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1 Introduction

Measurements by definition presuppose a separation between the observed system
S and the observer O. This separation can be moved towards S or towards O, thus
redefining S and O, as was realized from the early days of quantum mechanics (the
“Heisenberg cut”). Once the separation is decided, so that subsystems S and O are
precisely identified, the quantum mechanical rules provide statistical predictions on
the results of measurements performed by O on the system S.

Take for simplicity S to be a qubit, i.e. a two-dimensional quantum system, and
A to be an observable of S with orthonormal eigenvectors |0〉 and |1〉. If S is in the
pure state |ψ〉 = α|0〉+ β|1〉, and O measures A without registering the result, the
pure state collapses into a mixture described by the density matrix

|ψ〉〈ψ| −→ |α|2|0〉〈0|+ |β|2|1〉〈1| (1.1)

This statistical mixture indicates that S is in the state |0〉 with probability |α|2 and
in the state |1〉 with probability |β|2, and reflects the ignorance of the measurement
result. The collapse (1.1) is the “ontic part” of the process, being independent of
the knowledge of the measurement result. The “epistemic part” is in the sharper
description |0〉〈0| or |1〉〈1|, depending on this knowledge. Thus we can describe the
measurement as a two step process, an “ontic” collapse followed by an “epistemic”
collapse:

(α|0〉+ β|1〉)(〈0|α∗ + 〈1|β∗) “ontic”collapse−−−−−−−−→ |α|2|0〉〈0|+ |β|2|1〉〈1| (1.2)

|α|2|0〉〈0|+ |β|2|1〉〈1| “epistemic” collapse−−−−−−−−−−−−−−→
(knows that result is 1)

|1〉〈1| (1.3)

In what follows, our concern will be with the ontic part, since it is the genuinely
quantum mechanical part of the measurement process. The epistemic part is es-
sentially the same as in classical situations, for example when flipping a coin and
looking or not looking at the result.

Here we assume that all physical systems, including observers, are described by
quantum mechanics, and that “classicality” arises as an emergent phenomenon. By
“observer” we mean a physical system (human or not) that can interact with S,
and due to this interaction becomes correlated with S. By “measurement” we mean
this interaction, occurring at a definite time, and producing the ontic collapse.

We also assume that the state of a system is completely described by its density
matrix, as introduced in [1] (see also [2]). In particular we consider the state of a
subsystem in a composite system to be completely described by its reduced density
matrix.

2 Measurement as interaction

A central tenet of QM is the unitary evolution of an isolated system S, according to
the Schrödinger equation. On the other hand, the measurement of an observable on
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S implies an interaction with an external measuring apparatus O: the system S in
this case is not isolated, and its evolution during the measurement is described by
a (nonunitary) projection. The clash between unitary evolution (Process 2 in von
Neumann terminology [1]) and projection (Process 1) is at the core of the so called
“measurement problem” in quantum mechanics (see for ex. [3, 4] and ref.s therein).
We will argue that the problem disappears if we consider only the ontic part of the
collapse, as described by (1.2) in the previous Section, where a pure state collapses
into a mixture. The epistemic part we consider irrelevant to the discussion, since it
is intrinsic to all statistical ensembles (not necessarily quantum).

More precisely, the problem seems to arise when we consider the (isolated) com-
posite system S+O and want to describe its evolution during the measurement.
The composite system, being isolated from external influences, must evolve unitar-
ily. But how can we describe unitarily a measurement that takes place inside S+O,
involving a nonunitary process on the subsystem S ? The solution is provided by the
reduced density matrix formalism. Indeed the reduced density matrix for the sub-
system S, after the interaction with the measuring apparatus O, describes exactly
the same statistical mixture as in (1.1), with weights equal to the Born probabil-
ities. This is a remarkable feat of the formalism of textbook QM, and allows the
interpretation of S as a “measured system” within a purely unitary evolution.

To be concrete, consider S and O to be two qubits, i.e. two-dimensional quan-
tum systems, each with orthonormal basis vectors |0〉 and |1〉. Moreover define
observables A on S and B on O, both with eigenvectors given by |0〉 and |1〉. The
unitary evolution must entangle S with O, since states of S must be correlated with
states of the apparatus O. This can be realized with a CNOT gate, i.e. a unitary
operation on the composite system acting on the basis vectors as |0〉|0〉 → |0〉|0〉,
|0〉|1〉 → |0〉|1〉, |1〉|0〉 → |1〉|1〉, |1〉|1〉 → |1〉|0〉.

Consider as initial state of S+O the product state (α|0〉 + β|1〉)|0〉. Then the
CNOT gate transforms it, by linearity, into the entangled state α|0〉|0〉 + β|1〉|1〉,
cf. Fig. 1. Thus, results of measurements of A on S are correlated with those of B
on O.

S

O
|0i
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Fig. 1 Circuit modeling the measurement of an observable with eigenvectors |0〉 and |1〉.
Both the measured system S and the observer (or apparatus) O are taken to be 1-qubit

systems.

Is this a good model for quantum measurements, if B is identified with the
pointer position of a measuring apparatus O ? At first sight there seems to be a
problem, since the effect of a measurement on S should project it into one of the
two base states |0〉, |1〉, with probabilities |α|2 and |β|2 respectively. Here instead
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we have a final entangled state for the composite system. How can we resolve this
apparent disagreement ?

The answer is to focus on the state of the subsystem S. This state is completely
described by the reduced density matrix ρS, obtained by tracing the density matrix
of S+O over system O. The partial trace yields

ρS = TrO[(α|0〉|0〉+ β|1〉|1〉)(α∗〈0|〈0|+ β∗〈1|〈1|)] = |α|2|0〉〈0|+ |β|2|1〉〈1| (2.1)

and describes the state of subsystem S after the CNOT interaction. Note that ρS

describes a mixed state of S. Before the CNOT interaction, S was in the pure state
α|0〉 + β|1〉. Therefore the effect of the interaction on the subsystem S has been a
nonunitary transformation, even if S+O evolves unitarily.

The statistical mixture (2.1) coincides with (1.1). Thus the ontic part of the
measurement process can be described by a unitary evolution of S+O.

Note: the quantum circuit in Fig. 1 implements a measurement in the computa-
tional basis also on mixed states. Indeed we can replace the pure state |ψ〉 (input
state for the first qubit) with an input density matrix ρ1, while keeping the state
of the second qubit equal to |0〉. Take for example ρ1 = pa|a〉〈a| + pb|b〉〈b| with
pa + pb = 1, the generalization to an arbitrary ensemble being straightforward.
The pure states |a〉, |b〉 do not need to be orthogonal, and are expanded on the
computational basis as

|a〉 = α|0〉+ β|1〉, |b〉 = γ|0〉+ δ|1〉 (2.2)

Then the density matrix ρ for the 2-qubit system evolves as

ρ = (pa|a〉〈a|+ pb|b〉〈b|)⊗ |0〉〈0| −→ ρ′ = CNOT ρ CNOT (2.3)

under the action of the circuit in Fig. 1. Recalling that CNOT = |0〉〈0| ⊗ I +
|1〉〈1| ⊗X where X is the quantum NOT gate, i.e. X|0〉 = |1〉, X|1〉 = |0〉, it is an
easy exercise to find ρ′ as given by (2.3). Taking then its partial trace yields the
reduced density matrix ρ′1 for the first qubit:

ρ′1 = Tr2(ρ
′) = (pa|α|2 + pb|γ|2)|0〉〈0|+ (pa|β|2 + pb|δ|2)|1〉〈1| (2.4)

This is exactly the same density matrix one obtains for the first qubit after mea-
suring it (and ignoring the result), using the textbook rule

ρ′1 =
∑
m

Pmρ1Pm (2.5)

Pm being the projectors |0〉〈0| and |1〉〈1|. The transformation ρ1 → ρ′1 is in general
not unitary (quick proof: Tr(ρ′1)

2 in general differs from Tr(ρ1)
2), and represents

the ontic collapse of the density matrix under a measurement. Thus the ontic part
of the measurement is described by a unitary evolution of the S+O density matrix.
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3 Objections

An often heard objection [5, 6] relies on the distinction between proper and improper
mixtures, a terminology introduced by D’ Espagnat [5]. A statistical mixture due
to ignorance is called proper, whereas the same mixture describing a subsystem of
a composite system in an entangled pure state is called improper. In the example
of the preceding Section, the objection runs as follows. We cannot interpret the
(improper) statistical mixture (2.1) to describe a system which is in one of the two
states |0〉, |1〉, with probabilities |α|2 and |β|2 respectively: if this were the case, the
total system should find itself in one of the two states |0〉|0〉, |1〉|1〉 with probabilities
|α|2 and |β|2 respectively, implying for its density matrix to be

|α|2|0〉|0〉〈0|〈0|+ |β|2|1〉|1〉〈1|〈1| (3.1)

in contradiction with the density matrix of S+O after the CNOT interaction

(α|0〉|0〉+ β|1〉|1〉)(α∗〈0|〈0|+ β∗〈1|〈1|) (3.2)

Another objection invokes “basis ambiguity”, meaning that the same density
matrix ρ can correspond to different statistical ensembles (for an exhaustive study
see [7]). Therefore knowing ρ does not imply knowing which observable has been
measured. For example in the case α = β = 1/

√
2, the reduced density matrix for

S in (2.1) becomes

1

2
(|0〉〈0|+ |1〉〈1|) =

1

2
(|a〉〈a|+ |b〉〈b|) (3.3)

for any orthonormal vectors |a〉, |b〉 connected to |0〉, |1〉 by an orthogonal transfor-
mation. Thus the same reduced density matrix would describe the state of S after
a measurement, where the measured observable could be one of an infinite set of
mutually incompatible (noncommuting) observables.

Note that the same basis ambiguity holds for the state of the composite S+O
system after the CNOT interaction, when α = β = 1/

√
2. This is often referred to

as the “preferred-basis problem”.

4 Counterobjections

Here we counter both objections, on logical and physical grounds. There have been
numerous rebuttals and counter-rebuttals over the years, see for ex. [8, 9, 10, 11],
and most of the present Section is far from original. If the density matrix ρS gives
a complete description of the state of S, it makes no sense to distinguish states
corresponding to the same ρS. If only S is accessible to observations, no experiment
can distinguish between a proper or an improper mixture. The fact that S is part of a
larger system S+O, and that this larger system is in a pure entangled state, can only
be revealed by measurements on the whole S+O. Only then one can discriminate
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between the two states of the composite system S+O, given in (3.1) and in (3.2),
respectively a pure entangled state and a statistical mixture. These two different
states give rise to the same reduced density matrix for S, and this matrix defines
a unique physical state, i.e. a statistical mixture, neither proper nor improper.
All measurements made on S are consistent with the ignorance interpretation, and
therefore ρS in (2.1) has all the markings of a state of a measured system.

The second objection in the preceding Section questions the interpretation of
the mixed state (3.3) as the state of a measured system, since it seems that in this
case the measured observable cannot be specified uniquely,1 due to basis ambiguity.
To this we answer as follows:

i) Basis ambiguity does not compromise in any way the interpretation of (3.3)
as the state of a measured system: it may very well be the state obtained after
measuring any of a whole family of possibly noncommuting observables. The fact
that the measurements of any of those observables lead to the same statistical
mixture does not mean that the mixture does not describe correctly the state after
the measurement.

ii) We can assume that the observer knows which observable is being measured,
i.e. what particular interaction takes place between the apparatus and the system.
In our simplified two-qubit example this interaction is given by a CNOT gate,
and models a measurement of an observable in the computational basis, i.e. of an
observable with eigenvectors |0〉 and |1〉. This removes the basis ambiguity: the
basis, in which the mixed state (2.1) is to be interpreted as a state of a measured
system, is the computational one. It is really the measuring apparatus, with its
specific interaction with the system, that dictates the “interpretation basis”. If the
observer wants to measure a different observable, for example with eigenvectors |+〉
and |−〉, then the circuit implementing the system-apparatus interaction must be
modified as follows:

S

O
}

<latexit sha1_base64="KL+LrRroXWMoAvfijbbgflYiUYo=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRXYUCcoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U9rZXVtfWOztFXe3tnd268cHHZMGGuBbRGqUPc8blDJANskSWEv0sh9T2HXm15lfvcBtZFhcEezCF2fTwI5loJTKt0O5uVhpWrX7BxsmTgFqUKB1rDyNRiFIvYxIKG4MX3HjshNuCYpFM7Lg9hgxMWUT7Cf0oD7aNwkjzpnp7HhFLIINZOK5SL+3ki4b8zM99JJn9O9WfQy8T+vH9P4wk1kEMWEgcgOkVSYHzJCy7QDZCOpkYhnyZHJgAmuORFqybgQqRinpWR9OIvfL5NOveY0ao2berV5WTRTgmM4gTNw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yuWMXOEfyB9fENehiSBQ==</latexit>

H

H

H

H↵|+i + �|�i

<latexit sha1_base64="fSEKu0SVbAyDVVmugmuX3pkvq4Q=">AAACF3icbVDLSgNBEJyN7/iKevQyGARBDLsS0GPQi0cFo4FsCL2TNg7Ozi4zvUKI+QA/wa/wqidv4tWjB//F2RhBE/tUVFXTXRWlSlry/Q+vMDU9Mzs3v1BcXFpeWS2trV/YJDMC6yJRiWlEYFFJjXWSpLCRGoQ4UngZ3Rzn+uUtGisTfU69FFsxdLW8kgLIUe1SOQSVXgO/2w0N6K5CvsvDCMkxez+Mc/kVfzh8EgQjUGajOW2XPsNOIrIYNQkF1jYDP6VWHwxJoXBQDDOLKYgb6GLTQQ0x2lZ/GGbAtzMLlPAUDZeKD0n8vdGH2NpeHDlnDHRtx7Wc/E9rZnR12OpLnWaEWuSHSLp0+SErjHQtIe9Ig0SQf45cai7AABEayUEIR2autqLrIxhPPwku9itBtVI9q5ZrR6Nm5tkm22I7LGAHrMZO2CmrM8Hu2SN7Ys/eg/fivXpv39aCN9rZYH/Ge/8C7BGetA==</latexit>

|+i

<latexit sha1_base64="w6M1s8Xcwehq6Vmeq2ijzJqO18E=">AAAB/HicbVDLSgNBEJyNrxhfUY9eBoMgCGFXAnoMevEYwTwwCaF30olDZmeXmV4hxPgVXvXkTbz6Lx78F3fjHjSxTkVVN11dfqSkJdf9dHJLyyura/n1wsbm1vZOcXevYcPYCKyLUIWm5YNFJTXWSZLCVmQQAl9h0x9dpn7zHo2Vob6hcYTdAIZaDqQASqTbh5OOAT1UyHvFklt2Z+CLxMtIiWWo9YpfnX4o4gA1CQXWtj03ou4EDEmhcFroxBYjECMYYjuhGgK03cks8ZQfxRYo5BEaLhWfifh7YwKBtePATyYDoDs776Xif147psF5dyJ1FBNqkR4imXyXHrLCyKQK5H1pkAjS5Mil5gIMEKGRHIRIxDjpppD04c1/v0gap2WvUq5cV0rVi6yZPDtgh+yYeeyMVdkVq7E6E0yzJ/bMXpxH59V5c95/RnNOtrPP/sD5+AbL55UG</latexit>

↵|+i|+i + �|�i|�i

<latexit sha1_base64="7k3SMqcr8aWmC9sX58Dqz/DZwdE=">AAACK3icbVDLSgNBEJz1GeMr6tHLYBAEMexKIB5FLx4VjAlkQ+gd2zg4O7vM9AoS8yl+gl/hVU+eFD36H87GKNFYp6Kqm+6qKFXSku+/eBOTU9Mzs4W54vzC4tJyaWX1zCaZEVgXiUpMMwKLSmqskySFzdQgxJHCRnR1mPuNazRWJvqUblJsx9DV8kIKICd1SrUQVHoJ/HY7NKC7CkcY3+ZhhOTMnR/zm3VKZb/iD8DHSTAkZTbEcaf0Hp4nIotRk1BgbSvwU2r3wJAUCvvFMLOYgriCLrYc1RCjbfcGAft8M7NACU/RcKn4QMTRjR7E1t7EkZuMgS7tXy8X//NaGV3stXtSpxmhFvkhki5mfsgKI11zyM+lQSLIP0cuNRdggAiN5CCEEzNXZdH1EfxNP07OditBtVI9qZb3D4bNFNg622BbLGA1ts+O2DGrM8Hu2AN7ZE/evffsvXpvX6MT3nBnjf2C9/EJU5Smtg==</latexit>

Fig. 2 Circuit modeling the measurement of an observable with eigenvectors |+〉, |−〉.
The gate H is the Hadamard gate, defined by H|0〉 = |+〉, H|1〉 = |−〉 .

In this case, with α = β = 1/
√

2, the reduced density matrix for the first qubit,
after the interaction, is ρS = 1/2(|+〉〈+| + |−〉〈−|), equal to the one obtained in
the circuit of Fig.1, i.e. ρS = 1/2(|0〉〈0|+ |1〉〈1|). However the interpretation basis
is different, and is given by the orthonormal couple |+〉, |−〉. Indeed the new circuit
in Fig. 2 correlates the states |+〉, |−〉 of the system to the states |+〉, |−〉 of the
apparatus, respectively, and thus models the measurement of an observable with |+〉

1more precisely, its eigenvectors cannot be specified uniquely.
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and |−〉 eigenvectors. Thus the choice of an interpretation basis is not ambiguous,
but can be considered epistemic, since it relies on the observer’s knowledge of which
observable is being measured.

5 Refinements

With the same logic, we can describe a measurement on a spatially extended 2-qubit
system S in the entangled state 1√

2
(|0〉|0〉+ |1〉|1〉), where now the observer (call her

Alice) has access only to the first qubit. Standard quantum mechanics tells us that
Alice has a probability 1/2 to obtain 0 or 1, and that the measurement produces
a corresponding collapse of S into one of the states |0〉|0〉 or |1〉|1〉. Again we can
describe the ontic part of this measuring process by a specific interaction between
Alice and her qubit, the only accessible (to Alice) part of S. Modeling Alice as a
single qubit, the interaction is given by the same CNOT gate used in Section 2:

{
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<latexit sha1_base64="yvAsxYandyR8lVaNWbymmOBTPzA=">AAACHnicbVDLSgNBEJyN7/iKevQyGAQfEHYloEfRi0cFo0I2hN6xE4fMzq4zvYKs+Qc/wa/wqidv4lUP/ouTuAeN1qmoqqa7K0qVtOT7H15pbHxicmp6pjw7N7+wWFlaPrNJZgQ2RKIScxGBRSU1NkiSwovUIMSRwvOodzjwz2/QWJnoU7pNsRVDV8uOFEBOale28oCHiUvw0F4bynf6fb5x5/uhAd1VuH0XBAXdbFeqfs0fgv8lQUGqrMBxu/IZXiYii1GTUGBtM/BTauVgSAqF/XKYWUxB9KCLTUc1xGhb+fCnPl/PLFDCU3eZVHwo4s+JHGJrb+PIJWOgKzvqDcT/vGZGnb1WLnWaEWoxWERS4XCRFUa6KpBfSoNEMLgcudRcgAEiNJKDEE7MXHtl10cw+v1fcrZTC+q1+km9un9QNDPNVtka22AB22X77IgdswYT7J49sif27D14L96r9/YdLXnFzAr7Be/9C4WBoaw=</latexit>

|0i

<latexit sha1_base64="EFLPaKh7pSHUIkBFekc27/sCgjY=">AAAB/nicbVA9TwJBEN3zE/ELtbTZCCZW5I6QaEm0scREPhIgZG4ZcMPe3mV3zoQgib/CVis7Y+tfsfC/eIdXKPiql/dmMm+eHylpyXU/nZXVtfWNzdxWfntnd2+/cHDYtGFsBDZEqELT9sGikhobJElhOzIIga+w5Y+vUr91j8bKUN/SJMJeACMth1IAJVK39OB2DeiRwlK+Xyi6ZXcOvky8jBRZhnq/8NUdhCIOUJNQYG3HcyPqTcGQFApn+W5sMQIxhhF2EqohQNubzjPP+GlsgUIeoeFS8bmIvzemEFg7CfxkMgC6s4teKv7ndWIaXvSmUkcxoRbpIZIK54esMDIpA/lAGiSCNDlyqbkAA0RoJAchEjFO2kn78Ba/XybNStmrlqs3lWLtMmsmx47ZCTtjHjtnNXbN6qzBBIvYE3tmL86j8+q8Oe8/oytOtnPE/sD5+AZwbJVP</latexit>

}

<latexit sha1_base64="KL+LrRroXWMoAvfijbbgflYiUYo=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5ESFRRXYUCcoIGsogyENKrOh82YRTzg/drUGRlU+ghYoO0fI9FPwLtnEBCVONZna1s+NFShqy7U9rZXVtfWOztFXe3tnd268cHHZMGGuBbRGqUPc8blDJANskSWEv0sh9T2HXm15lfvcBtZFhcEezCF2fTwI5loJTKt0O5uVhpWrX7BxsmTgFqUKB1rDyNRiFIvYxIKG4MX3HjshNuCYpFM7Lg9hgxMWUT7Cf0oD7aNwkjzpnp7HhFLIINZOK5SL+3ki4b8zM99JJn9O9WfQy8T+vH9P4wk1kEMWEgcgOkVSYHzJCy7QDZCOpkYhnyZHJgAmuORFqybgQqRinpWR9OIvfL5NOveY0ao2berV5WTRTgmM4gTNw4ByacA0taIOACTzBM7xYj9ar9Wa9/4yuWMXOEfyB9fENehiSBQ==</latexit>

1p
2
(|000i + |111i)

<latexit sha1_base64="MmZkOaN8I+a165J357T4km6Gdy8=">AAACIHicbVDLSgNBEJz1bXxFPXoZDIKihB0J6FH04lHBqJANoXds4+Ds7DrTK8ian/AT/AqvevImHhX8FydxD77qVFRV090VZ1o5CsO3YGh4ZHRsfGKyMjU9MztXnV84dmluJTZlqlN7GoNDrQw2SZHG08wiJLHGk/hyr++fXKN1KjVHdJNhO4GuUedKAnmpU90oBI9Sn+CRu7JUbPZ6fPU2DMPIgulqXL8VQpR8rVOthfVwAP6XiJLUWImDTvUjOktlnqAhqcG5lggzahdgSUmNvUqUO8xAXkIXW54aSNC1i8FXPb6SO6CUZ/42pflAxO8TBSTO3SSxTyZAF+631xf/81o5nW+3C2WynNDI/iJSGgeLnLTKl4H8TFkkgv7lyJXhEiwQoVUcpPRi7vur+D7E7+//kuPNumjUG4eN2s5u2cwEW2LLbJUJtsV22D47YE0m2R17YI/sKbgPnoOX4PUrOhSUM4vsB4L3T4CRoiE=</latexit>

Alice

<latexit sha1_base64="+6KQmzmGBWZEdjK7pvLuHRU177c=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgDNJRBwkmkxIrWl0045fzQ3RopsvINtFDRIVo+h4J/wTYuIDDVaGZXOzt+rKQh2/6wKiura+sb1c3a1vbO7l59/6BrokQLdEWkIt33waCSIbokSWE/1giBr7Dnz65zv/eA2sgovKN5jF4A01BOpADKJPdSSYGjesNu2gX4X+KUpMFKdEb1z+E4EkmAIQkFxgwcOyYvBU1SKFzUhonBGMQMpjjIaAgBGi8twi74SWKAIh6j5lLxQsSfGykExswDP5sMgO7NspeL/3mDhCYXXirDOCEMRX6IpMLikBFaZi0gH0uNRJAnRy5DLkADEWrJQYhMTLJaalkfzvL3f0n3rOm0mq3bVqN9VTZTZUfsmJ0yh52zNrthHeYywSR7ZE/s2ZpbL9ar9fY9WrHKnUP2C9b7F047kxY=</latexit>

System S

<latexit sha1_base64="keibH2n3JaTZvgum4D6RDEOtHUA=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgjaCiDQh4osaLzZRNOuTtbd2ukKAo/QQsVHaLlYyj4F2zjAhKmGs3samcniKSw6LqfTmFldW19o7hZ2tre2d0r7x+0bRgbDi0eytB0A2ZBCg0tFCihGxlgKpDQCSZXqd95AGNFqG9xGoGv2FiLkeAME+muObUIij42B+WKW3Uz0GXi5aRCcjQG5a/+MOSxAo1cMmt7nhuhP2MGBZcwL/VjCxHjEzaGXkI1U2D9WRZ4Tk9iyzCkERgqJM1E+L0xY8raqQqSScXw3i56qfif14txdOHPhI5iBM3TQygkZIcsNyJpAuhQGEBkaXKgQlPODEMEIyjjPBHjpJpS0oe3+P0yaZ9VvVq1dlOr1C/zZorkiByTU+KRc1In16RBWoQTRZ7IM3lx5s6r8+a8/4wWnHznkPyB8/ENaTGU1g==</latexit>

Fig. 3 Circuit modeling the measurement by Alice on an entangled state of system S,

where she has access only to the first qubit. She interacts with the first qubit via a CNOT

gate.

The state of Alice is initialized to |0〉 (the “ready state”). The output is the maxi-
mally entangled 3-qubit state given in Fig. 3. To find the state of the subsystem S
after the interaction one must trace over A the total density matrix, which yields
the reduced density matrix for S:

ρS = TrA(ρSA) =
1

2
TrA(|000〉+ |111〉)(〈000|+〈111|) =

1

2
|00〉〈00|+ 1

2
|11〉〈11| (5.1)

This reduced matrix describes system S as a system that has collapsed to the state
|00〉 or |11〉 with probability 1/2: this is the ontic collapse, and occurs precisely at
the time of the interaction. If Alice “looks” at the result after the measurement,
she will know whether the system S is in the state |00〉 or in the state |11〉, thus
producing the epistemic collapse. This part of the collapse occurs instantaneously
on the whole extended system S, without any paradox since it is related to a “state
of knowledge” of Alice.

We can adapt this discussion to a Schrödinger’s cat situation, imagining that the
entangled initial state of S has been produced by an interaction between a decaying
atom and the cat. Then Alice “measures the cat”, in the sense that her state
becomes entangled with the cat state (|alive〉 or |dead〉). This ontic measurement
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produces the final state in Fig. 3. Tracing over Alice’s degrees of freedom yields
a mixed state for the subsystem cat + atom. This mixed state is a measured
state, not a superposition state: the cat is either alive or dead, with probabilities
depending on the particular interaction between the cat and the atom (in Fig. 3
these probabilities are equal). Thus no superposition of |alive〉 and |dead〉 states is
left, and the “paradox” disappears.

6 A critique of state subjectivism

In most subjectivist or relational interpretations of QM (see for ex. [12, 13, 14, 15])
the alleged observer dependence of quantum states is claimed to be a consequence
of the usual quantum mechanical rules, when these are applied to “third person”
situations, as in Wigner’s friend thought experiment [16]. This involves an isolated
lab L, where an observer F (the “friend”) measures a system S, and an external
observer W (“Wigner”) outside of L. It is claimed that F and W give different
descriptions of the state of S after a measurement by F, essentially because for
F the system S has collapsed into a projected state (eigenvector of the measured
observable) whereas for W the whole system in L, being isolated, must evolve uni-
tarily. Again the contradiction is only apparent, since W and F should compare
their descriptions of the same system S: if they do so, they will both agree that
S, after the measurement, is in a mixed state, for the same reason discussed in
Section 2. Modeling S and F as one-qubit systems, and (the ontic part of) the
measurement as a CNOT gate, the reduced density matrix for S describes its state
as the same mixture for any observer. If, in addition, F also knows the result of
the measurement, he will be able to describe the state of S as a particular state of
the mixture. This further sharpening, due to additional knowledge of F (W has no
access to the inner contents of L), is what produces the epistemic collapse, common
to all situations (classical or quantum) where one has incomplete information on
the state of a system, and encodes this ignorance in a statistical ensemble.

To defend their thesis, supporters of the non-objectivity of quantum states of-
ten insist on the distinction between proper and improper mixtures, and on the
claim that only proper mixtures can describe the state of a measured system (with
ignorance of the result). One can understand why this is a very sensitive point in
any discussion regarding the “objectivity of the wave function”. In Section 4 we
have argued that the proper/improper distinction is unphysical, i.e. not detectable
by any experiment on S. Therefore we conclude that Wigner’s friend experiment
cannot be taken as cornerstone of a relational interpretation of QM, as done for
example in [15].

7 Conclusions

We have presented a case for the objectivity of quantum states, further elaborating
and developing some arguments discussed in [17]. For this we have recalled the
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description of a measured system as a mixture, coinciding with the one obtained
by tracing over the observer’s degrees of freedom. The only epistemic ingredient of
a quantum mixture is due to the incomplete information, encoded in the statistical
ensemble of the mixture. This ingredient is intrinsic to the very definition of a
statistical ensemble, and is not a characteristic of the quantum world. For the
whole argument we used the standard rules of QM: in particular the reduced density
matrix formalism allows to describe measurement as an unitary process, i.e an
interaction between observer and system. In our opinion many of the so-called
paradoxes or interpretative problems of QM are resolved by making use of the full
power of its formalism. In other words, QM is quite capable to cure itself from
apparent internal contradictions.
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[2] L. Landau, “Das Dämpfungsproblem in der Wellenmechanik”, Z. Phys. 45
(1927) 430-441.

[3] M. Schlosshauer, “Decoherence, the Measurement Problem, and Interpre-
tations of Quantum Mechanics,” Rev. Mod. Phys. 76, 1267-1305 (2004)
[arXiv:quant-ph/0312059 [quant-ph]].

[4] C. Brukner, “On the quantum measurement problem.” In R. Bertlmann and
A. Zeilinger, editors, Quantum [Un]Speakables II: Half a Century of Bell’s
Theorem, pages 95–117. Springer, 2017; arXiv:1507.05255.

[5] B. d’Espagnat, “Conceptual Foundations of Quantum Mechanics,” 2nd ed., W.
A. Benjamin, Menlo Park, CA, 1976.

[6] R. I. G. Hughes, “The Structure and Interpretation of Quantum Mechanics,”
Harvard University Press, Cambridge, MA., 1989.

[7] L. Hughston, R. Jozsa and W. Wootters, “A Complete Classification of Quan-
tum Ensembles Having a Given Density Matrix.“ Physics Letters A, 183, 14 -
18 (1993).

8



[8] J. Anandan and Y. Aharonov, “Meaning of the density matrix,” Found. Phys.
Lett. 12, no.6, 571-578 (1999) doi:10.1023/A:1021699226154 [arXiv:quant-
ph/9803018 [quant-ph]].

[9] B. d’Espagnat, Reply to Aharonov and Anandan’s “Meaning of the Density
Matrix”, arXiv:quant-ph/9804063, 1998.

[10] K. A. Kirkpatrick, “Indistinguishability and improper mixtures”, arXiv:quant-
ph/0109146 (2001)

[11] B. d’ Espagnat, “Reply to K A Kirkpatrick,” arXiv:quant-ph/0111081, 2001

[12] C. A. Fuchs, R. Schack, “Quantum-Bayesian coherence,” Rev. Mod. Phys. 85,
1693 (2013).

[13] N. D. Mermin, “Physics: QBism puts the scientist back into science,” Nature
507, 421–423 (2014).

[14] H. Everett, “Relative state formulation of quantum mechanics,” Rev. Mod.
Phys. 29, 454–462 (1957).

[15] C. Rovelli, “Relational Quantum Mechanics,” International Journal of Theo-
retical Physics 35 (1996) 1637; arXiv:quant-ph/9609002.

[16] E. P. Wigner, in The Scientist Speculates (ed. Good, I. J.) 284–302 (Heine-
mann, 1961).

[17] L. Castellani, “No Relation for Wigner’s Friend,” Int. J. Theor. Phys. 60, no.6,
2084-2089 (2021).

9


