

or if we are in both of those situations at once.
These conditions are useful, most obviously, as a clarification of what universality

arguments are capable of. But I will argue in Section 4 that they support various other
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morals. They clarify the status of analogue experimentation—in particular, by
elucidating the underlying conditions that are required for an analogue experiment to
provide significant (Sections 4.2.1 and 4.2.2) rather than negligible (Sections 4.1.1 and
4.1.2) confirmatory power. More broadly, they are essential as a reminder of how our
theoretical tools are shaped by our empirical capabilities (Section 4.3). If we cannot
empirically access the macro-behaviour of the physical systems in question, and if we do
not already know that they share the relevant micro-structure, then no theoretical
argument—not even a universality argument—can fill the empirical gap.

2 Confirmation via Analogue Experimentation

This Section will begin by summarizing the existing literature on universality arguments
and analogue experimentation, both in general (Section 2.1.1) and for Hawking radiation
in particular (Section 2.1.2). I will then assess the conditions required for an analogue
experiment to provide confirmatory power—both to some degree and to a significant
degree—after distinguishing between two possible interpretations of Dardashti,
Hartmann et al. ([2019]) (Sections 2.2.1 and 2.2.2).

It will become clear that the confirmatory power of an analogue experiment depends
on our having access to a universality argument that is significantly positively relevant to
both the source and target systems. This will motivate a closer analysis of the
relationship between universality arguments and empirical constraints in the second half
of the paper (Sections 3 and 4).

2.1 Background

2.1.1 Analogue experiments and universality arguments

The physics literature

Physicist Bill Unruh was the first to suggest analogue experimentation as a solution
to the empirical undetectability of Hawking radiation. He realized that any fluid, if
moving at an ever-faster rate of flow in some direction, will develop a sonic horizon
analogous to the event horizon surrounding a black hole singularity.

This intuitive analogy can be made mathematically rigorous (Unruh [1981],
pp. 1351–2). We can view the sound waves in our fluid as a massless scalar field
propagating in a (3+1)-dimensional Lorentzian geometry with metric

gµν =

−(c2
sound − v2

0)
... −v j

o
. . . . . . .

−vi
0

... δi j

 . (1)

Comparing gµν with the linearized Schwarzchild metric gSchwarzschild
µν in

Painlevé-Gullstrand coordinates, the isomorphism should be clear:

Forthcoming in The British Journal for the Philosophy of Science



4 Grace E. Field

gSchwarzschild
µν =

−(c2 − 2GM
r )

... −2GM
r x j

. . . . . . .

−2GM
r xi ... δi j

 . (2)

The mathematics used to derive the emission of Hawking radiation from a
Schwarzschild black hole horizon can therefore be applied equally well to derive the
emission of analogue Hawking radiation from an acoustic horizon. We are left not only
with an intuitive analogy between the two systems—fluid and astrophysical—but with an
isomorphism between the mathematical models by which we believe they can be
adequately described.

This isomorphism is the basis for the reasoning behind analogue experimentation,
both for black holes and in general. Given two systems described by isomorphic
mathematics, advocates of analogue experimentation suggest that we should be able to
draw conclusions about one based on experimental data collected on the other.

Research groups at the University of British Columbia, the Technion, the University
of St Andrews, the University of Nottingham, and the French National Centre for
Scientific Research have led work towards building and completing these analogue
experiments; and so far, their results have been positive.1 Steinhauer’s group, for
example, claims to have observed spontaneous analogue Hawking radiation in a
Bose-Einstein Condensate analogue black hole (Steinhauer [2016]; de Nova et al.
[2019]; Kolobov et al. [2019]).2

Dardashti, Thébault et al. ([2017]) and Dardashti, Hartmann et al. ([2019])

Dardashti, Thébault et al. ([2017]) and Dardashti, Hartmann et al. ([2019]) were the
first to articulate the reasoning behind these analogue gravity experiments in the
philosophy literature.3 Dardashti, Thébault et al. ([2017], pp. 67, 73) suggest, based on a
five-step inductive argument, that such analogue experiments should be able to provide
confirmation for hypotheses about their empirically inaccessible ‘target’ systems under
two conditions: as long as our mathematical models of the two systems are isomorphic,
and as long as we have Model-External and Empirically Grounded Arguments
(‘MEEGA’) to support the strength of that isomorphism.

Dardashti, Hartmann et al. ([2019]) identify the ‘MEEGA’ as universality arguments
and formalize this reasoning in a Bayesian framework. The framework introduces four
binary variables, which I label E , M S , M T , and X .4 Following Dardashti, Hartmann
1 See e.g. Unruh ([2014]), Steinhauer ([2016]), Jacquet and König ([2020]), Weinfurtner et al. ([2011])

and Rousseaux et al. ([2008]). The group at UBC is led by Unruh himself, and works collaboratively
with the group at Nottingham. For more information, see https://phsites.technion.ac.il/
atomlab/ and https://www.gravitylaboratory.com.

2 Steinhauer ([2016]) observed the correlations between positive and negative modes that are thought to
be a distinctive feature of Hawking radiation, de Nova et al. ([2019]) extracted the Hawking spectrum,
and Kolobov et al. ([2019]) studied the radiation produced by an evolving effective black hole horizon.

3 They were certainly not the first to discuss analogical reasoning in more general terms—see e.g. Mill
([1843/1930]), Keynes ([1921]), Hesse ([1964]), Hesse ([1966]), Hesse ([1973]), Hesse ([1974]), Hesse
([1988]), and Bartha ([2010]). Neither were they the first to discuss the issues associated with similarity
and analogy in modelling and simulation—see e.g. work by Sterrett ([2006]) and Weisberg ([2013]),
among many others.
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et al. ([2019], pp. 4–6), E takes the positive value E if evidence in support of our
mathematical model MS of the source system obtains.5 It takes the negative value ∼ E if
such evidence does not obtain. M S takes the positive value MS if our mathematical
model MS of the source system (i.e. our hypothesis about the source system) is indeed an
adequate description of the source system, and it takes the negative value ∼ MS if not.
Similarly, M T takes the positive value MT if our mathematical model MTof the target
system is an adequate description of the target system, and the negative value ∼ MT

otherwise. Finally, and most importantly for our discussion, the variable X takes the
positive value X if a universality argument that supports the adequacy of both MS and
MT obtains.

Dardashti, Hartmann et al. ([2019], p. 9) rigorously show that
P(MT |E)> P(MT )—that evidence collected on the source system confirms our
hypothesis about the target system—as long as the following four inequalities hold:

0 < P(X)< 1; (3)

P(MS|X)> P(MS| ∼ X); (4)

P(MT |X)> P(MT | ∼ X); (5)

P(E|MS)> P(E| ∼ MS). (6)

Those inequalities, and the corresponding transfer of evidence from source to target,
are represented by the Bayesian network in Figure 1.6 In particular, adopting a more
streamlined notation on which y := P(Y ), y := P(∼ Y ) and yz := P(Y |Z) for any Y and
Z,7 the degree of confirmation provided by an analogue experiment satisfying these
inequalities is given by:8

∆C := mT
e −mT =

xx
e
(mS

x −mS
x)(m

T
x −mT

x )(emS − emS). (7)

The logic, stripped of its Bayesian details, is remarkably intuitive. If we have a
universality argument that is a theoretical argument for why S and T should be
adequately described by models of the same isomorphism class ‘M’, and should
therefore exhibit analogous phenomena PS and PT, then empirical results that show S
exhibiting PS are simultaneously empirical support for our universality argument. But if
we have empirical support for our universality argument, and if that universality
argument applies to both S and T, then we simultaneously have empirical support for
what our universality argument says about T: namely, that T should exhibit PT.

4 I use a slightly different notation than Dardashti, Hartmann et al. ([2019]): my M S is their A and my
M T is their M .

5 Note the font conventions that are adopted here and throughout. CALLIGRAPHIC font is reserved for
binary variables; ITALIC font for the possible values of those variables; and PLAIN TEXT font for
other entities/concepts invoked by those variables.

6 For a discussion of how this Bayesian network might apply to analogical reasoning more generally, see
Feldbacher-Escamilla and Gebharter ([2020]).

7 mT
e , for example, represents P(MT |E); emS , similarly, represents P(E| ∼ MS).

8 The equation below combines equations (14) and (18) in Dardashti, Hartmann et al. ([2019], p. 9).
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6 Grace E. Field

Figure 1: Analogue experiments supplemented with universality arguments, based on
Figure 2 in Dardashti, Hartmann et al. ([2019], p. 6).

Crowther et al. ([2019]) and Evans and Thébault ([2020])

Yet, not everyone agrees that the reasoning behind analogue experimentation is
reliable. Steinhauer writes of his 2016 experiment that ‘[t]he measurement reported here
verifies Hawking’s calculation, which is viewed as a milestone in the quest for quantum
gravity’ (Steinhauer [2016], p. 964). But Harlow, for example, dismisses the same
measurement as ‘an amusing feat of engineering’ that ‘won’t tell us anything about black
holes’ (Wolchover [2016]).

In the philosophy literature, Crowther et al. ([2019], pp. 16–23) have argued that
analogue simulation suffers from a severe circularity problem, whereby we are only
warranted in using data collected on the source system to make inferences about the
target system under the assumption that our prior beliefs about the source and target
systems are correct. In Bayesian terms, their concern is about whether we can even draw
the arrow between the variables X and M T —or, equivalently, about whether we can
assume that the inequality (5) holds without taking our hypothesis about the target
system for granted.

They write:

it was thus already assumed that black holes at least probably fall under the relevant
universality class when the network in Fig. 2 [our Figure 1] was drawn: by connect-
ing the variables X and M [our M T ], we thereby stipulated a correlation between
black hole physics and the universality class. It is this step which presupposes (prob-
abilistically) what we would like to establish, viz., that black holes fall into the relev-
ant universality class [...] What we are interested in is precisely whether black holes
are appropriately modelled by the model summarised in Sect. 3.1 [the model MT]. In
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the Bayesian framework, this translates into the question of whether an edge should
be drawn between X and M [M T ] in the Bayesian network in Fig. 2 at all, and not
just to what the priors are. (Crowther et al. [2019], p. 22)

Evans and Thébault ([2020]) respond that this objection collapses into inductive
scepticism. By comparing analogue experimentation with other well-trusted inference
processes, they argue that the confirmatory power of evidence is not determined by the
accessibility (or inaccessibility) of the target system of interest. Instead, they suggest, it
is determined by the extent to which ‘inductive triangulation’ is possible: the extent to
which we are able to appeal to some distinct mode(s) of inductive reasoning to support
the assumed similarity between the system being experimented on and the system to
which we want to extrapolate.

In their words,

Assuming some minimal adequacy of the modelling framework as a description of
a target system, or a non-zero probability for the relevant hypothesis, is a necessary
pre-condition of all inductive reasoning [...] since Crowther et al. are not assuming
the position of inductive sceptics, and so are not offering an argument based upon
unreasonable doubt, they surely cannot rule out strategies for inductive triangulation
that lead to a termination of their justificatory demands. (Evans and Thébault [2020],
pp. 15–6)

Thus, even if we accept the formal result in Dardashti, Hartmann et al. ([2019], p. 9)—a
result which would be hard to deny—questions remain about how it should be
interpreted, and what it means for analogue experiments in practical terms.

The first question is: what ingredients do we need to have at our disposal in order to
claim that the inequalities (3) through (6) hold? Are Crowther et al. ([2019]) correct that
we cannot access those ingredients without collapsing into circularity, or are Evans and
Thébault ([2020]) correct that Crowther et al. ([2019])’s objection collapses into
inductive scepticism? The second question is: even when we have those minimal
ingredients, when will the corresponding degree of confirmation, ∆C, be significant?
This question needs to be assessed both formally and informally: we need to establish
the formal relations that must hold for ∆C to be significant, and we need to outline the
underlying practical situations that will yield those formal relations. I will attempt to
answer both questions in what follows, after looking more closely at our epistemic
relationship with Hawking radiation in Section 2.1.2.

2.1.2 Hawking radiation and the trans-Planckian problem
Hawking radiation is a pillar of black hole thermodynamics (see e.g. Wall ([2018])). It is
what allows black holes to thermally interact with their environment; without Hawking
radiation, we would not have any understanding of how such interaction might be
possible.

And yet, the theoretical basis for Hawking radiation is not entirely secure. It suffers
from two well-known problems: empirical undetectability and the trans-Planckian
problem.
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Empirical Undetectability: Hawking radiation, if it exists, is far too weak a signal
to detect empirically. This is a simple consequence of the predicted temperature of
Hawking radiation, T = h̄κ

2πk , and the fact that black hole surface gravity κ is
inversely proportional to mass. A black hole of the Sun’s mass, for example,
should radiate at a temperature of approximately 10−7K—a plainly undetectable
signal compared to the 2.7K cosmic microwave background temperature.
Furthermore, we are not yet technologically able to produce smaller black holes
(which would radiate at a much higher temperature) in the laboratory.

The Trans-Planckian Problem: Hawking radiation is produced in the
high-frequency (trans-Planckian) regime; this is exactly the domain of conditions
in which we should expect genuine quantum gravity effects to become relevant.
Any Hawking radiation that we receive close to J + has been exponentially
redshifted on its long journey away from the horizon, and therefore must have
emerged from the black hole as an extremely short-wavelength, high-energy
signal. Yet, Hawking radiation is a prediction of quantum field theory on curved
spacetime, a framework which is only thought to be reliable at sub-Planckian
frequencies.9

Astrophysical Hawking radiation is therefore exactly the kind of phenomenon that an
analogue experiment, if reliable, could be used to illuminate. It is empirically
inaccessible, and we have good reason to doubt its existence on theoretical grounds—so
we need to test whether it exists, but we cannot use a conventional experiment to
perform that test. Furthermore, as outlined in Section 2.1.1, we do have access to source
systems that can test for the presence of analogue Hawking radiation.

But recall that even the advocates of analogue experimentation agree that it needs to
be supplemented with appropriate universality arguments to gain confirmatory power.
On this front, Hawking radiation comes up short: Gryb et al. ([2020]) have shown that
the existing universality arguments for Hawking radiation do not seem especially
convincing when compared with the classic Wilsonian renormalization-group arguments
applied to condensed matter physics.

According to their extensive review of the physics literature, the main candidate
arguments can be grouped into three categories:

(a) arguments from the equivalence principle,

(b) arguments from horizon symmetries, and

(c) arguments from modified dispersion relations.

Each attempts to establish, on theoretical grounds, that the existence of Hawking
radiation should be independent of the details of quantum gravity. But not one has been
unanimously accepted by the physics community as sufficient grounds to dismiss the
trans-Planckian problem—and, according to Gryb et al. ([2020]), for good reason. I will
summarize each in turn.
9 For more literature on the trans-Planckian problem, see the references in Gryb et al. ([2020]), footnote

5: Gibbons ([1977]), Unruh ([1981]), Jacobson ([1991]), Jacobson ([1993]), Unruh ([1995]), Brout
et al. ([1995]), Helfer ([2003]), Jacobson ([2004]), and Harlow ([2016]).
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(a) arguments from the equivalence principle

The arguments from the equivalence principle suggest that the Hawking radiation
produced by a black hole must be equivalent to the thermal Unruh spectrum that would
be viewed locally by an observer accelerating through flat spacetime at a rate
corresponding to the black hole spacetime’s curvature (Gryb et al. [2020], pp. 16–9).
However, Gryb et al. ([2020], p. 18) emphasize that the equivalence principle only holds
for local observations, whereas Hawking radiation depends on global properties of the
spacetime (Gryb et al. [2020], p. 18). And, even worse, the Unruh spectrum does not in
fact seem to be universal against quantum gravity effects (Agulló et al. [2009]; Alkofer
et al. [2016]; Gryb et al. [2020], p. 18).

(b) arguments from horizon symmetries

The arguments from horizon symmetries identify the production of Hawking
radiation with the production of Goldstone bosons at the horizon, and proceed to show
that the production of Goldstone bosons should be unaffected by any changes in
micro-physics that preserve the horizon’s symmetries and topological structure.
However, even if we grant the identification between Hawking radiation and Goldstone
bosons (which is a non-trivial identification), these arguments are so idealized that they
lack physical plausibility. They only clearly apply to nonevaporating black holes, and
even then, only when back-reaction effects are ignored (Gryb et al. [2020], pp. 19–22).

(c) arguments from modified dispersion relations.

Gryb et al. ([2020], p. 24) take the third category, the arguments from modified
dispersion relations, to provide ‘the most physically plausible derivation of Hawking
radiation available’. These arguments incorporate modifications to the dispersion
relation into Hawking’s original derivation in an attempt to model the impact of possible
quantum gravity effects. They are ‘readily applicable to a huge range of physical
systems’, including ‘a wide variety of analogue black hole systems’ (Gryb et al. [2020],
p. 24). But even as the most promising contenders, they are not entirely reliable as
universality arguments for astrophysical Hawking radiation. In a 2005 paper, Unruh and
Schützhold show that although the Hawking spectrum remains unaltered by some
changes to the dispersion relation at high frequencies, it is altered dramatically by other
such changes ‘which do not appear to be unphysical or artificial’ (Unruh and Schützhold
[2005], p. 11). Furthermore, one can reasonably doubt ‘whether sub-luminal modified
dispersion relations really are sufficient to model quantum gravity effects’ (Gryb et al.
[2020], p. 25).

Thus Gryb et al. ([2020]) have warned that none of the existing universality
arguments for Hawking radiation are reliably successful. They identify the weakness of
these arguments as a lack of ‘integration’ between the insensitivity that they provide
towards ‘token-level’ variations on the one hand, and ‘type-level’ variations on the other:
even the arguments that seem to convincingly protect Hawking radiation against
high-frequency effects in analogue black hole systems seem unconvincing as universality
arguments for astrophysical Hawking radiation (Gryb et al. [2020], p. 25).
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The question then becomes: should these arguments be able to support the
confirmation of astrophysical Hawking radiation via analogue experimentation based on
the Bayesian reasoning outlined by Dardashti, Hartmann et al. ([2019])? If not, why not?
And if so, to what extent? Will the degree of confirmation provided be significant?

Furthermore, why are the existing universality arguments for astrophysical Hawking
radiation unconvincing? Do they seem limited as solutions to the trans-Planckian
problem precisely because of our inability to empirically probe the physics underlying
the effect whose presence they are designed to secure? And, more generally, in which
situations should we expect to be able to construct universality arguments that do seem
convincing? These questions, alongside the questions outlined at the end of Section
2.1.1, will become the focus of the next Section and the rest of the paper.

2.2 Dardashti et al. (2019): Two interpretations
One major barrier to interpreting Dardashti, Hartmann et al. ([2019]) concerns an
ambiguity in the definition of the variable X . X is defined to take the positive value X
when a universality argument in support of both MS and MT obtains. But that definition
can be interpreted in two different ways.

We might take it to imply that we already have a specific universality argument A in
mind, which we know to support both MS and MT—in formal terms, for which the
inequalities P(MS|A)> P(MS| ∼ A) and P(MT |A)> P(MT | ∼ A) both hold. The
possible values of the variable X would then be given by:

X : A obtains (i.e. its conclusions do indeed follow from its premises).

∼ X : A does not obtain.

Notice that, on this interpretation, X is really just the same as the variable A defined by
the argument A: X takes the positive value X exactly when A obtains, and X takes the
negative value ∼ X exactly when A does not obtain.10 I will call this Interpretation 1.

We might, instead, take the variable X to remain agnostic about whether a
universality argument that supports both MS and MT exists, in which case the positive
value of X would be given by the following conjunction:

X : ∃ some argument A such that
(
P(MS|A)> P(MS| ∼ A) and

P(MT |A)> P(MT | ∼ A)
)
∧
(
A obtains

)
.

The negative value of X would be given by the following disjunction:

∼ X : ∀ arguments A,
(
the inequality P(MS|A)> P(MS| ∼ A) does not hold and/or the

inequality P(MT |A)> P(MT | ∼ A) does not hold
)
∨
(
A does not obtain

)
.

I will call this Interpretation 2.
At the end of Section 2.1.1, I set out two tasks. First, to identify the ingredients that

we need to have at our disposal to claim that the inequalities (3) through (6) hold—and

10 By ‘the variable A defined by A’, I mean the variable that would take a positive value A whenever the
argument A obtains, and the negative value ∼ A otherwise.
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therefore, to be able to claim that an analogue experiment is able to provide some degree
of confirmation for hypotheses about its target system. And second, to identify the
conditions—formal and informal—under which the corresponding degree of
confirmation provided will be significant. I will begin by addressing these tasks from the
perspective of Interpretation 1 (Section 2.2.1). Then I will explain why Interpretation 1
is the only viable interpretation (Section 2.2.2).

2.2.1 Interpretation 1
I begin with the first question: from the perspective of Interpretation 1, under what
circumstances will the inequalities (3) through (6) hold? In other words, under what
circumstances will analogue experiments be able to offer some degree of confirmatory
power?

On Interpretation 1, inequality (3) has to do with the probability that the conclusion
of our argument A does indeed follow from its premises. It is satisfied if and only if that
probability falls between zero and one. This is a very weak condition—all we need is an
argument whose validity remains somewhat unknown.

What about the next two inequalities, (4) and (5)? On Interpretation 1, we are
starting out with a particular universality argument in mind, which we already know to
satisfy the inequalities P(MS|A)> P(MS| ∼ A) and P(MT |A)> P(MT | ∼ A). Thus,
based on the equivalence of the variables X and A , (4) and (5) are taken care of from the
outset. But, of course, we are not even able to get our reasoning off the ground unless we
do in fact possess such an argument.

What kind of argument will satisfy those inequalities? Should we expect such
arguments to be in short supply, leaving Dardashti, Hartmann et al. ([2019])’s proposal
formally sound but practically unhelpful? The answer, surely, is no: given any candidate
universality argument and any two systems S and T, it seems reasonable to allow some
nonzero chance that our argument will prove positively relevant to our hypotheses about
the systems. This is all that is required for the inequalities to hold. So almost any
universality argument should give us what we need to satisfy (4) and (5).

The final condition, P(E|MS)> P(E| ∼ MS), is satisfied whenever we know of a
piece of evidence that would be more likely to obtain if our hypothesis about the source
system were correct. On its own, this inequality should be extremely easy to satisfy: in a
sense, all it requires is that we understand what our hypothesis about the source system
predicts. But, of course, for our reasoning to be practically meaningful, we need to have
access to an experimental setup that should, in principle, be able to show the evidence E
of interest.

Thus, we have established, from the perspective of Interpretation 1, the practical
circumstances in which analogue experiments will be able to provide some degree of
confirmatory power when supplemented with universality arguments. We need to have
access to a universality argument whose validity remains somewhat unknown—in the
sense that it has not yet been definitively confirmed or disconfirmed—and which has at
least some small chance of being positively relevant to our hypotheses about the source
and target systems. And we need to have access to an experiment that can provide
evidence which is somewhat more likely to obtain if our hypothesis about the source
system is correct.

Forthcoming in The British Journal for the Philosophy of Science



12 Grace E. Field

These requirements may seem surprisingly weak; but they are meant to be so,
because so far we have not said anything about the degree of confirmation that our
experiment will be able to provide. That is the next question: on Intepretation 1, in what
circumstances, both formal and practical, will the degree of confirmation provided by an
analogue experiment be significant?

Here we have to refer back to the expression for confirmatory power established in
Dardashti, Hartmann et al. ([2019], p. 9) (our equation (7)). Once again, in the notation
introduced in Section 2.1.1, that expression is given by:

∆C := mT
e −mT =

xx
e
(mS

x −mS
x)(m

T
x −mT

x )(emS − emS). (8)

So the degree of confirmation provided depends on the values of four factors. Even if
an analogue experiment satisfies the minimum practical conditions just outlined, and is
therefore able to provide some degree of confirmatory power, that power will be
negligible unless the product of these four factors is significant. I label them γ , ∆S, ∆T ,
and ∆E :

γ :=
xx
e

∆S := mS
x −mS

x

∆T := mT
x −mT

x

∆E := emS − emS .

∆C will, of course, be at its greatest when each of these factors is as large as possible,
but it is not immediately clear what that means—and in particular, whether any of the
factors γ , ∆S, ∆T , and ∆E can become arbitrarily large and thereby yield a large value of
∆C even when the other factors are negligibly small. The limits on the values of γ , ∆S,
∆T , and ∆E should therefore be investigated.

I claim that all of these factors are in fact bounded above, given (3) through (6), and
provided that the value of e is not too small. This means that from a purely formal
perspective, each of γ , ∆S, ∆T , and ∆E must be significant for ∆C to be significant—and
conversely, if any of those factors is negligibly small, then ∆C will be negligibly small.

The boundedness is easy to see for ∆S, ∆T , and ∆E . Each of these factors is greater
than zero, by (4), (5), and (6). But at the same time, each is equal to a difference between
probabilities which are themselves bounded between zero and one. So we have
0 < ∆S ⩽ 1, 0 < ∆T ⩽ 1, and 0 < ∆E ⩽ 1. The boundedness of γ is only slightly less
straightforward, requiring the extra assumption that e is not too close to zero.

We know that γ > 0, since 0 < x < 1 (from (3)), and since x+ x = 1. So all we need
to show is that γ is bounded by above under reasonable conditions. Using x+ x = 1, the
expression for γ can be simplified to:

γ =
x(1− x)

e
, (9)

where 0 < x < 1 (from (3)) and 0 ⩽ e ⩽ 1 (because e is a probability). The numerator is
certainly bounded above: given 0 < x < 1, x(1− x) reaches a maximum value of 0.25
when x = 0.5. So we only need to worry about the denominator. But e would have to be
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smaller than 0.25 for the value of γ to be greater than 1, and e would have to be smaller
than 0.025 for the value of γ to be greater than 10. Thus, as long as e is not too close to
zero, the value of γ will not be too great.

In fact this seems like a reasonable requirement to impose. The value of e represents
the prior probability P(E) that evidence E will be observed in the source system. We
would have to be incredibly unsure of our experimental setup and incredibly unsure of
our theory of the source system for this value to be very small.

In purely formal terms, we therefore have an answer to our question: for the degree
of confirmation provided by an analogue experiment to be significant, each of the factors
γ , ∆S, ∆T , and ∆E must be significant (subject to the reasonable assumption that the prior
P(E) is not prohibitively close to zero).

What does this mean practically? The value of γ will depend on the details of the
case. But the meanings of ∆E , ∆S, and ∆T are easy to interpret. ∆E encapsulates the
relevance of our hypothesis about the source system to the presence of the evidence E: it
will be significant whenever we are able to probe a phenomenon in the source system
that would be much more likely to exist if our hypothesis about the source system were
correct. Practically speaking, this is fairly straightforward: it boils down to our having
access to a reliable experimental test of the source, or ‘analogue’, phenomenon of
interest.

∆S and ∆T are the factors that I believe deserve the most attention: they concern the
relevance of our universality argument to our hypotheses about the source and target
systems. ∆S encapsulates the degree to which the argument invoked by the variable X is
positively relevant to our hypothesis about the source system, and ∆T encapsulates the
degree to which that argument is positively relevant to our hypothesis about the target
system.

If we are not confident that our universality argument is relevant to our hypothesis
about the source system, then ∆S will be small, leaving ∆C small. Similarly for the target
system. But if we are very confident that the argument is positively relevant to both
hypotheses, then both ∆S and ∆T will be significant, leaving room for ∆C to be
significant. Whether it is in fact significant will depend, in addition, on the values of γ
and ∆E .

Thus we have made substantial headway towards answering our two questions, from
the perspective of Interpretation 1. If X is taken to refer to a particular universality
argument that is known to satisfy the conditions P(MS|A)> P(MS| ∼ A) and
P(MT |A)> P(MT | ∼ A) from the outset—which, as I’ve shown, is in fact a very weak
requirement—we have articulated the practical circumstances in which an analogue
experiment will be able to provide some degree of confirmatory power, and we have
established the formal conditions under which that confirmatory power will be
significant. The practical circumstances which support those formal conditions remain
so far unknown, leaving room to assess that final question in Section 3.

Next, I will explain why the other interpretation of Dardashti, Hartmann et al.
([2019]), in which X remains agnostic about whether a particular universality argument
exists, is not substantially different from Interpretation 1 and does not offer meaningful
advantages. The answers established above are therefore definitive.
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2.2.2 Interpretation 2
On Intepretation 2, the possible values of X are defined as follows:

X : ∃ some argument A such that
(
P(MS|A)> P(MS| ∼ A) and

P(MT |A)> P(MT | ∼ A)
)
∧
(
A obtains).

∼ X : ∀ arguments A,
(
the inequality P(MS|A)> P(MS| ∼ A) does not hold and/or the

inequality P(MT |A)> P(MT | ∼ A) does not hold
)
∨
(
A does not obtain

)
.

This interpretation might initially seem to offer some advantages over Interpretation
1. It automatically satisfies inequalities (4) and (5), since if X takes the value X , then
some argument obtains which satisfies P(MS|A)> P(MS| ∼ A) and
P(MT |A)> P(MT | ∼ A). And so surely P(MS|X)> P(MS| ∼ X) and
P(MT |X)> P(MT | ∼ X) hold.

Furthermore, Interpretation 2 does not force us to commit ourselves to examining a
particular universality argument A. Indeed, it does not even force us to commit ourselves
to the existence of an argument A that satisfies P(MS|A)> P(MS| ∼ A) and
P(MT |A)> P(MT | ∼ A). So it might seem to give us more for less: namely, non-zero
confirmatory power given fewer assumptions.

However, while it is possible to represent the problem this way, it is unhelpful for
various reasons. And furthermore, Interpretation 2 does not in fact offer the advantages
that it might seem to offer at first sight.

First of all, the prior of X , P(X), now depends not only on the probability that a
suitable universality argument holds, but on the probability that such an argument (i.e. an
argument satisfying the inequalities P(MS|A)> P(MS| ∼ A) and
P(MT |A)> P(MT | ∼ A)) exists. This leads to a complicated and almost self-defeating
nesting of probabilities, in which the P(X) that we are feeding into a Bayesian network
that requires P(MS|X)> P(MS| ∼ X) and P(MT |X)> P(MT | ∼ X) depends, in turn, on
the probability that P(MS|A)> P(MS| ∼ A) and P(MT |A)> P(MT | ∼ A) hold for some
particular argument. To define that probability, we would need to have some particular
candidate argument(s) in mind. So we have not really abstracted away from particular
arguments after all.

Secondly, the values of P(MT |X)−P(MT | ∼ X) := ∆T and
P(MS|X)−P(MS| ∼ X) := ∆S will surely depend on the values of
P(MT |A)−P(MT | ∼ A) and P(MS|A)−P(MS| ∼ A) for particular arguments—or, more
precisely, on the probability that P(MT |A)−P(MT | ∼ A) and P(MS|A)−P(MS| ∼ A)
will take on certain values for particular candidate universality arguments. Again we are
required to consider particular arguments, and again we are presented with a nesting of
probabilities.

Third, and finally, there is really no need to shift from Interpretation 1 to
Interpretation 2. As I emphasized in Section 2.2.1, it should be very easy to find a
particular argument that satisfies the inequalities P(MS|A)> P(MS| ∼ A) and
P(MT |A)> P(MT | ∼ A). The challenge is to find arguments that come along with
significant values of ∆S and ∆T , a challenge that is not eased by adopting Interpretation 2.

Thus, Interpretation 1 is the clear way forward: to be able to define the probabilities
in Dardashti, Hartmann et al. ([2019])’s Bayesian network, we must have a particular
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universality argument in mind which we know to satisfy the (weak) conditions
P(MS|A)> P(MS| ∼ A) and P(MT |A)> P(MT | ∼ A). And for the corresponding degree
of confirmation to be significant, that argument must produce significant values of ∆S
and ∆T .

Having established these formal constraints, the final question is: in which practical
situations should we expect to be able to construct such a universality argument? That
will be the focus of Section 3.

3 When Can a Universality Argument Be Successful?

I begin by distinguishing between two components of success for a universality
argument: ‘strength’ and ‘relevance’ (Section 3.1). Success as relevance will be my
focus here. Motivated by a comparison of the renormalization-group universality
arguments in condensed matter physics and Unruh and Schützhold ([2005])’s modified
dispersion relation universality argument for Hawking radiation (Section 3.2), it will
become clear that there are two such situations, which I will denote 1 and 2 (Section
3.3). Section 4 will then assess the implications of this result, both for analogue
experimentation in general and for Hawking radiation in particular.

3.1 The two components of success
There are two sides to the success of a universality argument, which I will label
‘strength’ and ‘relevance’. The strength of a universality argument concerns the
probability that its conclusions do in fact follow from its premises. In our Bayesian
framework, this corresponds to P(X), the probability that the universality argument at
hand obtains. The role of P(X) for analogue experiments has already been examined in
detail in Dardashti, Hartmann et al. ([2019]) (see, for example, their Section 4.2 on the
role of P(X) in defining the saturation point of confirmatory power for multiple-source
analogue experiments).

What has not been examined in detail is the role of relevance—the extent to which a
universality argument is known to be significantly positively relevant to the systems of
interest. It is this sense of success that corresponds to the factors ∆S and ∆T identified in
the previous Section, because the positive relevance of any variable A to the value of any
variable B is captured precisely by the difference between P(B|A) and P(B| ∼ A). The
practical underlying conditions required to support the construction of significantly
relevant universality arguments are what I will attempt to elucidate here.

3.2 Condensed matter vs. quantum gravity
It is well-known that renormalization-group arguments provide highly convincing
explanations for why microscopically diverse condensed matter systems like liquids and
ferromagnets exhibit the same critical behaviour in the region of a continuous phase
transition. By comparison—as argued by Gryb et al. ([2020]), and as reviewed here in
Section 2.1.2—even the most promising universality arguments for Hawking radiation
seem unconvincing.
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Before moving on to more abstract analysis, it will be helpful to examine these two
examples in slightly more detail, to assess why the Wilsonian renormalization-group
arguments in condensed matter physics are able to succeed and why even the most
promising candidate universality argument for Hawking radiation appears to fail.

The renormalization-group arguments in condensed matter physics use an iterative
procedure to show that for a wide array of condensed matter systems (which are
composed of discrete and approximately evenly spaced micro-particles, and can
therefore often be modelled as lattice structures), all micro-features other than their
spatial dimension d and their order parameter dimension n are irrelevant to the values of
the exponents in the power laws that describe their critical behaviour. This explains why
systems with different short-range details, including the short-range details that
distinguish a d-dimensional-n-order-ferromagnet-lattice from a
d-dimensional-n-order-liquid-lattice, can and should exhibit the same large-scale
power-law behaviour in the region near a continuous phase transition.

The argument has a high degree of strength: it is based on convincing mathematical
argumentation, and so—allowing, of course, for certain approximations and
assumptions—we can be fairly confident that its conclusions follow from its premises.
But that is not the only reason why it succeeds. It succeeds, also, because we know
enough about the microscopic structure underlying condensed matter physics to be
confident that the systems of interest do share the features that the argument invokes. In
particular, we can be confident that a vast array of systems in condensed matter physics,
which superficially seem to be very different systems, do share the feature that they can
all be described as lattices of a particular dimension d and order parameter n at the
microscopic level. In the terminology that I have adopted, we can be confident that the
universality argument is successful in the sense of being relevant to the systems of
interest.

But, in fact, the argument would have been able to succeed in this sense even if we
did not have that confidence. For we could have guessed that our systems were lattice
structures at the microscopic level, and we could have constructed a
renormalization-group argument based on that guess. Since we are able to empirically
access the macroscopic behaviour of condensed matter systems, we would have then
been able to test our guess by testing whether the argument’s predictions about
universality held true.

Hawking radiation presents an entirely different situation. Since we do not have a
full theory of quantum gravity—or even agreed constraints on what such a theory might
look like—and since Hawking radiation is currently empirically undetectable, we have
no choice but to guess about whether the possible details of quantum gravity are of the
type invoked by a given universality argument. And at the same time, we are left unable
to empirically test the accuracy of what that guess predicts.

Indeed, even what Gryb et al. ([2020]) consider to be the most promising universality
argument for Hawking radiation, namely Unruh and Schützhold ([2005])’s argument
from modified dispersion relations, falls into this category. It makes a guess about the
possible micro-physics of quantum gravity—a reasonable guess, but nevertheless a
guess—whose predictions cannot be empirically tested due to the empirical
undetectability of astrophysical Hawking radiation.

In particular, Unruh and Schützhold ([2005])’s argument only establishes Hawking
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radiation as universal assuming three conditions on the structure of quantum gravity, (i),
(ii), and (iii):

(i) a preferred reference frame—which does not exist at low frequencies, where all
reference frames are equivalent—both exists at high frequencies, and is the freely
falling reference frame,

(ii) high frequency excitations begin in their ground state, and

(iii) whatever effects dominate the high frequency domain evolve much more quickly
than the effects that dominate at lower frequencies.

(Unruh and Schützhold 2005, 9)

Even the authors themselves admit that they are not at all sure whether the possible
micro-physics of quantum gravity do indeed exhibit these features. They write,

[t]he Hawking effect is not a priori independent of the laws of physics at the Planck
scale, but it can be made so by imposing the three assumptions [(i), (ii), (iii) above]
[...] However, we have also demonstrated counter-examples, which do not appear to
be unphysical or artificial, displaying deviations from Hawking’s result. Therefore,
whether real black holes emit Hawking radiation or not remains an open question.
(10-11)

These two examples, and the differences between them, suggest that the success as
relevance of a universality argument depends directly on the degree to which we are able
to empirically access the microscopic and macroscopic domains of physics that relate to
the supposedly universal phenomenon in question. In the next Section, I will argue in
more precise terms that this is, indeed, the case.

3.3 The two ‘universality-argument-apt’ situations
A universality argument aims to explain why we should see macroscopic uniformity
despite microscopic diversity. The simplest such explanation would surely be an
argument about systems that look as if they are microscopically diverse, but whose
micro-physics can be described by the same mathematical model.

Yet this simplest possible formulation must, in fact, capture the spirit of all
universality arguments. The more complex versions begin with physical systems whose
micro-physics are genuinely different. But, to be convincing—i.e. convincingly relevant
to the systems of interest—they must proceed to show that in certain key respects, the
systems’ microscopic models actually have features in common.

To draw support from Batterman, ‘explanations of universal (multiply realized)
behavior proceed by finding principled reasons in the physical theory of the realizers for
the irrelevancy of certain details that otherwise are quite important for answering certain
explanatory questions’ (Batterman [2002], p. 119). A successful universality argument
must convincingly argue that the systems’ micro-models differ only in those irrelevant
details.
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Figure 2: The universality-argument-apt situations.

Figure 3: General characterization of situations that are not universality-argument-apt.

Thus, for a universality argument to achieve its aim, we must be confident that the
micro-physics of the physical systems at hand are indeed of the same type—call it
type-A— with respect to the key structural features invoked by the argument.

A universality argument must therefore be of the following form:

Given that the micro-physics of physical system S has type-A structure,
changes in its micro-features { f1, f2, . . . , fn}—which would make it a different
physical system, but still with type-A micro-structure—would not undermine the
adequacy of a type-M model as its macro-description;

where a type-M model is the type of model that predicts the supposedly universal
phenomenon. The antecedent, ‘given that the micro-physics of S has type-A structure’, is
essential.

There are therefore only two ‘universality-argument-apt’ situations, in which a
universality argument can succeed in the sense of being significantly relevant to the
systems at hand (for a schematic outline, see Figures 2 and 3).

Either 1 : we have micro-models of our physical systems that we are very confident
about, which we can show are all type-A.

Or 2 : we can guess micro-models for our systems, which we can show are all
type-A, run arguments on those models that make predictions about the universality of
certain phenomena, and then compensate for our initial guessing by empirically testing
whether their predictions are correct (whether the macro-phenomena predicted to be
universal are indeed universal).

These results provide further insight on our earlier comparison of the successful
renormalization-group universality arguments in condensed matter physics and the
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unsuccessful modified dispersion relation universality arguments for Hawking radiation.
Namely, we know enough about the micro-structure of condensed matter physics, and
have enough empirical access to its macro-behaviour, to be in both situations 1 and
2 . But for Hawking radiation, we are not in either situation. Our state of knowledge

with respect to Hawking radiation is not currently universality-argument-apt.
By acknowledging this state of affairs, along with the two allowable situations 1

and 2 from which it stems, we are not only able to better understand the status of our
search for Hawking radiation. Also, given any area of physics, we are able to quickly
and simply judge whether that area is able to support universality arguments that are
successful in the sense of being significantly positively relevant to the systems of interest.

In the next Section, I will connect these conclusions back to the formal and informal
conditions required to support the presence and significance of confirmatory power for
analogue experiments supplemented with universality arguments.

4 Morals

The results of Section 3 are significant for an obvious reason: if we know which
situations can support the construction of successful universality arguments, we can
better decide where to direct our energy, and we can better explain the successes and
failures among existing efforts.

But those are not the only morals. The conditions 1 and 2 connect simply and
clearly with the formal and informal conditions underlying the confirmatory power of
analogue experimentation that were established in Section 2.2, thereby clarifying the
status of analogue experimentation both in general and for Hawking radiation in
particular (Sections 4.1.1, 4.1.2, 4.2.1, 4.2.2). Additionally, and perhaps most
importantly, they emphasize the priority of empirical over theoretical
justification—while at the same time revealing that direct empirical access is not always
an essential precondition for confirmation (Section 4.3).

4.1 On the presence of confirmatory power

4.1.1 In general
Based on Section 2.2, three practical ingredients are required for an analogue experiment
to be able to provide some degree of confirmatory power. We need to have access to a
universality argument whose validity remains somewhat unknown. We need that
argument to have at least some small hope of being positively relevant to our hypotheses
about the source and target systems. And we need to have access to an experiment that
can provide evidence which is somewhat more likely to obtain if our hypothesis about
the source system is correct.

The second requirement might initially seem problematic—indeed, it is where
Crowther et al. ([2019]) seem to take issue with Dardashti, Hartmann et al. ([2019]), as
outlined in Section 2.1. Crowther et al. ([2019]) suggest that, by requiring us to assume
the existence of a universality argument that is positively relevant to both our source and
target hypotheses, Dardashti, Hartmann et al. ([2019]) fall into circular reasoning.
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And yet, as I have argued in Section 2.2, the requirement of positive relevance is
extremely weak and should be satisfied by almost any candidate universality argument.
As an objection to the presence of confirmatory power, the argument in Crowther et al.
([2019]) therefore cannot stand. Here I agree with Evans and Thébault ([2020]), who
suggest that Crowther et al. ([2019])’s argument collapses into inductive scepticism.

Where an objection might be convincingly raised is on the question of whether the
confirmatory power provided is significant. On that question I would agree with
Crowther et al. ([2019]), as far as analogue gravity is concerned: the existing analogue
black hole experiments do not seem to be able to confirm the existence of astrophysical
Hawking radiation to any significant degree, as I will elaborate further in Section 4.2.2.
But, as I have shown, this question is not about whether we can assume
P(MS|X)> P(MS| ∼ X) and P(MT |X)> P(MT | ∼ X). Instead it is about the magnitude
of the differences P(MS|X)−P(MS| ∼ X) and P(MT |X)−P(MT | ∼ X), and,
correspondingly, about whether we are in situations 1 or 2 with respect to the
systems of interest.

Crowther et al. ([2019], p. 22) do seem, to some extent, to anticipate this response.
They write:

One may retort to this charge that all the theorem discussed above [the theorem which
secures the confirmatory power of analogue experiments] requires is that P(MT ) ̸= 0
and that P(MT |X) is ever so slightly greater than P(MT | ∼ X). Thus, it may be in-
sisted, the initially required commitment to MT and to its probabilistic dependence
on X is minimal and so epistemically responsible. However, that these assumptions
are not as innocent as they appear can be seen from the following straightforward
consequence of the theorems in DHTW. Particularly, by moving to multi-source con-
firmation (Dardashti et al. (2018, §4.2)), but in principle already in the simple case
considered here (and in their §4.1), we can perform a large number of terrestrial ana-
logue experiments and thereby achieve an ever increasing (but in general bounded,
cf. their §4.2 and Appendix 2) degree of confirmation.11

However, they need not worry. As shown by Dardashti et al. (2019, 9-10),

limn→∞∆(n) = x(mT
x −mT

x ) = x∆T , (10)

where ∆(n) denotes the degree of confirmation provided by an n-source analogue
experiment. So even for multiple-source experiments, the value of ∆T is a limiting factor.
By assuming the inequality P(MT |X)> P(MT | ∼ X), we do not risk attributing a high
degree of confirmatory power to multiple-source analogue experiments unless the value
of ∆T is significant.

4.1.2 For Hawking radiation
In particular, the minimal conditions for the presence of confirmatory power are satisfied
by the existing analogue experiments for Hawking radiation. The validity of those
arguments certainly remains somewhat unknown. And they are certainly positively
relevant to the source and target systems to at least some very small extent—there is

11 I have replaced their M’s with MT’s to match the notation I have been using throughout.
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surely some chance, for example, that both the physics underlying analogue black holes
and the physics underlying astrophysical black holes do both satisfy conditions (i)-(iii) in
Unruh and Schützhold ([2005]).

Finally, since at least 2016 we have had access to analogue experiments that are able
to show analogue Hawking radiation, an effect which coincides directly with whether
our hypothesis about the source system is correct. So the existing analogue experiments
for Hawking radiation are certainly able to provide some degree of confirmation for the
hypothesis that astrophysical Hawking radiation exists.

4.2 On the significance of confirmatory power

4.2.1 In general
Based on Section 2.2, the confirmatory power offered by an analogue experiment will
only be significant if four factors are significant: γ = xx

e , ∆S = mS
x −mS

x , ∆T = mT
x −mT

x ,
and ∆E = emS − emS .

∆S and ∆T , I have argued, are the factors that require the most interpretation. They
will be significant whenever we are confident that our universality argument is positively
relevant to both the source and target systems. Based on Section 3, we will have this
confidence exactly when one or both of conditions 1 and 2 hold for both systems: in
short, if we are confident (or able to make ourselves so through empirical investigation)
that the micro-physics of the systems have the features invoked by our universality
argument.

In other words, given a universality argument whose antecedent invokes type-A
micro-structure, the universality argument can only transfer confirmation of the
adequacy of a type-M macro-model from the source system to the target system to any
significant extent on the condition that the source and target systems are known to have
type-A micro-structure.

This verdict need not be interpreted as a negative outcome for the confirmatory
power of analogue simulation. On the contrary, it suggests that analogue experiments,
when supplemented with universality arguments, can provide a significant degree of
confirmation for hypothesized features of their target systems, just as Dardashti,
Hartmann et al. ([2019]) suggest. It only narrows down the situations in which that
significant transfer of confirmation is possible.

4.2.2 For Hawking radiation
Following Gryb et al. ([2020]) (see Section 2.1.2), none of the existing universality
arguments for Hawking radiation seem as convincing as their Wilsonian counterparts.
Gryb et al. ([2020]) diagnose the problem as a lack of ‘integration’: the arguments that
seem convincing for token-level variation do not seem convincing for type-level
variation, and vice versa.

This lack of integration, I suggest, amounts to a mismatch between the values of ∆S
and ∆T : the arguments that are known to be significantly relevant to our hypothesis about
the source system are not known to be significantly relevant to our hypothesis about the
target system. If I am correct that ∆S and ∆T will only both be significant if we are in
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situation 1 or 2 with respect to both systems, then there is an underlying explanation
for this mismatch. Namely, whenever we are confident that our analogue system is of the
type invoked by one of our universality arguments, we do not currently know enough
about quantum gravity—and in particular, how quantum gravity affects parameters that
we are able to model in the currently available analogue systems—to be able to claim
that the target system’s microphysics are of that same type. And therefore, ∆T is bound
to be low even when ∆S is high.

The existing analogue experiments for Hawking radiation are therefore currently
unable to confirm the existence of astrophysical Hawking radiation to any significant
extent. This is consistent with what Gryb et al. ([2020]) suggest. Out of the three
candidate arguments that they examine in detail, the only one that has significant
robustness with respect to analogue black holes—namely, Unruh and Schützhold’s
modified dispersion relations argument—has extremely limited robustness with respect
to astrophysical black holes.

Indeed, given how very ignorant we are about the micro-structure of quantum
gravity, it seems unlikely that any universality argument will be able to play a significant
role in confirming the existence of astrophysical Hawking radiation until our knowledge
of quantum gravity improves. Our ignorance of quantum gravity is not only an ignorance
of its structural details. Currently, we cannot even confidently outline constraints on its
structure, beyond the fact that it must be consistent with quantum field theory on curved
spacetime in the limit of large wavelengths and weak spacetime curvature. Therefore, it
is hard to envisage how the antecedent of any candidate universality argument could
currently be known to hold of the target, astrophysical, system.

This situation, however, could change. It could change if we were to learn more
about the physics underlying astrophysical black holes—and, in particular, about how
that physics affects parameters that we are currently able to model in analogue black
holes—such that one of the existing universality arguments would yield significant
values for both ∆S and ∆T . Or it could change if we were able to develop some new
universality argument for which conditions 1 or 2 would be satisfied for both
systems; although, as I just mentioned, it is difficult to imagine how such an argument
could currently be constructed. Or, finally, it could change if we were able to develop
new analogue systems that could more closely model quantum gravity effects. Such
systems would allow ∆S to be significant for a wider range of universality
arguments—including, possibly, arguments for which ∆T is also significant.

4.3 On the status of empirical access
It would be a shame not to consider what the above arguments have to say, more
generally, about the status of empirical accessibility in scientific investigation.

They certainly suggest that manipulability is not paramount: we do not necessarily
need to be able to empirically manipulate a phenomenon of interest in order to confirm
hypotheses about its behaviour. But what about accessibility?

On the one hand, they suggest that we do not need to be able to directly access the
physics underpinning that phenomenon, as long as we can access enough other features
of the system to make ourselves confident that it falls into a universality class whose
behaviour we understand (or can come to understand through further empirical
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investigation). But on the other hand, conditions 1 and 2 emphasize that we do need
exactly enough access to be able to gain that confidence.

On the first two points—that neither manipulability nor direct access are strictly
required to gain significant confirmation about a phenomenon’s behaviour—I agree with
Evans and Thébault ([2020]). Indeed their first case study, stellar nucleosynthesis, is
plausibly a case in point. The nuclear processes that govern energy production in the
stellar core are unmanipulable and inaccessible, and nevertheless, Evans and Thébault
([2020], pp. 10–12) point out, it seems reasonable to claim that our model of those
processes is well-established and well-confirmed.

But, as Evans and Thébault themselves note, the system of interest here is not
entirely inaccessible. In particular, even though we cannot observe the nuclear processes
themselves, we have enough access to other stellar signals to gain confidence that such
processes do have the features invoked by the uniformity principles on which our model
relies. I would suggest—and this corresponds to my third point above—that the
confidence conferred by this access is exactly what makes our model of stellar
nucleosynthesis so convincing.

At the same time, my claim that direct empirical access to the phenomenon of
interest is not always essential captures my deepest disagreement with Crowther et al.
([2019]).12 Crowther et al. ([2019]) seem to argue that in order to gain confirmation from
an analogue experiment, we would need to be able to directly access the phenomenon of
interest in the target system—an obviously problematic requirement, since such access
would undermine our motivation for performing the analogue experiment in the first
place. I argue, instead, that we need to be able to access the target system just enough to
make ourselves confident that it has the features invoked by an appropriate universality
argument.

This is a much weaker requirement. It allows us to move away from dismissing
analogue experimentation as viciously circular, and towards accepting analogue
experimentation as a promising basis for empirical confirmation of target phenomena.

5 Conclusion

When successful, universality arguments are able to establish the irrelevance of various
features to a whole class of systems’ behaviour. They are powerful predictive and
explanatory tools—for predicting as-yet-unobserved universality in empirically
accessible systems, and for explaining observed universality in systems that have already
been investigated.

Because they claim to establish the irrelevance of so many features to the
macroscopic behaviour of so many systems, they can easily seem to override the need
for empirical investigation of those systems’ underlying structure. And yet, motivated by
Gryb et al. ([2020])’s comparison between the successful renormalization-group
argument for condensed matter physics and the much less successful candidate
universality arguments for Hawking radiation, I have argued that empirical constraints
limit the situations in which we should expect to be able to construct successful

12 That is, aside from the fact that I would ascribe nonzero but negligible confirmatory power to the
existing analogue black hole experiments, whereas they would assign exactly zero.
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universality arguments.
We have seen that a universality argument is necessarily of the form,

Given that the micro-physics of physical system S has type-A structure,
changes in its micro-features { f1, f2, . . . , fn}—which would make it a different
physical system, but still with type-A micro-structure—would not undermine the
adequacy of a type-M mathematical model as its macro-description;

so that it can only tell us, to any significant extent, about whether the same
macro-phenomenon really will appear in microscopically diverse systems if we are
confident that its antecedent, ‘given that the micro-physics has type-A mathematical
structure’, holds of each system.

We can only ever be confident that this antecedent holds of each system if

1 we have micro-models of our systems that we are very confident about, which we
can show are all of the same type in the respects invoked by the argument; and/or

2 we can empirically test the macro-behaviour of our systems, to compensate for our
initial uncertainty about whether their micro-physics are indeed of the same type
in those respects.

I have shown that this conclusion connects in a very clear and simple way with the
confirmatory power of analogue experiments supplemented with universality arguments.
As Dardashti, Hartmann et al. ([2019]) themselves show, the confirmatory power ∆C of
an analogue experiment supplemented by a universality argument is given by (cf.
Equation (7)):

∆C := P(MT |E)−P(MT )

= mT
e −mT

=
xx
e
(mS

x −mS
x)(m

T
x −mT

x )(emS − emS).

So the confirmatory power of an analogue experiment supplemented with a universality
argument is directly proportional to both ∆S := P(MS|X)−P(MS| ∼ X) and
∆T := P(MT |X)−P(MT | ∼ X).

If ∆S and ∆T are small, which will happen exactly when my conditions 1 and 2
fail to hold, then the degree of confirmation ∆C provided by our analogue experiment
will necessarily be small (provided that the other factors involved are bounded above,
which I have shown to be true of ∆E , ∆S and ∆T generically, and of γ under reasonable
conditions). If ∆S and ∆T are significant, then the degree of confirmation ∆C provided by
our analogue experiment will be (or at least can be) significant.

These results are noteworthy for various reasons. Most obviously, they tell us exactly
when we should not expect to be able to construct a successful universality argument:
namely, when we are not in situations 1 or 2 . At the same time, they clarify the
status of analogue experimentation and the status of existing universality arguments for
Hawking radiation.
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Only 2 explicitly relies on our ability to empirically access the system at hand. But
both 1 and 2 go back to empirical access in the end, because we will only find
ourselves in situation 1 —with confidence in our systems’ micro-models—if we have
been able to perform enough empirical tests to gain that confidence. Like all theoretical
arguments, universality arguments are therefore grounded in empirical knowledge. Their
success is shaped, and ultimately limited, by the availability of empirical evidence.
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