
Is the Zero-Point Energy Real?

Simon Saunders
Faculty of Philosophy, 10 Merton St., Oxford.

To appear in Ontological Aspects of Quantum Field Theory, M. Kuhlmann,
H. Lyre, and A. Wayne, (eds)., Singapore: World Scientific, 2002.

Abstract

I consider the arguments to show that the vacuum energy density
should receive a large contribution from the zero-point energy.
This is the cosmological constant problem, as it was originally
framed.

1 Introduction

The nature of the vacuum state has proved to be of enduring interest
in field theory. Time and again it has been refashioned. Evidently we
need the right physical concepts, even to understand the state in which
nothing exists.

When it comes to the vacuum of quantum field theory it is increas-
ingly clear that we do not have the correct physical concepts. Of course,
concerning the Planck scale, there are plenty of reasons to question the
basic principles of field theory. But the problem I have in mind, whilst
it does concern gravity, arises at all scales. It can be posed as a problem
of elementary quantum theory. The difficulty is this: it appears that
there must remain a very large energy in the vacuum state, and that
this should contribute massively to the source terms of general relativ-
ity. It has traditionally been called the cosmological constant problem,
since this source term is proportional to the metric tensor - yielding a
value wildly inconsistent with observation. This problem has received a
great deal of attention in recent years, but there is very little consensus
as to how it may be solved.
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Here I am concerned with the original statement of the problem, in
terms of the zero-point energy of QFT. Is the zero-point energy real?
The usual argument given for it is the Casimir effect; I shall consider
this is detail in due course. But prior to that, I will attempt to gain some
historical perspective on the problem. The vacuum of field theory has
seen some radical changes, first, with the eliination of ether in classical
electromagnetism, and second, with the elimination of the Dirac nega-
tive energy sea, in quantum electrodynamics. The latter is particularly
instructive; the negative energy of the Dirac vacuum can be viewed as
the fermion zero-point energy by another name.

Both examples are cases where the vacuum turned out not to have
the problematic feature it was thought to have. The question arises
as to whether a similar fate awaits the zero-point energy - whether in
fact the cosmological constant problem (as traditionally formulated) is
a spurious one. But if so, and if the previous historical examples are
anything to go by, not just a change in philosophy is needed; there will
be a change in physics as well. I will at the close suggest a change in
philosophy, but not yet a change in the physics. My suggestion is doubly
limited, in that it has no bearing on the other ways in which the vacuum
state can pick up energy - in particular the energy shifts, possibly large,
that are expected to arise on spontaneous symmetry breaking.

2 The Cosmological Constant Problem

A common statement of the problem is as follows:

The cosmological constant problem is one of the most seri-
ous puzzles confronting particle physics and cosmology. No
symmetries or principles of General Relativity prohibit a cos-
mological constant term from appearing in the Einstein equa-
tions. Moreover, any vacuum energy such as that predicted
by quantum field theory must - according to the equiva-
lence principle - gravitate, and will act as a cosmological
constant. However, the upper bound on the present day
cosmological constant is extremely small in particle physics
units: λ

m4
Planck

< 10−122 (Brandenburger 1999).

A slightly different formulation of the CCP is as a fine-tuning problem,
with a bound that would be even smaller if we did not introduce a cut-off
at the Planck scale (on the optimistic assumption that whatever physics
comes into play in the Planck regime, it will not add to the vacuum
energy). For a cutoff Λ, the zero-point energy of a field of mass m� Λ
is (with h = c = 1) :
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∫ Λ

0
1
2

√
k2 +m2 4πk2dk

(2π)3
∼ Λ4

16π2

This quantity is just the sum of the zero-point energy over the normal
modes of the field up to the cut-off Λ. If this is set at the Planck mass,
Λ ∼ mPlanck ∼ 1019GeV , then given the current upper bound on the
cosmological constant λ < 10−29g/cm3 ∼ (10−11GeV )4, the observed
value is more than 120 orders of magnitude smaller than we expect. If
the contribution from the zero-point energy is to be cancelled by the
true cosmological constant, the latter will have to be equal to it and of
opposite sign to one part in 120 - making it the most accurately known
number in physics.

The latter observation is often greeted with irritation. It seems odd
to some that the value of a constant that need not even be introduced
into Einstein’s field equations - a move which Einstein himself later re-
pudiated - should be a problem to physics. But evidently the problem
arises whether or not there is a true cosmological constant term in the
field equations. If there is no such constant, then something else must
be found to cancel the vacuum energy.

Brandenberger goes on to suggest a mechanism whereby scalar grav-
itational fluctuations, with wavelength greater than the Hubble radius,
are formed as a back-reaction to the presence of cosmological pertur-
bations, which act as a negative cosmological constant in the de Sitter
background. He suggests this mechanism may in fact be self-regulating,
leading, more or less independent of the original value of the cosmological
constant, to an effective value to it of order unity (on the Planck scale),
which cancels the stress-energy tensor due to the zero-point energy.

This proposed solution is typical of the genre. Coleman’s well-known
proposal is the same (Coleman 1988): the cosmological constant becomes
a dynamical variable in a certain Euclidean path-integral formulation of
quantum gravity, whereby the amplitude is shown to be greatly peaked
at the net value of zero. Cancellation of the cosmological constant, with
the source term due to the zero-point energy, is the name of the game.
On Coleman’s proposal, wormholes, connecting geometries, make the
Euclidean action very large for geometries with net non-zero cosmolog-
ical constants. They therefore make vanishingly small contribution to
the path integral.

More recent attempts have considered quintessence, anthropic, k-
essence, braneworld, and holographic approaches. Indeed, the literature
is by now enormous, and still growing rapidly. Very little of it consides
the original motivation for the problem critically - whether because the
arguments are so clear-cut as to be unanswerable, or because here is
a problem worth taking seriously because there are lots of speculative
things that can be said about it. And, it is worth saying again, it is at
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least a problem of well-accepted theory, which for many faces no obvious
conceptual challenges:

Physics thrives on crisis....Unfortunately, we have run
short of crises lately. The ‘standard model’ of electroweak
and strong interactions currently faces neither internal in-
consistencies nor conflicts with experiment. It has plenty of
loose ends; we know no reason why the quarks and leptons
should have the masses they have, but then we know no rea-
son why they should not.

Perhaps it is for want of other crises to worry about that
interest is increasinly centered on one veritable crisis: theo-
retical expectations for the cosmological constant exceed ob-
servational limits by some 120 orders of magnitude. (Wein-
berg 1989, p.1).

No doubt many would be disappointed if there turns out to be no good
reason, after all, to take the zero-point energy seriously.

Here is the argument to show why the vacuum, if it contributes any
energy at all, will yield an effective cosmological constant. By the Equiv-
alence Principle, the local physics is Lorentz invariant, so in the absence
of any local matter or radiation, we should see the same physics as in the
vacuum state. But the vacuum expectation value of the stress-energy
tensor must be a multiple of the Minkowski metric. Going to a freely
falling frame, therefore, we expect to find a term λgµν on the RHS of the
Einstein field equations. Such a term characterizes a perfect fluid with
equation of state:

Pvac = −ρvac. (1)

Under an adiabatic expansion from V to V +dV , an amount of work PdV
is done, which provides exactly the mass-energy to fill the new volume
V + dV with the same energy-density ρvac. Expanding or compressing
nothing changes nothing, as one would expect. Since locally we expect
the equation

Rµυ − 1

2
gµνR =

8πG

c4
< T µν >ω . (2)

to hold for the observed metric and curvature (the c-number quantities
on the LHS), then in a local vacuum state ω we expect the RHS to
contribute a term λgµν - and, indeed, if ω is anything like the Fock space
vacuum, a formally divergent value for λ, given a zero-point energy 1

2
hν

for each normal mode of a quantum field.
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Of course the notion of a local vacuum state is not easily defined in
QFT. We cannot use number density operators to define it, for these are
non-local quantities. But one would expect that the Fock space vacuum
would give a smaller expectation value for the components of the stress-
energy tensor, than any more realistic state. There is also good reason
to suppose that there is no non-Fock vacuum in which the local stress-
energy can be zero (we shall consider this shortly). And the physical
picture of the vacuum as a fluctuating field of zero-point energy is an
extremely general one, that surely does not depend on the presence of
exact symmetries. The objection that the argument cannot be made
mathematically rigorous is pedeantic. The zero-point energy is present
in elementary quantum mechanics; it has widespread applications in
semiclassical theories of electromagnetism; it is not going to go away
because the vacuum can only be defined rigorously in the case of global
symmetries.

That is not to say that the zero-point energy is in fact real, and has
the huge value that it seems it must have. But it is widely assumed that
it is real, and it is widely assumed that there must be a mechanism in
play which tends to cancel it out. But the difficulties here are severe. It
is a conspiracy that is needed. All of the fields in the standard model will
contribute to it, so in terms of the Planck length, the cancellation will
have to be fine-tuned across all these fields. It is true that fermion fields
contribute with opposite sign to boson fields; were every fermion field
accompanied by a bosonic partner, the cancellation would be exact. But
supersymmetry, if it a symmetry at all, is a broken symmetry. The lower
bound on the mass differences of fermions and their supersymmetric
partners is of the order of few hundred GeV , so whilst it is true that for
energy scales much larger than this, we would expect to find cancellation
of the zero-point energies, we will still have a vacuum energy with cut-
off Λ ∼ 100GeV , contributing to the effective cosmological constant a
term λ ∼ (100GeV )4 - much smaller than before, but still more than 50
orders of magnitude greater than that observed.

I have said that there have been plenty of specualtive solutions to
the problem; I should add that some of them are more philosophical in
outlook, particularly those based on the anthropic principle. But among
these only those using the weak anthropic principle (WAP) appear to
me to have any credence, where it is assumed that there exist many
universes, or parts of one universe, in which the cosmological constant
takes on different values.1 In general, then, putting to one side the

1It is not clear that there is any real consensus on this matter. Weinberg, for
example, makes use of what he calls the weak anthropic principle, but according to
him in this “one explains which of the various possible eras of the universe we inhabit,
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Everett interpretation of the state - wherupon the WAP can be applied
in the context of standard quantum mechanics - these also stand in need
of new physical principles. The question here is whether the search for
such principles is well-motivated; of whether the zero-point fluctuations
are real. I shall begin with previous pictures of vacuum which did turn
out to be mistaken.

3 The Classical Ether

The history of the classical ether is familiar, so here I shall be brief. The
classical models of ether gave rise to severe problems. It appeared to need
contradictory mechanical properties, and, independent of those, it led to
the prediction of observable effects that were not in fact detected.

Why was it thought to exist at all? The answer one often meets
is that since light and electromagnetic forces propagate as waves, their
must be a substratum which is in motion; something has to wave. But
this answer is unedifying. It does not connect with the question. The
point is to explain the belief in a mechanical ether, not in something or
other which waves (the electromagnetic field is something or other which
waves). A better response is that as a matter of historical fact, wave
equations were first formulated as applications of Newtonian mechanical
principles to a mechanical medium, with movable parts - and that it
remained a problem to reconcile Newtonian principles with the subse-
quent modifications of those equations, as the theory of the luminiferous
ether progressed. In extending this theory to electromagnetic phenom-
ena, Maxwell’s use of mechanical models, as a heuristic device, is well-
known. And of course a great deal of late nineteenth century work on
the structure of electromagnetic media was directed to the investigation
of material dielectrics, again using Newtonian principles.

In Lorentz’s work the treatment of material dielectrics was initially
continuous with his treatment of ether, but the ether was progressively
shorn of its mechanical properties. Its principal role, at the end, was
to define the resting frame, to which all the electrodynamical equations
were referred - and in terms of which the properties of moving dielectrics
were analyzed. It is common to view the disappearance of the ether the-
ory, following Einstein’s intervention, as abrupt, but it would be more ac-

by calculating which eras or parts of the universe we could inhabit” (Weinberg 1989
p.7), leaving it ambiguous whether these different eras are merely possible or whether
they are actual. In particular he appears to allow, both here and in his most recent
use of the principle, that it is sufficient if the state is a superposition of components
in each of which the cosmological constant has a different value. This would permit
the use of the weak principle, as I understand it, only on the Everett or many-worlds
interpretation.
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curate to say that the ether was progressively whittled away. In Lorentz’s
hands it remained little more than a frame of reference, and a dwindling
catalog of methods for reducing differential to difference equations. It
was the grin of the Cheshire Cat.

Bell’s defence of Lorentz’s approach to special relativity illustrates
how little has changed: Lorentz would have been at home with it. Bell
defends the view that contraction and dilation effects should be under-
stood as dynamical, rather than kinematic, effects; they reflect real and
objective changes in the electromagnetic structure of measuring rods and
clocks (referred to a fixed resting frame throughout (Bell 1989)). Lorentz
would have been at home with it.

So when, precisely, did the ether disappear? Perhaps it was when
McCullogh’s ether, providing as it did constitutive equations for a contin-
uum mechanical system, giving the right boundary conditions for Fres-
nel’s ether theory; failed to be adopted; or when Maxwell, having derived
the equations for the displacement current from his system of cogs and
wheels, derived them instead (in the Treatise) abstractly, from a La-
grange function; or perhaps it was when Lorentz, struggling to derive
the Fresnel ether drag coefficient from his study of moving dielectrics, ex-
empted his molecules of ether from Newton’s third law. Einstein’s 1905
intervention, which removed not only the special status that Lorentz
thought attached to the ether frame, but Newton’s force laws as well,
delivered the death blow; but it was the coup de grâce, not the coup
mortel.

The slow realignment in our understanding of the vacuum of classical
electromagnetism, spread over more than half a century, at the same time
eroded the paradoxical properties that it was thought to require: stiff
enough to sustain transverse vibrations, whilst offering no resistance
to the motion of ordinary matter; able to support torsion, but with
a velocity field with non-zero curl; yielding no drag coefficient for a
moving dielectric, when any other pair of dielectrics in relative motion
have non-zero coefficient. All of these problems were solved, or dissolved,
in Lorentz’s theory of ether; the only problem outstanding was how to
account for the null result of the Michelson-Morely experiment, given
the absence of ether drag. And that too, along Bell’s lines, it could
eventually do.

4 The Dirac Negative Energy Sea

A second and much closer precursor to the zero-point energy problem
is the Dirac negative energy sea. This vacuum was explicitly intro-
duced to solve the negative-energy difficultly. That in turn had plagued
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every previous attempt to unify quantum mechanics and special relativ-
ity, beginning with the relativistic scalar wave equation introduced by
Schrödinger, Gordon, and Klein in 1926.

Dirac was dissatisfied with this equation. It admitted negative-
energy solutions, but further, as a second-order equation, it appeared
to him inconsistent with the basic structure of quantum mechanics. In
particular the charge-current equation yielded a conserved quantity that
was not positive definite, so one could not use it to define a positive-
definite norm. Dirac concluded, rightly, that it could not itself be inter-
preted in terms of probability. In 1928 he found the Lorentz covariant
first-order equation that bears his name, for spin-half particles, which
did yield a positive-definite norm. With that he was in a position to
define a Hilbert space. But the equation still admitted negative-energy
solutions, and it was clear that the Klein paradox could be formulated
here as in the scalar case. In general one could not simply exclude the
negative-energy solutions; the obvious candidates for interaction terms
all led to transitions from positive to negative energy states.

Dirac’s remarkable solution was to suppose that in the vacuum state
all the negative energy states were already filled. It then followed, from
the Pauli exclusion principle, that electrons could not make any transi-
tions from positive to negative energies. The exception, of course, was if
some of the negative energy states were not filled. And this could come
about easily enough, if only a negative energy electron is given sufficient
positive energy. It would then be ejected from the vacuum, leaving be-
hind it a hole in the negative-energy sea. And this hole, Dirac argued,
would behave just like a particle of positive energy, but with opposite
charge. In this way the concept of antimatter was born.

With it, automatically, came the concept of pair annihilation and cre-
ation: a negative-energy electron, given sufficient energy, would appear
as a positive-energy electron, leaving behind it a hole, i.e. a positron. A
particle and its antimatter partner would both come into being -. pair
creation. Equally, the hole could subsequently be filled; a positive-energy
electron would then disappear, as the electron enters the hole, and the
hole itself disappear - pair annihilation. All will be in order so long as
only energies relative to the vacuum have any observable effect.

These ideas translate readily into a reinterpretation of the canoni-
cal second quantization formalism, that Dirac had earlier developed to
treat the many-body problem in NRQM, and in his (non-relativistic)
treatment of radiation as a boson ensemble. In this formal framework,
many-body operators dΓ(X) are defined, for any 1-particle operator X,
by replacing what in NRQM would be the expectation values of X by
the corresponding expression in which the state (ket) ψ is replaced by
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a q-number field Ψ (the annihilation field), and the conjugate (bra) re-
placed by the adjoint field (the creation field). Thus, in the case of the
Hamiltonian H, using the position representation:

< H >=

∫
ψ∗(x, t)Hψ(x, t)d3x→ dΓ(H) =

∫
Ψ∗(x, t)HΨ(x, t)d3x.

(3)
Note that the RHS is a q-number, whereas the LHS is a c-number. Note
further that the annihilation field always stands to the right, so such
expressions always annihilate the vacuum; the vacuum is always the zero
eigenstate of the total energy.

Even more so than in elementary quantum mechanics, the momen-
tum representation has a special status. Let b∗r(

−→p ), br(
−→p ) be, respec-

tively, the creation and annihilation fields for a positive-energy solu-
tion to the free Dirac equation, with 3-momentum −→p and bispinor wr,
r = 1, 2. For each p the set of such bispinors is a 2-dimensional vector
space, so any such solution can be written as a linear combination of
these creation operators applied to the vacuum. Let b∗r+2(

−→p ), br+2(
−→p )

be the corresponding operators for the negative energy bispinor wr+2,
r = 1, 2. Let p0 = +

√−→p 2 +m2. Then the annihilation field Ψ(x, t) has
the Fourier decomposition:

Ψ(x, t) =

∫ ∑
r=1,2

[wr(
−→p )br(

−→p )e−i(pot−−→p .−→x )/~+wr+2(
−→p )br+2(

−→p )ei(pot+−→p .−→x )/~]
d3p

p0

.

(4)
It involves annihilation operators only. The Fourier expansion for the
adjoint field only involves creation operators. We now follow the recipe
of second quantization, Eq(4), using (5) and its adjoint, for the free-
field Hamiltonian H = ±p0 (in the momentum representation) and the
charge −e (a multiple of the identity). The total energy and charge are
then:

dΓ(H) =

∫ ∑
r=1,2

p0[b
∗
r(
−→p )br(

−→p )− b∗r+2(−−→p )br+2(−−→p )]
d3p

p0

(5)

dΓ(−e) = −e
∫ ∑

r=1,2

[b∗r(p)br(p) + b∗r+2(−−→p )br+2(−−→p )]
d3p

p0

. (6)

Necessarily, in accordance with (3), these operators still annihilate the
vacuum, since the annihilation operator automatically appears on the
right.
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So far everything has been done in exact (in fact in rigorous) corre-
spondence to NRQM. Now for the change in the physical picture, and
corresponding to that, a change of notation. We are going to consider
that all the negative energy states are filled. Since the absence of a
negative energy electron with bispinor wr+2 and 4-momentum (−p0,

−→p )
behaves just like the presence of a positive energy particle of opposite
charge, the annihilation of the former is equivalent to the creation of
the latter, and vice versa. Furthermore, the operators (5), (6) and (7)
do not annihilate this new vacuum state. To reflect these facts, denote
b3(−−→p )by d∗1(

−→p ), and b∗4(−−→p ) by d2(
−→p ). Also introduce new notation

for the bispinors, denoting wr by ur and wr+2 by vr . In terms of these
notational changes, the Fourier expansion for the field Ψ (before a pure
annihilation field, as given by Eq.(5)) becomes:

Ψ(x, t) =

∫ ∑
r=1,2

[ur(p)br(p)e
−ipx/~ + vr(p)d

∗
r(p)e

ipx/~]
d3p

p0

(7)

Evidently it does not annihilate the new vacuum; “effectively”, it is a
sum of (hole) creation and (electron) annihilation fields. Concerning
(6), (7), here we want to end up with second quantized expressions
which do annihilate the new vacuum, so let us re-order terms in these
expressions so that the effective annihilation operators always stand to
the right. These operators must obey anticommutation relations, so as
to preserve the antisymmetrization of the states they act on, so this
introduces a change in sign. It also introduces the c-number value of the
anticommutators, which we must integrate over (a divergent integral).
We thus obtain:

dΓ(H) =

∫ ∑
r=1,2

p0[b
∗
r(
−→p )br(

−→p ) + d∗r(
−→p )dr(

−→p )]
d3p

p0

− infinite constant

(8)

dΓ(−e) = −e
∫ ∑

r=1,2

[b∗r(
−→p )br(

−→p )−d∗r(−→p )dr(
−→p )]

d3p

p0

− infinite constant.

(9)
The infinite constants are readily interpreted as the energy and charge
(both negative) of the Dirac vacuum. The change in sign makes the
q-number part of the total energy non-negative, that of the total charge
indefinite. Each involves number operators for the electrons out of the
sea, and the holes, the positrons, in the sea. In both cases they have
only positive energies.
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Evidently this theory brings with it a problem exactly like the zero–
point energy difficulty - a vacuum energy twice the value of the latter for
each p, r, but only for the negative-energy states. Indeed, the cancella-
tion of the zero-point energy for fermion fields (negative) and boson fields
(positive), given unbroken supersymmetry, is replicated using the hole
theory instead. The negative-energy fermion sea cancels the zero-point
energy of the associated boson and antiboson fields.

A comparison with the classical ether is also instructive. The Dirac
vacuum was formulated in terms of traditional mechanical principles
(traditional both in classical and quantum mechanical terms). In par-
ticular it was based on the principle that particle number is conserved.
In the hole theory pair creation and annihilation processes are always
transitions between states of the same number of particles. The functor
dΓ of the second-quantization process yields operators which always pre-
serve particle number. This was not of course a metaphysical principle,
on a par with the principle that there must be a bearer of the motion
of waves - but then neither was the latter a very plausible basis for the
commitment of classical ether theorists to the ether. Its roots, like the
roots of the ether, were pragmatic: there was no known method for in-
troducing particle interactions, nor for so much as defining a quantum
or classical particle system, other than in terms of a phase space of fixed
dimensionality. It was the same in the case of Dirac’s quantization of the
electromagnetic field four years previously. There too, although it was
clear that photon number should be subject to change, Dirac modelled
such processes in terms of transitions between states which preserved
particle number. In this case the transitions were to and from a sea of
zero-energy photons. There too photon number was preserved.

The negative energy sea was effective in other ways as well. Like the
classical ether, it was a fertile source of heuristics. Dirac was quickly
led to the concepts of vacuum polarization, and of contributions from
the sea to the effective charge and mass of the electrons and holes. But
equally, and again in parallel to the classical ether, the new vacuum did
not really make physical sense. It was hard to take the theory as literally
true - it was “learned trash”, in Heisenberg’s words. But equally, it was
not quickly or easily dispensed with, not even after the negative energy
difficulty was dealt with by field quantization, where no explicit mention
of the negative energy sea need ever be made.

The field-theory which replaced the hole theory was introduced by
Heisenberg and Pauli in 1932. There was to be no correspondence with
n-particle quantum mechanics. There was no canonical second quanti-
zation. There was to be a field (and an adjoint field) now taken to be
fundamental, obeying anticommutation relations which were understood
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as quantization rules. Each was written down as before as a Fourier ex-
pansion in normal modes, but now the coefficients of these expansions
were interpreted ab initio as a combination of antiparticle creation and
particle annihilation fields, exactly as in Eq.(8). The global operators
for the field could be obtained in formally the same way as with the
second-quantized theory (as in Eq.(4)), but they were to be understood
in terms of the generators of the symmetries of a field Lagrangian. Of
course, the q-number fields were to have the very particular action on
the vacuum - no longer a negative-energy sea! - as given in Eq.(8),
acting on the Dirac vacuum. For this no explanation was given. The
re-ordering process was still to be used, because with the field (8), en-
tering into expressions of the form (4), one obtains creation fields to
the right; but now the c-number values of the anticommutators were
simply discarded. It was called normal-ordering. It was viewed as part
of the increasingly elaborate procedure for isolating finite expressions
in perturbation theory. Only one infinite negative term was allowed an
occasional physical explanation: a (negative) zero-point energy.

Much more common was to reserve physical interpretation only for
normal-ordered quantifies. In terms of the normal-ordered energy, the
vacuum of the field theory has zero energy. For two generations physi-
cists have shifted back and forth between the view that the subtractions
of renormalization theory are no more than formal, and the view that
they reflect real physical quantities. The Dirac vacuum provided a clear
physical picture of all these subtractions, based at was on the canonical
formalism of NRQM, and, apart from certain notable exceptions, for at
least for one generation of physicists - Dirac’s generation - this picture
remained the fundamental one. Witness Wightman:

It is difficult for one who, like me, learned quantum elec-
trodynamics in the mid 1940s to assess fairly the impact of
Dirac’s proposal. I have the impression that many in the
profession were thunderstruck at the audacity of his ideas.
This impression was received partly from listening to the
old-timers talking about quantum-electrodynamics a decade-
and-a-half after the creation of hole theory; they still seemed
shell-shocked. (Wightman, 1972 p.99)

One might add that Wightman never had to accept the hole theory; he
never had to work with it. Fiction is never shell-schocking.

A further blow for the Dirac vacuum came with Pauli and Weiskopf’s
treatment of the complex scalar field, using commutator relations, soon
after - with a similar interpretation of the Fourier expansion as the
electron-positron field, with similar normal ordering prescriptions, and
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with its application to the new field of meson physics. With that antipar-
ticles were seen as ubiquitous; they were the appropriate field-theoretic
account of the negative energy terms, likewise ubiquitous in relativistic
quantum theory, with no special connection to the Pauli exclusion prin-
ciple. Obviously with scalar fields there could be no question of a filled
negative energy sea.

There is a last chapter to this story, but a contentious one. If we con-
sider again the classical ether, the situation vis a vis the Dirac vacuum
is closer to Lorentz’s position on the ether than to Einstein’s. (Quan-
tum) mechanical principles are no longer applied to the QED vacuum;
the explanations that it offers of pair creation and annihilation events, in
NRQM terms, are no longer valued; but still there lurks a story of sorts to
be told, to account for the plane-wave expansion Eq.(8), as there lurked
a story to be told to explain the length contraction and time-dillation
effects in classical electrromagnetism. There is an analog to the Lorentz
pedagogy; call it the Dirac pedagogy. Even very recent introductions to
the subject make use of it. The Dirac vacuum is not taken realistically
- indeed, it is sometimes introduced without even mentioning the hole
theory - no more than the Lorentz pedagogy takes seriously the resting
frame, or makes mention of ether. But what is missing is an alternative
account of the plane wave expansion, and of the details of the relationship
of negative energy states to antiparticles, and of the meaning of normal
ordering. There is as yet no good analog to the Einstein-Minkowski
geometric account of contraction and dilation phenomena, in terms of
invariant intervals between events. One explains these phenomena very
simply, as the consequence of taking different events as the simultaneous
end-points of rods, and as the simultaneous ticks of clocks, depending
on one’s choice of simultaneity.

Is there an alternative explanation for the plane-wave expansion -
for how antiparticles get into the theory? It can certainly be shown
that only fields built up out of creation and annihilation fields for two
kinds of particles, as given by Eq.(8) and its adjoint, can be Lorentz-
covariant, satisfy microcausality, and transform simply under a U(1)
gauge symmetry (Weinberg 1964). The two kinds of particles have to be
identical in all respects, but of opposite charge. On this approach one
starts from the free one-particle Hilbert space theory, using the Wigner
classification of the irreducible representations of the Poincaré group.
Creation and annihilation operators can be defined in these terms over
the associated Fock spaces, just as in NRQM.. But one never in this way
makes any mention of negative-energy states, and the normal ordering
process is unexplained.

Weinberg’s account of the structure of free-field theory is on the
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right lines, but it can certainly be improved on. For this we need Segal’s
method of quantization, itself a fragment of what is nowadays called
geometric quantization. Given a complex structure J on the classical
solution manifold V of a linear system of equations - a linear map such
that J2 acts as minus the identity - and given a non-degenerate bilinear
form S on V , one can always define a Hilbert space VJ , and from this
construct a Fock space F (VJ) over VJ . If these equations and the bilinear
form are covariant, this Hilbert space will inherit their covariance group.
In the symmetric case, define the Segal field abstractly, as a linear map
Φ from V to self-adjoint operators on a suitable Hilbert space:

{Φ(f),Φ(g)} = ~S(f, g). (10)

A field with these properties can be represented concretely, given the
creation and annihilation fields on F (VJ), by the relations:

ΨJ(f) =
1√
2~

(Φ(f) + iΦ(Jf)) (11)

Ψ∗
J(f) =

1√
2~

(Φ(f)− iΦ(Jf)) (12)

From the anticommutator (11), ΨJ and Ψ∗
J obey the anticommutators

characteristic of annihilation and creation operators on the antisymmet-
ric Fock space, and vice versa. These anticommutators vanish for f, g
with spacelike separated supports, if S does.

If one begins with a complex system of Poincaré-covariant equations,
there are always two possible choices of J . One of them is just mul-
tiplication by i, denote JN . It is local, but the energy it gives rise to
(when used in Stone’s theorem, for the generator of translations in time)
is indefinite. The other choice, denote JP , makes use of the decomposi-
tion of the classical solutions into positive and negative frequency parts
(positive and negative “energies”). This is non-local, but gives a positive
energy. The two are related by the Segal field Φ, which is independent
of the complex structure. One then finds that (with f+(f−) the positive
(negative) frequency part of f):

ΨJN
(f) = ΨJP

(f+) + Ψ∗
JP

(f ) (13)

Ψ∗
JN

(f) = ΨJP
(f−) + Ψ∗

JP
(f+). (14)

The quantities on the left, defined with respect to the local complex
structure JN , are the local, causal fields; they have exactly the interpre-
tation we have been seeking, in terms of the creation and annihilation
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operators defined using the non-local complex structure. Eq.(12) is the
abstract analogue of Eq.(8). Dirac was canonically second-quantizing
using the local complex structure, so using the ΨJN

’s in Eq.(4). By lin-
earity, this ensures the invariance of such terms under rotations in the
local complex structure. This in turn forces charge conservation. But he
used the same complex structure to define their particle interpretation,
their Fock-space action. In this way he forced number conservation too,
but at the price of introducing negative energies. These same interac-
tion terms are not invariant under rotations in the non-local complex
structure, the one which ought to be used to define the particle inter-
pretation. Particle number is correspondingly not preserved by them.
Introducing the negative energy sea is in fact a way to switch between
one complex structure and the other. If one normally-orders canonically
second quantized operators, defined on F (VJN

), one obtains the canon-
ically quantized operators, defined on F (VJP

). In this sense the normal
ordering process likewise switches between the two complex structures
(Saunders 1991). But the canonical second quantization cannot be used
to define local bilinear quantities, in particular couplings to other fields,
so this correspondence is not of much use outside of free-field theory, for
the global quantities.

This same framework applies to boson fields, save that there one has
an antisymmetric bilinear form (a symplectic form). The Segal field in
this case satisfies commutation relations, but otherwise the same anal-
ysis goes through.The fact that the non-local complex structure is the
one that is used at the level of the Hilbert-space theory, in both cases,
also explains why there is no local, covariant position operator in rela-
tivistic quantum theory (Saunders 1992). The analysis applies equally
to NRQM, save that there the two complex structures coincide.

With that the Dirac vacuum can, I think, finally be laid to rest.
We have not replaced it with a better physical picture, but we have
shown why any linear, Lorentz covariant system of equations, used to
define a one-particle Hilbert space and a Fock space over that, will lead
to the two systems of fields, related in a way which can be explained
using the hole theory (in the case of a symmetric bilinear form). We
see why, both for bosons and fermions, the negative energy states are
associated with antiparticles; we see why interactions built up from local,
covariant, gauge invariant quantities, automatically lead to pair creation
and annihilation processes. And we have some insight into the meaning
of the normal ordering process.

I do not believe there is a negative energy sea. But whilst we under-
stand the normal ordering in the free case, and can see that it yields the
true vacuum energy using the non-local complex structure - the correct
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one for defining a positive energy particle interpretation - with value zero
(i..e. < dΓ(H)JP

>ω, where ω is the vacuum of F (VJP
)), to conclude

from this that there is no vacuum energy is to suppose that really the
theory concerns particles; that the fields are only devices for introducing
local interactions; that if there are no particles present, there is no field.
To solve the cosmological constant problem in this way, one will have
to say the same for both fermion and boson fields. And even if one is
prepared to do this, there will remain the problem of vacuum expecta-
tion values of local bilinear self-adjoint expressions, using the local fields
(14), (15), which cannot be normal-ordered (normal ordering is a global
procedure). What of these?

5 The Reality of Zero-Point Fluctuations

If one takes quantum fields as fundamental, rather than as devices for
introducing local particle interactions, then there is a clear intuitive
argument for supposing the ground state has non-zero energy, deriving
from the elementary theory of the harmonic oscillator.

This is again non-local, depending as it does on the Fourier decom-
position of the field into normal modes, and with that the particle in-
terpretation. A more direct argument is possible, which shows that the
Minkowski vacuum cannot be a zero eigenstate of the local fields. I have
said that these cannot be normal-ordered, as normal-ordering is a global
operation. A much stronger claim can be made: the vacuum cannot be
a zero eigenstate of the stress-energy tensor, whatever subtractions are
made to it.

A first-point to make is that no positive-definite operator, like the
square of electric field, can have zero expectation value in any state.
Now consider the CCR’s for the components of the stress-energy tensor
T µν :

[T 0k(x), T 00(x′)] = −i(T 00(x)∂kδ(x− x′)− i(T kl(x′)∂lδ(x− x′) (15)

(see Schwinger 1973 p.26). If we replace T by T̃ = T + kM, for some
matrix of real numbers M , then from the commutator it follows that M
will have to be a multiple of the Minkowski metric g. But in that case,
if we require that all the components of T̃ vanish in the vacuum:

< T̃ 00 >=< T̃ 0k >=< T̃ kl >= 0 (16)

then certain constraints follow:
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< T 00 +
1

3
T kk >= 0. (17)

(Here the Einstein summation convention applies.) In the case of the
electromagnetic field, T kk = T 00, so:

4

3
< T 00 >= 0. (18)

Since T 00 is 1
2
(
−→
E 2 +

−→
B 2), a positive definite operator, Eq.(18) cannot be

satisfied.
The vacuum state is therefore not an eigenstate of the components

of the stress-energy tensor, whatever subtractions are introduced. In
consequence it is pictured as fluctuating, a picture which is clearly in
evidence in vacuum polarization effects in perturbation theory, where
one interprets bubble diagrams for internal lines as virtual pair creation
and annihilation events.

Of course in perturbation theory such expressions are formally diver-
gent. One does eventually obtain finite expressions, small in QED, re-
flecting such contributions. One might grant that the vacuum in QFT is
a non-zero eigenstate of the energy, but yet hope the quantities involved
are small. It may be on a naive approach one ends up with divergent
expressions, as for the zero-point energy; a more careful analysis may
lead to different conclusions.

This point of view appears to me to be perfectly sound, but it is
hard to evaluate it in the absence of a quantum theory of gravity. The
point about renormalization theory - and this is especially evident in
renormalized perturbation theory, where one introduces counterterms at
each order, and in this way obtains controlled and finite contributions
from the perturbation considered - is that one is always interested in
shifts in physical quantities - be it the energy or coupling constant or
charge - relative to a baseline. The theory is always defined at a certain
scaleM ; the conventions there adopted remove all ultraviolet divergences
by fiat. One then imagines a shift in the scale M , with a corresponding
shift in the renormalized coupling constants, field strengths, and Green’s
function. The renormalization group equation tells us how these shifts
are interrelated. One never considers the absolute values - but just these
are what are relevant, uniquely, to gravity.

On the older approach to renormalization theory, where one does
not introduce counterterms, the procedure for extracting finite parts of
formally divergent expressions assumed that the bare values of the cou-
pling constants and so on have whatever (infinite!) value are necessary
to yield the phenomenologically observed values. It is hard to see how
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this sort of procedure could be applied to eliminate the zero-point en-
ergy, however, unless it amounts to the view already considered, where
one simply introduces a cosmological constant to cancel it - to one part
in 10120. Of course the cancellations needed between formally infinite
quantities, to yield the observed phenomenological parameters, are in-
finitely more exact. One cannot take these cancellations seriously. It is
surely for this reason that Schwinger, one of the greatest practitioners of
the older methods of renormalization theory, was increasingly driven to
the more radical step, of viewing fields as wholly tied to their sources, so
that there is no field in the absence of sources - and of backing this up
with a very different perspective on field theory, which essentially does
without q-number fields altogether (the so-called source theory).

Renormalization group methods, and the many applications of them
to condensed matter physics as well as to RQFT, have considerably im-
proved the situation. And whilst there are surely vacuum polarization
effects leading to energy shifts in observed quantities, and good argu-
ments to show that the vacuum cannot be an exact eigenstate of the
local stress-energy tensor, there seems to be no good reason to suppose
the vacuum energy will be excessively large - except for the zero-point
energy.

I have already indicated one solution: one views the fields as auxiliary
devices, used to introduce local interactions among the real objects of
the theory, the particles. Schwinger’s program, of eschewing q-number
fields altogether, is a further and more radical step, motivated as much
by the unsatisfactory status of renormalization theory as Schwinger knew
it as by the problem of the zero-point energy. But even on the former
approach is revisionary; it is not simply a shift in interpretation; one
has yet to give a principled distinction between field quantities which
are real, reflecting the properties of particles, and those which are fic-
titious. There is moreover the further argument for the reality of the
zero-point fluctuations, considered by many as direct evidence for them:
the Casimir effect. It is high time we considered it in detail.

Casimir’s discovery, recall, was that an attractive force acts between
parallel, conducting plates, separated by a distance a, of magnitude (per
unit area):

P = ~c
π2

240

1

a4
. (19)

His explanation for it was beautifully simple. It is that the presence of
the plates imposes boundary conditions (Dirichlet condition) on the sta-
tionary modes of the electromagnetic field. In particular, wavelengths
λ > a are excluded, even in the case of the vacuum fluctuations; there-
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fore, if plates are brought further apart the energy density between the
plates increases, as normal modes of longer wavelength can then come
into play; so work has to be done to separate the plates.

There is an another explanation. There are fluctuations in the po-
larization fields associated with the electrons in the conducting plates
(realistically, no metal is a perfect conductor at arbitrarily high frequen-
cies), and these couple with each other, giving rise to van der Waals
forces. The coupling can be modelled either in terms of distance forces,
or as mediated by electromagnetic fields with these fluctuating polariza-
tion fields as sources.

This explanation is due to Lifshitz. He introduced a random polar-
ization field for a material of dielectric constant ε0; the expression he
derived for the resulting pressure, from their mutual attraction, is:

P =
~cπ2

240a4
(
ε0 − 1

ε0 + 1
)2ϕ(ε0) (20)

where ϕ is a function with the limiting behavior, for ε0 →∞ :

ϕ(x) → 1− (
1.11
√
ε0

) ln(
ε0
7.6

). (21)

In the limit Eq.(22) and (20) coincide. Of course one should not take this
limit seriously, as then one has a perfect conductor, and there will be no
polarization field, but the point is that one has approximate agreement
with the observed Casimir force. Casimir himself had to introduce a
high-frequency cut-off to obtain a finite result; he too made the same
assumption.

But Lifshitz’s methods are perfectly consistent with the interpreta-
tion of the effect in terms of vacuum fluctuations. Whence the random
fluctuations in the dielectric medium, in the zero-temperature limit? On
general physical principles, such fluctuations should be dissipative, and
equilibrium can only be reached if there are likewise fluctuations in the
electromagnetic field in the cavity. That is just the picture invoked by
Casimir: even at zero temperature, there is a residual energy density in
the vacuum. Lifshitz’s argument can therefore be seen as strengthening
Casimir’s.

It is worth remarking that the Casimir effect does not always give
rise to an attractive force. In fact it is repulsive in the case of spherical
shells, a discovery which killed off a speculative attempt to calculate the
fine-structure constant e2/~c from first principles. The old Abraham-
Lorentz model, recall, supposed the electron, in its rest frame, to be a
charged conducting spherical shell of radius a. Its electrostatic energy is
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Ee = e2/2a (22)

with a corresponding tension e2/8πa4, tending to expand the shell. In
view of his results for parallel plates, Casimir suggested that there would
be an energy Ec associated with the sphere which would increase with its
radius, so giving rise to a compensating attractive force. On dimensional
grounds this will be of the form:

Ec = −C(~c/2a) (23)

So that the resultant tension in the surface will vanish if C equals the
fine structure constant. Using the parallel plates result, approximating
a sphere of radius a as two plates of area πa2 a distance a apart, one
finds

C ≈ 0.09 (24)

which is only a factor 10 off from the fine-structure constant. Actu-
ally, this rough calculation is numerically correct; C is of the order
0.09 (Boyer 1968). But the energy decreases with increasing radius; the
Casimir force is repulsive, in the case of a sphere, not attractive. More
generally, the Casimir effect turns out to be extremely sensitive to the
geometry of the boundaries involved, as well as their composition (and
to the space-time dimension, curvature, and type of field).

The fact that repulsive forces can be obtained has been cited as a
reason for rejecting the interpretation of the effect in terms of van der
Waals forces (Elizalde and Romeo 1991), on the grounds that the lat-
ter are always attractive. But this claim is a dubious one; dipole and
higher moments can give rise to repulsive forces as well as attractive ones;
neither can the overall, collective behavior, of polarization fields in di-
electrics, be obtained by simple additive effects of constituent molecules,
no more than from additive effects of vacuum fluctuations. In fact nei-
ther explanation - neither in terms of van der Waals forces, nor in terms
of zero-point fluctuations - gives a simple account of the dependence of
the sign of the force on the geometry of the conductors.

I have already remarked on Schwinger’s source theory. It was first
applied by Schwinger to the Casimir effect in 1975; more refined studies
were presented in 1977 and 1978. It was granted that “the Casimir effect
poses a challenge for source theory, where the vacuum is regard as truly
a state with all physical properties equal to zero”. The approach that
was taken was similar to that of Lifschitz:

The Casimir effect is a manifestation of van der Waals
forces under macroscopic circumstances. When material, un-
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charged bodies are present, whether dielectrics or conductors,
nonvanishing fluctuating electric and magnetic fields are gen-
erated, which give rise to stresses on the objects. These fields
may be most easily expressed in terms of Green’s functions
evaluated in a source theory formulation of quantum electro-
dynamics. (Milton et al 1977).

To give a flavour of the analysis, one starts from the electric and magnetic

fields defined by the source field
−→
P , just as for a polarization field:

∇×
−→
H = ε

·−→
E +

·−→
P , ∇ · (ε

−→
E +

−→
P ) = 0 (25)

The fundamental objects in the theory are the Green’s functions
−→
Γ (x, x′)

by means of which the fields and sources are related:

−→
E (x) =

∫ −→
Γ (x, x′) ·

−→
P (x′)d3x. (26)

The general method is to consider the change in the action (or the en-
ergy), expressed as integrals over the sources, on variation of the pa-
rameters determining the geometry of the dielectrics: by subtracting
the vacuum Greens function (spherical case), and by variation of the di-
electric constant (parallel conductors, corresponding to a change in the
distance between the plates). In the latter case Schwinger discards a
term which he identifies as the change in vacuum energy. The change in
energy defined by the volume integral of the fields (including the polar-
ization fields), due to variation of the dielectric constant δε is:

δE =
i

2

∫
δε(r, ω)Γkk(r, r, ω)

dω

2π
(dr). (27)

The polarization field
−→
P has dropped out of the analysis. What remains

is the computation of the Green’s function; its components Γkk are given
by the expression:

Γkk = [ω2gE +
k2

εε′
gH +

1

ε

∂

∂z

1

ε′
∂

∂z′
gH ] |z=z′ (28)

where the g’s are the Green functions for the electric and magnetic field
satisfying, for the electric field:

[− ∂2

∂z2
+ k2 − ω2ε]gE(z, z′) = δ(z − z′) (29)

(the equation for the magnetic case is similar). Of the term contribut-
ing to δE, which Schwinger interprets as the change in volume energy,
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he says: “Since this term in the energy is already phenomenologically
described, it must be cancelled by an appropriate contact term”. But
it is not clear that this is correct; the analysis throughout has been in
terms of the phenomenological quantities; the maneuver appears to be
ad hoc.The remaining method used by Schwinger, whereby the radial
component of the stress-energy tensor for the electromagnetic field is
calculated, likewise involves an infinite subtraction. It is justified with
the words: “No physical meaning can be ascribed to such a term, how-
ever, since no stress can arise from a homogeneous dielectric (as such it
can be canceled by a contact term)”. This term too has the same form
as the expression for the vacuum energy arising in Casimir’s calculation.

Whatever the virtues of Schwinger’s source theory, transparency, and
statements of clear and systematic principles, are not among them. I do
not believe his methods deliver an unambiguous verdict on this matter.

The essential question remains: are the conductors the source of the
vacuum energy, if any, in the region bounded by the conductors? If so
there is no evidence, coming from this quarter, for the zero-point energy.
The argument that it is not is as stated: no equilibrium would then seem
to be possible. By the fluctuation-dissipation theorem, the system will
be dissipative. The principle is an extremely general one.

Against this Rugh, Zinkernagel and Cao (1999), in their review of
the various treatments of the Casimir effect, have suggested:

The answer seems to be that there is no place for the
dissipated energy (from the dipole) to go. If there is no
vacuum field (in standard QED, an ensemble of harmonic
oscillators) where the energy can be dissipated into, then
there is no vacuum-dipole fluctuation-dissipation theorem.

The proposal will have to more radical than merely repudiating the vac-
uum of QED, however. They will have to impugn the reality of classical
fields as well. This is not a claim that can be underwritten by the source
theory, for example; it is not as though Schwinger considered the c-
number fields as unreal. Rugh et al also make another suggestion: why
not adopt the Lifschitz’s view, accepting that equilibrium is maintained
by appeal to vacuum fluctuations between the plates, but suppose that
such fluctuations are brought into existence by the plates? But that
will hardly do, unless such fluctuations are brought into existence not
only between the plates, but everywhere in space; for the combined sys-
tem will in that case be dissipative, with nothing beyond it to restore
equilibrium.
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6 Conclusion

We cannot lightly abandon general arguments on the nature of ther-
modynamic equilibrium. Wherever the vacuum state is probed, we see
evidence of stochastic activity. I do not think we can do without appeal
to the zero-point energy in explaining the Casimir effect. It is also clear
that vacuum fluctuations have similar applications in other instances.
For example, they can also be used to explain the thermal background
predicted for accelerating detectors (the Unruh effect). As Sciama (1991)
and others have argued, this background would be expected if the detec-
tor is sampling the zero-point spectrum along non-inertial trajectories.
In a semiclassical treatment, if one evaluates the 2-point function along
world-lines of constant acceleration, one obtains a thermal distribution
at the Unruh temperature. And the picture of the vacuum that arises
makes it perfectly clear that it contains energy:

How can a unit volume of empty space contain energy?
The answer in part lies in the fact that, according to quantum
mechanics, physical quantities tend to fluctuate unavoidably.
Even in the apparent quiet of the vacuum state pairs of parti-
cles are continuously appearing and disappearing. Such fluc-
tuations contribute energy to the vacuum. (Abbott 1988).

But what comes to the fore in these explanations is that they are
semiclassical ones. They are explanations which could equally be made
on the assumption of a classical stochastic background. That assump-
tion is in fact enough to derive a surprisingly large fragment of quantum
electromagnetic phenomenology, on a purely classical basis. By Sudar-
shan’s theorem, one has to go to effects involving 4-point correlations
to find an application that cannot be treated in semiclassical radiation
theory.

There are evident parallels with the situation regarding the classical
ether and the Dirac hole theory. In both cases a presumed structure to
the vacuum extended the reach of familiar physical concepts into a novel
terrain. The zero-point energy extends the reach of classical stochastic
theories. This presumed structure to the vacuum led to internal ten-
sions; they were resolved not by simply jettisoning the medium, but be
reformulating it in terms of different dynamical principles - purely elec-
tromagnetic ones, in the classical electromagnetic case (giving up New-
tonian force laws, and ultimately Newtonian space-time), and purely
local quantum principles, in the case of the hole theory (giving up the
framework of NRQM). Is something similar possible in the case of the
zero-point energy?
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It seems we can go at least part way on this strategy. The familiar
concept in the case of QED vacuum is the idea of a stochastic back-
ground. I do not doubt that there is evidence for it, but it is another
matter to suppose the vacuum is a state of fluctuation fields even when
there is nothing to probe these fluctuations. It is a natural assumption
that the fluctuations are there even when nobody looks, but one only
has to put the matter in these terms for it to appear immediately in
doubt: it is too closely linked to the general interpretational problem of
quantum mechanics. It is the uncritical view, that underlying laboratory
phenomena, at the microscopic scale, is a world of chancy events. It is
the world it is the aim of stochastic hidden variable theories to describe.

In point of fact, on every other of the major schools of thought on the
interpretation of quantum mechanics - the Copenhagen interpretation,
the pilot-wave theory, and the Everett interpretation - there is no reason
to suppose that the observed properties of the vacuum, when correlations
are set up between fields in vacuuo and macroscopic systems, are present
in the absence of such correlations. This is clear in the Copenhagen
interpretation, if for no other reason than on this approach no statement
at all can be made which is not tied to a definite experimental context.
It is also true on the Everett interpretation, at least on those versions
of it in which the preferred basis is not viewed as fundamental; where
it is significant only because it the basis to be used to define stable,
complex dynamical systems, of the sort that we are made of.2 On this
approach there are no probabilistic events underlying our macroscopic
environment, unless and insofar as correlations have been established
with them. And it is true on the pilot-wave theory as well. In this theory
nothing is in motion in the quantum vacuum. Take, for simplicity, the
harmonic oscillator. The phase of the ground-state is independent of
the position. It can be chosen as a constant. In this circumstance the
particle - I am talking of the pilot-wave theory of NRQM - is stationary.
Nothing at the level of the beables is in motion. It is the same with the c-
number fields in the pilot-wave theory of QFT: nothing is moving in the
vacuum. (This is true even though the uncertainty relations show there
is statistical dispersion.) And as for the “effective” collapse of the wave-
function in the pilot-wave theory (where one gets rid of terms entering
into the overall superposition which no longer significantly contribute
to the quantum potential), this is governed by decoherence theory just
as in the Everett approach. Nothing like this goes on in the ultraviolet
limit.

2Equivalently, the preferred basis problem is explained by the WAP. For the ar-
gument that the basis must be consistent, see Saunders (1993), Halliwell (1994); of
course one wants quasiclassicality, not just consistency.
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It seems that the suggestion of Rugh et al may be on the right lines
after all, save that it is not that there is no field in the vacuum, ready to
act as a sink for the fluctuating fields established between the plates; it
is that fluctuations themselves only extend so far into the microworld, as
there are mechanisms in play to establish correlations with macroscopic
phenomena.

But if the earlier problems with vacuum are any guide, this can only
be a part of the story. It is one thing to shift the physical picture of the
vacuum, but quite another to fill it out quantitatively. If the stochastic
background is real, but only insofar as it is correlated with matter, then
how is its contribution to be calculated? It may be that here is a basis
to explain the observed approximate parity between the energy density
of vacuum and matter,3 And there remain the unkown, but possibly
large shifts in the vacuum energy density due to spontaneous symmetry
breaking: evidently gravity had better couple to the net stress-energy
tensor with the shifted vacuum as baseline; but why should be this be
so, and how this coupling is to be regularized, poses entirely different
problems.
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