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Branch-counting in the Everett interpretation of quantum mechanics† 
 

Simon Saunders 
 

Abstract: A defence is offered of a version of the branch-counting rule for probability in the 
Everett interpretation (otherwise known as many-worlds interpretation) of quantum 
mechanics that both depends on the state and is continuous in the norm topology on Hilbert 
space. The well-known branch-counting rule, for realistic models of measurements, in which 
branches are defined by decoherence theory, fails this test. The new rule hinges on the use 
of decoherence theory in defining branching structure, and specifically decoherent histories 
theory. On this basis ratios of branch numbers are defined, free of any convention. They 
agree with the Born rule, and deliver a notion of objective probability similar to naïve 
frequentism, save that the frequencies of outcomes are not confined to a single world at 
different times, but spread over worlds at a single time. Nor is it ad hoc: it is recognizably 
akin to the combinatorial approach to thermodynamic probability, as introduced by 
Boltzmann in 1879. It is identical to the procedure followed by Planck, Bose, Einstein and 
Dirac in defining the equilibrium distribution of the Bose-Einstein gas. It also connects in a 
simple way with the decision-theory approach to quantum probability. 

 

1.Introduction 
 
The unique appeal of Everett’s approach to the foundational questions of quantum 
mechanics is that whilst it is demonstrably a form of realism, on taking the quantum state to 
represent something existent, it leaves quantum mechanics unchanged -- save in this one 
respect: the Schrödinger equation is taken to apply without restriction, and in particular to 
apply to macroscopic bodies.  Everett showed that on this basis, when a sequence of 
measurements is performed, the result is a superposition of states, what Everett called 
branches, each of which describes some definite statistics of outcomes. In this way he was 
able to show how the deterministic Schrödinger equation could be reconciled with 
indeterminism and statistical data. The implication, however, if the quantum state is or 
represents something existent, is fantastical: all the outcomes in a quantum measurement 
actually exist, including the experimenters witnessing them. This is many worlds: according 
to the Everett interpretation of quantum mechanics, there is a vast multiplicity of worlds, 
constantly branching in time, containing people just like you and me. 

Extraordinary claims require extraordinary arguments; the bar, rightfully, should be high. 
But Everett was less than clear in two respects. First, the quantum state can equally be 
written as a superposition of any set of basis states; what reason is there to single out his 
‘branch states’ as distinguished? This is ‘the preferred basis problem’. Second, Everett 
assumed that a probability measure over branches is a function of branch amplitude1 and 
phase, and from this derived the Born rule (the standard probability rule for quantum 
mechanics). But there is a natural alternative probability measure suggested exactly by his 

 
† Published in Proceedings of the Royal Society A 477 (2021): 20210600. 
https://doi.org/10.1098/rspa.2021.0600 
1 By the amplitude of a state I mean its Hilbert-space norm, a non-negative real number. In what follows, 
states written in Dirac notation |𝜑⟩ ∈ ℋ are not assumed to be normalized to unity (in fact only ratios in 
norms ever matter). 
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picture of branching, that is not of this form and that does not in general agree with the 
Born rule: the ‘branch-counting rule’. Let the world split into two, each with a different 
amplitude: in what sense can one branch be more probable than the other? If Everett is to 
be believed, both come into existence with certainty, regardless of their amplitudes. After 
many splittings of this kind, divide the number of branches with one outcome, by the 
number of branches with another; that should give their relative probability. This is the 
branch-counting rule, in general in contradiction with the Born rule. 

Everett did not reply to either criticism, having left the field even before the publication, in 
Reviews of Modern Physics in 1957, of his doctoral thesis, all of eight pages in length; he 
never wrote on quantum mechanics again. Bryce De Witt, Everett’s main champion in the 
early years, was likewise silent on these matters.2 But others since have replied to both, and 
on the point of the preferred basis problem, in constructive detail. However, when it comes 
to the branch-counting rule, it has only been discredited -- on the grounds that in realistic 
models of measurements, no meaningful notion of branch number is to be found.3  That 
raises a worry all on its own: how can there be large numbers of branches (or ‘worlds’), 
according to unitary quantum mechanics, if the notion of branch number makes no sense?  

There is unfinished business with the branch-counting rule in the Everett interpretation. 
This is our main topic, but it is connected to the preferred basis problem, and cannot really 
be considered independent of it. By wide consensus, the latter was substantially resolved by 
appeal to decoherence theory, as developed in the ‘80s and ‘90s. But agreement, where 
broad, is often shallow, and the details of why, exactly, decoherence theory is important to 
the Everett interpretation are still disputed. Those details matter to the branch-counting 
rule, and we shall have to revisit them. 

The argument that follows is that whilst the original rule is indeed inapplicable, when 
branches are defined in decoherence theory, there is another branch-counting rule which 
does still make sense. The new rule, call it the ‘equi-amplitude rule’, is well-defined and, for 
ratios in branch numbers, free of convention. Unlike the old method of counting, those 
ratios agree with the Born rule. Nor is it ad hoc: it is modelled on Boltzmann’s method of 
counting microstates, used to great effect in the early days of statistical mechanics. The 
analogous procedure, using the quantum histories formalism, gives the new rule, with 
states of quasiclassical histories (in the sense of Gell-Mann and Hartle (1989)) as branches.4  

We begin in §2 with Everett’s concept of branching, and in the next section, with its relation 
to decoherence theory. The implications for the old branch-counting rule are considered in 
§4. That identifies a condition of adequacy for any branch-counting rule, that it should 
depend continuously on the state. Boltzmann’s state-counting rule is introduced in §5, and 
the basics of decoherent histories theory, needed to apply it to branching, in §6. There we 
conclude that histories of a quasi-classical domain, in Gell-Mann and Hartle’s sense, are 

 
2 The nearest he came to comment on the basis problem was in a footnote (DeWitt 1971 p.210) ‘only those 
decompositions are meaningful which reflect the behavior of a concrete dynamical system’; true enough, but 
rather brief. 
3 Saunders (2005 p.25), Wallace (2012 p.99-102). De Witt’s student Neil Graham (who was the first to state the 
branch-counting rule) suggested an alternative, in agreement with the Born rule (Graham 1973), but it was 
clearly ad hoc.  
4 It can also be applied to pilot-wave theory, with equi-amplitude coarse-grainings of Bohmian trajectories 
replacing equi-amplitude quasiclassical histories, with the difference that these are numbers of possible 
histories, rather than existing histories. Here I consider only the Everett interpretation. 
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branches, in Everett’s sense. The new branch-counting rule, modelled on Boltzmann’s rule, 
follows immediately. It is considered n §7 with respect to its formal properties, and in §8, in 
connection with wider philosophical questions, including its relation to the decision-theory 
approach to quantum probability (Deutsch 1999, Wallace 2012). In the concluding section 9 
we return to the question of whether the new rule really is the same as Boltzmann’s 
method -- in particular as it was applied to black-body radiation in the early days of 
quantum mechanics. As we shall see, so far from being ad hoc, Planck, Bose, Einstein and 
Dirac all used the new branch-counting rule, but in the special case of a completely 
degenerate equilibrium state. 

 

2. Everett’s model of measurement 

Consider a measurement of the z-component of spin, as in the Stern-Gerlach experiment. 
Suppose that the measurement is repeatable, so that the same spin-system can be 
measured again, yielding the same outcome.  The unitary evolution should then satisfy the 
protocols: 

																																																									|𝜑↑⟩|Φ"⟩ → |𝜑↑⟩|Φ↑⟩																																																											(2.1)			                                      
																																									|𝜑↓⟩|Φ"⟩ → |𝜑↓⟩|Φ↓⟩																																																							    

where |Φ"⟩, Φ↑⟩, Φ↓⟩ are states of the macroscopic apparatus (reading ‘ready’, ‘spin-up’, 
‘spin-down’, respectively).  Following Everett, we also include a memory registrar, with 
states |Ψ$⟩, where s is a ‘memory sequence’ – a sequence of arrows ↑ and ↓, the results of 
previous spin-measurements. Allowing for a ‘reset’ operation the unitary evolution of the 
display and memory should satisfy:  

																																												|Φ↑⟩|Ψ$⟩ → |Φ↑⟩|Ψ$↑⟩ → |Φ"⟩|Ψ$↑⟩																																															 

																																															|Φ↓⟩|Ψ$⟩ → |Φ↓⟩|Ψ$↓⟩ → |Φ"⟩|Ψ$↓⟩	.																																																 
These, like the previous protocols, are fully deterministic, so can be implemented by a 
Schrödinger equation without any probability interpretation. The complete cycles for these 
two cases are:   

																				|𝜑↑⟩|Φ"⟩|Ψ$⟩ → |𝜑↑⟩|Φ↑⟩|Ψ$⟩ → |𝜑↑⟩|Φ↑⟩|Ψ$↑⟩ → |𝜑↑⟩|Φ"⟩|Ψ$↑⟩													(2.2) 

																				|𝜑↓⟩|Φ"⟩|Ψ$⟩ → |𝜑↓⟩|Φ↓⟩|Ψ$⟩ → |𝜑↓⟩|Φ↓⟩|Ψ$↓⟩ → |𝜑↓⟩|Φ"⟩|Ψ$↓⟩.																					 

It then follows from the orthogonality conditions and from the linearity of the Schrödinger 
equation that if the measured system is initially in a superposition of spin eigenstates 

																																																								|𝜑⟩ = 𝑎|𝜑↑⟩ + 𝑏|𝜑↓⟩																																																													(2.3) 
where 𝑎 and 𝑏 are non-zero complex numbers, the evolution is   

	|𝜑⟩|Φ"⟩|Ψ$⟩ 

→ 𝑎|𝜑↑⟩|Φ↑⟩|Ψ$⟩ + 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$⟩ 
																																																	→ 𝑎|𝜑↑⟩|Φ↑⟩|Ψ$↑⟩ + 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$↓⟩																																														 

																													→ 𝑎|𝜑↑⟩|Φ"⟩|		Ψ$↑⟩ + 𝑏|𝜑↓⟩|Φ"⟩|		Ψ$↓⟩.																			 

The conventional reading is that in this final state no definite measurement is recorded in 
memory, because it has no definite state (it is in an entangled state); the reading Everett 
gave is that the evolution is a superposition of two sequences, in each of which the 
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apparatus, or rather an apparatus (note the language difficulty), goes through two distinct 
cycles, each giving a different outcome, each with a different memory. 

To see the interpretation in action again, let a second measurement be made on the same 
spin-system as before (recall we assumed the experiment was repeatable).  The unitary 
evolution is now (with subscripts to indicate the first and second measurements): 

	(𝑎|𝜑↑⟩ + 𝑏|𝜑↓⟩)|Φ"⟩|Ψ$⟩						 

																																																			
%
→ 𝑎|𝜑↑⟩|Φ↑⟩|Ψ$⟩ 			+ 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$⟩																																					 

																										
%
→𝑎|𝜑↑⟩|Φ↑⟩|Ψ$↑⟩ 		+ 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$↓⟩												 

																																					
%
→ 	𝑎|𝜑↑⟩|Φ"⟩|Ψ$↑⟩ 	+ 𝑏|𝜑↓⟩|Φ"⟩|Ψ$↓⟩																							 

																																																										
&
→𝑎|𝜑↑⟩|Φ↑⟩|Ψ$↑⟩ 		+ 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$↓⟩	                               (2.4) 

																													
&
→𝑎|𝜑↑⟩|Φ↑⟩|Ψ$↑↑⟩ 	+ 𝑏|𝜑↓⟩|Φ↓⟩|Ψ$↓↓⟩														 

																														
&
→𝑎|𝜑↑⟩|Φ"⟩|Ψ$↑↑⟩ 	+ 	𝑏|𝜑↓⟩|Φ"⟩|Ψ$↓↓⟩.													 

Applying the same ‘vertical’ reading of the state, we see there are again two sequences of 
states, neither satisfying the Schrödinger equation on its own, but doing so when 
superposed. Each sequence describes a definite outcome on the first measurement, and on 
the second measurement, each describes the same outcome as resulting – in the one case 
|Ψ$↑↑⟩, in the other |Ψ$↓↓⟩.	In this way Everett was able to recover an ‘effective’ projection 
postulate, along branches, following from the Schrödinger equation. 

The other major part of the measurement postulates, the Born rule, was recovered in terms 
of a measure over branches: Everett showed that the Born rule is the only additive measure 
over orthogonal branch states that is a function of amplitude and phase. He also proved a 
quantum version of the law of large numbers: with high probability (squared amplitude), 
the recorded statistics in each branch are in approximate agreement with the Born rule. In 
the limiting case of infinitely many trials, only branches exactly agreeing with the Born rule 
remain. 

In this, what Everett called the ‘abstract’ theory of measurement, the basis used in 
decomposing the total state – into states describing the apparatus and memory as having 
definite readings and records -- was simply postulated. The problem of how to improve on 
this is the preferred basis problem – why privilege those states? My reason for revisiting 
Everett’s treatment is to highlight that even after the basis states are (somehow) defined, 
there still remains what might be called the preferred branch problem – the problem of 
how, given a basis, states are collected into sequences, into branches. Sums of states, as in 
(2.4), can be written in any order: what dictates the correct ‘vertical’ reading?  

Everett made no comment to this matter; what he did was use the measurement protocols, 
equations (2.2), and in particular the mechanism of memory: the last-most memory state 
determines all the others leading up to it.  But those protocols, like the basis states, were 
just stipulated. To many this reasoning seemed circular.5 Yet it was a virtuous circle: the 
preferred basis, and the preferred branches, come together; the unitarily evolving state has 

 
5 This was Bell’s main criticism of the Everett interpretation (Bell 1987 p.98, p.192). (Another criticism was that 
branching involves an arrow of time, absent in the unitary formalism; a point I come back to in §6.) 
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a branching structure, insofar as with respect to some basis, a vertical reading can be found, 
in accordance with definite rules, as follows from the Schrödinger equation. Whether such a 
reading can be given is highly non-trivial as soon as we go beyond the abstractions of 
measurement protocols, even when the initial state and dynamics involves a physical 
artifact (the apparatus) of our own making. In seeking a comparable interpretation of the 
state for natural processes, absent human intervention, the impression that it can be 
conjured up at will vanishes altogether. 

This is the core of the Everett interpretation. Note again how it contradicts the standard 
interpretation of a state like (2.4), when it arises at the microscopic level (quantum 
mechanics is not standardly applied to macroscopic bodies): the standard reading is that in 
such a case, in an entangled state, no definite state can be attributed to the subsystems 
involved. To counter this, Everett introduced his notion of ‘relative state’, applicable at the 
micro- and macro-level, whatever the state. That, in retrospect, was a tactical mistake, 
distracting from the interpretative method that he actually followed: a vertical reading of 
the state in accordance with rules. This is hardly ever possible for entangled microscopic 
systems.  Moreover, a little reflection shows that these ‘vertical’ readings are entirely 
uncontroversial in other, classical, wave theories. Thus, to use an example given in Wallace 
(2013 p.464), we say that there are two beams of light, in the electromagnetic field, pointing 
in two different directions, in a superposition; we do not say there is a single beam of light 
of indeterminate direction, in a superposition of two states of the electromagnetic field, in 
one state pointing one way, in the other state pointing the other; we do not say there is no 
beam of light at all, because a beam of light is something with a definite direction, and the 
beam of light in this case does not have a definite direction. The ‘beam states’ and rules 
(rectilinear propagation) come together, following from the initial state and Maxwell 
equations, possibly involving the very same degrees of freedom (the same frequencies) of 
the electromagnetic field.   

Evidently examples like this can easily be multiplied. There are two voices, or two melodies, 
in a superposition, two circular ripples in water, superposed; and so on. Again (returning to 
the ‘language difficulty’), it is not the thing (beam, voice, melody, ripple) that is in a 
superposition, but degrees of freedom that are in superpositions. Speaking the same way, it 
is not that the memory registrar is in a superposition, it is that the registrar degrees of 
freedom are in a superposition.  

Returning to the preferred basis problem, the symmetries of Hilbert space dictate that any 
basis can be used, for any Hamiltonian, any degrees of freedom, in any initial state, for 
representing a solution to the Schrödinger equation; why represent it in one basis rather 
than another? Or is the state expressed in every basis a distinct multiplicity, all them 
existences? But whether or not there is a basis satisfying definite rules does depend on the 
basis, Hamiltonian, degrees of freedom, and initial state. There is no temptation, in 
interpreting the evolving state of the electromagnetic field in terms of two beams of light, 
to reify the countless other ways of representing the state of the field at each instant in 
time. Neglect of the preferred branch problem made the preferred basis problem seem 
much harder than it was, and the role of decoherence theory less transparent.6 

 
6 Indeed, some advocates of the Everett interpretation see little or no need for decoherence theory (Deutsch 
(1997, 2016) Vaidman (1998, 2019, 2021).  
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3. Decoherence theory as the general theory of branching 

The upshot of this stage-setting is that Everett’s branches are defined by a basis satisfying 
definite rules, as follow from the Schrödinger equation and initial state. The preferred basis 
problem (which basis?) and preferred branch problem (which rules?) are always solved 
together, and depend on the Hamiltonian and initial state. In Everett (1957),  the basis and 
rules were abstractly defined, but in a longer draft (eventually published in De Witt and 
Graham (1973)) he sketched out a concrete model:  localised states of centre of mass 
degrees of freedom, for large masses, with well-defined velocities (coherent states); if the 
gradient of the potential is approximately constant over the widths of those states, their 
motions will satisfy classical equations. The fact that over sufficiently long times, 
superpositions of such states would eventually be produced, is not a difficulty, for that is 
just more branching (Everett 1973 p.89-90). 

Seen in this light, the obvious question is whether there may be other examples of rules and 
states coming together, as driven by unitary evolutions. Early work by Dieter Zeh and 
Wojciech Zurek in decoherence theory (to use the term introduced by Murray Gell-Mann in 
1989) can be read in just this way. Subsequent landmark papers (Caldeira and Leggett 1983, 
Joos and Zeh 1984, Gallis and Fleming 1990, Tegmark 1993) barely mentioned the concept 
of branching, but showed that in scattering environments (gasses and radiation baths), 
coherent states for much smaller masses, going down to large molecules, obey 
quasiclassical equations (‘quasiclassical’ as going beyond classical Hamiltonian mechanics – 
as including friction, for example). But then they are branches in our sense.7 It follows that a 
delocalised state of masses of the order of large molecules (and anything greater), in a 
scattering environment involving much lighter degrees of freedom, branches into localised 
states, each evolving quasiclassically, unable to interfere with each other. The suppression 
of interference is moreover extremely rapid; in gases at ordinary temperatures, it is much 
faster than thermal relaxation times.8  

These examples are important because thermal environments are ubiquitous; for a tiny 
speck of dust, and anything larger, even the cosmic microwave background will do. They are 
called examples of ‘quantum Brownian motion’, because the term is linear in the velocity. 
There are many other examples of other kinds (see, for example, Stamp (2006)), but they fit 
the same mould: the Everett interpretation does not just concern the macroscopic, it 
concerns the emergence of dynamics at near-microscopic scales as well. And in quantum 
Brownian motion, molecular degrees of freedom do not only couple to the environment, 
they couple to each other -- whether by collisions, near-neighbour interactions, or 
exchanges of phonons.  Superpositions of localised states will be produced all the time, for 

 
7 If more argument is needed, I refer to Kiefer (2002) for a survey of decoherence theory (in the sense of 
quantum Brownian motion) from the point of the decoherent histories formalism. He concludes with the 
observation (2002 p.257) that the latter language is much weaker, and can always be used. It can be used to 
express Everett’s concept of branch as well, as I argue in §6. It follows that quantum Brownian motion can be 
interpreted in terms of branching.  
8 The coherence length 𝑙 is the maximum distance at which interference between localised states is possible. 
In scattering environments, it falls off as 1/√Λt , where  Λ is the localisation rate, until it reaches the de Broglie 
wavelength ℎ/√𝑚𝑘𝑇, at which it stabilises. This sets the widths of the preferred basis states. The localisation 
rate for a heavy molecule in air at ordinary temperature is of the order Λ~10!"𝑚#$𝑠#%; for a particle of dust 
in the cosmic microwave background, Λ~10%&𝑚#$𝑠#% (see Joos 2002, p.83, p.63). 



 7 

example, of reflected and transmitted states, produced in collisions, which since differing in 
velocities, rapidly decohere, hence produce branching; no special Hamiltonian (as in chaos) 
is needed. The implication is that for macroscopic numbers of degrees of freedom at 
ordinary temperatures, branching in Everett’s sense is enormous, rapid, and ubiquitous.  

 

4. Branch counting and continuity  

It thus follows from decoherence theory that huge numbers of branches are produced in a 
single run of any realistic experiment. For each outcome there are large numbers of 
branches, differing in ways irrelevant to the outcome. Why then count the relative numbers 
of outcomes – the kinds of branches? If existence is what matters, and all the branches exist, 
then it is the relative numbers of branches of each kind that matter, not the numbers of 
kinds.  

With this correction, consider again the measurement of the z-component of spin in a Stern-
Gerlach apparatus. We need another modification: there is no reason to suppose that 
exactly the same superposition is produced on each run of the apparatus. In replacing 
equation (2.1) by a more realistic model of measurement, we should consider only a single 
trial, rather than a protocol that applies to a large number of trials. If the initial state of the 
apparatus on that one run is |Φ"⟩ (where we no longer bother to distinguish display and 
memory degrees of freedom), and if the initial state of spin is |𝜑↑⟩, let there be 𝑛↑ 
orthogonal states |Φ↑

'5, 𝑘 = 1,… , 𝑛↑ produced, entering into the superposition, each 
describing an apparatus recording spin-up. Similarly, if the initial spin state is |𝜑↓⟩, for that 
one run, let there be 𝑛↓ orthogonal states |Φ↓

'5, 𝑘 = 1,… , 𝑛↓  produced in a superposition, 
each describing an apparatus recording spin-down. Then for that one run we have in place 
of Eq(2.1): 

																														|𝜑↑⟩|Φ"⟩ → 	 |𝜑↑⟩|Φ↑
%5 + |𝜑↑⟩|Φ↑

&5 + ⋯+ |𝜑↑⟩|Φ↑
(↑5																			(4.1)				 

																													|𝜑↓⟩|Φ"⟩ → 	 |𝜑↓⟩|Φ↓
%5 + |𝜑↓⟩|Φ↓

&5 + ⋯+ |𝜑↓⟩|Φ↓
(↓5.																											 

But then the numbers would be the same were the initial state a superposition of spin-up 
and spin-down states, with any non-zero amplitudes |𝑎|, |𝑏|.9 That is, the branch-counting 
rule would yield the same result (the same ratio 𝑛↓/𝑛↑) whatever the initial state, on that 
single trial, so long as 𝑎 and 𝑏 are non-zero. 

This independence of the branch-counting rule from the values of 𝑎 and 𝑏 (so long as non-
zero) was already obvious in the abstract model, equation (2.4); new is that in practise all 
the action concerns details on how the apparatus responds to an initial state |𝜑↑⟩, and an 
initial state 𝜑↓⟩, and is likely to vary from one run to the next. But further, if we are realistic 
about state preparation as well, we should recognise that in practise the initial state of the 
spin system is never an exact eigenstate of the z-component of spin. The ‘z-component of 
spin’ – any component of spin -- only has meaning insofar as a state-preparation device has 
a specified orientation relative to the measurement device; and relative orientation, even in 
quantum mechanics, varies continuously. (In the Bloch sphere of spin-states, in the norm 
topology, every vector has measure zero.) So since in reality, the state of the spin system is 
never an exact eigenstate of the z-component of spin, the ratio of branch numbers never 

 
9 This is only true for exact orthogonality of the decoherence basis, a condition that we shall later relax (this 
does not rescue the branch-counting rule now under discussion, however). 
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depends on the initial state of the spin-system at all.10 The rule seemed to interpret the 
state resulting from repeated measurements in terms of probability, but it did so only in a 
singular limit that is never actually attained. It is an artifact of an idealisation. 

It will be helpful, for future reference, to formalise this difficulty. It is that the branch-
counting rule is a discontinuous function of the state. Thus consider a sequence of initial 
spin states |𝜑'⟩ ∈ ℋ, , 𝑘 = 1,2, … of the form 

|𝜑'⟩ = cos 𝜃' |𝜑↑⟩ + 𝑖 sin 𝜃' |𝜑↓⟩; 					𝜃' =
𝜋

2𝑘 + 1	. 

The |𝜑'⟩’s converge smoothly to |𝜑↑⟩ in the Hilbert space norm ‖|ψ⟩‖:= J⟨ψ|ψ⟩ :  

lim
'→*

‖|𝜑'⟩ − |𝜑↑⟩‖ = 0,	 

but the branch-counting rule yields the constant sequence independent of k:  

𝑟' =
𝑛↑
𝑛↓
	 

 which does not converge to 𝑟* = 0.  

The result is damning of the branch-counting rule, but it may be that the difficulty goes 
deeper. It may be that the rule in this respect faithfully reflects Everett’s concept of 
branching, and that it is not the rule that is deficient; the real problem may be with the 
concept of branching itself. This too may have no useful application to real measurement 
processes.  The problem, in other words, may concern the Everett interpretation itself. After 
all, however singular the criterion for the existence of branches (that they have non-zero 
amplitude), it is existence that should count towards probabilities; existence is unequivocal, 
no matter the amplitude.11 If the result is a probability interpretation that is at odds with 
the Born rule, and at best a singular function of the state, so much the worse for the Everett 
interpretation.  

However it is a deficiency of the rule if another branch-counting rule can be found that does 
not suffer from this singular behaviour. The branches thus counted all unequivocally exist, 
whereupon probability, as it should, depends on their numbers. Is there one? 

 

5. Boltzmann’s combinatorial definition of the equilibrium entropy 

We are looking for a method for counting branch states involving macroscopic numbers of 
degrees of freedom that 

• depends non-trivially on the state 
• is a continuous function of the state 

and further, at least with respect to ratios in branch numbers, that 

• is free of arbitrary convention. 

 
10 The same is true of many other kinds of measurements, but probably not of all – but we do not need so 
strong a claim. 
11 This has been denied by Vaidman (1998), (2019), who suggests that amplitude may be interpreted in terms 
of ‘degree of existence’. (In effect, in what follows, we are showing that it may be interpreted in terms of 
‘numbers of existents’.) 
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Given which, the result may or may not be in agreement with the Born rule – and determine 
the fate of the Everett interpretation accordingly.  

Substitute microstates in classical statistical mechanics for branch states in quantum 
mechanics, and the problem as posed has a ready precursor. A method for counting 
microstates was provided by Ludwig Boltzmann in one of his most important contributions 
to statistical mechanics, his 1879 memoir, in which he proposed that the entropy 𝑆 of a 
macrostate be identified with the logarithm of what Boltzmann called its thermodynamic 
probability 𝑊, by the equation: 

𝑆 = 𝑘 log𝑊. 

More accurately, Boltzmann’s idea was that entropy differences between states are 
identified with the logarithm of the ratio of the 𝑊’s, for those states: only ratios in 𝑊’s 
need be well defined, and thereby, only entropy differences.  

This went hand-in-hand with another innovation, whereby two levels of description are 
needed: a fine-grained level of microstates (that Boltzmann called ‘complexions’) and a 
coarse-grained level of macrostates (‘distributions’). The thermodynamic probability W of a 
macrostate was to be determined as the number of microstates energetically accessible to a 
gas, consistent with that macrostate – it was a ‘microstate-counting rule’. The method 
involved combinatorial techniques in the computation of these numbers, so it was often 
called ‘the combinatorial approach’ to the definition of entropy. The equilibrium state was 
then the most probable state – the one with the greatest number of accessible microstates. 

Influential as it was, the question of whether the microstate-counting rule really defined 
probability, in classical statistical mechanics, never enjoyed wide consensus, and to this day 
remains controversial. But we need not address that question here; we are only interested 
in the definition of the rule -- on how Boltzmann defined his microstates, and with it his 
microstate-counting rule.  

In classical theory, the actual state of a system of N particles is represented by a point in the 
N-particle phase space (or equivalently, N points in the 1-particle phase space). The number 
of accessible microstates, understood as phase-space points, consistent with a macrostate 
as a region of phase space, is then always the same, a continuum infinity. Boltzmann arrived 
instead at finite numbers by the following device: let 1-particle microstates be fine-grained 
cells in the 1-particle phase space of non-zero extension. Because of the bound on the total 
energy and volume, it follows that there are only finitely many microstates accessible to 
each of the N particles. But more specifically, he assumed that in the partitioning of the 1-
particle phase space into accessible microstates, all the microstates have the same 
extension	𝜀 (the same ‘volume’ 𝜀  in the one-particle phase space), as determined by 
Liouville measure. He defined the partitioning of the 1-particle phase space so that this was 
the case. The same then followed for the volume of N-particle microstates in the total phase 
space: each has the same volume 𝜀+. The number of accessible N-particle microstates thus 
defined, each of volume 𝜀+ , contained in a macrostate, varies with the macrostate.  Ratios 
in those numbers 𝑊 then give the relative probabilities of the macrostates, and 𝜀 drops out 
as irrelevant; correspondingly, only entropy differences are defined, as independent of 𝜀.   

But the latter is not quite true. There is one final ingredient to Boltzmann’s procedure: it is 
that macrostates may be defined by macroscopic thermodynamic quantities, like volume, 
temperature, and energy, independent of the fine-graining. In that case the procedure 
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introduces rounding errors – the volume of the macrostate will not be an exact integral 
multiple of 𝜀 – so, strictly speaking, we should take the limit 𝜀 → 0, to obtain ratios that are 
exactly independent of 𝜀.  

All of this goes over to quantum mechanics, but with two important changes: first, we are 
interested in measurement processes, far from equilibrium; second, we are interested in 
temporal sequences of microstates, states now in Hilbert space. We also need the notions 
of coarse- and fine-grainings of regions of state space, now subspaces of Hilbert space. In 
short: we need the quantum histories formalism.  

 

6. Quantum histories and quasiclassical domains 

Consider first a single time. We fix a parameter space 𝒟, for given degrees of freedom, and 
a partitioning 𝛼 ∈ 𝒟 into disjoint microstates (for example, a fine-graining of configuration 
space). We may then define a correspondence  𝛼 → 𝑃,  to a family of commuting projection 
operators on ℋsuch that for 𝛼 ≠ 𝛼′, the associated projectors are orthogonal and sum to 
unity: 

																																																																		𝑃,𝑃,- = 0;		Z𝑃,
,

= 𝐼.																																																	 

For any state |𝜑⟩ ∈ ℋ, if 

𝑃,|𝜑⟩ = |𝜑⟩ 

we say |𝜑⟩ ‘has property 𝛼’, and that the degrees of freedom in state |𝜑⟩ ‘take values in 𝛼’. 
In parallel to Boltzmann’s approach, we distinguish macrostates from microstates. The 
former, denote 𝛽, are unions of fine-grained microstates. The associated projectors are 
given by simple addition:  

																																																																						 Z 𝑃,
,;	,⊆1

= 𝑃1 .																																																											(6.1) 

 A typical example for a model of measurement is where the macrostate 𝛽 specifies the 
state of the pointer-degrees of freedom as lying within a given latitude (as contained in a 
subspace of ℋ), integrating out (completely coarse-graining over) all other degrees of 
freedom.   

To go from single to multiple times 𝑡%, 𝑡&, … , 𝑡( we represent sequences of properties as n-
tuples 𝛼( ≔ 〈𝛼%, . . 𝛼(〉, where 𝛼'takes the same range of values as does 𝛼 in (6), save 
indexed to time 𝑡'. In terms of these projection operators, the temporal nature of the 
ordering can be incorporated in quantum mechanics purely algebraically, in terms of 
quantum history operators 𝐶,)  (of length	𝑛), also called ‘chain operators’:  

																					𝐶,): = 𝑃,)(𝑡()… . . 𝑃,*(𝑡%) 

where 𝑃,+(𝑡') is:  

																					𝑃,+(𝑡'): = 𝑒234+/ℏ𝑃,+𝑒
7234+/ℏ 

and H is the Hamiltonian. A space of all such histories (for given partitioning 𝛼 ∈ 𝒟, 
Hamiltonian 𝐻, and coarse graining in time 𝑡%, … , 𝑡() is a quantum history space.  



 11 

Quantum history operators do not in general commute with each other, but we can still 
define coarse-grained history operators, denote 𝐶1), by simple addition:  

																																																																			 Z 𝐶,)
,);	,)⊆1)

= 𝐶1) 																																																					(6.2)		 

where 𝛼( ⊆ 𝛽( iff 𝛼' ⊆ 𝛽' for all 𝑘 = 1,… , 𝑛. Whether coarse- or fine-grained, these 
history operators are in the Heisenberg picture, where time-dependence is carried by 
operators rather than states. For the sake of familiarity, and to connect more cleanly with 
earlier material, we will continue to work in the Schrödinger picture, with the state changing 
in time. For this we need the operators: 

												𝐶,)(𝑡(): = 𝑒7234)/ℏ𝐶,)  

(and similarly for coarse-grainings). Each 𝐶,)(𝑡() has the action: unitarily evolve the state to 
time 𝑡%, and then project onto the component with property 𝛼%; unitarily evolve to time 𝑡&, 
and project on to the component with property 𝛼&; and so on – to time 𝑡(. It is the 
unfolding of a n-fold sequence of states, with decreasing norm, each state with a definite 
property, linked by unitary evolutions.  

A history space is decoherent for a given initial state |𝜑; 0⟩, if: 

		𝛼( ≠ 𝛼(- 	⟹ 	 ⟨𝜑; 0|𝐶,)
8 (𝑡')𝐶,), (𝑡')|𝜑; 0⟩ = 0. 

Thus, the states 𝐶,)(𝑡')|𝜑; 0⟩ are orthogonal to one another, if the 𝛼(’s differ at any time 
𝑡%, . . , 𝑡(.  This orthogonality condition ensures that these sequentially developing states 
over time – in the forward direction in time, with respect to |𝜑; 0⟩ – do not interfere with 
each other; they do not recombine or cancel each other out. It also implies that there is only 
one way of arriving at each branch state 𝐶,)(𝑡()|𝜑; 0⟩ from the initial state |𝜑; 0⟩, namely 
by passing through a sequence of states (vertical reading) having properties defined by the 
sequence 𝛼(; any state that has evolved through any other sequence must be orthogonal to 
it. In this sense branch states, of the form 𝐶,)(𝑡()|𝜑; 0⟩, generalise Everett’s notion of 
‘memory states’. 12 

The decoherence condition evidently brings with it an arrow to time. For example, if it is 
satisfied with respect to a partitioning 𝛼 ∈ 𝒟 and state |𝜑; 0⟩ for times 𝑡%, . . , 𝑡(,  it will not 
be satisfied for the complex conjugate (time-reverse) of |𝜑; 𝑡'⟩.  With respect to the latter, 
and for the same Hamiltonian, partitioning, and direction in time, the branches produced 
from |𝜑; 0⟩ up to time 𝑡' will thereafter, with exquisite sensitivity to phase relations and 
amplitudes, all recombine. We are familiar with something very similar to this in connection 
with the second law of thermodynamics in classical statistical mechanics, with entropy 
production in place of branching. The two appear to be similar in the explanation of the 
ultimate origin of the asymmetry in time, in terms of a special initial state. 

Decoherence alone is the most abstract of Everett’s rules for branching, a generalisation of 
his notion of ‘memory’. The stronger notion that we are looking for is where, in addition, 
the 𝛼(’s satisfy definite equations – some set of equations ℰ, so that only those sequences 
that satisfy ℰ (denote 𝛼( ⊢ ℰ) enter into the decomposition of the state as a superposition 

 
12 See Wallace (2012 pp.87-99) for a fuller discussion (in particular of the ‘branching-decoherence’ theorem). 
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of branches. As a first stab, then, we are interested in a decoherent history space where the 
universal state can be written as a superposition of the form: 

																																																						|𝜑; 𝑡(⟩ = Z 𝐶,)(𝑡()|𝜑; 0⟩
,);	,)⊢ℰ

.																																														(6.3) 

This provides a vertical reading of the state in our previous sense: a superposition of 
sequences of states, each obeying a definite rule, as applies to fine-grainings of the state – 
the state up to a subspace of Hilbert space, at each time. But with equation (6.3), we 
(almost) have the condition for Gell-Mann and Hartle’s concept of a quasiclassical domain.  

 

7. The new branch-counting rule. 

The branch-counting rule that we are looking for should not just be a count of quantum 
history operators, but should depend explicitly on the state. The obvious rule is to count the 
number of non-zero branches, by the end of an experiment, at time 𝑡(; that is, the number 
of non-zero branch states at 𝑡( of the form: 

𝐶,)(𝑡()|𝜑; 0⟩ ≠ 0.			 

Equivalently, it is to count the number of fine-grained history operators of length 𝑛 that 
satisfy: 

																																																								i𝐶,)(𝑡()|𝜑; 0⟩i > 0.																																																(7.1) 

On the conventional interpretation of quantum histories, (9) is just the condition that 
histories have non-zero probability. But we do not need this interpretation; we speak simply 
of branches of non-zero amplitude.  

The rule may be obvious, but it is wrong. It leads to the same singular behaviour under 
variations of the quantum state that we encountered earlier. To give another example, 
consider quantum Brownian motion, where the parameter space 𝒟 = 𝒟; × 𝒟<  is the 
Cartesian product of the configuration space 𝒟; of the centre of mass degrees of freedom S, 
with a parameter space 𝒟<  (that we coarse-grain over completely) of a large number of 
much lighter degrees of freedom (the scattering environment E) – for the details, see Joos et 
al (2002 §5.1). The fine-grained histories 𝛼( of S, including recoil from scattering processes, 
are trajectories in 𝒟;, with each 𝛼' a fine-grained cell in 𝒟;  at time 𝑡'. Now suppose the 
initial state |𝜑; 0⟩ is non-zero only in some coarse-grained region 𝛽 ⊂ 𝒟;; then from the 
kinematic part of the Hamiltonian, for any 𝑡 > 𝑡", the state |𝜑; 𝑡⟩ that (continuously) 
evolves from |𝜑; 0⟩ is non-zero throughout all of 𝒟;; for any 𝑡 > 𝑡",  the condition (9) is 
satisfied for every 𝛼(. Numbers counted in this way are discontinuous functions of the 
state. 

What this example also shows is that the definition of quasiclassical domain should not call 
for exact equality in equation (6.3), as Gell-Mann and Hartle made clear. In their words, it is 
a decoherent history space ‘with probabilities peaked on quasiclassical histories’. Again, we 
say rather with amplitudes peaked on quasiclassical histories, for we do not yet have a 
probability interpretation.  The vertical reading of the state provided by a quasiclassical 
domain is rather that to a very good approximation it is a superposition of rule-bound 
branches, where the approximation is as ever controlled by the Hilbert-space norm. Identity 
in equation (6.3) is replaced by approximate equality.  
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That seems just as it should be. Models in decoherence theory invariably involve integrating 
out ‘irrelevant’ (‘fast’) degrees of freedom (usually the environment), whose contributions 
to the dynamics of the ‘relevant’ (‘slow’) degrees of freedom are only approximately taken 
into account in the equations ℰ. The universal state evolving under the Schrödinger 
equation knows no such limitation. Likewise, the equations ℰ are only defined up to a given 
approximation or idealisation; so too is the decoherence condition, in realistic models, 
where the history space is not fine-tuned to the state. All these approximations are defined 
in terms of continuity in the Hilbert space norm. It follows that Everett’s branches are not 
exactly defined, nor are they exactly autonomous from one another -- there remain tiny 
interference effects, infinitesimal ripplings in amplitudes. Again, no probabilistic concepts 
are being smuggled in.13 

However, we are no nearer to a branch-counting rule that is a continuous function of the 
state. Equation (7.1) is clearly a necessary condition on branches, but just as clearly it is 
insufficient. We propose instead to use the analogue of Boltzmann’s method: we fix a unit 
𝜏 ≪ ‖|𝜑; 0⟩‖ in the Hilbert space norm and define the fine-grained partitioning 𝛼( so that: 

																																																																i𝐶,)(𝑡()|𝜑; 0⟩i = 𝜏	.																																																(7.2)                    

The relative probability of disjoint coarse-grained histories 𝛽(, 𝛽(-   (which may be events at 
some single time 𝑡', completely coarse-graining all other times), is then the ratio of the 
numbers 𝑁1), 𝑁1),  of fine-grained histories into which 𝛽(, 𝛽(-  are partitioned, satisfying (10).  

To see what those ratios are, observe that from the approximate orthogonality condition 
(‘medium decoherence’ in Gell-Mann and Hartle’s terminology), and from the definition of 
coarse-graining equations (6.1) and (6.2): 

										 Z i𝐶,)(𝑡()|𝜑; 0⟩i
&

,)⊆1)

≈ r Z 𝐶,)(𝑡')|𝜑; 0⟩
,)⊆1)

r

&

= s𝐶1)(𝑡')|𝜑; 0⟩s
&
.								(7.3) 

From the condition on the fine-graining 𝛼(, equation (7.2), each summand on the LHS of 
(7.3) is just 𝜏&. Let there be 𝑁1)  such, and similarly 𝑁1),  for the coarse-graining  𝛽(- ; it then 
follows:    

																																																									
𝑁1)
𝑁1),

=
𝑁1)𝜏

&

𝑁1), 𝜏
& ≈

s𝐶1)(𝑡()|𝜑; 0⟩s
&

s𝐶1), (𝑡()|𝜑; 0⟩s
& 	.																														(7.4) 

The right-hand side is the ratio of the Born rule quantities. Choosing 𝛽(-  as the identity (𝛽' =
𝕀 for 𝑘 = 1,… , 𝑛), the number 𝑁1),  is just the total number of branches satisfying (7.2); thus 
normalised, we obtain the Born rule probability of 𝛽( for initial state |𝜑; 0⟩:  

 
13 The objection has often been made that decoherence theory cannot be used to interpret the quantum state 
in terms of probability, because it presupposes the concept of probability (see e.g. Baker (2007), Dawid and 
Thébault (2015), and for a reply, Wallace (2012 p.253-54), Saunders (2021)); I am trying to pre-empt that 
criticism. 
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				Pr w𝛽(x =
s𝐶1)(𝑡()|𝜑; 0⟩s

&

‖|𝜑; 0⟩‖& 	. 

 

The new branch-counting rule therefore provides an excellent approximation to the Born 
rule. In fact, so long as the 𝛽(’s are defined by (6), (7), the only approximation involved 
concerns orthogonality. But as with Boltzmann’s procedure, we should allow that the 
coarse-graining 𝛽' at each time 𝑡' may be defined without reference to any fine-graining, in 
which case the second equality in equation (7.3) is approximate too: 𝛽( will not exactly be 
the union of an integral number of fine-grained histories 𝛼( satisfying (7.2); there will be 
rounding errors, bounded by 𝜏. Realistically, however, 𝜏 can be chosen as extremely small, 
consistent with the decoherence condition, as witness the characteristic lengths and times 
of branching in thermal environments. 

How does the new rule behave, in terms of its dependence on the state? Consider, for fixed 
𝜏, a sequence of states |𝜑'; 0⟩ converging to |𝜑; 0⟩ in the norm topology, as before: 

																																																								 lim
'→*

‖|𝜑'; 0⟩ − |𝜑; 0⟩‖ = 0.																																														(7.5) 

Let the ratio as given by the RHS of (7.3) for the state |𝜑'; 0⟩ be the real number 𝑟', and for 
|𝜑; 0⟩ let it be 𝑟. From (7.5) we know 𝑟' → 𝑟. Let the ratio of branch numbers for the state 
|𝜑'; 0⟩ be 𝑝', and for the state |𝜑; 0⟩ be 𝑝. Then |𝑝' − 𝑟'| < 𝜏, and |𝑝 − 𝑟| < 𝜏. Since 𝑟' 
converges to 𝑟:  

																																																									 lim
'→*

|𝑝' − 𝑝| < 2𝜏.																																																														(7.6)		 

We cannot without further ado take the limit 𝜏 → 0, for the reason already stated: the fine-
graining 𝛼(, of length 𝑛, cannot be taken to zero, on pain of violating the decoherence 
condition. So for the moment (7.6) gives us something slightly less than desired: a branch-
counting rule that is only approximately continuous with the state, bounded by 𝜏. We shall 
see how to do better in a moment.  

 

8. Discussion 

An obvious objection to the new branch-counting rule is that it is question-begging: 
according to the new rule, put in terms of probability, equi-amplitude branches are 
equiprobable; therefore probability is assumed at the beginning.  

There is something to this objection, but it misses an important point. We have provided a 
rational as to why probability should depend on amplitude, and not on phase – and not, for 
example, on the number of four-leaf clovers in each branch. Amplitude dictates the 
structure of the quantum state, and with it branching structure; and relative numbers of 
branches, probabilities. (The old branch-counting rule offered this rational too, but on the 
basis of a singular structure to the state that is never actually realised.) As for whether 
equiprobability must be assumed, see below.   

A variant of the same worry is that the new rule is ad hoc, expressly designed to yield the 
right ratios, in accordance with the Born rule. Yet that would seem unfounded given that 
the method is the same as Boltzmann’s (we consider whether they really are the same in 
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the next section). Moreover, the method appears to be a natural one: we learn from 
decoherence theory that branching is pervasive, and that there are countless non-zero 
decohering states, of ill-defined number, varying discontinuously with the state; we group 
together similar decohering states, so that each group (superposition) has the same ‘size’ in 
state-space -- the same Hilbert-space norm – and count those groups; as in classical 
statistical mechanics, we group similar states, so that each group has the same ‘size’ in 
state-space, the same Liouville measure – and count those groups. In both cases we obtain 
ratios in numbers that covary with the state. There may be no true number of the relevant 
microstates, in each case, but there may yet be true ratios.   

Another objection is that the notion of approximation itself involves probability, as with 
frequentism in the philosophy of probability. The most one can say (in a one-world setting) 
of the actual relative frequency of an outcome (involving only finitely-many runs of an 
experiment) is not that it is the probability of that outcome on each trial, nor that it is an 
approximation to that probability (these the main difficulties for naïve frequentism), but 
only that it is probably that probability, to a given approximation (this the law of large 
numbers). As such (the objection continues) the new branch-counting rule, as a version of 
naive frequentism, can do no better than Everett’s law of large numbers.   

This objection is unfounded, however. The nature of the approximation is not probabilistic – 
it is not that with high amplitude the branch-counting rule is approximately as given by the 
Born rule quantity, it is that with certainty it is given approximately by the Born rule 
quantity. The new branch-counting rule is about all the branches produced on a single 
measurement, not a privileged subset; ratios in their numbers invariably approximate the 
Born rule quantities, differing by 𝜏 at most. The new rule is like naïve frequentism, as 
concerning the count of actual outcomes, but instead of being spread over different times in 
a single world, it is spread over worlds at a single time. The difference, in providing a 
matching of relative frequencies to probabilities, is decisive. Of course, unlike actual relative 
frequencies in a single world, following multiple measurements, the relative frequencies 
across worlds (for a single measurement) are unobservable. Branch-counting provides a 
new story about what probability is, not a new method of measurement.   

At this point it is worth reprising another argument against the old branch-counting rule, 
due to Wallace (2012 p.120). Suppose we consider a measurement of spin, at time 𝑡%; then 
by the old branch-counting rule there are two outcomes, each with probability one half. But 
suppose a second measurement is made in the spin-up branch, but not the other, at time 
𝑡& > 𝑡%; now there are two branches with the spin-up result, and only one with spin-down; 
so the probability is two-thirds. The probability for the event at 𝑡%, as given by branch-
counting, depends on the various measurements performed at later times 𝑡&, and so on for 
all subsequent times.14 

This being so, why did we need the argument from continuity in the state? Because there is 
a variant of the old rule that does not depend on the lengths of branches considered at 
subsequent times. Call it ‘the equi-outcome rule’: every outcome in an experiment has 
equal probability, so long as it has non-zero amplitude. This respects the intuition that 
existence is what matters, regardless of amplitude, immediately following a measurement. 

 
14 The parallel with the Sleeping Beauty problem is obvious and has been used (for example by Lewis (2009)) to 
suggest that instabilities in probabilities, if defined in terms of self-locating uncertainty, are inevitable in the 
Everett interpretation.  See also §8 
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The difference is that probabilities of temporal sequences of outcomes, for various 
experiments, are computed in the usual way, using the equi-outcome rule for each 
experiment instead of the Born rule. Branches now have unequal probabilities, as 
depending on their histories of branching. (In the case just given, the two branches with 
spin-up have probabilities one quarter, the one with spin-down one half). But the equi-
outcome rule falls to the same argument from continuity as before. It fails, when applied to 
realistic experiments, to covary with the state; it is not an interpretation of the state. 15 

The old branch-counting rule thus came in two conflicting versions, depending on the 
lengths of the branches, does the new branch-counting rule too?  Consider branches of 
much greater length 𝑁, where 𝑡+ ≫ 𝑡(, possibly following many other kinds of 
measurements. The question is whether the ratio of the numbers of those length N 
branches, containing 𝛽(, 𝛽(- , at time 𝑡(, all of equal amplitude, are the same as for branches 
of length n, all of equal amplitude. 

A little reflection shows that the only difference is that the longer the branch, the greater 
the freedom to use much smaller values for 𝜏, without jeopardy to the decoherence 
condition. The number of branches is correspondingly increased, not because they differ 
from one another in ever more microscopic intricacy, at time 𝑡(, but because they differ in 
similarly intricate ways at future times. The ratios for branches of length N differ from those 
of length n, in that rounding errors, already tiny, are further reduced. The limit 𝜏 → 0 is the 
limit 𝑡+ → ∞, and in that limit in full rigor, the new rule is a continuous functional of the 
initial state. (Here N is not the number of runs of the same experiment, as with one-world 
frequentism; the experiment may be performed just the once. N is the number of time 
increments, not the number of trails.)  

What of the fact that the new counting rule involves ratios in the squares of the amplitudes? 
It derives, like the continuity requirement, from the norm on Hilbert space. For the space of 
square-integrable functions ϕ: X → ℂ for some measure space (𝑋, 𝜇), the norm is:   

‖ϕ‖ = �� |ϕ|&𝑑𝜇
=

. 

This was in play in equation (7.3); if instead we had considered an 𝐿> space (the space of 𝑝-
integrable functions on (𝑋, 𝜇)), with norm  

‖ϕ‖> = �� |ϕ|>𝑑𝜇
=

-

 

we would have obtained not the Born rule, but a 𝑝4?-power rule. So did we put in the Born 
rule by hand, in choosing 𝑝 = 2?16 But an 𝐿> space, although a topological linear space (a 
‘Banach space’), is only an inner product space for 𝑝 = 2; only in an inner product space is 
the notion of orthogonality defined. Tamper with quantum mechanics at this level, and you 
risk talking about a different theory altogether.   

 
15 It has recently been shown to permit super-luminal signalling as well (McQueen and Vaidman (2019); not so 
the new rule. 
16 An objection due to Mateus Araújo (personal communication, 18/6/18)); I had earlier noted this possibility 
(Saunders (2004)) in the context of a derivation akin to Deutsch (1999). 
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There remains the question of how the new rule bears on rational agency. It is an important 
virtue of branch counting that it is independent of degrees of belief, personal identity, and 
uncertainty; independent of whether there are any rational agents, or observers, at all. But 
it surely should matter to agency, where there are observers cognizant of quantum 
mechanics and the new branch-counting rule. It is entirely plausible, prior to branching, that 
we ought to care more about outcomes that happen in many branches, than we care about 
outcomes that happen in comparatively few; and similarly, that we ought to expect to see 
those outcomes, that are contained in the overwhelming majority of branches, rather than 
outcomes that are contained in comparatively few.  

The normative dimension to the Born rule in the Everett interpretation has in recent 
literature been explored in great detail, most notably in Saunders et al (2010) and Wallace 
(2012). On the table is a demonstration that an agent, if rational, in acting in accordance 
with certain axioms, and if cognisant of the unadorned unitary formalism of quantum 
mechanics, should choose among quantum games as if ranking them by their expected 
utilities, using the Born rule. Those axioms have been much questioned, but to inconclusive 
effect (for a recent survey see Vaidman (2021)); here we are mainly concerned with their 
relation to the new branch-counting rule, rather than their truth.  

At the heart of Wallace’s proof (and the core of the original ideas in Deutsch (1999)) is a 
demonstration than when experimental outcomes have equal amplitudes, an agent should 
be indifferent as to which outcome has which reward. That translates into the condition: 
when outcomes have equal numbers of branches, counted using the new rule, agents 
should be indifferent as to which outcome has which reward. But that just is to use the 
branch-counting rule. It follows directly that agents who are rational, in Wallace’s sense, 
should be guided by ratios in branch numbers, in ours.  

The only question, therefore, is whether Wallace’s axioms are available to branch-counters. 
The answer is not entirely obvious, not least because among them is ‘branching 
indifference’ - an axiom that has often been justified (including, at times, by Wallace) both 
on the basis that branch numbers are undefined, and because branching is pervasive 
(therefore ‘do not care about branching per se’, Wallace (2012 p.170)). On branching as 
pervasive we can agree; but on branch numbers?  

An inspection of his definitions shows that by ‘branch’, Wallace meant ‘non-zero branch 
state’. We can agree with him not to care on the number of those. But more revealing is the 
axiom itself, that if an operation leaves the future selves of an agent in M different 
macrostates, all with exactly the same reward, the agent should be indifferent as to 
whether or not the operation is performed. For branch-counters, this axiom translates into: 
an agent should be indifferent as to whether the number of branches, all with the same 
reward, are collected together into M coarse-grained branches, each macroscopically 
distinct, without change of the reward. But that would appear to be an eminently 
reasonable principle: why care about grouping branch numbers in these various ways, so 
they are noticeably different, when they all have the same reward? Especially so, if all we 
care about are the rewards, the usual assumption in operational approaches to rational 
choice theory. 

There remains one other source of difficulty, in taking over Wallace’s proof, for it depends 
on his axiom of ‘problem continuity’, which is similar to our requirement of continuity in the 
state. As a matter of mathematical rigour, his proof requires that we take the limit of 
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branches of arbitrarily long length. But with that all his axioms (and in particular ‘branching 
indifference’) are available to branch-counters, who if anything will find them more 
compelling. Moreover, they (possibly simplified) are still needed, if wanted is a normative 
dimension to branch-counting. On the other hand, branch-counting does better in providing 
explanations. Do we explain the observed statistics, by demonstrating that it is the statistics 
a rational agent, cognisant of quantum mechanics, ought to bet on? Better, we explain the 
observed statistics, by showing that they are overwhelmingly more common among all the 
worlds. Digging deeper, we see that this involves treating branches as equiprobable, and we 
may well ask with what rationale -- at which point Deutsch’s symmetry argument applies, 
and we have the normative argument as well.17  

This being so, much recent debate on the meaning of probability in the Everett 
interpretation seems misplaced. We have just dealt with the objection, for example in 
Albert (2016), that betting behaviour cannot be explanatory of the observed statistics. 
There is also the radical proposal, proposed by Deutsch (2016) and Brown and Porath 
(2020), that physical probability simply has no meaning in the Everett interpretation, and 
there are only agent-specific personal probabilities. But ratios in branch numbers are 
physical, and in view of the similarities with naïve frequentism, to deny that they have 
anything to do with probability seems capricious. Wallace argues rather that physical 
probability just is whatever rational agents ought to track in assigning personal probabilities, 
and since they ought to track the squares of the branch amplitudes, the latter are physical 
probabilities. This argument has a considerable background in philosophy, however, and it 
can be rendered more simply as rational agents ought to treat equi-amplitude branches as 
equiprobable, whereupon ratios in branch numbers are physical probabilities. Meanwhile 
the debate over the nature of persons and first-person knowledge, and probabilities in the 
sense of self-locating probabilities (Saunders 2010, Wallace 2012, Sebens and Carroll 2018, 
McQueen and Vaidman 2019), whatever its intrinsic interest, can be set to one side, as not 
needed for the Everett interpretation; if facts about self-location are irrelevant to empirical 
tests, as argued by Adlam (2014), that may be just as well. 

 

9. The origins of quantum mechanics 

The final objection to the new branch-counting rule that we consider relates to the parallel 
with Boltzmann’s method. Is our method and his really the same? If not, the new rule is 
open to the charge that it is ad hoc.  

I shall approach this question obliquely, noting that Boltzmann’s method for counting 
microstates introduced in 1879 led, some two decades later, to the discovery in 1900 of 
Planck’s constant – to the discovery, by Planck, that what from the point of view of the 
Liouville measure of certain macrostates, are rounding errors, introduced by a choice of unit 
of phase space volume 𝜀, are actually essential to getting the right equilibrium distribution 
(as determined by experiment). This discovery led to quantum mechanics.  

The system studied by Planck was black-body radiation, and specifically its energy density as 
a function of temperature and frequency.  It was known (from the Wien displacement law) 
to involve an unknown constant with the dimensions of action. The choice of 𝜀 on what was 
eventually recognised, by Bose, as the one-photon phase space, required to give the ‘right’ 

 
17 My thanks to David Deutsch on this point (personal communication, 7/7/21). 
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rounding errors, was that constant: Planck’s constant ℎ. With that it followed not just that 
ratios of numbers of microstates are independent of convention, but those numbers 
themselves.  

That raises two questions. Does it show that Boltzmann’s method only really made sense, 
given this ultimate, discrete structure to phase space? – with the implication that unless 
something similar is forthcoming for Hilbert space, our use of his method is not safe. Second 
and relatedly, does it show that Boltzmann’s method in fixing a unit 𝜀 wasn’t really about 
the state at all, but about the structure of the state space? 

The latter worry first. Planck had hit on the empirically correct black-body formula more or 
less by guesswork; and was then led by a process of reverse engineering to a combinatorial 
expression, the logarithm of which gave the right entropy as implied by his formula. In this 
way he obtained, for radiation in spatial volume V with frequency	𝜈$ (where s is a 
discretisation of frequency) the expression:  

																																																					𝑊 =�𝑊$
$

=�
(𝑧$ + 𝑛$ − 1)!
(𝑧$ − 1)! 𝑛$!$

	.																																				(9.1) 

Here 𝑧$ was the number of what Planck called ‘oscillators’, and 𝑛$ the number of ‘energy 
quanta’ of energy ℎ𝜈$. Maximising (9.1), on variation of the numbers 𝑛$, subject to fixed 
total energy (using the method of Lagrange undetermined multipliers), and determining 
𝑧$	as the number of standing waves for volume V and frequency 𝜈$ (following Jeans), Planck 
arrived at the right spectral energy density as a function of temperature and frequency -- 
the Planck black-body formula. The remaining difficulty was to give a rational for (9.1), and 
specifically, the numbers 𝑊$.  

It took almost a quarter of a century to understand this combinatorics expression correctly: 
𝑊$ is the number of available microstates for 𝑛$ photons distributed over 𝑧$ one-particle 
states, in frequency interval indexed by s, all of the same ‘elementary volume’ ℎ in the one-
photon phase space, without regard for which photon is in which microstate (the latter 
since photons are ‘indistinguishable particles’). When it was eventually understood in this 
way, by Bose and Einstein in a series of papers in 1924-25, it was immediate how to apply 
the same technique to a gas of material particles, replacing photons by non-relativistic 
molecules. The same combinatorial expression (9.1) applied, but where s labels intervals of 
momentum, rather than frequency, and with an additional constraint on total particle 
number, as follows from conservation of mass. Thus was born the theory of what is now 
called the Bose-Einstein gas.  

This fine-graining of classical phase space in terms of 𝜀 = ℎ involved a measurable (and 
universal) constant. Nothing like this seems to be in play in our use of a unit 𝜏 in the Hilbert 
space norm. But to see the connection, we need to understand Bose and Einstein’s 
procedure in purely quantum mechanical terms. This was soon done, in Dirac’s treatment of 
the new gas theory in 1926, whereupon each term in the product (9.1) was newly 
interpreted: 𝑊$ was now the dimensionality of the symmetrised subspace of the Hilbert 
space of 𝑛$ particles, of frequency 𝜈$, confined to spatial volume V, where the Hilbert space 
of each particle has dimension 𝑧$.18  

 
18 Jeans’ standing waves were in effect orthogonal states spanning the one-photon Hilbert space for given 
degrees of freedom (a given frequency interval). For a recent history of these discoveries, see Saunders (2020). 
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The counting method thus seems to have nothing to do with the state at all, but only with 
the structure of (symmetrised subspaces of) Hilbert space, quite contrary to what we have 
been doing, where the number depended on the state. But that is the wrong way of looking 
at it. Rather, Boltzmann, and Planck, and Einstein, and Dirac, all in effect used the 
equilibrium state – in the quantum case, a density matrix entirely degenerate with respect 
to each of these symmetrised subspaces, essentially giving equal ‘volume’ to each 
orthogonal dimension in each frequency range – this the same as the count of the 
dimensionality of each subspace. The procedure can in turn be redescribed as: for each 
frequency range, count the number of equi-amplitude fine-grained branches, given a totally 
degenerate density matrix, where the fine-graining goes all the way down to one-
dimensional projection operators. This gives the number of dimensions of the subspace of 
Hilbert space for each frequency range, the numbers 𝑊$, but as an exceptional case:  it is 
possible to fine-grain in this way, whilst still satisfying the decoherence condition, because 
the latter is exactly satisfied for any fine-graining, given a totally degenerate density matrix 
for each frequency range – as required of an equilibrium state. In going over to non-
equilibrium processes, like measurements, we should replace equilibrium states by non-
equilibrium states, and worry about the decoherence condition, and equations for branches 
– so we do not go all the way down to one-dimensional projectors. This was just our 
procedure.  

As for the suggestion that it is only because an absolute significance was found for 
Boltzmann’s fine-graining (as fixed by Planck’s constant) that the method had any validity – 
so that only given a lower limit on 𝜀, did it make sense to count in Boltzmann’s way - it 
would be hard to imagine a greater inversion of the rationale that was historically offered. It 
was only insofar as ratios in numbers of microstates W were approximately independent of 
𝜀, that the method was judged to be sound. Planck was repeatedly criticised for failing to 
take the limit 𝜀 = ℎ → 0. That the method led to an experimental test of this proposition is 
to its extraordinary credit; conceivably, it may one day lead to a test of the use of a 
continuous norm on Hilbert space. But its legitimacy should not depend on it. It would be 
perverse to require of a method that was revolutionary in one context, that applied in 
another, it prove revolutionary again.  

 

Acknowledgments 

My thanks to Harvey Brown, David Deutsch, Paul Tappenden, Lev Vaidman, and David 
Wallace, for helpful comments, encouragement, and criticism.  

 

References 

Adlam, E. [2014], ‘The problem of confirmation in the Everett interpretation’, Studies in 
History and Philosophy of Modern Physics 47, 21–32. 

Albert, D. [2016], After Physics, Harvard University Press, Cambridge. 

Baker, D. [2007], ‘Measurement outcomes and probability in Everettian quantum 
mechanics’, Studies in History and Philosophy of Physics 38, 153-65.  

Bell, J. [1987], Speakable and Unspeakable in Quantum Mechanics, Cambridge University 
Press, Cambridge.  



 21 

Brown, H., and G. Porath [2020] ‘Everettian probabilities, the Deutsch-Wallace theorem, and 
the principal principle’, in M. Hemmo and O. Shankar, Quantum, Probability, Logic: the work 
and influence of Itamar Pitowsky, Springer, Berlin. 

Caldeira, A. and A. Leggett [1983], ‘Path integral approach to quantum Brownian motion’, 
Physica A 121, 587-616 

Dawid, R., and K. Thébault [2015], ‘Many worlds: decoherent or incoherent?’, Synthese 192, 
1559-80. 

Deutsch, D. [1997], The Fabric of Reality, Viking Press, New York. 

-- [1999], ‘Quantum theory of probability and decisions’, Proceedings of the Royal Society of 
London A455, 3129–37.  

-- [2016], ‘The logic of experimental tests, particularly of Everettian quantum theory’, 
Studies in History and Philosophy of Modern Physics 55, 24-33.  

DeWitt, B. [1971], ‘The many-universes interpretation of quantum mechanics’, in 
Proceedings of the International School of Physics ‘Enrico Fermi’, Course IL: Foundations of 
Quantum Mechanics, Academic Press. Reprinted in De Witt and Graham (1973). 

DeWitt, B., and N. Graham (eds.) [1973], The Many-Worlds Interpretation of Quantum 
Mechanics, Princeton University Press, Princeton.  

Everett III, H. [1957], ‘“Relative state”’ formulation of quantum mechanics’, Reviews of 
Modern Physics 29, 454–62. Reprinted in DeWitt and Graham (1973 pp.141–50).  

-- [1973], ‘Theory of the universal wavefunction’, in DeWitt and Graham (1973 pp.3–140).  

Gallis, M. and G. Fleming [1990], ‘Environmental and spontaneous localisation’ Physical 
Review A 42, 38-42.  

Gell-Mann, M. and J.B. Hartle [1989], ‘Quantum mechanics in the light of quantum 
cosmology’, in Complexity, Entropy, and the Physics of Information, W.H. Zurek (ed.), 
Addison-Wesley, Reading.  

Graham, N. [1973], ‘The measurement of relative frequency’, in DeWitt and Graham (1973). 

Joos, E. [2002], ‘Decoherence through interaction with the environment’, in Joos et al [2002 
pp.41-180].  

Joos, E. and H. Zeh [1985], ‘The emergence of classical properties through interaction with 
the environment’, Zeitshrift für Physik B – Condensed Matter 59, 223-243. 

Joos, E., H. Zeh, C. Kiefer, D. Guilini, J.Kupsch, and I. Stamatescu [2002], Decoherence and 
the Appearance of a Classical World in Quantum Theory, 2nd ed., Springer: Berlin. 

Kiefer, C. [2002], ‘Consistent histories and decoherence’, in Joos et al [2002 pp.227-58]. 

Lewis, P. [2009], ‘Probability, self-location, and quantum branching’, Philosophy of Science 
76, 1009-19  

McQueen, K. J., & Vaidman, L. [2019], ‘In defence of the self-location uncertainty account of 
probability in the many-worlds interpretation’, Studies in History and Philosophy of Modern 
Physics, 66, 14–23. 

Saunders, S. [2004], ‘Derivation of the Born rule from operational assumptions’, Proceedings 



 22 

of the Royal Society A, 460, 1-18. 

- [2005] ‘What is probability?’, in Quo Vadis Quantum Mechanics, A. Elitzur, S. Dolev, and N. 
Kolenda, eds., Springer-Verlag: Berlin. 

- [2010] ‘Chance in the Everett interpretation’, in Saunders et al [2010] 

- [2020], ‘The concept ‘indistinguishable’, Studies in History and Philosophy of Modern 
Physics 71, 37-59.  

- [2021], ‘The Everett interpretation: Probability’, in E. Knox and A. Wilson (eds.), The 
Routledge Companion to Philosophy of Physics, Routledge: Oxford. 

Saunders, S., J. Barrett, A. Kent, and D. Wallace [2010], Many Worlds? Everett, quantum 
theory, and reality, Oxford University Press: Oxford.  

Sebens, C., and S. Carroll [2018], ‘Self-locating uncertainty and the origin of probability in 
Everettian quantum mechanics’, British Journal for the Philosophy of Science 69, 25-74. 

Stamp, P. [2006], ‘The decoherence puzzle’, Studies in History and Philosophy of Modern 
Physics 37, 467–497. 

Tegmark, M. [1993], ‘Apparent wave function collapse caused by scattering’, Foundations of 
Physics Letters 6  571-90 

Vaidman, L. [1998], ‘On schizophrenic experiences of the neutron or why we should believe 
in the many-worlds interpretation of quantum theory’, 6,  Studies in the Philosophy of 
Science 12, 245–61. 

--  [2019], ‘Ontology of the wave function and the many-worlds interpretation’,  in O. 
Lombardi, S. Fortin, C. López, & F. Holik (eds.), Quantum worlds: Perspectives on the 
ontology of quantum mechanics. (pp. 93–106). Cambridge University Press: Cambridge. 

- [2021], ‘The many-worlds interpretation of quantum mechanics’, Stanford Encyclopaedia 
of Philosophy https://plato.stanford.edu/entries/qm-manyworlds/. 

 Wallace, D. [2012], The Emergent Multiverse: Quantum theory according to the Everett 
Interpretation, Oxford University Press: Oxford 

-- [2013], ‘The Everett interpretation’, in R. Batterman (ed.), The Oxford Handbook in 
Philosophy of Physics, Oxford University Press: Oxford. 

 


