
The InDeterminacy of Computation

André Curtis-Trudel

The Ohio State University

curtistrudel.1@osu.edu

www.aetrudel.net

Dec 27, 2021

Forthcoming in Synthese

Abstract

A skeptical worry known as ‘the indeterminacy of computation’ animates much

recent philosophical reflection on the computational identity of physical systems.

On the one hand, computational explanation seems to require that physical

computing systems fall under a single, unique computational description at a

time. On the other, if a physical system falls under any computational

description, it seems to fall under many simultaneously. Absent some principled

reason to take just one of these descriptions in particular as relevant for

computational explanation, widespread failure of computational explanation

would appear to follow. This paper advances a new solution to the indeterminacy

of computation. Very roughly, I argue that the computational identity of a

physical system is determinate relative to a contextually specified way of

regarding that system computationally --- known as a labelling scheme. When a

system simultaneously implements multiple computations, it does so relative to

different labelling schemes. But relative to a fixed labelling scheme, a physical

system has a unique computational identity. I argue that this relativistic

conception of computational identity vindicates computational explanation and

comports well with computational practice.

1

1. Introduction1

A skeptical worry known as ‘the indeterminacy of computation’ animates much recent

philosophical reflection on the computational identity of physical systems.2 The worry runs

roughly as follows. On the one hand, computational explanation seems to require physical

computing systems to fall under a single, unique computational description at a time. On the

other, if a physical system falls under any computational description, it seems to fall under many

simultaneously. Absent some principled reason for taking just one of these descriptions in

particular as relevant for computational explanation, widespread failure of computational

explanation seems to follow.

Standard solutions attempt to isolate properties bearing a privileged relationship to

computational description and thereby to a system’s computational identity. These efforts have

played out along two axes. One concerns semantic vs. non-semantic properties, while the other

concerns intrinsic vs. relational properties. These axes cut across each other, and the following

combinations reflect the most prominent views in the contemporary literature:

l Non-Semantic individualism holds that a system’s computational identity is wholly

determined by its intrinsic, non-semantic properties (Chalmers 1996b; Dewhurst 2018b;

Coelho Mollo 2018; Egan 1995).

l Non-semantic anti-individualism holds that a system’s computational identity is always

determined, in part, by its non-semantic relational properties in addition to its intrinsic

non-semantic properties (Piccinini 2008, 2015, 2020a; Harbecke and Shagrir 2019;

Fresco 2021).

l Semantic anti-individualism holds that a system’s computational identity is always

determined, in part, by its relational semantic properties in addition to its intrinsic non-

semantic properties (Shagrir 2001, 2020; Horowitz 2007; Sprevak 2010).

1 Thanks to Soyeong An, Matteo Biachetti, Preston Lennon, Daniel Olson, Richard Samuels, Stewart Shapiro,
Declan Smithies, Damon Stanley, and audiences in Bergamo and online at BSPS 2021 for comments and
discussion. Special thanks to three anonymous referees, whose suggestions led to substantial improvements in
the final paper. Any errors that remain are entirely my own.

2 So-called by Fresco and Milkowski (2021). Known also as ‘the multiplicity of computations’ (Piccinini 2008,
2015; Coelho Mollo 2018; Lee 2021), and ‘the problem of simultaneous implementation’ (Shagrir 2001, 2020;
Dewhurst 2018b, 2018a).

2

Although these views are in some respects attractive, ultimately I find them

unsatisfactory. Each either seriously distorts or otherwise fails to capture certain important

aspects of computational practice. Consequently, this paper develops a solution that better

comports with that practice. This solution leads to the following middle position with respect to

computational identity:

The Middle Ground holds that a system’s computational identity sometimes depends

solely on its intrinsic features and sometimes also on its relational features, and that

sometimes it depends on a system’s semantic features and other times not (Rescorla

2013; Lee 2021).

Here is the plan. I begin in section 2 with a more careful formulation of the

indeterminacy problem, and argue in section 3 that extant solutions are unsatisfactory. I present

my alternative solution in section 4. Section 5 concludes.

2. The Indeterminacy of Computation

Historically, the indeterminacy of computation has been used to motivate semantic accounts of

computational identity (Shagrir 2001, 2020). I will present the problem in more neutral terms. At

the broadest level, the goal is to capture descriptive and explanatory practice in the

computational sciences. The problem is that under prima facie plausible assumptions this

practice is incoherent. At the core of the problem are the following two claims:

The Uniqueness Condition. Successful computational explanation requires a physical

computing system to have a single, unique computational identity — fall under a unique

computational type — at a given time.

Simultaneous Implementation. Physical computing systems simultaneously implement

multiple distinct computations.

The trouble is that, under the following auxiliary assumptions, these claims are inconsistent:

The Identity-Implementation Link. The computational identity of a physical system is

3

determined by the computation(s) it implements.

Successful Explanations. There are successful computational explanations.

In the remainder of this section I explain each of these claims and offer some overall clarificatory

remarks about the character of the indeterminacy problem. I begin with the two auxiliary

assumptions.

2.1 The Identity-Implementation Link

This is an empirical claim about how computer and cognitive science taxonomize physical

computing systems. While physical systems can be taxonomized in any number of non-

computational respects (e.g., in terms of their mass or shape), these sciences taxonomize systems

computationally in terms of the computations they implement. Computations are defined in

terms of some mathematically characterized computational formalism, such as a Turing machine,

finite state automaton, or Java program.3 In general, computations consist of:

 A non-empty set of internal states.

 Sets of input and output objects. These are the ‘domains’ over which computations are

performed. Either set may be empty.

 A transition function defined over all of the above.

More specific computations are determined by a choice of internal states, input and

output sets, and the action of the transition function. Two kinds of computation will play an

important role in what follows:

1. String-Theoretic Computations compute over string-theoretic or ‘linguistic’ domains.

For instance, on Turing’s (1936) original definition, Turing machines compute functions

over unary strings.

2. Numerical Computations perform computations defined over non-string-theoretic

entities, such as natural numbers or truth values. Examples include register machines

(Cutland 1980) which compute number-theoretic functions, and Boolean circuits (Savage

3 Also called ‘syntactic structures’ (Shagrir 2001) or ‘computational models’ (Rescorla 2013).

4

2008) which compute Boolean functions.4

It is standard to think of mathematical computations as abstract descriptions or models of

physical systems, and we say that a physical system implements a computation when that

computation ‘accurately describes’ the system.5 This is usually cashed out in terms of a structural

relation such as isomorphism, so that a physical system implements a computation only if, and

perhaps also if, (a) there is a grouping of microphysical states, inputs, and outputs into state,

input, and output types, and (b) an assignment of these to mathematical inputs, outputs, and

internal states such that (c) under this assignment the physical system and computation are

isomorphic (Ritchie and Piccinini 2019).

A simple example is a digital circuit with two inputs and a single output. The circuit

outputs 5-10V iff both inputs are in the 5-10V range; otherwise, it outputs 0-5V (Table 1 in

Appendix). What computation does this circuit implement? It depends on how the system’s

microphysical states are grouped into state types and then assigned mathematical values. One

option assigns ‘1’ to the 5-10V state type and ‘0’ to the 0-5V state type. Under this mapping, the

circuit implements logical AND (Table 2).

This example illustrates that implementing a computation fixes the computational identity

of both a system and its states. If two token physical states map to distinct mathematical states,

they are computationally type distinct; otherwise, they are type identical. Similarly, if two

systems implement the same overall computation, they are computationally type identical;

otherwise, they are computationally type distinct. Given this connection between implementation

and computational identity, we can frame the views encountered in the introduction as views

about implementation. For instance, semantic views hold that to implement a computation a

physical system must have certain semantic properties, while non-semantic views allow that a

4 As we will see, string-theoretic and numerical computations have very different implementation conditions. But
from a mathematical point of view, the differences between these two kinds of computation are less important. It
is typical to start with string-theoretic computations and then define numerical computations by taking strings as
representations of numbers (e.g., Davis 1982). However, it is also possible to develop computability theory
directly in terms of numerical computations (e.g., Davis, Segal, and Weyuker 1994, ch. 2-4).

5 I will move back and forth between talk of physical systems ‘satisfying computational descriptions’ and
‘implementing’ or ‘realizing’ computations, taking these to be roughly equivalent.

5

system might implement a computation even if it lacks semantic properties altogether.6

2.2 Successful Explanations

It is routine in computer and cognitive science to explain the properties or behaviour of physical

systems in terms of the computations they implement. This holds for both artificial computing

systems, such as laptops or microprocessors, and natural computing systems, such as the brain. I

take it that at least some of these explanations are successful. Computer and cognitive scientists

routinely offer explanations of this sort in journal articles and at conferences and other academic

venues. These explanations are accepted, at least sometimes, by other members of these

disciplines. All else equal, we should take this practice at face value and believe that there are

successful computational explanations.

2.3 The Uniqueness Condition

According to the Uniqueness Condition, successful computational explanation requires that a

system fall under a single computational type. Given the Identity-Implementation Link, this

amounts to the requirement that a system implement a single computation at a time. This claim is

intuitively quite plausible, but it is also supported by two more systematic considerations.

The first is that it explains certain aspects of computational practice. As Oron Shagrir

(2001, 377–9) notes, when computational scientists explain some phenomenon, they type

identify the system responsible for that phenomenon uniquely in terms of the computation it

implements. Edge detection in the visual system is explained by the fact that the visual system

implements a specific computation on retinal signals, for instance. The most straightforward

explanation of this practice is that computational scientists are being guided by something like

The Uniqueness Condition. If the Uniqueness Condition were false, it would be puzzling why

computational scientists type identify physical systems the way they do.

A second consideration concerns the contrastive character of many computational

6 Not everyone will agree with this way of framing the debate. For instance, Oron Shagrir (2001, 382) claims that
computational identity involves semantic properties over and above implementation. But this is because Shagrir
endorses a wholly non-semantic account of implementation. Rather than claiming that computational identity
involves something in addition to implementation, it is more straightforward to see Shagrir as proposing a
semantic account of implementation.

6

explanations (cf. Sprevak 2019, 186). This character is apparent even in very simple cases. For

instance, the explanation why a logic gate outputs ‘0’ (rather than ‘1’) given ‘1’ and ‘0’ as input

is that it computes AND (rather than OR). But it is highly plausible to think that contrastive

explanation requires a contrast (Hitchcock 2013). The fact that a system implements computation

C (rather than) C₁ ₂ explains the fact that it exhibits effect E ₁ (rather than E₂) only if the system

doesn’t implement C₂. That is, if the logic gate implements AND at the exact same time it

implements OR, it is hard to see how we can cite the fact that it implements AND rather than

OR to explain why it does what it does. It thus seems that to satisfy the contrastive character of

computational explanation, a system must implement a single computation at a time, which is

just what the Uniqueness Condition says.

2.4 Simultaneous Implementation

The three claims encountered so far are consistent. But trouble emerges once we notice that

physical systems implement multiple distinct computations simultaneously. Shagrir (2001, 2020)

illustrates this with the example of a tristable circuit, which is sensitive to three different voltage

levels: 0-2.5V, 2.5-5V, and 5-10V. The circuit has two input signals and one output signal, and it

outputs 5-10V iff both input signals are 5-10V, 0-2.5V iff both input signals are 0-2.5V, and

otherwise, it outputs 2.5-10V (Table 3). What computations does this circuit implement?

Different possibilities arise from different groupings of states into state types or assignments of

abstract values to these types:

1. One option assigns distinct mathematical values to each stable state. For instance, we

might assign the labels ‘0’, ‘
1
2

’, and ‘1’ to 0-2.5V, 2.5-5V, and 5-10V, respectively. In

this case, the gate computes an ‘averaging’ operation over its inputs (Table 4). Because

this option exploits all the stable states of the gate, it is sometimes known as a ‘maximal

task’ (Piccinini 2015, 41).

2. Another option groups states in the 2.5-10V range into one state type, states in the 0-2.5V

range into another, and assigns ‘1’ to the former and ‘0’ to the latter. Under this

assignment, the gate implements logical OR (Table 5). Because it ignores the distinction

7

between 2.5-5V and 5-10V, the gate performs a non-maximal task under this assignment.

3. A third option groups 5-10V into one state type and assigns it ‘1’, and it groups 0-5V into

another and assigns it ‘0’. In this case, the gate computes logical AND (Table 6).

These options all rely on different groupings of physical states into state types. Others

hold fixed the groupings and vary the mathematical values assigned to them. For instance:

4. Keep the grouping from (2), but flip the assignment of ‘0’ and ‘1’. In this case, the gate

also computes logical AND, albeit in a different way than in (3) (Table 7).7

Of course, these observations are not restricted to Shagrir’s tristable gate. Similar

considerations apply to nearly any simple computing system. And because more complex

computing systems are typically composed of simpler components like this one, if these atomic

components simultaneously implement many computations, it is reasonable to expect the same

for more complex systems as well.8

Simultaneous implementation is attractive. In general, it is useful if a single physical

component can perform multiple different computational tasks, for then the same component can

be repurposed as the need arises. Simultaneous implementation arguably makes this possible,

insofar as it ensures that a single physical component can subserve multiple distinct

computations. A real-world illustration of this comes from contemporary microchip manufacture

(Hennessy and Patterson 2003, ch. 1). The manufacturing process involves casting silicon wafers

into segments known as ‘die’. Multiple die are bonded together to form a chip. The casting

process is imperfect, and not every cast die is functional. To keep manufacturing costs down, it is

thus useful if a single die component can be repurposed to perform different computations,

depending on failures in the casting process. Simultaneous implementation may thus play an

7 There is some dispute about whether this is a genuine alternative to the computation in (2) (Piccinini 2020b,
153). There is also dispute about whether there is one kind of indeterminacy at play here, or two
(Papayannopoulos, Fresco, and Shagrir, forthcoming). My own view is that there is just one; see sections 3.2 and
4.4.

8 Note that simultaneous implementation falls short of pancomputationalism, the claim that every physical system
simultaneously implements every computation. See (Shagrir 2001) for discussion.

8

important role in computer engineering, and perhaps elsewhere as well.9

2.5 A clarification

What sort of indeterminacy is at issue in the indeterminacy of computation? On its face, it

appears to be a metaphysical problem about the nature of computational identity. If a system’s

computational identity is determined by the computation it implements, and if that system

simultaneously implements multiple computations, then that system’s computational identity is

indeterminate between each of the computations it implements. The problem is not simply that

we lack evidence favouring one computation over another. Rather, the problem is that there is no

clear reason to think that any one computation in particular determines a system’s ‘true’

computational identity.

Ultimately, I think that this initial appearance is deceiving. I will later argue that physical

computation is not metaphysically indeterminate. What indeterminacy there is, is epistemic.

Before that, however, I will take the problem at face value and will consider solutions that

address it on these terms.

3. Extant Responses

A natural response to the indeterminacy problem, as I’ve formulated it, is to reject one of the

foregoing claims. Which one? We can immediately set aside solutions that reject either of the

auxiliary assumptions (the Identity-Implementation Link and Successful Explanations). All

parties to the current debate accept that computational systems and states are taxonomized with

respect to the computations they implement. Similarly, few philosophers nowadays doubt that

there are successful computational explanations. Although solutions that reject either of these

principles are not entirely off limits, they incur substantial costs and should be pursued only as a

last resort.

This leaves Simultaneous Implementation and the Uniqueness Condition. This section

surveys the main strategies for rejecting each of these claims, and argues that they are

9 Fresco, Copeland, and Wolf (2021) make a similar point in the context of natural computing systems. They
suggest that it is evolutionarily beneficial if a given neural component can subserve multiple distinct neural
processes.

9

unsatisfactory. My overall complaint is that these solutions either distort or otherwise fail to

capture certain important aspects of computational practice. However, I should emphasize from

the start that I will not attempt to show that these strategies cannot capture these aspects once

and for all. My aims are more modest. I take the considerations surveyed below to shift the

burden onto those who wish to reject either of these principles: they must show that their

accounts have the resources to accommodate the problem cases I will identify, or they must

provide grounds for denying that they must accommodate them in the first place.

3.1 The anti-individualist response: reject the Uniqueness Condition

A first line of response accepts that a physical system might simultaneously implement different

computations, but denies that this undermines computational explanation. Here is the rough idea.

We describe systems computationally in order to explain a specific phenomenon. A

computational explanation is successful if it reveals how a system comes to exhibit that

phenomenon. This is compatible with the system simultaneously satisfying other computational

descriptions, appropriate for other explanatory targets. For this reason, computational

explanation does not require that a system implement a single computation full stop. Rather, it

requires only that a system implement a single computation responsible for the phenomena we

wish to explain.

This response has been pursued primarily by anti-individualists about computation, who

cash it out in terms of three more specific claims: (1) that the phenomenon relevant for assessing

a system’s computational identity in a given context is the task it performs in that context; (2)

that a system always performs a single task in a given context; and (3) that the task a system

performs in a given context is determined by its relationship to its broader environment. The

primary point of disagreement between anti-individualists concerns the nature of this

relationship: is it best understood semantically or non-semantically? This can be framed as a

disagreement about the nature of computational tasks: are computational tasks always identified

in terms of (wide) semantic properties, or not? Semantic anti-individualists say yes, while non-

semantic anti-individualists say no.

Semantic views start from the observation that computational tasks are often described in

10

terms of mathematical or environmental entities. Standard examples are computing addition over

numbers or computing zero-crossings of environmental luminance levels. On the face of it,

performing these tasks requires a system to represent the entities in question — numbers and

environmental properties, respectively.10 Accordingly, a system performs these computations

only if it has appropriate semantic properties. Non-semantic views, by contrast, hold that the

relevant relational properties are not semantic properties, but wide functional properties.

Gualtiero Piccinini is the foremost defender of this view. On his version, these wide functional

properties comprise a system’s immediate mechanistic context. This includes things like: “the

relation between the forces exerted on input devices (such as keyboards) and the signals relayed

by input devices to the computing components, and on the other hand, the relation between the

computing components’ outputs and the signals released by the output devices)” (Piccinini 2008,

43, 221).11

Next I will consider two objections to anti-individualist views. The first challenges both

semantic and non-semantic views, while the second challenges Piccinini’s non-semantic view in

particular.

Objection 1: some tasks depend only on intrinsic properties

Anti-individualists claim that the task performed by a system is always determined by the

system’s relationship to its broader environment. But is this true? Consider the task of sorting a

list of binary strings. It is straightforward to describe a Turing machine computation M for this

task. A physical system implements M if it transforms lists of physical strings in the right way.

Yet, as I will suggest, implementing this computation plausibly involves neither semantic nor

wide functional properties. If this is right, then this computation is a prima facie counterexample

to the claim that all computational tasks — and thereby all correct computational descriptions —

depend on a system’s relational properties.

To begin, observe that a system can perform this task even if it lacks semantic properties

altogether. Piccinini (2008) plausibly argues that implementing string-theoretic computations

10 This has been challenged, but I will grant this assumption here. See (Egan 1995) and (Peacocke 1999) for
discussion.

11 Fresco (2021) defends a ‘long-arm’ anti-individualist view, in contrast to Piccinini’s ‘short-arm’ view. Although
I focus on Piccinini’s version here, the objections raised below apply equally to both.

11

involves only functional, non-semantic properties of a system. This suggests that the semantic

view fails to capture M’s implementation conditions. One obvious counter-maneuver the

semanticist might make is to argue that these conditions involve semantic properties only tacitly,

making them easily overlooked. Perhaps when a state realizes a certain string-theoretic type it

represents that type. Or perhaps in order to compute a sorting function it must represent one

string as coming before or after another in the ordering. Whether such responses succeed remains

to be seen. For my own part, I am skeptical that they can be executed without seriously distorting

computational practice.12

What about the wide functional account? Whether a system implements M sometimes

depends solely on its intrinsic functional features. The most straightforward case is a

contemporary digital computer. For such devices, there is a reasonably sharp distinction between

core computing components (e.g. the CPU and memory) and I/O devices (e.g. the keyboard and

display). For the wide functionalist, the latter components comprise the device’s immediate

mechanistic context. Whether the device implements M is thus partly determined by the state of

those components.

But suppose we hold fixed the internal dynamics of the CPU and memory, while varying

the state of the input and output devices. I take this to be nomologically possible. For instance, it

could be the result of a manufacturing error which causes input and output signals to become

momentarily scrambled, but which leaves the internal dynamics of the CPU intact. In this

scenario, I claim that we would still judge that the CPU performs the sorting task. Because the

internal dynamics of the device remain unchanged, the internal physical states would appear to

go through the same patterns of activity as in a typical, unscrambled case. It is thus plausible to

think that the device implements M in this case as well, even though it bears a warped

relationship to its broader mechanistic context.

It might be objected that in this scenario the device doesn’t perform the sorting task, but

performs some other task or even no task at all. I have two responses to this objection. First, this

response sits awkwardly with certain aspects of computational practice. I/O glitches are an

unfortunate fact of any computer scientist’s life. In such cases, upon inspecting one’s code and

12 See (Rescorla 2014) for other examples in this vein.

12

determining that it compiles properly and runs correctly, it is natural to say, not that the device

fails to sort, but rather that it correctly sorts yet fails to communicate this computation to the

user.

Second, even if we grant that the device performs a different task, at best this objection

shows that a system’s computational identity is not always determined by the task it performs.

The scrambled device goes through some sequence of internal states accurately described by M.

This sequence exhibits certain properties that may be of interest, for instance having to do with

running time or memory usage. These properties can legitimately be explained by appeal to M.

Thus, for the purposes of explaining these specific phenomena, it is plausible to think that M

constitutes the computational identity of the device.

To be clear: I do not deny that whether a system performs this computation depends

causally on its input (and perhaps output) transducers. It plausibly does, at least in ordinary

cases. Nor do I deny that some string-theoretic computations might depend constitutively on a

system’s wide functional properties. I grant that they might, and I will consider an example in

due course. Nor do I even deny that sometimes the phenomenon relevant for determining

computational identity is the task a system performs. Rather, the claims I reject are (1) that

whether a device implements M always depends constitutively on its wide functional properties,

and (2) that a system’s computational identity is always determined by the task it performs in a

given context.

Objection 2: some tasks are characterized semantically

Next I consider a semantically characterized computation that poses a problem for Piccinini’s

wide functionalism in particular. Other philosophers have emphasized the importance of

semantically characterized computations for descriptive practice in computer and cognitive

science (e.g. Shagrir 2001; Rescorla 2017; Lee 2021). And Rescorla (2013) argues that in

computer science physical systems are sometimes computationally distinguished in terms of their

semantic properties. Here I want to throw another consideration into the mix by considering a

case in which two systems ought to be computationally type identified in virtue of their semantic

properties. As I shall argue, certain explanatory benefits accrue from describing systems this

13

way, yet it is unclear how to account for these benefits in non-semantic terms.

Consider the task of sorting a list of numbers (rather than strings). It is straightforward

enough to describe an abstract register machine computation R for this task. Abstract register

machine computations differ from string-theoretic computations in that they take operations on

numbers, rather than strings, as computationally primitive. R is thus a numerical computation, in

the sense introduced in section 2. Moreover, it is plausible to think that implementing R requires

a system to have certain semantic properties, such as representing particular numbers (Rescorla

2013).

Descriptions couched in terms of R allow us to abstract away from details which are

irrelevant for certain explanatory purposes. For example, consider two microprocessors that

realize R, one of which uses binary notation and another of which uses ternary notation.13

Describing these systems as performing computations over lists of numbers (rather than lists of

strings) allows us to capture important similarities between their properties and behaviour, the

most obvious of which is that under a semantic description the two devices can be seen to

perform the same sorting task over numbers. Insofar as the numerical sorting task performed by

these systems is relevant for determining their computational identity, under the semantic task

description sanctioned by R the devices are computationally identical.

This case poses a dilemma for the wide functionalist. Horn one: they can accept that the

devices are computationally identical, but try to account for this fact in non-semantic terms. This

is easier said than done. Because the systems use different notations, their internal functional

dynamics differ. Moreover, the broader environments of which they are parts must presumably

be sensitive to their specific notational schemes too. Yet if computational tasks depend on their

wide functional properties, then it would appear that these systems perform different tasks: one

performs a task on binary strings, while the other performs a task on ternary strings.

To get around this, the wide functionalist might go even wider. For instance, they might

appeal to the ways that users respond to or interact with the devices. This move is suggested by

some of Piccinini’s remarks (2015, 44 fn. 12). Here the idea would be to appeal to the fact that

13 There are a few interesting instances of the ternary computers in the history of computer science. Perhaps the
most notable are the Setun machines, developed in the 1950s and 60s. For discussion see (Brusentsov and Ramil
Alvarez 2011) and references therein.

14

users interact with the devices in similar ways to ground the fact that these devices are

computationally equivalent. But what are these ‘similar ways’? This must presumably be spelled

out in a way that doesn’t rely on the way that users interpret these devices or otherwise imbue

them with content, on pain of collapsing into the semantic view. This is a non-trivial task, made

more difficult by the fact that semantic properties very plausibly supervene on such broad

environmental relations between a system and its users (Rescorla 2013; Shagrir 2020). It remains

to be seen whether the wide functionalist can accomplish this task.

Horn two: the wide functionalist might instead hold that the binary and ternary devices

are computationally distinct. This seems to be Piccinini’s preferred strategy. He points out that

any semantic task description depends on a more basic non-semantic task description (Piccinini

2015, 33–36). We cannot describe the devices as sorting lists of numbers unless we can

antecedently describe them as sorting lists of (non-semantically characterized) strings. But it is

this more basic, non-semantic description that is most relevant for questions about computational

identity. This is because (a) the relevant description is the one that is required for computational

explanation, and (b) on Piccinini’s view computational explanation is a species of mechanistic

explanation (Piccinini 2015, ch. 5). In particular, the non-semantic description is what will

ultimately feature in a full-blown mechanistic explanation of a system. This includes, among

other things, a specification of “the notation being used, the algorithm followed, [and] the

architecture that executes the algorithm” (Piccinini 2015, 39).

On this picture, “computing systems and their states have non-semantic identity

conditions” (Piccinini 2015, 49). It would thus seem that the proper attitude towards the binary

and ternary realizations of R is that they are computationally distinct, owing to their different

notation. Of course, this response does not deny that the binary and ternary devices and their

states can be described in semantic terms for certain purposes. As Piccinini points out, “once

computational states are individuated non-semantically, semantic interpretations may (or may

not) be assigned to them” (Piccinini 2015, 49).14

What should we make of this response? Piccinini certainly has a point. There may be

computation without representation, but there is no computation without notation, as it were. But

14 Thanks to an anonymous referee for urging me to clarify this point.

15

this doesn’t automatically show that the descriptions relevant for computational identity are

always non-semantic. That claim follows only under the assumption that computational

explanation (properly so called) is full-blown mechanistic explanation. But as I will suggest next,

some computational explanations succeed only by ignoring certain mechanistic details such as

notation. And for such explanations it is natural to computationally type identify physical

systems and their states in semantic terms.

The explanations I have in mind come from algorithmic analysis, the branch of computer

science that investigates the resource requirements of various algorithms. Computer scientists

make a few simplifying assumptions so that the results of such analyses apply as widely as

possible. One is to focus on asymptotic, as opposed to exact, running time. Another is to describe

algorithms in a way that is largely machine-independent, abstracting away from details such as

notation or architecture (Cormen et al. 2001, 21–23). This is usually achieved by describing

algorithms as operating on numbers, rather than strings. This allows computer scientists to

assume that primitive computational steps (e.g. basic logical or arithmetical operations) operate

in constant time. Overall, these assumptions ensure that a given analysis can be used to explain

the performance of a wide variety of physical systems, at least in many cases, regardless of their

mechanistic details.

To illustrate, suppose that R employs Insertion Sort, a well-known sorting algorithm.

Given a list of numbers of length n, Insertion Sort sorts in Θ(n²) primitive computational steps in

the worst case.15 Recall that primitive steps here are characterized numerically, rather than string-

theoretically. This is important, because the binary and ternary devices presumably differ in the

exact amount of time required to carry out a primitive numerical operation, owing to their

different notations. Nevertheless, such details are irrelevant for explaining facts about the

asymptotic running time of the devices. Thus, we can appeal to R to explain why both devices

sort on average in a certain amount of time: the reason is that they both implement a specific

Θ(n²) sorting computation over numbers.

The crucial point is that this explanation would not be improved by adding in mechanistic

details about notation. Indeed, accounting for those details would obscure the fact that the two

15 (Cormen et al. 2001, 26). Crudely, the running time of an algorithm is Θ(f) for some function f if for sufficiently
large inputs the running time is bounded above and below by f, up to some constant factor.

16

devices have similar asymptotic running times. This similarity emerges only under a notation-

indifferent description, such as that sanctioned by R. Indeed, this is an instance of a familiar

general point: for certain explanatory purposes, less (detail) is more (cf. Potochnik 2017, ch. 2).

Thus, relative to the goal of explaining the similar asymptotic running time of these devices, we

ought to describe them semantically, as sorting lists of numbers. And under this descriptive

idiom, the devices are computationally identical.

Of course, this is consistent with the claim that non-semantic, mechanistic descriptions

are important for other explanatory purposes. If we wish to explain their exact running times,

down to the number of clock cycles used, mechanistic details are undoubtedly relevant. But there

is little reason to think that this goal occupies an explanatorily privileged position. Relative to

one explanatory aim, we ought to describe the binary and ternary devices as computationally

identical; relative to another, computationally distinct. There would seem to be little pressure

from within computational practice for regarding either description as capturing their ‘true’

computational identity.

3.2 The individualist response: reject Simultaneous Implementation

Recently, some mechanists have attempted to improve on Piccinini’s response. According to

Dewhurst (2018b) and Coelho Mollo (2018) we should reject Simultaneous Implementation, not

the Uniqueness Condition. These philosophers advance individualistic versions of the

mechanistic view, on which the uniquely correct computational description of a system is

determined wholly by its local, intrinsic properties. They disagree, however, about which

intrinsic properties matter.

Dewhurst argues that the computational identity of a system is determined by its intrinsic

physical properties. On this approach, the computational identity of Shagrir’s tristable gate is

given, in effect, by Table 3. Only devices that transform the same voltage levels, in the same

way, are computationally identical with the gate, and any system that differs in either respect is

computationally distinct. However, this proposal faces a serious challenge. The problem is that it

entails that systems which differ even a little in respect of their intrinsic physical features are

computationally distinct. While Dewhurst is upfront that this is a cost (2018b, 110–1), it is far

17

from clear that the price is worth paying (Fresco and Milkowski 2021; Shagrir 2020).

Coelho Mollo (2018) offers a more promising approach that retains the spirit of

Dewhurst’s proposal. Coelho Mollo suggests that a system’s computational identity is fixed not

by its intrinsic physical properties, but rather by its intrinsic functional organization. On this

approach, particular voltage levels don’t impact a system’s computational identity, but its overall

functional organization does. In particular, any device that doesn’t exhibit the same overall

functional pattern is computationally distinct from Shagrir’s gate.16

Coelho Mollo’s view nicely captures the implementation conditions for certain

computations, but I do not believe that it is plausible as a general account of computational

identity. It struggles with two kinds of case in particular.

Objection 1: some computations depend on wide functional properties

The first sort of case concerns wide functional properties. On Coelho Mollo’s view, any two

systems that differ in respect of their overall functional profile are computationally distinct

(Coelho Mollo 2018, 3494 fn. 20). The trouble is that functionally distinct systems are

sometimes computationally identical.

Consider a system that implements the Turing machine M described above for sorting

lists of binary strings. Suppose that this device is composed of bistable circuits (e.g. like Table

1), but that one of the AND gates in this device malfunctions and the only available replacement

is a tristable circuit (e.g. like Table 3). Even though the tristable circuit registers the difference

between 0-2.5V and 2.5-5V, the other circuits in the device do not, and so the tristable circuit can

be safely swapped in. Because of this, the system will exhibit the same overall pattern of string

manipulation as before the swap, and so will continue to implement the string-theoretic

computation M. Insofar as both gates make the same overall contribution to the string-theoretic

sorting task performed by the system, it is thus plausible — contra Coelho Mollo’s claim — to

think that in this context the tristable AND gate is computationally identical to the bistable AND

gate (cf. Schiller 2018).

16 This view resembles more traditional causal views of computation (e.g. Chalmers 1996a), but goes beyond them
by endorsing the empirical claim that functionally characterized computations are realized by mechanisms.

18

It is not immediately clear that this worry is insurmountable, however. Elsewhere, Coelho

Mollo points out that a functional decomposition of a system always takes place in light of a

particular target capacity or teleofunction (2018, 3495). Functional differences that are irrelevant

to these capacities may thus be ignored for the purposes of computational identification. Given

this, one might say that insofar as the tristable circuit is located in a larger mechanism sensitive

only to the difference between 0-5V and 5-10V, the difference between 0-2.5V and 2.5-5V is

functionally irrelevant. Thus, in this context, the functional organization of the tristable gate is

identical to that of the bistable gate after all, in which case it would follow that the two are

computationally identical.

This seems to me a reasonable analysis of the situation. But Coelho Mollo rejects this

manoeuvre, insisting that the tristable and bistable gates are never computationally identical:

“devices that differ in the number of their stable states do not count as computationally

equivalent … regardless of whether those functional differences are exploited … by the overall

computational system in specific computations” (Coelho Mollo 2018, 3496, fn. 22). However, it

is unclear why we should insist in this case the bistable and tristable gates are computationally

distinct. Indeed, this seems to be a case in which wide functional considerations do impact a

circuit’s computational identity (cf. Piccinini 2015, 43–44). Even if the bistable and tristable

circuits differ in respect of their overall computational potential, in this specific instance they

certainly appear to be computationally identical.

Objection 2: some tasks are characterized semantically (redux)

The second sort of case involves semantically laden computations, like the register machine R

for sorting numbers. Coelho Mollo offers an interesting new response to this sort of case: he

denies that a theory of computational identity must capture such computations in the first place.

This is because such computations concern ‘logical’ or ‘mathematical’ identity, which, strictly

speaking, do not concern computational identity properly so-called (Dewhurst 2018b, 110;

cf. Coelho Mollo 2018, 3495). It is thus no strike against a non-semantic view that it fails to

capture R, for it simply falls outside the scope of the theory.

Coelho Mollo illustrates this response with the help of a binary digital circuit. Consider

19

Table 8, which represents the functional profile of the circuit in Table 1. In Table 8, ‘EC1’ and

‘EC2’ are arbitrary labels for digit types. As Coelho Mollo points out, the description in table 8

underdetermines the logical function computed by the circuit. If the EC1 represents logical ‘1’

and EC2 represents logical ‘0’, it computes AND. Under the reverse assignment, it computes

OR. And nothing about the intrinsic functional features of the circuit tells us which it computes.

According to Coelho Mollo, this is as it should be:

Computational individuation … leaves logical individuation indeterminate. This is a

welcome result, since … logical individuation is at least one step above computational

individuation … what [Oron Shagrir and Mark Sprevak] point out is correct: the

mechanistic view does not have the tools to distinguish between dual logic gates.

However, such a feat is not something we should be asking of a theory of computational

individuation, for computational individuation takes place below the level of logical

functions. (Coelho Mollo 2018, 3495)

I have two concerns about this manoeuvre. First, it turns crucially on the distinction

between ‘computational’ versus ‘logical’ individuation. But what motivates this distinction?

True, the computational sciences register a distinction between string-theoretic and numerical

computations, as noted in Section 2. But computational scientists treat both of these as furnishing

different but equally legitimate notions of computational individuation.

Moreover, there are general theoretical reasons for treating both as genuine kinds of

computational individuation. Describing systems computationally allows us to explain them

computationally. Paradigmatically, computational explanation reveals how some phenomenon is

produced by a routine step-by-step process.17 If an explanation of some phenomenon fits this

pattern, it thereby constitutes a computational explanation of that phenomenon. This is so

whether the phenomenon of interest is characterized in narrow functional, wide functional, or

semantic terms.

To illustrate, consider the task of sorting uninterpreted strings versus the task of sorting

interpreted strings. We’ve seen that an explanation of the former task may be couched wholly in

17 At least to a very rough first approximation. In saying this I do not claim that all computational explanations
identify routine, step-by-step processes. I merely claim that it is sufficient for a given explanation to constitute a
computational explanation that it take this form.

20

narrow functional terms, while an explanation of the latter must cite specific semantic properties.

Despite this difference, both tasks can be explained by identifying routine, step-by-step sorting

processes. There is thus arguably a single, unified kind of explanation at work in both cases.

Insofar as computational explanation depends upon computational individuation, it seems that

Coelho Mollo’s ‘logical’ individuation is in the end just another kind of computational

individuation.

The second concern is that this move doesn’t solve the indeterminacy problem — at best,

it relocates it. Even if we grant that computational identity properly so-called does not concern

the logical or mathematical function computed by a physical system, the problem reemerges in

the guise of ‘logical’ indeterminacy. For we are still owed an account of what makes it the case

that a physical system computes one logical function rather than another. Our goal, recall, is to

account for taxonomic practice in the computational sciences. Computational identifications that

appeal to the logical operations or mathematical functions computed by physical systems are a

central part of this practice. Insofar as Coelho Mollo’s response fails to address indeterminacy of

logical function, it thus loses sight of the main issue. If we wish to disarm indeterminacy worries

about computational practice as it stands, we must address questions of ‘logical’ indeterminacy

as well.18

3.3 Taking Stock

Where does this leave us? I’ve argued that extant responses struggle to capture the

identity/implementation conditions of at least some computations:

 Anti-individualistic accounts struggle to capture string-theoretic computations with

individualistic implementation conditions, such as M.

 Non-semantic accounts (both individualistic and anti-individualistic) struggle to capture

certain numerical computations with partly semantic implementation conditions, such as

R.

 Non-semantic individualistic accounts struggle to capture string-theoretic computations

when those computations depend on wide functional properties. This typically happens

18 But see (Papayannopoulos, Fresco, and Shagrir, forthcoming) for an alternative take on the situation.

21

when a device computes a non-maximal task given its broader context.

The moral is that an adequate response should have the resources to capture each of these

different kinds of computation. I develop such a response next.

4. A New Solution

So far, I have framed the indeterminacy problem as the problem of reconciling four prima facie

plausible but jointly inconsistent principles. However, I will argue next that the inconsistency

between these principles is illusory. Under a proper understanding of computational

implementation, no contradiction arises.

My solution has two components. The first appeals to the relativity of implementation:

the view that a physical system implements a computation only relative to a specific pairing of

abstract mathematical values with physical components. These pairings are called ‘labelling

schemes’ (Copeland 1996; Chalmers 1996a). Although a system may implement different

computations relative to different labelling schemes, relative to a fixed scheme, it will typically

implement a single computation. The second part of my response argues that the Uniqueness

Condition will be satisfied if computational explanations are relativized to specific labelling

schemes. And this will be so even if the system simultaneously implements other computations,

relative to other schemes. I will take each part in turn.

4.1 The relativity of implementation

Labelling schemes capture how mathematical computations are applied to physical systems. This

involves two more specific tasks: (1) grouping microphysical states, inputs, and outputs, into

state, input, and output types, and (2) assigning an abstract ‘label’, such as a syntactic type, truth

value, or natural number, to these types. Both of these tasks can be described formally as

functions, which I will call the ‘grouping’ and ‘assignment’ functions, respectively. A labelling

scheme is then the composition of a grouping and labelling function.

The grouping function maps microphysical states to state types, so that microphysical

states mapping to identical state types are thereby grouped together. How states are grouped

22

depends on their properties. For instance, some schemes considered in connection with Shagrir’s

tristable circuit group microphysical states according to their electromagnetic properties, while

others might group according to functional or semantic properties. The assignment function takes

these state types and maps them to the states of some computation. This captures the assignment

of abstract labels to those types.

Indeterminacy phenomena can be generated both at the level of the grouping function (by

varying the grouping of microphysical states into state types) and at the level of the assignment

function (by varying the labelling of state types). Both possibilities are illustrated by Shagrir’s

gate. For the former, notice that we can group microphysical states into two state types (e.g., 0-

5V vs 5-10V) or three (e.g., 0-2.5V vs 2.5-5V vs 5-10V). For the latter, notice that even a fixed

grouping underdetermines which logical values we ought to assign to these state types. A two-

state grouping can be assigned either AND or OR, for instance. Because an adequate solution to

the indeterminacy of computation ought to address indeterminacy both at the level of grouping

and at the level of assignments, taking labelling schemes as the composition of a grouping and an

assignment function thus allows us to address both aspects of indeterminacy at once.

Not everyone will agree with this approach. Some philosophers hold that the assignment

function is less important than the grouping function. They claim that how we choose to label

state types is arbitrary, a matter of free choice (Coelho Mollo 2018, 3494; Piccinini 2020b, 153).

According to these philosophers, to solve the indeterminacy problem, we need only focus on the

grouping function. This is more plausible in some cases than others. Perhaps in the case of a

single circuit considered in isolation (e.g. Table 1), it does not matter which state type is labelled

‘1’ or ‘0’. But the choice of label is arguably more important when the circuit is embedded in a

more complex system. This is because poorly chosen labels can misdescribe the computation

being performed. Suppose the gate is located in a broader system in such a way that it has

determinate semantic content. And suppose the 5-10V state represents logical 1 while 0-5V

represents logical 0. In this case, if we describe the gate using a scheme that assigns 0 to 5-10V

and 1 to 0-5V, we mischaracterize the computation performed by this device. For, while the

device actually computes AND in this scenario, we describe it as computing OR. Thus to capture

the full range of computational phenomena, we arguably need to account for both groupings and

23

assignments.

When a system implements a computation, it does so under a specific labelling scheme.

Under a different labelling scheme, it may implement a different computation. Given this, we

should not say that physical systems implement computations simpliciter. Rather, we should say

that physical systems implement computations relative to specific labelling schemes. In this

respect, describing physical systems computationally closely resembles the more general practice

of describing systems mathematically. Applying some branch of mathematics to a physical

system — such as arithmetic, real analysis, or, in our case, computability theory — requires that

we specify how that branch is to be applied. Finite cardinals apply relative to sortal concepts.

Reals apply relative to choices of unit magnitude. And computations apply relative to labelling

schemes.19

Importantly, relative to a specific labelling scheme, a system typically implements a

single, determinate computation. While it is in principle possible to devise schemes that fail to

single out a particular computation, none of the schemes considered in connection with the

indeterminacy of computation are indeterminate in this sense. Return to Shagrir’s gate. Each of

the different computations implemented by the gate depends on a different grouping of states

into state types, or on a different labelling of state types. Relative to a fixed scheme, however,

the gate implements a single, unique computation. That is, relative to a specific labelling scheme

the computational identity of a physical system is as determinate as one could reasonably want.20

I can now state the first part of my solution. I propose that we accept Simultaneous

Implementation, in the sense that a system may simultaneously implement different

computations relative to different labelling schemes. The next task is to argue that accepting

Simultaneous Implementation in this sense does not undermine computational explanation.21

19 Blackmon (2013) also emphasizes the relativity of implementation. For connections between the applicability of
mathematics and computational implementation see (Matthews and Dresner 2017) and (Schweizer 2019a).

20 At least, up to any indeterminacy in the properties cited by the specific scheme. Although this is itself a serious
issue, I will not pursue it here.

21 To be clear, I do not claim that a system’s computational identity is determined by the total set of computations
it implements (as in Milkowski 2013). Rather, I claim that computational identity is determined only relative to a
fixed labelling scheme. Relative to a fixed scheme, a system’s computational identity is determined by the
computation implemented under that scheme.

24

4.2 Relativity and computational explanation

To begin, recall that computational description is useful largely because it allows us to reason

about a system while abstracting away from irrelevant physical details. Describing Shagrir’s

circuit as an AND gate, for instance, allows us to ignore physical idiosyncrasies that make no

difference to its overall pattern of behavior. We can explain that it outputs ‘0’ because it was

given ‘1’ and ‘0’ as input without worrying about whether the device tokens ‘1’ because it has a

voltage level of 6V or because it has a voltage level of 7V, because these physical states are

indistinguishable from the perspective of a labelling scheme relative to which the gate computes

AND.

This much is uncontroversial. The important point is that these benefits are not

undermined by the fact that the gate simultaneously implements OR under a different labelling

scheme. It is still true that it will output ‘0’ when given ‘1’ and ‘0’ relative to the AND scheme,

even if it is simultaneously true that, relative to the OR scheme, the same pattern of physical

activity would be described as outputting ‘1’ given ‘1’ and ‘0’. In general, there is no

incompatibility between the claim that a system implements one computation relative to one

labelling scheme while simultaneously implementing a distinct computation relative to another

labelling scheme.22 For this reason, we can explain a device’s behavior by citing the fact that it

implements AND (say), as long as we bear in mind the labelling scheme that sanctions this

particular computational description.

Furthermore, there can be genuine computational contrasts relative to specific labelling

schemes. This allows us to capture the contrastive character of many computational explanations,

noted in section 2. For it is false that Shagrir’s gate implements OR relative to the scheme under

which it implements AND. We can thus explain that the gate outputs ‘0’ rather than ‘1’ when

given ‘1’ and ‘0’ as input because it computes AND rather than OR. This is because, relative to

the AND-scheme, the device really does output ‘0’, not ‘1’, when given ‘1’ and ‘0’ as input.

It should now be apparent that the inconsistency identified in section 2 does not arise on a

22 Although I will not argue for it here, this appears to be a general feature of applications of mathematics. To take
Frege’s (1884) example, a single expanse of matter may simultaneously constitute one deck and fifty-two cards.
There is no inconsistency in describing the matter simultaneously as one and as fifty-two, because these
descriptions apply relative to the concepts DECK and CARD, respectively.

25

relativistic conception of implementation. According to the Uniqueness Condition,

computational explanation requires a system to fall under a unique computational type. But

relative to an explanatorily salient labelling scheme, a system typically will implement a unique

computation and thereby fall under a single computational type. Relative to a specific scheme,

we can thus respect the Uniqueness Condition while recognizing that, relative to other schemes,

a system might implement other computations.

Moreover, in light of this solution, there is arguably little need to identify any one way of

regarding a system computationally as capturing its ‘true’ computational identity in some

absolute sense. Rather, we should ask which way of regarding it computationally best serves our

purposes, given our explanatory goals and interests. It may be that, for certain theoretical

purposes, we should regard a system one way (e.g., as computing AND), whereas for other

purposes we should regard it another way (e.g., as computing OR). Relative to appropriate

labelling schemes, each of these may be a legitimate — indeed, true — computational

description of that system. But neither description captures the system’s computational identity

in some further global sense, divorced from our specific explanatory goals and interests.

Finally, I should emphasize that computability theory unifies these different ways of

regarding systems computationally.23 That theory provides a formal, domain-neutral

characterization of computational processes. Applications of this theory to particular physical

systems reveal how a phenomenon is produced by such a process. As with mathematical theories

generally, computability theory can be applied in different ways, relative to different labelling

schemes. Nevertheless, insofar as a single, unified mathematical theory is applied in structurally

similar ways, it is plausible to think that such applications furnish a common kind of description

and explanation. Thus, my solution is consistent with the claim that the various different ways of

identifying and explaining systems are nonetheless ways of identifying and explaining systems

computationally.

4.3 Indeterminacy vs underdetermination

One might worry that this solution merely relocates the indeterminacy problem. Even if

23 In this respect, computability theory and related branches of theoretical computer science play a familiar
unifying role encountered elsewhere in science (Kitcher 1981).

26

computational identity is determinate relative to a labelling scheme, we are still owed an account

of what makes a labelling scheme explanatorily relevant in a particular case. Absent an answer to

this question, are we not left with a new indeterminacy problem, now pitched at the level of

labelling schemes?24

In response to this worry, I would point out that this problem is really quite different from

the original indeterminacy worry. To see this, recall the proposals from section 3. Those

proposals attempted to solve the problem by tying computational identity to specific kinds of

properties. The assumption guiding this approach is that the only way to satisfy the Uniqueness

Condition is to identify a fixed class of properties which determine a system’s computational

identity in every theoretical context. But in my view, this assumption is unwarranted. Relative to

a well-defined labelling scheme, whatever properties it cites, a system’s computational identity is

fully determinate, in which case the Uniqueness Condition will be satisfied relative to that

scheme. This is consistent with different schemes being appropriate in different theoretical

contexts, for different descriptive or explanatory aims.

This way of approaching the indeterminacy problem reveals that what we thought was a

metaphysical problem about computational identity turns out to be an epistemic problem about

explanatory relevance. It is, moreover, a quite familiar issue. For the question of what makes a

given computational description of a system explanatorily relevant is just an instance of the more

general question of what makes a given scientific or mathematical description explanatorily

relevant. This is of course a difficult question, among the hardest in the philosophy of science.

But there is little reason to think that we cannot make headway on it. For this reason, trading the

metaphysical problem for an epistemic one leaves us at least no worse off than we were before.

What makes a particular labelling scheme explanatorily relevant will tend to be highly

context-sensitive, depending on the properties and behavior of the system under consideration as

well as our explanatory goals and interests (Schweizer and Jablonski 2013; Lee 2021). How

these factors interact is a complicated affair, and I am somewhat skeptical that there is an

illuminating general story to be told here. Nevertheless, this skepticism flagged, a few points are

worth mentioning.

24 Thanks to an anonymous referee for pressing me on this point.

27

First, because labelling schemes map physical components to abstract values, which

schemes apply to a system will depend on the system’s properties. Not just anything goes. A

system that lacks semantic properties will, quite obviously, not be explained in terms of a

labelling scheme that groups microphysical states according to their semantic features. Which

schemes are available thus varies on a case by case basis, and will plausibly depend on intrinsic

features of a system as well as its relation to the broader environment. In general, identifying

schemes applicable to a system or class of systems will be partly an empirical matter.

Second, although systems will typically fall under a variety of different labelling schemes

at once, the range of which must be determined empirically, specific explanatory tasks typically

require that we focus on a specific scheme or kind of scheme. This point is usefully illustrated by

the cases considered in section 3:

1. Labelling schemes that group physical states according to their semantic features are

appropriate for explaining how a system performs a semantically characterized task. The

most obvious such tasks include computing functions over non-string theoretic entities,

such as numbers or truth-values. Semantic schemes are also appropriate for capturing

coarse-grained similarities between systems that disappear when we consider their

functional or mechanistic properties alone. Facts about asymptotic running time are one

example, although there may be others.

2. Labelling schemes that group physical states according to their non-semantic features are

appropriate for explaining non-semantically characterized tasks, such as computing

string-theoretic functions. They are also appropriate for explaining highly specific facts

about exact running time or memory usage.

3. Schemes that cite wide functional properties are typically required when a system’s

broader context is insensitive to certain functional differences registered by the system

itself. The example we saw concerned bistable and tristable gates, both of which may

perform the same binary digital computation when situated in a larger context which is

sensitive to two digits only.

Of course, I am happy to grant that in some cases we may not have enough evidence to

28

choose between different computational descriptions, sanctioned by different labelling schemes.

While this situation is less likely to occur for artificial computing systems, it is perhaps the norm

for complex natural computing systems such as the brain. Determining which scheme is

explanatorily most appropriate for neural or cognitive phenomena is a non-trivial problem.

That’s putting it lightly. But this is hardly a problem unique to computation. Just about any

scientific description of the world — computational or otherwise — is underdetermined by the

available evidence. Thus, I would emphasize again that there is no special problem for

computation here, only an instance of a quite familiar general phenomenon.

4.4 Comparisons and elaborations

I will round off the discussion by situating my view with respect to a few others in the literature.

Extant Responses

My view resembles the responses in section 3 in certain respects, but departs from them at

crucial junctures as well. Each of those views is partially correct, because physical systems can

be computationally individuated with respect to their narrow functional, wide functional, or

semantic properties. However, I do not hold that a system’s computational identity is always

determined by its narrow functional, wide functional, or wide semantic properties, respectively.

Rather, I hold that each of these can determine computational identity in different contexts, for

different explanatory ends.

Of these views, mine is perhaps closest to computational anti-individualism. For I agree

that computational explanation does not require a system to implement a single computation at a

time. However, because these views do not endorse a relativistic conception of implementation,

they are forced to reject the Uniqueness Condition. This is a cost, because the condition is prima

facie attractive. My view, by contrast, is able to endorse the Uniqueness Condition. Point for me.

The computational individualist pays a similar price, because they are forced to reject

Simultaneous Implementation. Once again, insofar as this principle is prima facie plausible, it is

a mark in favour of my account that I can endorse it. Moreover, we saw that the computational

individualist is forced to distinguish ‘computational’ from ‘logical’ individuation. This too is a

29

cost, insofar as this distinction has little grounding in either the descriptive or explanatory

aspects of computational practice. No such distinction is forced on my account. Given the

unifying role of computability theory on my account, I am able to capture the sense in which

narrow functional, wide functional, and semantic descriptions/explanations may all, in certain

cases, constitute computational descriptions/explanations.

Computational perspectivalism

My account foregrounds the role of explanatory contexts in determining an explanatorily

relevant labelling scheme. In this respect it resembles certain perspectivalist views in the

philosophy of science. Over the next few paragraphs, I will argue that my view is perspectival in

only a weak epistemic sense.25

To begin, we can draw a rough and ready distinction between ontic and epistemic

varieties of perspectivalism. Ontic perspectivalism about some subject matter holds that there are

no non-perspectival facts about that subject matter. Epistemic perspectivalism, by contrast, holds

that our knowledge of some subject matter is crucially mediated by factors such as our

explanatory goals and interests, scientific models and theories, or instrumentation, which

constitute our epistemic perspective on the world.

To make matters concrete, I will contrast my view with two recent proposals, due to

Schweizer (2019b) and Dewhurst (2018a). Schweizer holds that physical computation “is

founded upon an observer-dependent act of ascription” so that “there is no deep or

metaphysically grounded fact about whether or not a physical system ‘really’ implements a given

computational formalism” over and above facts about how agents choose to interpret that system

(Schweizer 2019a, 31). Dewhurst offers a more attenuated view, couched in terms of the

mechanistic account of computation. On Dewhurst’s view, “what it means for a mechanism to

perform the function of computing is to possess the right kind of physical structure to be

interpreted as performing this function from an explanatory perspective” (Dewhurst 2018a, 581).

Differences aside, these views hold that a system computes if an agent, taking up a particular

25 Scientific perspectivalism is itself a large, challenging topic, and I cannot hope to do justice to all the subtleties
involved here. For more, see (Chakravartty 2010), (Massimi 2018), and (Massimi and McCoy 2019), among
many others. For detailed discussion of computational perspectivalism in particular see (Coelho Mollo 2019).

30

explanatory perspective, in some sense interprets that system as computing. Thus, these views

arguably fall into the ontic perspectivalist camp with respect to physical computation.26

In contradistinction to these views, I do not hold that computation depends upon

‘observer-dependent acts of ascription’ or on a system being interpreted in a particular way.

Rather, I hold that it depends upon a labelling scheme. Labelling schemes are functions from

physical states to abstract labels — a kind of mathematical object. As with mathematical objects

more broadly, labelling schemes in this sense arguably exist whether anyone ascribes them to

anything.27 Furthermore, the fact that a system implements a computation relative to a labelling

scheme does not on its own entail that computational facts are perspective-dependent. Indeed,

given an explanatorily adequate labelling scheme it follows by inference to the best explanation

that the computational features ascribed under that scheme are real, perspective-independent

properties of the system in question. This illustrates that my view is certainly compatible with

(although not necessarily committed to) a realist, perspective-independent attitude towards

physical computation.

Thus although I agree that computational ascriptions must be made from some

explanatory perspective, this alone does not mean that computational facts are perspectival. The

fact that we must adopt some explanatory perspective or other is an inevitable aspect of scientific

inquiry — we must always confront the world with a particular set of theories, models,

instruments, etc. Computational inquiry is no different. Our computational perspective on a

physical system is codified by a specific labelling scheme (or class of labelling schemes) relative

to which we ascribe computational features to that system. But this is an epistemic point, not an

ontological one. And there is no straightforward inference from this epistemic point to the

stronger, ontological claim that computation per se is perspectival (Chakravartty 2010). Thus my

view is committed to no more than a weak form of epistemic perspectivalism, a form it arguably

shares with scientific theories quite generally.

26 At times, Dewhurst’s remarks suggest a more epistemic reading; see (Coelho Mollo 2019) for an interpretation
along these lines.

27 There is, of course, longstanding philosophical disagreement about the nature and status of mathematical objects.
Rather than rehearse that debate here, I would instead emphasize that my view is compatible with a wide range
of background views in the philosophy of mathematics. While some such views might lead to ontic
perspectivalism, others arguably do not.

31

Computational Pluralism

One final point of contact worth mentioning concerns computational pluralism. Pluralism about a

subject matter X holds, roughly, that there are multiple distinct yet equally legitimate accounts

of, theories about, or kinds of X. Insofar as I allow that different properties impact computation

in different cases, I endorse a version of computational pluralism. On this version, there are

multiple distinct yet equally legitimate ways of individuating systems computationally. In

contrast with other pluralist views in the literature, however, I hold that pluralism about

computational identity is a natural consequence of the application of computability theory to

physical systems.

To see this, consider an alternative pluralist view proposed by Lee (2021). Like me, Lee

holds that computational systems and states can be individuated with respect to different

properties in different cases. However, Lee’s pluralism is grounded in the thought that

computation “does not have an essential nature that supplies a single, privileged individuation”

(Lee 2021, 234). By contrast, my approach does not rely on the idea of essential natures. Rather,

it relies only on the observation that when applying a branch of mathematics to a physical system

— computability theory, in our case — we do so relative to a specific pairing of physical and

mathematical components. This leads naturally to computational pluralism, because different

pairings may be more or less useful for different theoretical purposes in different circumstances.

5. Conclusion: The Middle Ground

Returning to the issue raised at the top of the paper, we have seen that the response offered here

accommodates the fact that different properties impact computational identity in different cases.

It thus sits naturally with the following intermediate view:

The Middle Ground. A system’s computational identity sometimes depends solely on its

intrinsic features and sometimes also on its relational features, and that sometimes it

depends on a system’s semantic features and other times not.

Ultimately, which properties impact a system’s computational identity is an empirical

issue, to be determined by careful examination of the computational sciences. Work on

32

computational identity would thus benefit from a more systematic survey of these sciences which

goes beyond discussion of, e.g., isolated logic gates.28 Such a survey would (a) taxonomize the

explanatory uses of computation in a variety of representative cases, in order to (b) identify the

specific kinds of labelling schemes — the different ways of identifying systems computationally

— that support these explanatory aims. Although such a survey must for now remain on the

agenda for future investigation, the view developed here ensures that worries about

computational indeterminacy present no obstacle to this work.

28 For promising initial moves in this direction, see (Fresco, Copeland, and Wolf, 2021) and (Fresco 2021).

33

Appendix

Input 1 Input 2 Output

5-10V 5-10V 5-10V

5-10V 0-5V 0-5V

0-5V 5-10V 0-5V

0-5V 0-5V 0-5V

Table 1: A bistable circuit

Input 1 Input 2 Output

1 1 1

1 0 0

0 1 0

0 0 0

Table 2: Bistable AND gate

Input 1 Input 2 Output

5-10V 5-10V 5-10V

5-10V 2.5-5V 2.5-5V

5-10V 0-2.5 2.5-5V

2.5-5V 5-10V 2.5-5V

2.5-5V 2.5-5V 2.5-5V

2.5-5V 0-2.5 2.5-5V

0-2.5V 5-10V 2.5-5V

0-2.5V 2.5-5V 2.5-5V

0-2.5V 0-2.5 0-2.5V

Table 3: A tristable circuit

34

Input 1 Input 2 Output

1 1 1

1 1
2

1
2

1 0 1
2

1
2

1 1
2

1
2

1
2

1
2

1
2

0 1
2

0 1 1
2

0 1
2

1
2

0 0 0

Table 4: Tristable ‘averaging’ computation.

Input 1 Input 2 Output

1 1 1

1 1 1

1 0 1

1 1 1

1 1 1

1 0 1

0 1 1

0 1 1

0 0 0

Table 5: Tristable OR gate.

35

Input 1 Input 2 Output

1 1 1

1 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

Table 6: Tristable AND gate.

Input 1 Input 2 Output

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

1 0 0

1 0 0

1 1 1

Table 7: Tristable AND gate, version 2.

36

Input 1 Input 2 Output

EC1 EC1 EC1

EC1 EC2 EC2

EC2 EC1 EC2

EC2 EC2 EC2

Table 8: The functional profile of Table 1.

37

References

Blackmon, James. 2013. “Searle’s Wall.” Erkenntnis 78 (1): 109–17.

Brusentsov, Nikolay Petrovich, and José Ramil Alvarez. 2011. “Ternary Computers: The Setun

and the Setun 70.” In Perspectives on Soviet and Russian Computing, edited by John

Impagliazzo and Eduard Proydakov, 357:74–80. Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-22816-2_10.

Chakravartty, Anjan. 2010. “Perspectivism, Inconsistent Models, and Contrastive Explanation.”

Studies in History and Philosophy of Science Part A 41 (4): 405–12.

https://doi.org/10.1016/j.shpsa.2010.10.007.

Chalmers, David J. 1996a. “Does a Rock Implement Every Finite-State Automaton?” Synthese

108 (3): 309–33.

———. 1996b. The Conscious Mind. Oxford University Press.

Coelho Mollo, Dimitri. 2018. “Functional Individuation, Mechanistic Implementation: The

Proper Way of Seeing the Mechanistic View of Concrete Computation.” Synthese 195

(8): 3477–97.

———. 2019. “Against Computational Perspectivalism.” The British Journal for the Philosophy

of Science, August, axz036.

Copeland, B. Jack. 1996. “What Is Computation?” Synthese 108 (3): 335–59.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001.

Introduction to Algorithms. 2nd ed. McGraw-Hill Higher Education.

Cutland, Nigel. 1980. Computability, an Introduction to Recursive Function Theory. Cambridge:

Cambridge University Press.

Davis, Martin. 1982. Computability & Unsolvability. New York: Dover.

Davis, Martin, Ron Segal, and Elaine Weyuker. 1994. Computability, Complexity and

Languages. 2nd ed. San Diego: Academic Press.

Dewhurst, Joe. 2018a. “Computing Mechanisms Without Proper Functions.” Minds and

38

Machines 28 (3): 569–88.

———. 2018b. “Individuation Without Representation.” The British Journal for the Philosophy

of Science 69 (1): 103–16.

Egan, Frances. 1995. “Computation and Content.” The Philosophical Review 104 (2): 181.

https://doi.org/10.2307/2185977.

Frege, Gottlob. 1884. The Foundations of Arithmetic. Evanston, Illinois: Northwestern

University Press.

Fresco, Nir. 2021. “Long-Arm Functional Individuation of Computation.” Synthese.

https://doi.org/10.1007/s11229-021-03407-x

Fresco, Nir, B. Jack Copeland, and Marty J. Wolf. 2021. “The Indeterminacy of Computation.”

Synthese. https://doi.org/10.1007/s11229-021-03352-9

Fresco, Nir, and Marcin Milkowski. 2021. “Mechanistic Computational Individuation Without

Biting the Bullet.” British Journal for the Philosophy of Science 72 (2): 431–38.

Harbecke, Jens, and Oron Shagrir. 2019. “The Role of the Environment in Computational

Explanations.” European Journal for Philosophy of Science 9 (3): 37.

https://doi.org/10.1007/s13194-019-0263-7.

Hennessy, John L, and David A Patterson. 2003. Computer Architecture: A Quantitative

Approach. San Francisco, CA: Morgan Kaufmann Publishers.

Hitchcock, Christopher. 2013. “Contrastive Explanation.” In Contrastivism in Philosophy, edited

by Martijn Blaauw, 11–35. Routledge Studies in Contemporary Philosophy 39. New

York: Routledge/Taylor & Francis Group.

Horowitz, Amir. 2007. “Computation, External Factors, and Cognitive Explanations.”

Philosophical Psychology 20 (1): 65–80. https://doi.org/10.1080/09515080601085856.

Kitcher, Philip. 1981. “Explanatory Unification.” Philosophy of Science 48 (4): 507–31.

Lee, Jonny. 2021. “Mechanisms, Wide Functions, and Content: Towards a Computational

Pluralism.” British Journal for the Philosophy of Science 72 (1): 221–44.

Massimi, Michela. 2018. “Four Kinds of Perspectival Truth.” Philosophy and Phenomenological

39

https://doi.org/10.1007/s11229-021-03352-9

Research 96 (2): 342–59.

Massimi, Michela, and Casey D. McCoy, eds. 2019. Understanding Perspectivism: Scientific

and Methodological Prospects. Routledge Studies in the Philosophy of Science 20. New

York: Taylor & Francis.

Matthews, Robert J., and Eli Dresner. 2017. “Measurement and Computational Skepticism.”

Nous 51 (4): 832–54.

Milkowski, Marcin. 2013. Explaining the Computational Mind. Cambridge, MA: MIT Press.

Papayannopoulos, Philippos, Nir Fresco, and Oron Shagrir. Forthcoming.“On Two Different

Kinds of Computational Indeterminacy.” The Monist.

Peacocke, Christopher. 1999. “Computation as Involving Content: A Response to Egan.” Mind

and Language 14 (2): 195–202.

Piccinini, Gualtiero. 2008. “Computation Without Representation.” Philosophical Studies 137

(2): 205–41.

———. 2015. Physical Computation: A Mechanistic Account. Oxford, UK: Oxford University

Press.

———. 2020a. “Computation and Information Processing.” In Neurocognitive Mechanisms,

128–55. Oxford University Press. https://doi.org/10.1093/oso/9780198866282.003.0007.

———. 2020b. Neurocognitive Mechanisms: Explaining Biological Cognition. 1st ed. Oxford

University Press. https://doi.org/10.1093/oso/9780198866282.001.0001.

Potochnik, Angela. 2017. Idealization and the Aims of Science. Chicago: The University of

Chicago Press.

Rescorla, Michael. 2013. “Against Structuralist Theories of Computational Implementation.”

The British Journal for the Philosophy of Science 64 (4): 681–707.

———. 2014. “A Theory of Computational Implementation.” Synthese 191 (6): 1277–1307.

https://doi.org/10.1007/s11229-013-0324-y.

———. 2017. “From Ockham to Turing – and Back Again.” In Philosophical Explorations of

the Legacy of Alan Turing: Turing 100, edited by Juliet Floyd and Alisa Bokulich, 279–

40

304. Cham: Springer International Publishing.

Ritchie, J. Brendan, and Gualtiero Piccinini. 2019. “Computational Implementation.” In

Routledge Handbook of the Computational Mind, edited by Mark Sprevak and Matteo

Colombo, 192–204. London: Routledge.

Savage, John E. 2008. Models of Computation: Exploring the Power of Computing.

http://cs.brown.edu/people/jsavage/book/.

Schiller, Henry. 2018. “The Swapping Constraint.” Minds and Machines 28 (3): 605–22.

Schweizer, Paul. 2019a. “Computation in Physical Systems: A Normative Mapping Account.” In

On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence: Themes

from IACAP 2016, edited by Matteo Vincenzo d’Alfonso, International Association for

Computing and Philosophy, Annual Meeting, and Don Berkich, 27–47.

———. 2019b. “Triviality Arguments Reconsidered.” Minds and Machines 29 (2): 287–308.

Schweizer, Paul, and Piotr Jablonski. 2013. “Abstract Procedures and the Physical World.”

Proceedings of the AISB’13 Symposium on Computing and Philosophy, 66–73.

Shagrir, Oron. 2001. “Content, Computation and Externalism.” Mind 110 (438): 369–400.

———. 2020. “In Defense of the Semantic View of Computation.” Synthese 197: 4083–4108.

Sprevak, Mark. 2010. “Computation, Individuation, and the Received View on Representation.”

Studies in History and Philosophy of Science Part A 41 (3): 260–70.

———. 2019. “Triviality Arguments About Computational Implementation.” In Routledge

Handbook of the Computational Mind, edited by Mark Sprevak and Matteo Colombo,

175–91. London: Routledge.

Turing, Alan. 1936. “On Computable Numbers, with an Application to the

Entscheidungsproblem.” Proceedings of the London Mathematical Society 42 (1): 230–

65.

41

