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Abstract

A skeptical worry known as ‘the indeterminacy of computation’ animates much

recent philosophical reflection on the computational identity of physical systems.

On  the  one  hand,  computational  explanation  seems  to  require  that  physical

computing  systems fall  under  a single,  unique  computational  description  at  a

time.  On  the  other,  if  a  physical  system  falls  under  any  computational

description, it seems to fall under many simultaneously. Absent some principled

reason  to  take  just  one  of  these  descriptions  in  particular  as  relevant  for

computational  explanation,  widespread  failure  of  computational  explanation

would appear to follow. This paper advances a new solution to the indeterminacy

of  computation.  Very  roughly,  I  argue  that  the  computational  identity  of  a

physical  system  is  determinate  relative  to  a  contextually  specified  way  of

regarding that system computationally --- known as a labelling scheme. When a

system simultaneously implements multiple computations, it does so relative to

different labelling schemes. But relative to a fixed labelling scheme, a physical

system  has  a  unique  computational  identity.  I  argue  that  this  relativistic

conception of computational identity vindicates computational explanation and

comports well with computational practice.

1 



1. Introduction1

A skeptical worry known as ‘the indeterminacy of computation’ animates much recent 

philosophical reflection on the computational identity of physical systems.2 The worry runs 

roughly as follows. On the one hand, computational explanation seems to require physical 

computing systems to fall under a single, unique computational description at a time. On the 

other, if a physical system falls under any computational description, it seems to fall under many 

simultaneously. Absent some principled reason for taking just one of these descriptions in 

particular as relevant for computational explanation, widespread failure of computational 

explanation seems to follow.

Standard solutions attempt to isolate properties bearing a privileged relationship to 

computational description and thereby to a system’s computational identity. These efforts have 

played out along two axes. One concerns semantic vs. non-semantic properties, while the other 

concerns intrinsic vs. relational properties. These axes cut across each other, and the following 

combinations reflect the most prominent views in the contemporary literature:

l Non-Semantic individualism holds that a system’s computational identity is wholly 

determined by its intrinsic, non-semantic properties (Chalmers 1996b; Dewhurst 2018b; 

Coelho Mollo 2018; Egan 1995).

l Non-semantic anti-individualism holds that a system’s computational identity is always

determined, in part, by its non-semantic relational properties in addition to its intrinsic 

non-semantic properties (Piccinini 2008, 2015, 2020a; Harbecke and Shagrir 2019; 

Fresco 2021).

l Semantic anti-individualism holds that a system’s computational identity is always 

determined, in part, by its relational semantic properties in addition to its intrinsic non-

semantic properties (Shagrir 2001, 2020; Horowitz 2007; Sprevak 2010).

1 Thanks to Soyeong An, Matteo Biachetti, Preston Lennon, Daniel Olson, Richard Samuels, Stewart Shapiro, 
Declan Smithies, Damon Stanley, and audiences in Bergamo and online at BSPS 2021 for comments and 
discussion. Special thanks to three anonymous referees, whose suggestions led to substantial improvements in 
the final paper. Any errors that remain are entirely my own.

2 So-called by Fresco and Milkowski (2021). Known also as ‘the multiplicity of computations’ (Piccinini 2008, 
2015; Coelho Mollo 2018; Lee 2021), and ‘the problem of simultaneous implementation’ (Shagrir 2001, 2020; 
Dewhurst 2018b, 2018a).
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Although these views are in some respects attractive, ultimately I find them 

unsatisfactory. Each either seriously distorts or otherwise fails to capture certain important 

aspects of computational practice. Consequently, this paper develops a solution that better 

comports with that practice. This solution leads to the following middle position with respect to 

computational identity:

The Middle Ground holds that a system’s computational identity sometimes depends 

solely on its intrinsic features and sometimes also on its relational features, and that 

sometimes it depends on a system’s semantic features and other times not (Rescorla 

2013; Lee 2021).

Here is the plan. I begin in section 2 with a more careful formulation of the 

indeterminacy problem, and argue in section 3 that extant solutions are unsatisfactory. I present 

my alternative solution in section 4. Section 5 concludes.

2. The Indeterminacy of Computation

Historically, the indeterminacy of computation has been used to motivate semantic accounts of 

computational identity (Shagrir 2001, 2020). I will present the problem in more neutral terms. At

the broadest level, the goal is to capture descriptive and explanatory practice in the 

computational sciences. The problem is that under prima facie plausible assumptions this 

practice is incoherent. At the core of the problem are the following two claims:

The Uniqueness Condition. Successful computational explanation requires a physical 

computing system to have a single, unique computational identity — fall under a unique 

computational type — at a given time.

Simultaneous Implementation. Physical computing systems simultaneously implement 

multiple distinct computations.

The trouble is that, under the following auxiliary assumptions, these claims are inconsistent:

The Identity-Implementation Link. The computational identity of a physical system is 
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determined by the computation(s) it implements.

Successful Explanations. There are successful computational explanations.

In the remainder of this section I explain each of these claims and offer some overall clarificatory

remarks about the character of the indeterminacy problem. I begin with the two auxiliary 

assumptions.

2.1 The Identity-Implementation Link

This is an empirical claim about how computer and cognitive science taxonomize physical 

computing systems. While physical systems can be taxonomized in any number of non-

computational respects (e.g., in terms of their mass or shape), these sciences taxonomize systems

computationally in terms of the computations they implement. Computations are defined in 

terms of some mathematically characterized computational formalism, such as a Turing machine,

finite state automaton, or Java program.3 In general, computations consist of:

 A non-empty set of internal states.

 Sets of input and output objects. These are the ‘domains’ over which computations are 

performed. Either set may be empty.

 A transition function defined over all of the above.

More specific computations are determined by a choice of internal states, input and 

output sets, and the action of the transition function. Two kinds of computation will play an 

important role in what follows:

1. String-Theoretic Computations compute over string-theoretic or ‘linguistic’ domains. 

For instance, on Turing’s (1936) original definition, Turing machines compute functions 

over unary strings.

2. Numerical Computations perform computations defined over non-string-theoretic 

entities, such as natural numbers or truth values. Examples include register machines 

(Cutland 1980) which compute number-theoretic functions, and Boolean circuits (Savage

3 Also called ‘syntactic structures’ (Shagrir 2001) or ‘computational models’ (Rescorla 2013).
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2008) which compute Boolean functions.4

It is standard to think of mathematical computations as abstract descriptions or models of 

physical systems, and we say that a physical system implements a computation when that 

computation ‘accurately describes’ the system.5 This is usually cashed out in terms of a structural

relation such as isomorphism, so that a physical system implements a computation only if, and 

perhaps also if, (a) there is a grouping of microphysical states, inputs, and outputs into state, 

input, and output types, and (b) an assignment of these to mathematical inputs, outputs, and 

internal states such that (c) under this assignment the physical system and computation are 

isomorphic (Ritchie and Piccinini 2019).

A simple example is a digital circuit with two inputs and a single output. The circuit 

outputs 5-10V iff both inputs are in the 5-10V range; otherwise, it outputs 0-5V (Table 1 in 

Appendix). What computation does this circuit implement? It depends on how the system’s 

microphysical states are grouped into state types and then assigned mathematical values. One 

option assigns ‘1’ to the 5-10V state type and ‘0’ to the 0-5V state type. Under this mapping, the 

circuit implements logical AND (Table 2).

This example illustrates that implementing a computation fixes the computational identity

of both a system and its states. If two token physical states map to distinct mathematical states, 

they are computationally type distinct; otherwise, they are type identical. Similarly, if two 

systems implement the same overall computation, they are computationally type identical; 

otherwise, they are computationally type distinct. Given this connection between implementation

and computational identity, we can frame the views encountered in the introduction as views 

about implementation. For instance, semantic views hold that to implement a computation a 

physical system must have certain semantic properties, while non-semantic views allow that a 

4 As we will see, string-theoretic and numerical computations have very different implementation conditions. But 
from a mathematical point of view, the differences between these two kinds of computation are less important. It 
is typical to start with string-theoretic computations and then define numerical computations by taking strings as 
representations of numbers (e.g., Davis 1982). However, it is also possible to develop computability theory 
directly in terms of numerical computations (e.g., Davis, Segal, and Weyuker 1994, ch. 2-4).

5 I will move back and forth between talk of physical systems ‘satisfying computational descriptions’ and 
‘implementing’ or ‘realizing’ computations, taking these to be roughly equivalent.
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system might implement a computation even if it lacks semantic properties altogether.6

2.2 Successful Explanations

It is routine in computer and cognitive science to explain the properties or behaviour of physical 

systems in terms of the computations they implement. This holds for both artificial computing 

systems, such as laptops or microprocessors, and natural computing systems, such as the brain. I 

take it that at least some of these explanations are successful. Computer and cognitive scientists 

routinely offer explanations of this sort in journal articles and at conferences and other academic 

venues. These explanations are accepted, at least sometimes, by other members of these 

disciplines. All else equal, we should take this practice at face value and believe that there are 

successful computational explanations.

2.3 The Uniqueness Condition

According to the Uniqueness Condition, successful computational explanation requires that a 

system fall under a single computational type. Given the Identity-Implementation Link, this 

amounts to the requirement that a system implement a single computation at a time. This claim is

intuitively quite plausible, but it is also supported by two more systematic considerations.

The first is that it explains certain aspects of computational practice. As Oron Shagrir 

(2001, 377–9) notes, when computational scientists explain some phenomenon, they type 

identify the system responsible for that phenomenon uniquely in terms of the computation it 

implements. Edge detection in the visual system is explained by the fact that the visual system 

implements a specific computation on retinal signals, for instance. The most straightforward 

explanation of this practice is that computational scientists are being guided by something like 

The Uniqueness Condition. If the Uniqueness Condition were false, it would be puzzling why 

computational scientists type identify physical systems the way they do.

A second consideration concerns the contrastive character of many computational 

6 Not everyone will agree with this way of framing the debate. For instance, Oron Shagrir (2001, 382) claims that 
computational identity involves semantic properties over and above implementation. But this is because Shagrir 
endorses a wholly non-semantic account of implementation. Rather than claiming that computational identity 
involves something in addition to implementation, it is more straightforward to see Shagrir as proposing a 
semantic account of implementation.
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explanations (cf. Sprevak 2019, 186). This character is apparent even in very simple cases. For 

instance, the explanation why a logic gate outputs ‘0’ (rather than ‘1’) given ‘1’ and ‘0’ as input 

is that it computes AND (rather than OR). But it is highly plausible to think that contrastive 

explanation requires a contrast (Hitchcock 2013). The fact that a system implements computation

C  (rather than) C₁ ₂ explains the fact that it exhibits effect E  ₁ (rather than E₂) only if the system 

doesn’t implement C₂. That is, if the logic gate implements AND at the exact same time it 

implements OR, it is hard to see how we can cite the fact that it implements AND rather than 

OR to explain why it does what it does. It thus seems that to satisfy the contrastive character of 

computational explanation, a system must implement a single computation at a time, which is 

just what the Uniqueness Condition says.

2.4 Simultaneous Implementation

The three claims encountered so far are consistent. But trouble emerges once we notice that 

physical systems implement multiple distinct computations simultaneously. Shagrir (2001, 2020)

illustrates this with the example of a tristable circuit, which is sensitive to three different voltage 

levels: 0-2.5V, 2.5-5V, and 5-10V. The circuit has two input signals and one output signal, and it

outputs 5-10V iff both input signals are 5-10V, 0-2.5V iff both input signals are 0-2.5V, and 

otherwise, it outputs 2.5-10V (Table 3). What computations does this circuit implement? 

Different possibilities arise from different groupings of states into state types or assignments of 

abstract values to these types:

1. One option assigns distinct mathematical values to each stable state. For instance, we 

might assign the labels ‘0’, ‘
1
2

’, and ‘1’ to 0-2.5V, 2.5-5V, and 5-10V, respectively. In 

this case, the gate computes an ‘averaging’ operation over its inputs (Table 4). Because 

this option exploits all the stable states of the gate, it is sometimes known as a ‘maximal 

task’ (Piccinini 2015, 41).

2. Another option groups states in the 2.5-10V range into one state type, states in the 0-2.5V

range into another, and assigns ‘1’ to the former and ‘0’ to the latter. Under this 

assignment, the gate implements logical OR (Table 5). Because it ignores the distinction 
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between 2.5-5V and 5-10V, the gate performs a non-maximal task under this assignment.

3. A third option groups 5-10V into one state type and assigns it ‘1’, and it groups 0-5V into

another and assigns it ‘0’. In this case, the gate computes logical AND (Table 6).

These options all rely on different groupings of physical states into state types. Others 

hold fixed the groupings and vary the mathematical values assigned to them. For instance:

4. Keep the grouping from (2), but flip the assignment of ‘0’ and ‘1’. In this case, the gate 

also computes logical AND, albeit in a different way than in (3) (Table 7).7

Of course, these observations are not restricted to Shagrir’s tristable gate. Similar 

considerations apply to nearly any simple computing system. And because more complex 

computing systems are typically composed of simpler components like this one, if these atomic 

components simultaneously implement many computations, it is reasonable to expect the same 

for more complex systems as well.8

Simultaneous implementation is attractive. In general, it is useful if a single physical 

component can perform multiple different computational tasks, for then the same component can

be repurposed as the need arises. Simultaneous implementation arguably makes this possible, 

insofar as it ensures that a single physical component can subserve multiple distinct 

computations. A real-world illustration of this comes from contemporary microchip manufacture 

(Hennessy and Patterson 2003, ch. 1). The manufacturing process involves casting silicon wafers

into segments known as ‘die’. Multiple die are bonded together to form a chip. The casting 

process is imperfect, and not every cast die is functional. To keep manufacturing costs down, it is

thus useful if a single die component can be repurposed to perform different computations, 

depending on failures in the casting process. Simultaneous implementation may thus play an 

7 There is some dispute about whether this is a genuine alternative to the computation in (2) (Piccinini 2020b, 
153). There is also dispute about whether there is one kind of indeterminacy at play here, or two 
(Papayannopoulos, Fresco, and Shagrir, forthcoming). My own view is that there is just one; see sections 3.2 and
4.4.

8 Note that simultaneous implementation falls short of pancomputationalism, the claim that every physical system 
simultaneously implements every computation. See (Shagrir 2001) for discussion.
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important role in computer engineering, and perhaps elsewhere as well.9

2.5 A clarification

What sort of indeterminacy is at issue in the indeterminacy of computation? On its face, it 

appears to be a metaphysical problem about the nature of computational identity. If a system’s 

computational identity is determined by the computation it implements, and if that system 

simultaneously implements multiple computations, then that system’s computational identity is 

indeterminate between each of the computations it implements. The problem is not simply that 

we lack evidence favouring one computation over another. Rather, the problem is that there is no

clear reason to think that any one computation in particular determines a system’s ‘true’ 

computational identity. 

Ultimately, I think that this initial appearance is deceiving. I will later argue that physical 

computation is not metaphysically indeterminate. What indeterminacy there is, is epistemic. 

Before that, however, I will take the problem at face value and will consider solutions that 

address it on these terms.

3. Extant Responses

A natural response to the indeterminacy problem, as I’ve formulated it, is to reject one of the 

foregoing claims. Which one? We can immediately set aside solutions that reject either of the 

auxiliary assumptions (the Identity-Implementation Link and Successful Explanations). All 

parties to the current debate accept that computational systems and states are taxonomized with 

respect to the computations they implement. Similarly, few philosophers nowadays doubt that 

there are successful computational explanations. Although solutions that reject either of these 

principles are not entirely off limits, they incur substantial costs and should be pursued only as a 

last resort.

This leaves Simultaneous Implementation and the Uniqueness Condition. This section 

surveys the main strategies for rejecting each of these claims, and argues that they are 

9 Fresco, Copeland, and Wolf (2021) make a similar point in the context of natural computing systems. They 
suggest that it is evolutionarily beneficial if a given neural component can subserve multiple distinct neural 
processes.

9 



unsatisfactory. My overall complaint is that these solutions either distort or otherwise fail to 

capture certain important aspects of computational practice. However, I should emphasize from 

the start that I will not attempt to show that these strategies cannot capture these aspects once 

and for all. My aims are more modest. I take the considerations surveyed below to shift the 

burden onto those who wish to reject either of these principles: they must show that their 

accounts have the resources to accommodate the problem cases I will identify, or they must 

provide grounds for denying that they must accommodate them in the first place.

3.1 The anti-individualist response: reject the Uniqueness Condition

A first line of response accepts that a physical system might simultaneously implement different 

computations, but denies that this undermines computational explanation. Here is the rough idea.

We describe systems computationally in order to explain a specific phenomenon. A 

computational explanation is successful if it reveals how a system comes to exhibit that 

phenomenon. This is compatible with the system simultaneously satisfying other computational 

descriptions, appropriate for other explanatory targets. For this reason, computational 

explanation does not require that a system implement a single computation full stop. Rather, it 

requires only that a system implement a single computation responsible for the phenomena we 

wish to explain.

This response has been pursued primarily by anti-individualists about computation, who 

cash it out in terms of three more specific claims: (1) that the phenomenon relevant for assessing 

a system’s computational identity in a given context is the task it performs in that context; (2) 

that a system always performs a single task in a given context; and (3) that the task a system 

performs in a given context is determined by its relationship to its broader environment. The 

primary point of disagreement between anti-individualists concerns the nature of this 

relationship: is it best understood semantically or non-semantically? This can be framed as a 

disagreement about the nature of computational tasks: are computational tasks always identified 

in terms of (wide) semantic properties, or not? Semantic anti-individualists say yes, while non-

semantic anti-individualists say no.

Semantic views start from the observation that computational tasks are often described in 
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terms of mathematical or environmental entities. Standard examples are computing addition over

numbers or computing zero-crossings of environmental luminance levels. On the face of it, 

performing these tasks requires a system to represent the entities in question — numbers and 

environmental properties, respectively.10 Accordingly, a system performs these computations 

only if it has appropriate semantic properties. Non-semantic views, by contrast, hold that the 

relevant relational properties are not semantic properties, but wide functional properties. 

Gualtiero Piccinini is the foremost defender of this view. On his version, these wide functional 

properties comprise a system’s immediate mechanistic context. This includes things like: “the 

relation between the forces exerted on input devices (such as keyboards) and the signals relayed 

by input devices to the computing components, and on the other hand, the relation between the 

computing components’ outputs and the signals released by the output devices)” (Piccinini 2008,

43, 221).11

Next I will consider two objections to anti-individualist views. The first challenges both 

semantic and non-semantic views, while the second challenges Piccinini’s non-semantic view in 

particular.

Objection 1: some tasks depend only on intrinsic properties

Anti-individualists claim that the task performed by a system is always determined by the 

system’s relationship to its broader environment. But is this true? Consider the task of sorting a 

list of binary strings. It is straightforward to describe a Turing machine computation M for this 

task. A physical system implements M if it transforms lists of physical strings in the right way. 

Yet, as I will suggest, implementing this computation plausibly involves neither semantic nor 

wide functional properties. If this is right, then this computation is a prima facie counterexample 

to the claim that all computational tasks — and thereby all correct computational descriptions — 

depend on a system’s relational properties.

To begin, observe that a system can perform this task even if it lacks semantic properties 

altogether. Piccinini (2008) plausibly argues that implementing string-theoretic computations 

10 This has been challenged, but I will grant this assumption here. See (Egan 1995) and (Peacocke 1999) for 
discussion.

11 Fresco (2021) defends a ‘long-arm’ anti-individualist view, in contrast to Piccinini’s ‘short-arm’ view. Although 
I focus on Piccinini’s version here, the objections raised below apply equally to both.
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involves only functional, non-semantic properties of a system. This suggests that the semantic 

view fails to capture M’s implementation conditions. One obvious counter-maneuver the 

semanticist might make is to argue that these conditions involve semantic properties only tacitly, 

making them easily overlooked. Perhaps when a state realizes a certain string-theoretic type it 

represents that type. Or perhaps in order to compute a sorting function it must represent one 

string as coming before or after another in the ordering. Whether such responses succeed remains

to be seen. For my own part, I am skeptical that they can be executed without seriously distorting

computational practice.12

What about the wide functional account? Whether a system implements M sometimes 

depends solely on its intrinsic functional features. The most straightforward case is a 

contemporary digital computer. For such devices, there is a reasonably sharp distinction between

core computing components (e.g. the CPU and memory) and I/O devices (e.g. the keyboard and 

display). For the wide functionalist, the latter components comprise the device’s immediate 

mechanistic context. Whether the device implements M is thus partly determined by the state of 

those components.

But suppose we hold fixed the internal dynamics of the CPU and memory, while varying 

the state of the input and output devices. I take this to be nomologically possible. For instance, it 

could be the result of a manufacturing error which causes input and output signals to become 

momentarily scrambled, but which leaves the internal dynamics of the CPU intact. In this 

scenario, I claim that we would still judge that the CPU performs the sorting task. Because the 

internal dynamics of the device remain unchanged, the internal physical states would appear to 

go through the same patterns of activity as in a typical, unscrambled case. It is thus plausible to 

think that the device implements M in this case as well, even though it bears a warped 

relationship to its broader mechanistic context.

It might be objected that in this scenario the device doesn’t perform the sorting task, but 

performs some other task or even no task at all. I have two responses to this objection. First, this 

response sits awkwardly with certain aspects of computational practice. I/O glitches are an 

unfortunate fact of any computer scientist’s life. In such cases, upon inspecting one’s code and 

12 See (Rescorla 2014) for other examples in this vein.

12 



determining that it compiles properly and runs correctly, it is natural to say, not that the device 

fails to sort, but rather that it correctly sorts yet fails to communicate this computation to the 

user.

Second, even if we grant that the device performs a different task, at best this objection 

shows that a system’s computational identity is not always determined by the task it performs. 

The scrambled device goes through some sequence of internal states accurately described by M. 

This sequence exhibits certain properties that may be of interest, for instance having to do with 

running time or memory usage. These properties can legitimately be explained by appeal to M. 

Thus, for the purposes of explaining these specific phenomena, it is plausible to think that M 

constitutes the computational identity of the device.

To be clear: I do not deny that whether a system performs this computation depends 

causally on its input (and perhaps output) transducers. It plausibly does, at least in ordinary 

cases. Nor do I deny that some string-theoretic computations might depend constitutively on a 

system’s wide functional properties. I grant that they might, and I will consider an example in 

due course. Nor do I even deny that sometimes the phenomenon relevant for determining 

computational identity is the task a system performs. Rather, the claims I reject are (1) that 

whether a device implements M always depends constitutively on its wide functional properties, 

and (2) that a system’s computational identity is always determined by the task it performs in a 

given context.

Objection 2: some tasks are characterized semantically

Next I consider a semantically characterized computation that poses a problem for Piccinini’s 

wide functionalism in particular. Other philosophers have emphasized the importance of 

semantically characterized computations for descriptive practice in computer and cognitive 

science (e.g. Shagrir 2001; Rescorla 2017; Lee 2021). And Rescorla (2013) argues that in 

computer science physical systems are sometimes computationally distinguished in terms of their

semantic properties. Here I want to throw another consideration into the mix by considering a 

case in which two systems ought to be computationally type identified in virtue of their semantic 

properties. As I shall argue, certain explanatory benefits accrue from describing systems this 
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way, yet it is unclear how to account for these benefits in non-semantic terms.

Consider the task of sorting a list of numbers (rather than strings). It is straightforward 

enough to describe an abstract register machine computation R for this task. Abstract register 

machine computations differ from string-theoretic computations in that they take operations on 

numbers, rather than strings, as computationally primitive. R is thus a numerical computation, in 

the sense introduced in section 2. Moreover, it is plausible to think that implementing R requires 

a system to have certain semantic properties, such as representing particular numbers (Rescorla 

2013).

Descriptions couched in terms of R allow us to abstract away from details which are 

irrelevant for certain explanatory purposes. For example, consider two microprocessors that 

realize R, one of which uses binary notation and another of which uses ternary notation.13 

Describing these systems as performing computations over lists of numbers (rather than lists of 

strings) allows us to capture important similarities between their properties and behaviour, the 

most obvious of which is that under a semantic description the two devices can be seen to 

perform the same sorting task over numbers. Insofar as the numerical sorting task performed by 

these systems is relevant for determining their computational identity, under the semantic task 

description sanctioned by R the devices are computationally identical.

This case poses a dilemma for the wide functionalist. Horn one: they can accept that the 

devices are computationally identical, but try to account for this fact in non-semantic terms. This 

is easier said than done. Because the systems use different notations, their internal functional 

dynamics differ. Moreover, the broader environments of which they are parts must presumably 

be sensitive to their specific notational schemes too. Yet if computational tasks depend on their 

wide functional properties, then it would appear that these systems perform different tasks: one 

performs a task on binary strings, while the other performs a task on ternary strings.

To get around this, the wide functionalist might go even wider. For instance, they might 

appeal to the ways that users respond to or interact with the devices. This move is suggested by 

some of Piccinini’s remarks (2015, 44 fn. 12). Here the idea would be to appeal to the fact that 

13 There are a few interesting instances of the ternary computers in the history of computer science. Perhaps the 
most notable are the Setun machines, developed in the 1950s and 60s. For discussion see (Brusentsov and Ramil 
Alvarez 2011) and references therein.
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users interact with the devices in similar ways to ground the fact that these devices are 

computationally equivalent. But what are these ‘similar ways’? This must presumably be spelled 

out in a way that doesn’t rely on the way that users interpret these devices or otherwise imbue 

them with content, on pain of collapsing into the semantic view. This is a non-trivial task, made 

more difficult by the fact that semantic properties very plausibly supervene on such broad 

environmental relations between a system and its users (Rescorla 2013; Shagrir 2020). It remains

to be seen whether the wide functionalist can accomplish this task.

Horn two: the wide functionalist might instead hold that the binary and ternary devices 

are computationally distinct. This seems to be Piccinini’s preferred strategy. He points out that 

any semantic task description depends on a more basic non-semantic task description (Piccinini 

2015, 33–36). We cannot describe the devices as sorting lists of numbers unless we can 

antecedently describe them as sorting lists of (non-semantically characterized) strings. But it is 

this more basic, non-semantic description that is most relevant for questions about computational

identity. This is because (a) the relevant description is the one that is required for computational 

explanation, and (b) on Piccinini’s view computational explanation is a species of mechanistic 

explanation (Piccinini 2015, ch. 5). In particular, the non-semantic description is what will 

ultimately feature in a full-blown mechanistic explanation of a system. This includes, among 

other things, a specification of “the notation being used, the algorithm followed, [and] the 

architecture that executes the algorithm” (Piccinini 2015, 39).

On this picture, “computing systems and their states have non-semantic identity 

conditions” (Piccinini 2015, 49). It would thus seem that the proper attitude towards the binary 

and ternary realizations of R is that they are computationally distinct, owing to their different 

notation. Of course, this response does not deny that the binary and ternary devices and their 

states can be described in semantic terms for certain purposes. As Piccinini points out, “once 

computational states are individuated non-semantically, semantic interpretations may (or may 

not) be assigned to them” (Piccinini 2015, 49).14

What should we make of this response? Piccinini certainly has a point. There may be 

computation without representation, but there is no computation without notation, as it were. But

14 Thanks to an anonymous referee for urging me to clarify this point.
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this doesn’t automatically show that the descriptions relevant for computational identity are 

always non-semantic. That claim follows only under the assumption that computational 

explanation (properly so called) is full-blown mechanistic explanation. But as I will suggest next,

some computational explanations succeed only by ignoring certain mechanistic details such as 

notation. And for such explanations it is natural to computationally type identify physical 

systems and their states in semantic terms.

The explanations I have in mind come from algorithmic analysis, the branch of computer 

science that investigates the resource requirements of various algorithms. Computer scientists 

make a few simplifying assumptions so that the results of such analyses apply as widely as 

possible. One is to focus on asymptotic, as opposed to exact, running time. Another is to describe

algorithms in a way that is largely machine-independent, abstracting away from details such as 

notation or architecture (Cormen et al. 2001, 21–23). This is usually achieved by describing 

algorithms as operating on numbers, rather than strings. This allows computer scientists to 

assume that primitive computational steps (e.g. basic logical or arithmetical operations) operate 

in constant time. Overall, these assumptions ensure that a given analysis can be used to explain 

the performance of a wide variety of physical systems, at least in many cases, regardless of their 

mechanistic details.

To illustrate, suppose that R employs Insertion Sort, a well-known sorting algorithm. 

Given a list of numbers of length n, Insertion Sort sorts in Θ(n²) primitive computational steps in 

the worst case.15 Recall that primitive steps here are characterized numerically, rather than string-

theoretically. This is important, because the binary and ternary devices presumably differ in the 

exact amount of time required to carry out a primitive numerical operation, owing to their 

different notations. Nevertheless, such details are irrelevant for explaining facts about the 

asymptotic running time of the devices. Thus, we can appeal to R to explain why both devices 

sort on average in a certain amount of time: the reason is that they both implement a specific 

Θ(n²) sorting computation over numbers.

The crucial point is that this explanation would not be improved by adding in mechanistic

details about notation. Indeed, accounting for those details would obscure the fact that the two 

15 (Cormen et al. 2001, 26). Crudely, the running time of an algorithm is Θ(f) for some function f if for sufficiently 
large inputs the running time is bounded above and below by f, up to some constant factor.
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devices have similar asymptotic running times. This similarity emerges only under a notation-

indifferent description, such as that sanctioned by R. Indeed, this is an instance of a familiar 

general point: for certain explanatory purposes, less (detail) is more (cf. Potochnik 2017, ch. 2). 

Thus, relative to the goal of explaining the similar asymptotic running time of these devices, we 

ought to describe them semantically, as sorting lists of numbers. And under this descriptive 

idiom, the devices are computationally identical.

Of course, this is consistent with the claim that non-semantic, mechanistic descriptions 

are important for other explanatory purposes. If we wish to explain their exact running times, 

down to the number of clock cycles used, mechanistic details are undoubtedly relevant. But there

is little reason to think that this goal occupies an explanatorily privileged position. Relative to 

one explanatory aim, we ought to describe the binary and ternary devices as computationally 

identical; relative to another, computationally distinct. There would seem to be little pressure 

from within computational practice for regarding either description as capturing their ‘true’ 

computational identity.

3.2 The individualist response: reject Simultaneous Implementation

Recently, some mechanists have attempted to improve on Piccinini’s response. According to 

Dewhurst (2018b) and Coelho Mollo (2018) we should reject Simultaneous Implementation, not 

the Uniqueness Condition. These philosophers advance individualistic versions of the 

mechanistic view, on which the uniquely correct computational description of a system is 

determined wholly by its local, intrinsic properties. They disagree, however, about which 

intrinsic properties matter.

Dewhurst argues that the computational identity of a system is determined by its intrinsic 

physical properties. On this approach, the computational identity of Shagrir’s tristable gate is 

given, in effect, by Table 3. Only devices that transform the same voltage levels, in the same 

way, are computationally identical with the gate, and any system that differs in either respect is 

computationally distinct. However, this proposal faces a serious challenge. The problem is that it

entails that systems which differ even a little in respect of their intrinsic physical features are 

computationally distinct. While Dewhurst is upfront that this is a cost (2018b, 110–1), it is far 
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from clear that the price is worth paying (Fresco and Milkowski 2021; Shagrir 2020).

Coelho Mollo (2018) offers a more promising approach that retains the spirit of 

Dewhurst’s proposal. Coelho Mollo suggests that a system’s computational identity is fixed not 

by its intrinsic physical properties, but rather by its intrinsic functional organization. On this 

approach, particular voltage levels don’t impact a system’s computational identity, but its overall

functional organization does. In particular, any device that doesn’t exhibit the same overall 

functional pattern is computationally distinct from Shagrir’s gate.16

Coelho Mollo’s view nicely captures the implementation conditions for certain 

computations, but I do not believe that it is plausible as a general account of computational 

identity. It struggles with two kinds of case in particular.

Objection 1: some computations depend on wide functional properties

The first sort of case concerns wide functional properties. On Coelho Mollo’s view, any two 

systems that differ in respect of their overall functional profile are computationally distinct 

(Coelho Mollo 2018, 3494 fn. 20). The trouble is that functionally distinct systems are 

sometimes computationally identical.

Consider a system that implements the Turing machine M described above for sorting 

lists of binary strings. Suppose that this device is composed of bistable circuits (e.g. like Table 

1), but that one of the AND gates in this device malfunctions and the only available replacement 

is a tristable circuit (e.g. like Table 3). Even though the tristable circuit registers the difference 

between 0-2.5V and 2.5-5V, the other circuits in the device do not, and so the tristable circuit can

be safely swapped in. Because of this, the system will exhibit the same overall pattern of string 

manipulation as before the swap, and so will continue to implement the string-theoretic 

computation M. Insofar as both gates make the same overall contribution to the string-theoretic 

sorting task performed by the system, it is thus plausible — contra Coelho Mollo’s claim — to 

think that in this context the tristable AND gate is computationally identical to the bistable AND 

gate (cf. Schiller 2018).

16 This view resembles more traditional causal views of computation (e.g. Chalmers 1996a), but goes beyond them 
by endorsing the empirical claim that functionally characterized computations are realized by mechanisms.
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It is not immediately clear that this worry is insurmountable, however. Elsewhere, Coelho

Mollo points out that a functional decomposition of a system always takes place in light of a 

particular target capacity or teleofunction (2018, 3495). Functional differences that are irrelevant 

to these capacities may thus be ignored for the purposes of computational identification. Given 

this, one might say that insofar as the tristable circuit is located in a larger mechanism sensitive 

only to the difference between 0-5V and 5-10V, the difference between 0-2.5V and 2.5-5V is 

functionally irrelevant. Thus, in this context, the functional organization of the tristable gate is 

identical to that of the bistable gate after all, in which case it would follow that the two are 

computationally identical.

This seems to me a reasonable analysis of the situation. But Coelho Mollo rejects this 

manoeuvre, insisting that the tristable and bistable gates are never computationally identical: 

“devices that differ in the number of their stable states do not count as computationally 

equivalent … regardless of whether those functional differences are exploited … by the overall 

computational system in specific computations” (Coelho Mollo 2018, 3496, fn. 22). However, it 

is unclear why we should insist in this case the bistable and tristable gates are computationally 

distinct. Indeed, this seems to be a case in which wide functional considerations do impact a 

circuit’s computational identity (cf. Piccinini 2015, 43–44). Even if the bistable and tristable 

circuits differ in respect of their overall computational potential, in this specific instance they 

certainly appear to be computationally identical.

Objection 2: some tasks are characterized semantically (redux)

The second sort of case involves semantically laden computations, like the register machine R 

for sorting numbers. Coelho Mollo offers an interesting new response to this sort of case: he 

denies that a theory of computational identity must capture such computations in the first place. 

This is because such computations concern ‘logical’ or ‘mathematical’ identity, which, strictly 

speaking, do not concern computational identity properly so-called (Dewhurst 2018b, 110; 

cf. Coelho Mollo 2018, 3495). It is thus no strike against a non-semantic view that it fails to 

capture R, for it simply falls outside the scope of the theory.

Coelho Mollo illustrates this response with the help of a binary digital circuit. Consider 
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Table 8, which represents the functional profile of the circuit in Table 1. In Table 8, ‘EC1’ and 

‘EC2’ are arbitrary labels for digit types. As Coelho Mollo points out, the description in table 8 

underdetermines the logical function computed by the circuit. If the EC1 represents logical ‘1’ 

and EC2 represents logical ‘0’, it computes AND. Under the reverse assignment, it computes 

OR. And nothing about the intrinsic functional features of the circuit tells us which it computes. 

According to Coelho Mollo, this is as it should be:

Computational individuation … leaves logical individuation indeterminate. This is a 

welcome result, since … logical individuation is at least one step above computational 

individuation … what [Oron Shagrir and Mark Sprevak] point out is correct: the 

mechanistic view does not have the tools to distinguish between dual logic gates. 

However, such a feat is not something we should be asking of a theory of computational 

individuation, for computational individuation takes place below the level of logical 

functions. (Coelho Mollo 2018, 3495)

I have two concerns about this manoeuvre. First, it turns crucially on the distinction 

between ‘computational’ versus ‘logical’ individuation. But what motivates this distinction? 

True, the computational sciences register a distinction between string-theoretic and numerical 

computations, as noted in Section 2. But computational scientists treat both of these as furnishing

different but equally legitimate notions of computational individuation. 

Moreover, there are general theoretical reasons for treating both as genuine kinds of 

computational individuation. Describing systems computationally allows us to explain them 

computationally. Paradigmatically, computational explanation reveals how some phenomenon is 

produced by a routine step-by-step process.17 If an explanation of some phenomenon fits this 

pattern, it thereby constitutes a computational explanation of that phenomenon. This is so 

whether the phenomenon of interest is characterized in narrow functional, wide functional, or 

semantic terms.

To illustrate, consider the task of sorting uninterpreted strings versus the task of sorting 

interpreted strings. We’ve seen that an explanation of the former task may be couched wholly in 

17 At least to a very rough first approximation. In saying this I do not claim that all computational explanations 
identify routine, step-by-step processes. I merely claim that it is sufficient for a given explanation to constitute a 
computational explanation that it take this form.
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narrow functional terms, while an explanation of the latter must cite specific semantic properties.

Despite this difference, both tasks can be explained by identifying routine, step-by-step sorting 

processes. There is thus arguably a single, unified kind of explanation at work in both cases. 

Insofar as computational explanation depends upon computational individuation, it seems that 

Coelho Mollo’s ‘logical’ individuation is in the end just another kind of computational 

individuation.

The second concern is that this move doesn’t solve the indeterminacy problem — at best, 

it relocates it. Even if we grant that computational identity properly so-called does not concern 

the logical or mathematical function computed by a physical system, the problem reemerges in 

the guise of ‘logical’ indeterminacy. For we are still owed an account of what makes it the case 

that a physical system computes one logical function rather than another. Our goal, recall, is to 

account for taxonomic practice in the computational sciences. Computational identifications that 

appeal to the logical operations or mathematical functions computed by physical systems are a 

central part of this practice. Insofar as Coelho Mollo’s response fails to address indeterminacy of 

logical function, it thus loses sight of the main issue. If we wish to disarm indeterminacy worries 

about computational practice as it stands, we must address questions of ‘logical’ indeterminacy 

as well.18

3.3 Taking Stock

Where does this leave us? I’ve argued that extant responses struggle to capture the 

identity/implementation conditions of at least some computations:

 Anti-individualistic accounts struggle to capture string-theoretic computations with 

individualistic implementation conditions, such as M.

 Non-semantic accounts (both individualistic and anti-individualistic) struggle to capture 

certain numerical computations with partly semantic implementation conditions, such as 

R.

 Non-semantic individualistic accounts struggle to capture string-theoretic computations 

when those computations depend on wide functional properties. This typically happens 

18 But see (Papayannopoulos, Fresco, and Shagrir, forthcoming) for an alternative take on the situation.
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when a device computes a non-maximal task given its broader context.

The moral is that an adequate response should have the resources to capture each of these

different kinds of computation. I develop such a response next.

4. A New Solution

So far, I have framed the indeterminacy problem as the problem of reconciling four prima facie 

plausible but jointly inconsistent principles. However, I will argue next that the inconsistency 

between these principles is illusory. Under a proper understanding of computational 

implementation, no contradiction arises.

My solution has two components. The first appeals to the relativity of implementation: 

the view that a physical system implements a computation only relative to a specific pairing of 

abstract mathematical values with physical components. These pairings are called ‘labelling 

schemes’ (Copeland 1996; Chalmers 1996a). Although a system may implement different 

computations relative to different labelling schemes, relative to a fixed scheme, it will typically 

implement a single computation. The second part of my response argues that the Uniqueness 

Condition will be satisfied if computational explanations are relativized to specific labelling 

schemes. And this will be so even if the system simultaneously implements other computations, 

relative to other schemes. I will take each part in turn.

4.1 The relativity of implementation

Labelling schemes capture how mathematical computations are applied to physical systems. This

involves two more specific tasks: (1) grouping microphysical states, inputs, and outputs, into 

state, input, and output types, and (2) assigning an abstract ‘label’, such as a syntactic type, truth 

value, or natural number, to these types. Both of these tasks can be described formally as 

functions, which I will call the ‘grouping’ and ‘assignment’ functions, respectively. A labelling 

scheme is then the composition of a grouping and labelling function.

The grouping function maps microphysical states to state types, so that microphysical 

states mapping to identical state types are thereby grouped together. How states are grouped 
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depends on their properties. For instance, some schemes considered in connection with Shagrir’s 

tristable circuit group microphysical states according to their electromagnetic properties, while 

others might group according to functional or semantic properties. The assignment function takes

these state types and maps them to the states of some computation. This captures the assignment 

of abstract labels to those types.

Indeterminacy phenomena can be generated both at the level of the grouping function (by

varying the grouping of microphysical states into state types) and at the level of the assignment 

function (by varying the labelling of state types). Both possibilities are illustrated by Shagrir’s 

gate. For the former, notice that we can group microphysical states into two state types (e.g., 0-

5V vs 5-10V) or three (e.g., 0-2.5V vs 2.5-5V vs 5-10V). For the latter, notice that even a fixed 

grouping underdetermines which logical values we ought to assign to these state types. A two-

state grouping can be assigned either AND or OR, for instance. Because an adequate solution to 

the indeterminacy of computation ought to address indeterminacy both at the level of grouping 

and at the level of assignments, taking labelling schemes as the composition of a grouping and an

assignment function thus allows us to address both aspects of indeterminacy at once.

Not everyone will agree with this approach. Some philosophers hold that the assignment 

function is less important than the grouping function. They claim that how we choose to label 

state types is arbitrary, a matter of free choice (Coelho Mollo 2018, 3494; Piccinini 2020b, 153). 

According to these philosophers, to solve the indeterminacy problem, we need only focus on the 

grouping function. This is more plausible in some cases than others. Perhaps in the case of a 

single circuit considered in isolation (e.g. Table 1), it does not matter which state type is labelled 

‘1’ or ‘0’. But the choice of label is arguably more important when the circuit is embedded in a 

more complex system. This is because poorly chosen labels can misdescribe the computation 

being performed. Suppose the gate is located in a broader system in such a way that it has 

determinate semantic content. And suppose the 5-10V state represents logical 1 while 0-5V 

represents logical 0. In this case, if we describe the gate using a scheme that assigns 0 to 5-10V 

and 1 to 0-5V, we mischaracterize the computation performed by this device. For, while the 

device actually computes AND in this scenario, we describe it as computing OR. Thus to capture

the full range of computational phenomena, we arguably need to account for both groupings and 
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assignments.

When a system implements a computation, it does so under a specific labelling scheme. 

Under a different labelling scheme, it may implement a different computation. Given this, we 

should not say that physical systems implement computations simpliciter. Rather, we should say 

that physical systems implement computations relative to specific labelling schemes. In this 

respect, describing physical systems computationally closely resembles the more general practice

of describing systems mathematically. Applying some branch of mathematics to a physical 

system — such as arithmetic, real analysis, or, in our case, computability theory — requires that 

we specify how that branch is to be applied. Finite cardinals apply relative to sortal concepts. 

Reals apply relative to choices of unit magnitude. And computations apply relative to labelling 

schemes.19

Importantly, relative to a specific labelling scheme, a system typically implements a 

single, determinate computation. While it is in principle possible to devise schemes that fail to 

single out a particular computation, none of the schemes considered in connection with the 

indeterminacy of computation are indeterminate in this sense. Return to Shagrir’s gate. Each of 

the different computations implemented by the gate depends on a different grouping of states 

into state types, or on a different labelling of state types. Relative to a fixed scheme, however, 

the gate implements a single, unique computation. That is, relative to a specific labelling scheme 

the computational identity of a physical system is as determinate as one could reasonably want.20

I can now state the first part of my solution. I propose that we accept Simultaneous 

Implementation, in the sense that a system may simultaneously implement different 

computations relative to different labelling schemes. The next task is to argue that accepting 

Simultaneous Implementation in this sense does not undermine computational explanation.21

19 Blackmon (2013) also emphasizes the relativity of implementation. For connections between the applicability of 
mathematics and computational implementation see (Matthews and Dresner 2017) and (Schweizer 2019a).

20 At least, up to any indeterminacy in the properties cited by the specific scheme. Although this is itself a serious 
issue, I will not pursue it here.

21 To be clear, I do not claim that a system’s computational identity is determined by the total set of computations 
it implements (as in Milkowski 2013). Rather, I claim that computational identity is determined only relative to a
fixed labelling scheme. Relative to a fixed scheme, a system’s computational identity is determined by the 
computation implemented under that scheme.
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4.2 Relativity and computational explanation

To begin, recall that computational description is useful largely because it allows us to reason 

about a system while abstracting away from irrelevant physical details. Describing Shagrir’s 

circuit as an AND gate, for instance, allows us to ignore physical idiosyncrasies that make no 

difference to its overall pattern of behavior. We can explain that it outputs ‘0’ because it was 

given ‘1’ and ‘0’ as input without worrying about whether the device tokens ‘1’ because it has a 

voltage level of 6V or because it has a voltage level of 7V, because these physical states are 

indistinguishable from the perspective of a labelling scheme relative to which the gate computes 

AND.

This much is uncontroversial. The important point is that these benefits are not 

undermined by the fact that the gate simultaneously implements OR under a different labelling 

scheme. It is still true that it will output ‘0’ when given ‘1’ and ‘0’ relative to the AND scheme, 

even if it is simultaneously true that, relative to the OR scheme, the same pattern of physical 

activity would be described as outputting ‘1’ given ‘1’ and ‘0’. In general, there is no 

incompatibility between the claim that a system implements one computation relative to one 

labelling scheme while simultaneously implementing a distinct computation relative to another 

labelling scheme.22 For this reason, we can explain a device’s behavior by citing the fact that it 

implements AND (say), as long as we bear in mind the labelling scheme that sanctions this 

particular computational description.

Furthermore, there can be genuine computational contrasts relative to specific labelling 

schemes. This allows us to capture the contrastive character of many computational explanations,

noted in section 2. For it is false that Shagrir’s gate implements OR relative to the scheme under 

which it implements AND. We can thus explain that the gate outputs ‘0’ rather than ‘1’ when 

given ‘1’ and ‘0’ as input because it computes AND rather than OR. This is because, relative to 

the AND-scheme, the device really does output ‘0’, not ‘1’, when given ‘1’ and ‘0’ as input.

It should now be apparent that the inconsistency identified in section 2 does not arise on a

22 Although I will not argue for it here, this appears to be a general feature of applications of mathematics. To take 
Frege’s (1884) example, a single expanse of matter may simultaneously constitute one deck and fifty-two cards. 
There is no inconsistency in describing the matter simultaneously as one and as fifty-two, because these 
descriptions apply relative to the concepts DECK and CARD, respectively.
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relativistic conception of implementation. According to the Uniqueness Condition, 

computational explanation requires a system to fall under a unique computational type. But 

relative to an explanatorily salient labelling scheme, a system typically will implement a unique 

computation and thereby fall under a single computational type. Relative to a specific scheme, 

we can thus respect the Uniqueness Condition while recognizing that, relative to other schemes, 

a system might implement other computations.

Moreover, in light of this solution, there is arguably little need to identify any one way of 

regarding a system computationally as capturing its ‘true’ computational identity in some 

absolute sense. Rather, we should ask which way of regarding it computationally best serves our 

purposes, given our explanatory goals and interests. It may be that, for certain theoretical 

purposes, we should regard a system one way (e.g., as computing AND), whereas for other 

purposes we should regard it another way (e.g., as computing OR). Relative to appropriate 

labelling schemes, each of these may be a legitimate — indeed, true — computational 

description of that system. But neither description captures the system’s computational identity 

in some further global sense, divorced from our specific explanatory goals and interests.

Finally, I should emphasize that computability theory unifies these different ways of 

regarding systems computationally.23 That theory provides a formal, domain-neutral 

characterization of computational processes. Applications of this theory to particular physical 

systems reveal how a phenomenon is produced by such a process. As with mathematical theories

generally, computability theory can be applied in different ways, relative to different labelling 

schemes. Nevertheless, insofar as a single, unified mathematical theory is applied in structurally 

similar ways, it is plausible to think that such applications furnish a common kind of description 

and explanation. Thus, my solution is consistent with the claim that the various different ways of 

identifying and explaining systems are nonetheless ways of identifying and explaining systems 

computationally.

4.3 Indeterminacy vs underdetermination

One might worry that this solution merely relocates the indeterminacy problem. Even if 

23 In this respect, computability theory and related branches of theoretical computer science play a familiar 
unifying role encountered elsewhere in science (Kitcher 1981).
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computational identity is determinate relative to a labelling scheme, we are still owed an account 

of what makes a labelling scheme explanatorily relevant in a particular case. Absent an answer to

this question, are we not left with a new indeterminacy problem, now pitched at the level of 

labelling schemes?24

In response to this worry, I would point out that this problem is really quite different from

the original indeterminacy worry. To see this, recall the proposals from section 3. Those 

proposals attempted to solve the problem by tying computational identity to specific kinds of 

properties. The assumption guiding this approach is that the only way to satisfy the Uniqueness 

Condition is to identify a fixed class of properties which determine a system’s computational 

identity in every theoretical context. But in my view, this assumption is unwarranted. Relative to 

a well-defined labelling scheme, whatever properties it cites, a system’s computational identity is

fully determinate, in which case the Uniqueness Condition will be satisfied relative to that 

scheme. This is consistent with different schemes being appropriate in different theoretical 

contexts, for different descriptive or explanatory aims.

This way of approaching the indeterminacy problem reveals that what we thought was a 

metaphysical problem about computational identity turns out to be an epistemic problem about 

explanatory relevance. It is, moreover, a quite familiar issue. For the question of what makes a 

given computational description of a system explanatorily relevant is just an instance of the more

general question of what makes a given scientific or mathematical description explanatorily 

relevant. This is of course a difficult question, among the hardest in the philosophy of science. 

But there is little reason to think that we cannot make headway on it. For this reason, trading the 

metaphysical problem for an epistemic one leaves us at least no worse off than we were before.

What makes a particular labelling scheme explanatorily relevant will tend to be highly 

context-sensitive, depending on the properties and behavior of the system under consideration as 

well as our explanatory goals and interests (Schweizer and Jablonski 2013; Lee 2021). How 

these factors interact is a complicated affair, and I am somewhat skeptical that there is an 

illuminating general story to be told here. Nevertheless, this skepticism flagged, a few points are 

worth mentioning.

24 Thanks to an anonymous referee for pressing me on this point.
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First, because labelling schemes map physical components to abstract values, which 

schemes apply to a system will depend on the system’s properties. Not just anything goes. A 

system that lacks semantic properties will, quite obviously, not be explained in terms of a 

labelling scheme that groups microphysical states according to their semantic features. Which 

schemes are available thus varies on a case by case basis, and will plausibly depend on intrinsic 

features of a system as well as its relation to the broader environment. In general, identifying 

schemes applicable to a system or class of systems will be partly an empirical matter.

Second, although systems will typically fall under a variety of different labelling schemes

at once, the range of which must be determined empirically, specific explanatory tasks typically 

require that we focus on a specific scheme or kind of scheme. This point is usefully illustrated by

the cases considered in section 3:

1. Labelling schemes that group physical states according to their semantic features are 

appropriate for explaining how a system performs a semantically characterized task. The 

most obvious such tasks include computing functions over non-string theoretic entities, 

such as numbers or truth-values. Semantic schemes are also appropriate for capturing 

coarse-grained similarities between systems that disappear when we consider their 

functional or mechanistic properties alone. Facts about asymptotic running time are one 

example, although there may be others.

2. Labelling schemes that group physical states according to their non-semantic features are 

appropriate for explaining non-semantically characterized tasks, such as computing 

string-theoretic functions. They are also appropriate for explaining highly specific facts 

about exact running time or memory usage.

3. Schemes that cite wide functional properties are typically required when a system’s 

broader context is insensitive to certain functional differences registered by the system 

itself. The example we saw concerned bistable and tristable gates, both of which may 

perform the same binary digital computation when situated in a larger context which is 

sensitive to two digits only.

Of course, I am happy to grant that in some cases we may not have enough evidence to 
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choose between different computational descriptions, sanctioned by different labelling schemes. 

While this situation is less likely to occur for artificial computing systems, it is perhaps the norm 

for complex natural computing systems such as the brain. Determining which scheme is 

explanatorily most appropriate for neural or cognitive phenomena is a non-trivial problem. 

That’s putting it lightly. But this is hardly a problem unique to computation. Just about any 

scientific description of the world — computational or otherwise — is underdetermined by the 

available evidence. Thus, I would emphasize again that there is no special problem for 

computation here, only an instance of a quite familiar general phenomenon.

4.4 Comparisons and elaborations

I will round off the discussion by situating my view with respect to a few others in the literature.

Extant Responses

My view resembles the responses in section 3 in certain respects, but departs from them at 

crucial junctures as well. Each of those views is partially correct, because physical systems can 

be computationally individuated with respect to their narrow functional, wide functional, or 

semantic properties. However, I do not hold that a system’s computational identity is always 

determined by its narrow functional, wide functional, or wide semantic properties, respectively. 

Rather, I hold that each of these can determine computational identity in different contexts, for 

different explanatory ends. 

Of these views, mine is perhaps closest to computational anti-individualism. For I agree 

that computational explanation does not require a system to implement a single computation at a 

time. However, because these views do not endorse a relativistic conception of implementation, 

they are forced to reject the Uniqueness Condition. This is a cost, because the condition is prima 

facie attractive. My view, by contrast, is able to endorse the Uniqueness Condition. Point for me.

The computational individualist pays a similar price, because they are forced to reject 

Simultaneous Implementation. Once again, insofar as this principle is prima facie plausible, it is 

a mark in favour of my account that I can endorse it. Moreover, we saw that the computational 

individualist is forced to distinguish ‘computational’ from ‘logical’ individuation. This too is a 
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cost, insofar as this distinction has little grounding in either the descriptive or explanatory 

aspects of computational practice. No such distinction is forced on my account. Given the 

unifying role of computability theory on my account, I am able to capture the sense in which 

narrow functional, wide functional, and semantic descriptions/explanations may all, in certain 

cases, constitute computational descriptions/explanations.

Computational perspectivalism

My account foregrounds the role of explanatory contexts in determining an explanatorily 

relevant labelling scheme. In this respect it resembles certain perspectivalist views in the 

philosophy of science. Over the next few paragraphs, I will argue that my view is perspectival in 

only a weak epistemic sense.25

To begin, we can draw a rough and ready distinction between ontic and epistemic 

varieties of perspectivalism. Ontic perspectivalism about some subject matter holds that there are

no non-perspectival facts about that subject matter. Epistemic perspectivalism, by contrast, holds

that our knowledge of some subject matter is crucially mediated by factors such as our 

explanatory goals and interests, scientific models and theories, or instrumentation, which 

constitute our epistemic perspective on the world.

To make matters concrete, I will contrast my view with two recent proposals, due to 

Schweizer (2019b) and Dewhurst (2018a). Schweizer holds that physical computation “is 

founded upon an observer-dependent act of ascription” so that “there is no deep or 

metaphysically grounded fact about whether or not a physical system ‘really’ implements a given

computational formalism” over and above facts about how agents choose to interpret that system 

(Schweizer 2019a, 31). Dewhurst offers a more attenuated view, couched in terms of the 

mechanistic account of computation. On Dewhurst’s view, “what it means for a mechanism to 

perform the function of computing is to possess the right kind of physical structure to be 

interpreted as performing this function from an explanatory perspective” (Dewhurst 2018a, 581).

Differences aside, these views hold that a system computes if an agent, taking up a particular 

25 Scientific perspectivalism is itself a large, challenging topic, and I cannot hope to do justice to all the subtleties 
involved here. For more, see (Chakravartty 2010), (Massimi 2018), and (Massimi and McCoy 2019), among 
many others. For detailed discussion of computational perspectivalism in particular see (Coelho Mollo 2019).
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explanatory perspective, in some sense interprets that system as computing. Thus, these views 

arguably fall into the ontic perspectivalist camp with respect to physical computation.26

In contradistinction to these views, I do not hold that computation depends upon 

‘observer-dependent acts of ascription’ or on a system being interpreted in a particular way. 

Rather, I hold that it depends upon a labelling scheme. Labelling schemes are functions from 

physical states to abstract labels — a kind of mathematical object. As with mathematical objects 

more broadly, labelling schemes in this sense arguably exist whether anyone ascribes them to 

anything.27 Furthermore, the fact that a system implements a computation relative to a labelling 

scheme does not on its own entail that computational facts are perspective-dependent. Indeed, 

given an explanatorily adequate labelling scheme it follows by inference to the best explanation 

that the computational features ascribed under that scheme are real, perspective-independent 

properties of the system in question. This illustrates that my view is certainly compatible with 

(although not necessarily committed to) a realist, perspective-independent attitude towards 

physical computation.

Thus although I agree that computational ascriptions must be made from some 

explanatory perspective, this alone does not mean that computational facts are perspectival. The 

fact that we must adopt some explanatory perspective or other is an inevitable aspect of scientific

inquiry — we must always confront the world with a particular set of theories, models, 

instruments, etc. Computational inquiry is no different. Our computational perspective on a 

physical system is codified by a specific labelling scheme (or class of labelling schemes) relative

to which we ascribe computational features to that system. But this is an epistemic point, not an 

ontological one. And there is no straightforward inference from this epistemic point to the 

stronger, ontological claim that computation per se is perspectival (Chakravartty 2010). Thus my

view is committed to no more than a weak form of epistemic perspectivalism, a form it arguably 

shares with scientific theories quite generally.

26 At times, Dewhurst’s remarks suggest a more epistemic reading; see (Coelho Mollo 2019) for an interpretation 
along these lines.

27 There is, of course, longstanding philosophical disagreement about the nature and status of mathematical objects.
Rather than rehearse that debate here, I would instead emphasize that my view is compatible with a wide range 
of background views in the philosophy of mathematics. While some such views might lead to ontic 
perspectivalism, others arguably do not.
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Computational Pluralism

One final point of contact worth mentioning concerns computational pluralism. Pluralism about a

subject matter X holds, roughly, that there are multiple distinct yet equally legitimate accounts 

of, theories about, or kinds of X. Insofar as I allow that different properties impact computation 

in different cases, I endorse a version of computational pluralism. On this version, there are 

multiple distinct yet equally legitimate ways of individuating systems computationally. In 

contrast with other pluralist views in the literature, however, I hold that pluralism about 

computational identity is a natural consequence of the application of computability theory to 

physical systems.

To see this, consider an alternative pluralist view proposed by Lee (2021). Like me, Lee 

holds that computational systems and states can be individuated with respect to different 

properties in different cases. However, Lee’s pluralism is grounded in the thought that 

computation “does not have an essential nature that supplies a single, privileged individuation” 

(Lee 2021, 234). By contrast, my approach does not rely on the idea of essential natures. Rather, 

it relies only on the observation that when applying a branch of mathematics to a physical system

— computability theory, in our case — we do so relative to a specific pairing of physical and 

mathematical components. This leads naturally to computational pluralism, because different 

pairings may be more or less useful for different theoretical purposes in different circumstances.

5. Conclusion: The Middle Ground

Returning to the issue raised at the top of the paper, we have seen that the response offered here 

accommodates the fact that different properties impact computational identity in different cases. 

It thus sits naturally with the following intermediate view:

The Middle Ground. A system’s computational identity sometimes depends solely on its

intrinsic features and sometimes also on its relational features, and that sometimes it 

depends on a system’s semantic features and other times not.

Ultimately, which properties impact a system’s computational identity is an empirical 

issue, to be determined by careful examination of the computational sciences. Work on 
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computational identity would thus benefit from a more systematic survey of these sciences which

goes beyond discussion of, e.g., isolated logic gates.28 Such a survey would (a) taxonomize the 

explanatory uses of computation in a variety of representative cases, in order to (b) identify the 

specific kinds of labelling schemes — the different ways of identifying systems computationally 

— that support these explanatory aims. Although such a survey must for now remain on the 

agenda for future investigation, the view developed here ensures that worries about 

computational indeterminacy present no obstacle to this work.

28 For promising initial moves in this direction, see (Fresco, Copeland, and Wolf, 2021) and (Fresco 2021).
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Appendix

Input 1 Input 2 Output

5-10V 5-10V 5-10V

5-10V 0-5V 0-5V

0-5V 5-10V 0-5V

0-5V 0-5V 0-5V

Table 1: A bistable circuit 

Input 1 Input 2 Output

1 1 1

1 0 0

0 1 0

0 0 0

Table 2: Bistable AND gate 

Input 1 Input 2 Output

5-10V 5-10V 5-10V

5-10V 2.5-5V 2.5-5V

5-10V 0-2.5 2.5-5V

2.5-5V 5-10V 2.5-5V

2.5-5V 2.5-5V 2.5-5V

2.5-5V 0-2.5 2.5-5V

0-2.5V 5-10V 2.5-5V

0-2.5V 2.5-5V 2.5-5V

0-2.5V 0-2.5 0-2.5V

Table 3: A tristable circuit
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Input 1 Input 2 Output

1 1 1

1 1
2

1
2

1 0 1
2

1
2

1 1
2

1
2

1
2

1
2

1
2

0 1
2

0 1 1
2

0 1
2

1
2

0 0 0

Table 4: Tristable ‘averaging’ computation.

Input 1 Input 2 Output

1 1 1

1 1 1

1 0 1

1 1 1

1 1 1

1 0 1

0 1 1

0 1 1

0 0 0

Table 5: Tristable OR gate.
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Input 1 Input 2 Output

1 1 1

1 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

Table 6: Tristable AND gate.

Input 1 Input 2 Output

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

1 0 0

1 0 0

1 1 1

Table 7: Tristable AND gate, version 2.
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Input 1 Input 2 Output

EC1 EC1 EC1

EC1 EC2 EC2

EC2 EC1 EC2

EC2 EC2 EC2

Table 8: The functional profile of Table 1.
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