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Abstract. Reverse inference is a crucial inferential strategy used in cognitive neuroscience 

to derive conclusions about the engagement of cognitive processes from patterns of brain 

activation. While widely employed in experimental studies, it is now viewed with increas-

ing scepticism within the neuroscience community. One problem with reverse inference 

is that it is logically invalid, being an instance of abduction in Peirce’s sense. In this paper, 

we offer the first systematic analysis of reverse inference as a form of abductive reasoning 

and highlight some relevant implications for the current debate. We start by formalising 

an important distinction that has been entirely neglected in the literature, namely the dis-

tinction between weak (strategic) and strong (justificatory) reverse inference. Then, we 

rely on case studies from recent neuroscientific research to systematically discuss the role 

and limits of both strong and weak reverse inference; in particular, we offer the first ex-

ploration of weak reverse inference as a discovery strategy within cognitive neuroscience. 
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Abductive inference is reasoning backwards from facts to their possible explana-

tions, or from effects to their possible causes. It is at play in a wide array of contexts, from 

science to everyday life; for instance, when we infer that it rained since the grass is wet, 

or when a doctor diagnoses a strep throat from fever and white spots on the patient’s 

tonsils. Starting at least with Peirce, philosophers studied abduction – often under the 

label “inference to the best explanation” – both from a logical point of view and in con-

nection with the methodology of science and of different expert practices. Despite a dec-

ade-long discussion, no consensual view of the nature, role, and significance of abductive 

reasoning has emerged so far. Disagreement has to be registered at various levels. One 

central debate concerns whether abduction has a mainly heuristic function— that of gen-

erating new explanatory hypotheses and assisting discovery—or also a justificatory role, 

one of evaluating and possibly accepting selected hypotheses. Moreover, some authors 

even doubt that abduction is really important or needed in ordinary and scientific infer-

ence (e.g., Norton 2016), and question the idea that explanatory considerations can have 

a place within ordinary Bayesian confirmation theory (for relevant discussion, see, e.g., 

Niiniluoto 1999, 2018; Lipton 2004; Douven and Schupbach 2015; Schurz 2017). 

Quite unrelatedly to this philosophical discussion, in the last years working scien-

tists have developed various methods to successfully deal with abductive inference in a 

variety of fields, from medical diagnostics to evolutionary theory, to Artificial Intelli-

gence (e.g., Niiniluoto 2011, 2018; Schurz 2017). In this paper, we focus on abductive 

reasoning as performed in cognitive neuroscience, i.e., the study of the biological espe-

cially neural processes that underlie cognition and mental activities. In this area, func-

tional resonance magnetic imaging (fMRI) plays a crucial role in the exploration of brain 

activity. This technique is being used in two different ways. First, neuroscientists build 

brain maps by studying which regions are activated by different mental processes (as 

elicited by different tasks, e.g., face recognition or language processing). This is so-called 

forward inference, from mental processes to their putative neural correlates. Second, re-

searchers routinely employ the inverse reasoning strategy, inferring from specific activa-

tion patterns to the engagement of particular mental processes. This so-called reverse 

inference plays a crucial role in many applications of fMRI, both inside and outside cog-

nitive neuroscience. These include the diagnosis of disorders in patients with acquired 

brain pathologies such as schizophrenia and Alzheimer's disease (Costa et al. 2020), the 

well-known experimental studies of moral reasoning as pioneered by Greene et al. (2001), 

and most studies in so called neuroeconomics (Bourgeois-Gironde 2010).  
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In recent years, reverse inference has attracted a great deal of attention, especially 

after neuroscientist Russell Poldrack (2006) denounced an uncontrolled “epidemic” of 

this reasoning pattern, cautioned against its (improper) use and pointed to its crucial 

weakness. In further work, Poldrack and collaborators applied machine learning and data 

mining techniques to automatically explore big fMRI data sets to extract relevant corre-

lations between mental processes and activation patterns to be used in making reverse 

inference more robust and reliable (the NeuroSynth project, see Yarconi et al. 2011). The 

debate is still open, and the present methodological status of reverse inference is highly 

controversial (Glymour and Hanson 2016; Hutzler 2014; Machery 2014; Nathan and Del 

Pinal 2017; Poldrack 2008, 2011; Weiskopf 2020). Interestingly, Poldrack himself noted 

in passing that reverse inference could be analysed as an instance of abductive reasoning, 

but neither he nor others developed further this suggestion. 

In this paper, we offer the first systematic analysis of reverse inference as a pattern 

of abductive reasoning. Our central claim is that the first step towards bringing some order 

to the discussion is to formalise an important distinction that has been entirely neglected 

in the literature on the methodology of cognitive neuroscience, namely the distinction 

between weak (strategic) and strong (justificatory) abduction. Emphasising this distinc-

tion allows us to clearly separate different forms of reverse inference – to which we shall 

refer to as “weak reverse inference” and “strong reverse inference”, respectively – that 

are usually conflated in that literature. As we argue, this theoretical move has two main 

benefits. First, it allows for a better understanding of how neuroscientists use fMRI data, 

as well as a better reconstruction of their reasoning strategies and methods. Second, it 

helps in clarifying current debates among cognitive neuroscientists, who may gain a better 

appreciation of the potentialities and limits of reverse inference, and hence improve their 

theoretical and experimental practices.  

Overall, our discussion provides the first attempt to systematically apply the theo-

retical and conceptual tools developed in the philosophical study of abduction to the anal-

ysis of reverse inference in cognitive neuroscience, thus bridging two different kinds of 

literature which have been so far largely independent. We proceed as follows. In the first 

section, we explore the distinction between weak and strong abduction as it has been 

discussed in philosophy. In the second section, we discuss the attempts made so far to 

analyse reverse inference in cognitive neuroscience and we introduce the distinction be-

tween strong and weak reverse inference. In the third and the fourth sections, we rely on 

case-studies from recent neuroscientific research to systematically explore the role of 

both strong and weak reverse inference, and we offer the first exploration of weak reverse 

inference as a discovery strategy. 

 

 

1. Weak and Strong Abductive Inference 
 

Peirce called “abduction” the pattern of reasoning—for which he also used the 

terms “retroduction” (CP 1.68) or “hypothesis” (CP 2.623)4—involved in «the operation 

                                                           
4 When quoting from Peirce’s Collected Papers (CP, Hartshorne et al.1931-1958), we follow the convention 

of citing the number of the volume followed by the number of the relevant paragraph. 



3 
 

of adopting an explanatory hypothesis» for a given piece of evidence (CP 5.189). For 

instance: «Fossils are found; say, remains like those of fishes, but far in the interior of the 

country. To explain the phenomenon, we suppose the sea once washed over this land» 

(CP 2.625). Peirce clearly saw that, even if the truth of the premises is taken for granted, 

the conclusion of an abductive argument may be false: in other words, like induction, and 

contrary to deduction, abduction is a form of ampliative and uncertain reasoning. The 

logical form of an abductive inference, according to Peirce (CP 5.189), is the following:  

 

The surprising fact, C, is observed;  

But if A were true, C would be a matter of course,  

Hence, there is reason to suspect that A is true.  

 

Clearly, the inference “if A then C; but C; therefore, A” is deductively invalid, being an 

instance of the fallacy of “affirming the consequent”. However, Peirce noted that a scien-

tific argument can be logically invalid but still effective in making its conclusion worth 

of further consideration (CP 5.192). Accordingly, although their conclusions are always 

tentative and conjectural, Peirce argued that abductive arguments provide a fundamental 

form of inference both in scientific and everyday reasoning.  

During the 1960s, abduction started attracting systematic attention from philoso-

phers of science. Hanson (1958) suggested that Peirce’s schema provides “a logic of sci-

entific discovery” and Harman (1965) argued that “inference to the best explanation” 

(IBE, for short), as he called abduction, is the core of any ampliative or non-deductive 

inference. These pioneering contributions made clear that there are at least two different 

ways –respectively, a “weak” and a “strong” one – of assessing the proper role of abduc-

tive inference. According to the first, weak interpretation, abduction has a primary dis-

covery (or “strategic” or “heuristic”, see Schurz 2008, p. 203) function, that of suggesting 

or finding promising or “test-worthy” hypotheses which are then set out to further inquiry 

or empirical testing. According to the second, strong (or justification) reading, abduction 

can be formulated as a rule of acceptance, since it gives reasons to tentatively accept its 

conclusion as the “best” explanatory hypothesis among the available ones.  

In different writings, Peirce seems to endorse the weak or the strong view of abduc-

tive inference, or both. In the last decades, there has been a lot of discussion about the 

proper interpretation of abduction, both within Peircean scholarship and within (formal) 

philosophy of science. On the one hand, contemporary defenders of IBE have tended to 

see Peircean abduction as a way of justifying an explanatory hypothesis (see Mcauliffe 

2015). In his influential book Inference to the Best Explanation (2004, pp. 56-57), for 

example, Peter Lipton bluntly claims that Peircean abduction is a conceptual precursor of 

IBE. On the other hand, it is clear that Peirce also considered weaker forms of abduction, 

which will be relevant for our discussion in the following. According to one of these 

weaker readings, abduction should be construed as a discovery procedure whose main 

function is to generate, but not justify, novel hypotheses (see Minnameier 2004; Campos 

2011). Abduction, according to Peirce, «strikes out a new suggestion», and is «the only 

logical mechanism which introduces a new idea» (CP 5.590). He also emphasises that 

abductive conclusions are not always invented ex novo but can have various degree of 
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creativity. As noted by Anderson (1987), Peirce actually distinguishes two kinds of ab-

ductive novelty, rearrangement and concept creation:  «[t]he first kind of novelty [...] is 

a combination which is different from past views, but which is grounded in ideas or per-

ceptions we have already. [...] The second grade of novelty, which is not always easy to 

distinguish from the first, is the creation of a new concept – that is, of an idea which we 

have not previously had» (pp. 47-48).  

A second function of weak abduction defended by Peirce is not generating hypoth-

eses but rather selecting which of the potential explanations of a given phenomenon are 

worthy candidates for further investigation (see Frankfurt 1958; McKaughan 2008). Ac-

cording to this conception, abduction again does not lend any support or justification to a 

hypothesis. As Douven (2017) observes, «[o]n this understanding, abduction could still 

be thought of as being part of the context of discovery. It would work as a kind of selection 

function, or filter, determining which of the hypotheses that have been conceived in the 

stage of discovery are to pass to the next stage and be subjected to empirical testing». 

Interestingly, Peirce also notes that sometimes we should prefer uberty over security, se-

lecting those hypotheses that are risky and a priori unlikely but have the potential to open 

new paths of research that might be fertile (CP 8.384, 1913).  

Apart from discussion within Peircean scholarship, and quite independently from 

it, abduction has been the focus of an intense philosophical debate over the years – so 

intense that Hintikka (1998) famously claimed that this is «the fundamental problem in 

contemporary epistemology». Most philosophers have followed Harman in equating ab-

duction with IBE, discussing it mainly in the context of justification. Is abduction a reli-

able method of confirmation? How can abductive arguments be improved? The “textbook 

version of abduction” (Douven 2017) is something along the following lines: «[g]iven 

evidence E and candidate explanations H1,…Hn of E, infer the truth of that Hi which best 

explains H». This basic formulation raises a number of critical issues, having to do with 

the correct explications of the notions of candidate explanations and best explanation. 

Just to mention one, in the above formulation the notion of “best explanation” is always 

relative to a set of available explanations, which is inevitably restricted at least by the 

scientists’ imagination and other contingencies. It is thus possible that the explanation 

that is actually the best is included within the set of those explanations that scientists have 

not considered due to lack of imagination, time, or other reasons. In short, it is possible 

abductive reasoning leads us to believe the “best of a bad lot” (van Fraassen 1989; see 

Douven 2017 for discussion and Schupbach 2014 for a rebuttal of van Fraassen's argu-

ment).  

Another critical issue about the justificatory status of abduction has to do with the 

criteria for deciding which is the best among the alternative candidate explanations (cf. 

Lipton 2004). One immediate suggestion is to identify the best explanation with that hy-

pothesis Hi that is most probable given the evidence E (i.e., it has the highest degree of 

posterior probability), or that is most strongly supported by E (i.e., it has the highest 

degree of confirmation). In this sense, as some scholars have suggested (Salmon 2001), 

abduction can be formalised using Bayes theorem or one of the measures of probabilistic 

support studied within Bayesian confirmation theory (see Crupi 2020; Niiniluoto 2018). 

However, the relation, and even the compatibility, between abduction and Bayesian rea-
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soning is quite controversial, for there is no direct and clear connection between proba-

bilistic and explanatory considerations in assessing hypotheses (see Douven 2017 and 

Sprenger & Hartman 2019 for discussion). Thus, some scholars have even argued that 

either abduction is reducible to Bayesian theory, or it is epistemically irrelevant (Roche 

& Sober 2013). Other scholars reached similar pessimistic conclusions about abduction 

based on different considerations, such as its weak evidential role (van Fraassen 1989) or 

its lack of unity (Norton 2016). According to Norton (2016), for example, abduction as 

IBE is an «overrated argument form» (p. 200). 

At the same time, other philosophers have followed Hanson in exploring the weak 

functions of abduction in the context of discovery rather than justification. As observed 

by Paavola (2006), «[i]n Hanson’s view, abduction is a weak form of inference that relates 

to the first phase of inquiry. This “weakness” means that abduction is supposed to give 

plausible candidate hypotheses, not necessarily true explanations, which then have to be 

verified and tested by other means» (p. 97). Magnani (2001, 2009) discusses a similarly 

weak conception of abduction, distinguishing creative abduction (abduction that gener-

ates new hypotheses) and selective abduction (abduction that merely selects from a gamut 

of pre-stored hypotheses). Selective abduction in Magnani’s terms should not be confused 

with IBE, for «all we can expect of our “selective” abduction, is that it tends to produce 

hypotheses for further examination that have some chance of turning out to be the best 

explanation» (2009, p. 97-98). Similarly, in discussing his fine-grained taxonomy of pat-

terns of abduction (2008; see also 2017), Schurz advocated weak abduction by arguing 

that the «crucial function of a pattern of abduction […] consists in its function as a search 

strategy which leads us, for a given kind of scenario, in a reasonable time to a most prom-

ising explanatory conjecture which is then subject to further test» (2008, p. 205).  

In sum, although the distinction between weak and strong abduction is usually 

acknowledged in the literature, it only plays a marginal role in most discussions. The 

reason is that many contributors to the debate tend either to acknowledge only one of the 

two concepts as legitimate, thus discarding, more or less explicitly, the other one; or to 

propose reconstructions of abduction that attempt to incorporate both its weak and strong 

form within one single model, with the risk of conflating them.5  

Admittedly, a categorical differentiation between weak and strong abduction is 

probably not possible, nor useful, since, as for instance Niiniluoto (1999, p. 442) points 

                                                           
5 To mention but a few examples of the first tendency, the entry on “Abduction” in the Stanford Encyclo-

paedia of Philosophy by Douven (2017) only focuses on the “modern” (i.e., strong) sense of abduction, 

IBE, confining the discussion of the “historical” (i.e., weak) sense to a short supplement. On the opposite 

side, scholars such as Minnemaier (2004), Campos (2011), and Mcauliffe (2015) have argued against the 

tendency to equate Peircean (weak) abduction and IBE, claiming that only the first concept can be legiti-

mately called “abduction”. As for the second path mentioned above, for instance Lipton argues for a «ver-

sion of IBE thus includes two filters, one that selects plausible candidates, and a second that selects from 

among them» (2004, p. 64) as a unified model of weak ad strong abduction. Similarly, Schurz (2017) ex-

plicitly equates abduction with IBE (p. 152) but, at the same time, he carefully analyses the strategic func-

tion of abduction, concluding that «the justificatory function of abduction is minor» (p. 153). A minority 

of scholars avoids overlooking the distinction between weak and strong abduction. For instance, Paavola 

(2004) explicitly distinguishes between what he calls “Hartmanian abduction” (IBE) and “Hansonian ab-

duction” (weak abduction) even if, following Lipton (2004), he then discusses Hartmanian abduction more 

as a “method of discovery” than as an instrument for justification. 
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out, «abduction as a motive for pursuit cannot always be sharply distinguished from con-

sideration of justification». Indeed, several scholars doubt that questions of justification 

can be neatly separated from questions of discovery in general (see, e.g., Schickore 2018): 

as Schurz (2008) puts it, «[a]ll inferences have a justificational (or ‘inferential’) and a 

strategical (or ‘discovery’) function, but to a different degree» (p. 203).  For instance, 

selective abduction is defended by Magnani (2001) as a procedure for discovery; how-

ever, justificatory considerations clearly intervene when competing hypotheses are as-

sessed as more or less plausible given the available evidence. While we concur that neatly 

separating the strategic and the justificatory function of concrete cases of abductive in-

ferences in science is possible, we also believe that the two moves mentioned above (over-

looking one of the two functions and trying to unify them) are unwarranted. In particular, 

we believe that the distinction between weak and strong abduction highlights a clear, un-

derlying contrast between two fundamental functions of abductive reasoning, which are 

both legitimate objects of study and should be carefully distinguished in the philosophical 

analysis. Thus, we depart here both from fully “compatibilist” accounts of abduction – 

which tend to conflate the two functions of abduction into a single concept – and by “uni-

lateral” accounts – which try to discount one of the two functions as immaterial or irrele-

vant. To be sure, it is not the primary aim of this paper to defend the distinction between 

strong and weak abduction on theoretical grounds. Instead, in the following, we shall 

attempt to show the usefulness of such a distinction within a specific field of scientific 

research, namely cognitive neuroscience. 

 

 

2. Reverse Inference as Abductive Reasoning 
 

The above discussion of weak and strong forms of abductive reasoning will be in-

strumental, in the rest of the paper, to understand and assess current methodological dis-

cussions within cognitive neuroscience. To this aim, it is crucial, as we argue, to introduce 

a novel distinction between what we shall call “weak” and “strong” reverse inference. 

Before coming to this, however, a closer look at how reverse inference is actually per-

formed and analysed is in order.  

 

Reverse inference in cognitive neuroscience. In cognitive neuroscience, neuroim-

aging techniques like fMRI play a crucial role. Roughly, fMRI allows researchers to find 

systematic correlations between cognitive processes plausibly engaged in experimental 

tasks and the increased activation, as measured by the BOLD activity in the relevant areas, 

of specific brain structures. As an example, participants in a typical fMRI experiment 

may be given tasks eliciting mental imagery or fear that, in turn, would be associated with 

increased activation of structures like the human precuneus or the amygdala, respectively 

(see Poldrack & Yarkoni 2016). In this context, two different patterns of reasoning can 

be usefully distinguished.  
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Forward inference generally refers to reasoning from the (putative) engagement of 

a given cognitive process (e.g., fear) to the expected increased activation of a given struc-

ture of the brain (e.g., the amygdala).6 In slightly more formal terms, forward inference 

concerns the probability p(ACT|COG) of activation of some neural structure given the 

engagement of a given cognitive process. Such probabilities can be extracted by tradi-

tional meta-analysis of neuroimaging data, which highlight the regions of the brain that 

are more consistently associated with different cognitive processes. For example, suppose 

that the vast majority of studies involving a task (e.g., reading concrete words) that pro-

voke an intense experience of mental imagery have found increased activation in the 

precuneus. From this, one may reasonably expect that, in a new task involving mental 

imagery, the increased activation of the precuneus will also be observed. 

 The second reasoning pattern is called in the neuroscientific literature reverse in-

ference, since it is in a sense the inverse of forward inference. For example, from the data 

just considered above, we might be tempted to conclude that precuneus activity is a good 

marker, or predictor, of mental imagery. Thus, when we observe precuneus activity in a 

new data set, we might be inclined to conclude the engagement of mental imagery pro-

cesses. Note that reverse inference involves the (inverse) probability p(COG|ACT) that a 

given cognitive process is engaged when increased BOLD activity in a certain brain re-

gion is observed. 

Although clearly related to each other, forward and reverse inference play crucially 

different roles, and their methodological status is also significantly different. As Poldrack 

(2011) notes, forward inference is «[t]he classic strategy employed by neuroimaging re-

searchers», constituting «the basis for a large body of knowledge that has derived from 

neuroimaging research» (p. 692). In comparison, and despite its widespread use in many 

experimental studies using fMRI, reverse inference is much more problematic, as empha-

sised again by Poldrack in his seminal 2006 paper.7 There are at least two reasons for this. 

The first is that reverse inference clearly instantiates a case of abductive, and hence non-

deductive, reasoning, thus inheriting all problems and weaknesses of this kind of infer-

ence. Indeed, we can use the Peircean schema to rephrase reverse inference as follows: 

 

Activation pattern ACT is observed; 

But if process COG were engaged, ACT would be a matter of course, 

Hence, there is reason to suspect that COG is engaged. 

 

Of course, as a form of abductive reasoning, reverse inference «is not deductively 

valid, but rather reflects the logical fallacy of affirming the consequent» (Poldrack 2006, 

p. 60). The second reason why reverse inference is highly controversial is that, even when 

                                                           
6 See Henson 2006 for a partly different characterization of forward inference. For a philosophical discus-

sion of forward (and reverse) in reverse in correlation with neuropsychological data, see Machery (2012).  
7 Indeed, this does not mean forward inference is immune to epistemic risks, as observed by Poldrack & 

Yarkoni (2016, pp. 589-590). In neuroimaging experiments, the subtraction method is generally used to 

identify which brain regions are activated by specific cognitive function. This consists in using carefully 

designed experimental conditions that are supposed to differ only with respect to one process of interest. 

The subtraction method is problematic because it relies on what has been called the “assumption of pure 

insertion”, which has been subject to intense criticism in neuroscience (see Poldrack & Yarkoni 2016 for 

discussion).     
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a strong correlation between a given cognitive process and some brain area is found via 

forward inference, this doesn’t license, in general, comparatively strong reverse infer-

ences. As noted by Yarkoni (2015a), the main epistemic weakness of this latter kind of 

inference becomes clear by construing reverse inference as a probabilistic argument: 

 
[…] by observing that the probability of a particular pattern of brain activity conditional on 

a given mental state is not the same thing as the probability of a particular mental state con-

ditional on a given pattern of observed brain activity […]. For example, if I know that doing 

a difficult working memory task produces activation in the dorsolateral prefrontal cortex 

(DLPFC) 80% of the time, I am not entitled to conclude that observing DLPFC activation in 

someone’s brain implies an 80% chance that that person is doing a working memory task. To 

see why, imagine that a lot of other cognitive tasks—say, those that draw on recognition 

memory, emotion recognition, pain processing, etc.—also happen to produce DLPFC activa-

tion around 80% of the time. Then we would be justified in saying that all of these processes 

consistently produce DLPFC activity, but we would have no basis for saying that DLPFC 

activation is specific, or even preferential, for any one of these processes. 

 

To make this problem precise, Poldrack (2006) proposes a Bayesian reconstruction 

of reverse inference along the following lines: 

 

𝑝(𝐶𝑂𝐺|𝐴𝐶𝑇) =
𝑝(𝐴𝐶𝑇|𝐶𝑂𝐺) ∙ 𝑝(𝐶𝑂𝐺)

𝑝(𝐴𝐶𝑇)
 

 

Here, the posterior probability of the engagement of process COG given the activa-

tion of area ACT is computed, through Bayes theorem, in terms of the likelihood of COG 

(i.e., the probability of ACT given COG) and its prior probability given the task at issue. 

As usual, we can rewrite the denominator of the above formula as follows: 

 

𝑝(𝐶𝑂𝐺|𝐴𝐶𝑇) =
𝑝(𝐴𝐶𝑇|𝐶𝑂𝐺) ∙ 𝑝(𝐶𝑂𝐺)

𝑝(𝐴𝐶𝑇|𝐶𝑂𝐺) ∙ 𝑝(𝐶𝑂𝐺) + 𝑝(𝐴𝐶𝑇|𝑛𝑜𝑡 − 𝐶𝑂𝐺)𝑝(𝑛𝑜𝑡 − 𝐶𝑂𝐺)
 

 

        

This rewriting makes clear that the posterior probability p(COG|ACT) crucially depends, 

as emphasised by Poldrack (2006), on the selectivity of the neural response. In other 

words, it depends on how likely the activation of the neural region in question is both in 

the presence and in the absence of the relevant cognitive process – i.e., both given COG 

and not-COG. According to Poldrack, the selectivity of the neural response is the greatest 

determinant of reverse inference: «[i]f a region is activated by a large number of cognitive 

processes, then activation in that region provides relatively weak evidence of the engage-

ment of the cognitive process; conversely, if the region is activated relatively selectively 

by the specific process of interest, then one can infer with substantial confidence that the 

process is engaged given activation in the region» (2006, p. 32).  

 

Neuroinformatics at the rescue. As the above quotation makes clear, reverse in-

ference has been discussed from the very beginning in the context of justification rather 

than in the context of discovery. The main questions under investigation have been: How 



9 
 

justified are reverse inferences? Can we systematically rely on reverse inferences in neu-

roimaging research? How can reverse inference be improved? These questions gave rise 

to an intense theoretical debate in philosophy and cognitive science (for a review, see 

Nathan & Del Pinal 2017).8 While the methodological debate developed, working neuro-

scientists devised more direct strategies to improve the reliability of reverse inferences in 

their daily routine. To this purpose, they followed a main strategy that can be again traced 

back to Poldrack (2006). As seen above, the crucial problem of reverse inference is to 

assess the selectivity of brain regions, which is generally estimated on a purely informal 

basis (i.e., by means of manual search and qualitative reasoning on previous fMRI litera-

ture). In his paper (2006), Poldrack proposed to address this issue by using one of the 

several databases of fMRI results available on the Internet, such as BrainMap.9 Poldrack’s 

proposal promoted a big expansion in the use of databases of fMRI data and machine-

learning techniques to formally quantify the strength of reverse inference, which has later 

become part of so-called cognitive neuroinformatics (see Poldrack & Yarkoni 2016).  

One of the first advancements in this field was the introduction of NeuroSynth (Yar-

koni et al. 2011), an online platform that allows the synthesis of big datasets of neuroim-

aging results using an almost completely automatised method of search. Differently from 

BrainMap or similar databases, NeuroSynth exploits relatively simple text mining algo-

rithms to automatically extract from the published articles two pieces of information: fig-

ures containing brain activations maps and specific terms of interest used at high fre-

quency (more than 1 in 1000 words) in the text and referring to brain regions (e.g., pre-

frontal cortex), mental functions (e.g., working memory), and experimental tasks (e.g., 

                                                           
8 Contributors to the debate have proposed quite different approaches to the issue of how to improve strong 

reverse inference. One sees the main problem in the fact that our cognitive ontology, namely our traditional 

taxonomy of mental functions and tasks, is outdated and intrinsically defective. The low selectivity of many 

brain regions might improve when cognitive functions are characterized at a higher level of abstraction 

(Price & Friston 2005), or in more precise terms (Poldrack & Yarkoni 2016). This approach, sometimes 

labelled “cognitive ontology revision” (Anderson 2015), has motivated the emergence of several computa-

tional approaches to mental functions taxonomies, such as the Cognitive Atlas (Poldrack et al. 2011), with 

the aim of systematizing and improving our ontology of mental concepts and tasks. A second approach 

tends to question the Bayesian reconstruction originally proposed by Poldrack (2006). Machery (2014), for 

instance, argues that RI should be reformulated in purely “likelihoodist” terms, thus avoiding the tricky 

issue of assessing the prior probability of the hypotheses under examination. Others have proposed to con-

ditionalize all probabilities in the Bayesian reconstruction of RI on the specific task used in the study (Del 

Pinal & Nathan 2013; Hutzler 2014).8 A third proposal suggests that reverse inference may be improved, 

and the selectivity issue mitigated, by shifting the focus of the analysis from isolated brain regions to entire 

networks of regions (Klein 2012; Glymour & Hanson 2016). Finally, the use of multivariate neuroimaging 

techniques, such as multivoxel pattern analysis (MVPA), has been suggested as a fourth strategy to improve 

reverse inference, in line with the idea that inferences based on “pattern-decoding” can overcome the prob-

lems of more “local” ones (Nathan & Dal Pinal 2017). 
9 In his paper (2006), Poldrack proposes to address this issue by using one of the several databases of 

neuroimaging results available on the Internet, i.e., BrainMap (www.brainmap.org), which at that time 

(Sept. 2005) contained data from 3222 experimental comparisons in 749 published papers. Looking at pairs 

of experimental comparisons and coordinates of activations included in this database, Poldrack manually 

calculated the probability of the engagement of language function conditional to the activation of the 

“Broca’s area” (BA 44) using Bayes theorem. He later compared the posterior probability thus obtained 

(0.65) to the prior probability of language processes being engaged in a task, conventionally fixed at 0.5, 

and finally calculated the relative Bayes Factor (2.3) as a proxy of the strength of the reverse inference, 

resulting in a «positive but relatively weak increase of confidence» (p. 62) in the conclusion. 
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delayed response task). This approach produces an extensive database of term-to-coordi-

nates mappings, which is currently covering results from more than 14.000 studies. In 

line with a policy of open science and data sharing, the NeuroSynth database is made 

freely available through a web-based portal (www.neurosynth.org). 

Using the web-based portal, it is possible to perform automated meta-analysis (for-

ward inference) of hundreds of individual psychological concepts –such as vision, audi-

tion, working memory, pain, and so on – or psychological “topics”, that is, clusters of 

semantically-related terms. Critically, the system can compute, for any given voxel V in 

the brain and any given term T in the database, the probability that V was reported as 

activated in a paper conditional on its mentioning or not T. By using T as a proxy for the 

engagement of the corresponding process COG, such probabilities provide an estimate of 

the likelihoods p(ACT|COG) and p(ACT|notCOG). Then, at least in the intentions of its 

developers, NeuroSynth should apply Bayes theorem to compute the final posterior prob-

ability p(COG|ACT), by assuming a default uniform prior (0.5) for p(COG). These auto-

mated computations allow one to rank all relevant cognitive processes (i.e., psychological 

terms like working memory) by their posterior probability relative to any given coordinate 

of brain activation. Such “reverse inference maps”10 allow, in turn, researchers to perform 

so-called quantitative reverse inferences (Yarkoni et al. 2011), where the strength of re-

verse inference is measured in terms of the automatically computed posterior probabili-

ties. In the next section, we shall see how such a system can be used to make very strong 

claims about brain functioning.   

 

Reverse inference as abductive reasoning. What is critical for our purposes is 

that, despite Poldrack’s initial remarks, these recent developments completely neglected 

the claim that reverse inference is a form of abductive reasoning. As a consequence, no 

                                                           
10 Note that “reverse inference maps” have been recently renamed “association tests” on the web-based 

NeuroSynth platform (https://neurosynth.org/faq/).  

Figure 1. A schematic representation of NeuroSynth’s main functions. Modified with permissions from 

Yarkoni et al. (2011).  
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attempt was made to apply the conceptual instruments developed in the philosophical 

literature to the case of cognitive neuroscience: most notably, the distinction between 

strong and weak abduction has been fully disregarded. In our opinion, this oversight has 

at least two critical consequences for the debate on reverse inference as it currently stands, 

which we shall analyse in detail in the next two sessions of this paper.  

The first consequence is that, in general, scholars that have defended (or criticised) 

“strong reverse inference” as a form of justificatory abductive reasoning, have not 

properly appreciated its logical form. In its strong interpretation, reverse inference should 

be formulated as a rule of acceptance, that gives reasons to tentatively accept its conclu-

sion as the “best” explanatory hypothesis among the available ones. This formulation of 

strong reverse inference as a form of IBE is hardly encountered in current debates; as we 

shall claim in section 3, however, it is very useful to assess some of the most representa-

tive uses of fMRI data found in the neuroimaging literature, as well as the discussion that 

these representative uses have generated. Construing reverse inference as a form of IBE 

may help in evaluating the different comparative criteria for assessing competing cogni-

tive explanations of activation patterns, a crucial issue that attracts the attention of neuro-

scientists but that still needs much philosophical and methodological work.   

The second – and maybe more critical – consequence of overlooking the abductive 

nature of reverse inference is that what we called “weak reverse inference” has been vir-

tually ignored in both philosophical and scientific discussion. This is problematic be-

cause, as we shall see in detail in section 4, taking into account the strategic or discovery 

function of reverse inference is crucial to make sense of current neuroscientific practice. 

In many cases, reverse inference is indeed employed as a search strategy that tells us 

which hypotheses about the cognitive interpretations of a given brain activation we should 

set out for further inquiry and/or as a tool for making new hypotheses and assist discov-

ery. Thus, exploring the nature and limits of weak reverse inference remains an important 

open task.  Interestingly, the idea that reverse inference could be interpreted as a weak 

form of abductive reasoning was somehow foreshadowed in his 2006 paper by Poldrack 

himself, who noted that, «[v]iewed as a means to generate novel hypotheses, […]  reverse 

inference can be a very useful strategy, especially if it is based on real data […], rather 

than an informal reading of the literature» (2011, p. 696). Despite occasional claims like 

this one, however, the strategic function of reverse inference has never been explored in 

detail so far. In the following, we shall fill this gap and offer the first comprehensive 

discussion of both weak and strong forms of reverse inference. 

 

 

 

3. Strong Reverse Inference 
 

As anticipated, the theoretical debate on reverse inference just surveyed has mainly fo-

cused on the justificatory role of reverse inference. Nevertheless, the nature of strong 

reverse inference as IBE has never been fully appreciated. To illustrate this point, we shall 

discuss first a representative case, which has generated an intense debate in cognitive 
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neuroscience but has been completely ignored in the philosophical literature. Then, we 

will draw some lessons for the debate on reverse inference.  

 

Strong reverse inference as a form of IBE. In a 2015 paper, neuroscientists Mat-

thew Lieberman and Naomi Eisenberger used the NeuroSynth database to claim that the 

dorsal anterior cingulate cortex (dACC), a brain region that has been associated with sev-

eral different cognitive functions, is actually selective for pain: 

 
Using Neurosynth, an automated brainmapping database, we performed quantitative reverse 

inference analyses to explore the best general psychological account of the dACC function P 

(Ψ process | dACC activity). Results clearly indicated that the best psychological description 

of dACC function was related to pain processing—not executive, conflict, or salience pro-

cessing (2015, p. 15250). 

 

Lieberman and Eisenberger used NeuroSynth to study the correlation between the 

activation of the dACC and four cognitive processes (including pain), known to be asso-

ciated with the dACC. Their conclusion was that «whereas psychological processes and 

tasks related to pain, executive processes, conflict, and salience all reliably activate the 

dACC, the only psychological phenomenon that can be reliably inferred given the pres-

ence of dACC activity is pain» (2015, p. 15522). More precisely: 

 
[a]lthough forward inference analyses reproduced the findings that many processes activate 

the dACC, reverse inference analyses demonstrated that the dACC is selective for pain and 

that pain-related terms were the single best reverse inference for this region (p. 15250). 

 

Remarkably, their study relied on NeuroSynth as the only source of neuroscientific 

evidence. In particular, as evidence for the above claim, Lieberman and Eisenberger pre-

sented a comparison among the reverse inferences concerning the four different processes 

considered, and measured their relative strength relying on the statistics (i.e., posterior 

probabilities and associated Z-scores) for the four terms of interest across eight foci in the 

dACC (fig. 2). Statistical analyses revealed that the Z-scores for pain were significantly 

greater than the Z-scores for each other terms of interest across all foci. Further analyses 

revealed that pain-related Z-scores across all foci of the dACC were greater than those 

related to each of the other terms in the NeuroSynth database (>3000).  

For our purposes, Lieberman and Eisenberger reasoning constitutes a spectacular 

example of what we call strong reverse inference: that is, a reverse inference whose con-

clusion is presented as strongly justified, or even as true, given its being the “best” of a 

series of alternative candidate hypotheses. This reasoning instantiates the “textbook ver-

sion” of strong abduction (IBE) as presented by Douven (see §2), where the dACC activ-

ity represents the evidence E that should be explained, while the alternative psychological 

processes associated with the dACC activity represent the different candidate explana-

tions H1,…Hn of E.  As observed by Wager (2015), Lieberman and Eisenberger’s state-

ment appears very strong and provocative, «as it implies that we can use these results to 

infer that dACC activity implies the presence of pain. After all, if the best “label” is pain, 

it seems like a reasonable inference».  

The publication of Lieberman and Eisenberger’s paper immediately triggered a hot 

debate, which has lasted a couple of years, with highly critical blog posts by Yarkoni 
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(2015a, 2015b), the creator of NeuroSynth, Alex Shackman (2015), Tor Wager (2015), 

and Lieberman himself (2015, 2016). After these informal exchanges, several influential 

names in the neuroimaging community published a commentary in PNAS (Wager et al. 

2016) followed by a reply by Lieberman et al. (2016). In our opinion, this discussion is 

particularly representative of the kinds of difficulties that strong reverse inference, be it 

NeuroSynth-based or not, might encounter. Critically, many critiques advanced against 

the paper follow closely well-known philosophical objections to IBE in general. 

As an example, Yarkoni (2015a) focuses on the comparative analyses proposed by 

Lieberman and Eisenberger and criticises it as follows: «perhaps the most obvious prob-

lem is that it is largely based on comparison of pain with just three other groups of terms», 

thus possibly leading the authors to choose the hypothesis which was the best of a “bad 

lot”. More importantly, Yarkoni (2015a) criticised the statistical method used by L&E to 

assess the relative strength of alternative reverse inferences. According to him, the authors 

correctly extracted from NeuroSynth the posterior probabilities associated with each term 

of interest, but then compared the associated Z-scores rather than the posterior probabili-

ties themselves. This is a gross mistake because, from a Bayesian point of view, only 

posterior probabilities matter: «Z-score do not provide a measure of strength of effect, 

they provide (at best) a measure of strength of evidence» (Yarkoni 2015a).  

Another critical worry is that terms in the NeuroSynth database have different base 

rates, since some cognitive processes are studied more frequently than others. For in-

stance, pain occurs in only 3.5% of the neuroimaging studies, while memory occurs in 

16% (Yarkoni et al. 2015b). As we have seen, NeuroSynth does explicitly account for 

frequency by setting the Bayesian prior for every term in the database to 0.5 (that is, the 

system uses uniform priors as default, rather than empirical priors). This default setting 

Figure 2. Comparison of reverse inference 

effects throughout the dACC. Reproduced 

with permissions from Lieberman & Eisen-

berger (2016). See the text for further de-

tails. 
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makes it possible to compare terms with significantly different frequencies in the data-

base, but it does so by artificially masking the great variability in the base rates. In prin-

ciple, it is possible to use the “core tools” of NeuroSynth to set the priors of the various 

terms to reflect the actual empirical frequency in the database. Nevertheless, we have no 

reason to assume that the empirical estimates of term frequency we can derive from Neu-

roSynth actually reflects the “real world” empirical priors (Yarkoni 2015).  

Based on this and similar criticisms, Yarkoni (2015a) concluded that NeuroSynth 

cannot be used to make strict comparisons between different candidate hypotheses and, 

more critically, to justify strong conclusions about the cognitive interpretation of a certain 

pattern of brain activity. To the extent that NeuroSynth is «one of the best tools we have 

at the moment» for justifying reverse inference, this seems to imply that strong reverse 

inferences (NeuroSynth-based or not) are never fully justified: 

 

NeuroSynth provides no license for saying much stronger things like “the dACC is 

selective for pain” or suggesting that one can make concrete reverse inferences about 

mental processes on the basis of observed patterns of brain activity. If the question 

we’re asking is what are we entitled to conclude about the presence of pain when 

we observed significant activation in the dACC in a particular study?, the simple 

answer is: almost nothing.  

 

The prospects of strong reverse inference. The discussion between Lieberman 

and Eisenberger, on the one hand, and Yarkoni, on the other, has been limited to these 

first semi-formal 2015-2016 exchanges. However, Yarkoni’s conclusions above have 

helped to bolster a widespread scepticism over reverse inferences in the fMRI commu-

nity. Also influenced by Poldrack’s pioneering work, many cognitive neuroscientists now 

regard reverse inference in general as something that should be treated with much caution, 

or even as something that should be simply discarded (e.g., Anderson 2010). Conse-

quently, neuroimaging researchers applying reverse inferences are quickly criticised for 

committing the “fallacy of reverse inference”, suggesting that this form of reasoning 

should always be avoided. 

We believe that Yarkoni’s pessimistic verdict is unwarranted. As we have argued, 

the Lieberman-Yarkoni exchange should be conceptualised as a discussion concerning 

the appropriate way of performing IBE in cognitive neuroscience; more precisely, as a 

discussion on how to compare the relative strength of alternative reverse inferences in the 

Bayesian framework underlying NeuroSynth (or similar database). If this is true, it is easy 

to understand that a proper debate on such an important issue is still very much at a pre-

liminary stage, and no explicit proposal has been made at the theoretical level. More crit-

ically, working cognitive neuroscientists are often not fully aware of the multiplicity of 

possible ways of theoretically addressing the problem; in actual practice, they tend to 

implicitly use different criteria for assessing competing explanatory hypotheses, which 

might easily lead to conflicting interpretations of the same experimental results.  

For instance, as we have seen, Yarkoni suggests that the correct method for as-

sessing the strength of reverse inference is to select the cognitive hypothesis with the 

highest posterior probability as computed from the NeuroSynth dataset. However, both 

Poldrack in his original theoretical analysis (2006) and other cognitive neuroscientists in 

actual experimental studies (e.g., Cauda et al. 2020), have proposed the Bayes factor as a 
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criterion for selecting the best hypotheses in concrete reverse inferences. No explicit 

methodological discussion about the relation between these two measures can be found 

in the neuroscience literature. Interestingly, these two proposals in principle are not equiv-

alent. As the discussion in philosophy of science has made clear (Sprenger & Hartman 

2018; Crupi 2020), the former proposal amounts to construe evidential confirmation as 

“firmness” (how highly probable is COG given ACT); the latter instead defines confir-

mation as “increase in firmness” (how higher is p(COG|ACT) than p(COG)). Critically, 

these two strategies of hypotheses assessment can lead to inconsistent results; in general, 

one can have high posterior probability without (incremental) confirmation, and vice 

versa. Thus, assessing the strength of a reverse inference using the posterior probability 

or the Bayes factor is not theoretically equivalent. 

Moreover, posterior probabilities and the Bayes Factor are not the only options for 

assessing competing cognitive explanations of activation patterns. Indeed, philosophers 

have developed a number of formal measures for both the confirmation provided to com-

peting hypotheses by a piece of evidence and for the explanatory power of these hypoth-

eses (see, for instance, Schupabch & Sprenger 2011). In principle, nothing prevents the 

implementation of such measures as comparative criteria within NeuroSynth or similar 

databases, although this possibility has never been explored so far. Importantly, however, 

neither Bayesian confirmation measures nor explanatory power measures are in general 

“ordinally equivalent”. This means, roughly, that assessments of evidential favouring of 

one hypothesis over the other may be crucially sensitive to the choice of the underlying 

measure. As a consequence, assessing the strength of reverse inference will be always 

relative to the choice of the relevant measure: to our knowledge, however, no discussion 

of this point, which is both legitimate and urgent, appears in the literature. 

Finally, even the Bayesian analysis which inspires the automated calculations per-

formed by NeuroSynth is not without problems. One classical problem in Bayesian rea-

soning in general (Spenger & Hartman 2018), i.e., how to choose the prior probabilities 

to be used in Bayes’ formula, is here especially serious. As we have seen, NeuroSynth 

assumes a flat distribution on the priors (in order to avoid selection bias from the current 

literature), but this assumption is arguably unsatisfactory without further justification. 

Although some suggestions for dealing with this problem have been recently advanced in 

the neuroscience literature (Costa et al. 2020), much work remains to be done. Moreover, 

this crucial issue adds to other known limitations of the current version of NeuroSynth, 

such as the poor sensibility of the algorithm for terms and coordinates extraction (Yarkoni 

2015a).11 Still, in our opinion, nothing prevents in principle that future developments of 

the database – like the NeuroSynth 2.0 system, which will be implemented in the more 

comprehensive platform NiMare12 - might partially overcome these limitations. Further-

more, in recent years, it has been increasingly common to combine a NeuroSynth-based 

analysis with a discussion of independent evidence from patient data, TMS, and other 

                                                           
11 It is known that the automated lexical algorithms NeuroSynth is based on are not able to extract fine-

grained information from texts (e.g., distinguishing different types of memory). Similarly, the algorithms 

extracting the coordinate of brain activations cannot make basic distinctions such as distinguishing between 

activations and deactivations (but see Yarkoni et al. 2011). 
12 See https://nimare.readthedocs.io/en/latest/. 

https://nimare.readthedocs.io/en/latest/
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techniques (e.g., Lieberman et al. 2019) and this may improve the prospects of such an 

approach to strong reverse inference.  

To be sure, it is not our purpose in this context to discuss a method for making 

strong reverse inference in a correct way. Our only claim is that construing reverse infer-

ence as a form of IBE makes clear that strong reverse inference requires precise compar-

ative criteria for assessing competing cognitive explanations of activation patterns. Thus, 

even if we believe that Yarkoni’s pessimistic conclusion is not justified at the present 

state of knowledge, this crucial issue surely needs much philosophical and methodologi-

cal work. 

 

 

4. Weak Reverse Inference 
 

As we argued in the foregoing section, the debate developed around Lieberman and 

Eisenberger’s paper clearly shows that neuroscientists do rely, at least implicitly, on a 

strong understanding of reverse inference as IBE in their research. Indeed, we believe that 

the idea of strong reverse inference surely captures some representative case studies in 

the neuroimaging literature, even if not most of them. Focusing only on this strong read-

ing of reverse inference (as it has been done until now), however, is arguably mistaken, 

for at least two reasons. First, as suggested above, this risks to fuel unwarranted scepti-

cism toward reverse inference in general, as based on a (sound) criticism of strong reverse 

inference only. Second, we believe that many instances of reverse inference as actually 

performed in current neuroscientific research should not be construed as cases of IBE, 

but instead as attempts to discover new promising hypotheses to be assessed in further 

experimental studies. Such cases require a different kind of analysis, based on a weak 

notion of reverse inference, that has never been attempted so far. As a step forward in this 

direction, in the following we discuss in turn three representative case studies from recent 

neuroimaging research. As we argue, each of them clearly instantiates a case of weak 

abductive reasoning; together, they offer a fairly comprehensive view of the different 

functions that weak reverse inference may usefully perform in experimental studies. In-

terestingly, these functions reflect quite closely those attributed by philosophers to weak 

abduction in general (as discussed in Section 1). Such an analysis is thus interesting both 

on a theoretical and a practical level: indeed, neuroscientists rejecting the use of strong 

reverse inference may still appreciate the role of weak reverse inference as an essential 

inferential strategy in cognitive neuroscience. 

 

Weak reverse inference as selective abductive inference. As a first case study, 

consider Xenophontos and colleagues’ examination of the effects of altered sex chromo-

some dosage (SCD) on brain functioning (Xenophontos et al. 2020). Altered SCD is a 

pathological dysfunction that characterises certain genetic disorders, for example, sex 

chromosome aneuploidy (SCA) syndromes. To identify the regions that are more affected 

by altered SCD, Xenophontos and colleagues tested 301 subjects affected by SCA and 

looked for regions with abnormal (i.e., increased or decreased) cortical thickness. Using 

structural MRI, the authors found that mounting SCD increased cortical thickness in the 
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rostral frontal cortex (among other regions), bilaterally, and decreased cortical thickness 

in the lateral temporal cortex and in the temporal-parietal junction (among other regions). 

Finally, they relied on NeuroSynth to identify «cognitive and psychological terms that 

frequently cooccur in the literature with functional activations similar to the observed 

pattern of SCD effects on cortical morphology» (Xenophontos et al. 2020, p. 2219).  

The authors compared the distribution of SCD effects on cortical thickness with the 

reverse inference maps (now “association maps”) for each of 50 “topics” (clusters of se-

mantically-related terms) included in the NeuroSynth database and then selected all the 

topics maps that showed a special correlation (|r| of 0.1 or greater) with the SCD maps. 

Results of this reverse inference analysis indicated that regions where, in SCA individu-

als’ brains, cortical thickness increases as a function of mounting SCD are associated in 

the NeuroSynth database with emotion, pain, and inhibitory processing. Conversely, re-

gions where cortical thickness decreases as a function of mounting SCD have been asso-

ciated with visual, motor, arithmetic, and attentional processing. Since it is known that 

socioemotional and attentional processes are generally impaired in SCA individuals, the 

authors conclude that these «findings […] elucidate potential anatomical substrates for 

cognitive and behavioral alterations across SCA syndromes» (p. 2224).  

Critically, these conclusions are not presented by the authors as strongly justified 

hypotheses, but rather as mere suggestions for further experimental research. As Xeno-

phontos and colleagues recognise, «[m]ultimodal neuroimaging studies will be required 

to systematically assess the degree of overlap between structural and functional brain 

changes in SCA» (p. 2224). In other words, reverse inference is not used here to justify 

strong conclusions about brain functioning but only to generate a set of hypotheses (about 

the cognitive processes associated to the regions mostly lesioned in the SCA syndromes) 

that should be tested with other techniques to be empirically confirmed. According to 

some scholars, such as Tor Wager (2015), this is essentially the function of NeuroSynth: 

«NeuroSynth is a wonderful tool for hypothesis generation and for getting a rough idea 

of what a brain map related to a psychological topic might look like, but it was never 

intended to justify strong inferences about the psychological meaning of activation».  

In the terminology introduced in Section 1, the study under examination is an ex-

ample of selective abductive inference, where NeuroSynth is used as an artificial substi-

tute for what Schurz (2017) calls probabilistic elimination techniques, suggesting a «short 

and promising (but not necessarily successful) path through the search space of possible 

explanatory hypothesis» (p. 153). Importantly, weak reverse inference is here used to 

suggest a restricted set of worthy candidate explanations for further experimental inves-

tigation, but not to generate a completely new hypothesis about the cognitive functions 

underpinned by the brain regions examined. In other words, it is a case of selective but 

not creative abductive reasoning in Magnani’s sense.  

Prima facie, one might doubt that NeuroSynth or similar meta-analytic tools can be 

of any help in generating truly creative weak abductive hypotheses. In fact, these systems 

strictly depend on already formulated cognitive hypotheses codified in published articles 

and previous neuroimaging literature. Consequently, the objection goes, they cannot fos-

ter new hypotheses about the cognitive functions associated to a given brain region. Nev-

ertheless, we believe that this first impression is misleading. Indeed, NeuroSynth or sim-

ilar tools might assist the discovery of associations between cognitive functions and brain 
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structures that are present but still undetected in the neuroimaging data, as the next case-

study shows. 

 

Weak reverse inference as creative abductive inference (i). As an example, con-

sider Pauli and colleagues’ investigation of the functional specialisation of the human 

striatum, a subcortical region that has been traditionally associated with emotion regula-

tion and reward-related processes. In their study (Pauli et al. 2016), the authors first relied 

on NeuroSynth to identify distinct functional sub-regions in the striatum. Based on this 

analysis, they were able to identify five distinct striatal zones that exhibit discrete patterns 

of coactivation with distal cortical regions: ventral striatum, anterior and posterior caudate 

nuclei, anterior and posterior putamen.   

Then, to identify which cognitive functions are more regularly associated with each 

striatal zone in the literature, Pauli and colleagues relied on NeuroSynth-based reverse 

inference. For each psychological term, the authors calculated the likelihood ratio as the 

«ratio of the number of studies reporting activation in a striatal sub-region when the term 

was vs. was not used in the article» (p. 1909). Results revealed some well-known associ-

ations between striatal regions and low-level cognitive functions, such as the association 

between ventral striatum and reward processing (i.e., with terms such as rewards, losses, 

or craving; p. 1909). However, the analysis also showed some associations that had not 

been highlighted in previous literature, thus «extend[ing] previous knowledge of the in-

volvement of the striatum in reward-related decision-making tasks» (p. 1911):  

 
[…] because we followed an unbiased, data-driven approach, we also identified associations 

between striatal activation and other psychological functions that have often been considered 

to be primarily cortical. In particular, cognitive functions, such as working memory and arith-

metic, were associated with activation in the [posterior caudate], and social functions, such 

as language and empathy, were associated with activation in the [anterior putamen] (p. 1910). 

 

According to the authors, the associations between higher-order psychological 

functions and striatal regions have gone undetected in previous literature because «the 

majority of studies investigating these psychological functions report activity preferen-

tially in cortical areas, except for studies investigating reward-related and motor func-

tions» (p. 1909). The specialisation of the posterior caudate for executive functions was 

particularly novel and unexpected, since these functions were «often considered the ex-

clusive domain of the frontoparietal cortical circuits» (p. 1907).  

For our purposes, this case illustrates well how data mining using meta-analytic 

tools such as NeuroSynth or BrainMap can be a tool of discovery. One might object that, 

in the example discussed above, the abductive reverse inference possesses a degree of 

novelty that is still too low to be considered a genuine case of creative abduction. In these 

kinds of abductions, according to Schurz, the «underlying abduction operation constructs 

something new, for example, a new theoretical model or a new theoretical concept» 

(2017, p. 158). In the context of cognitive neuroscience, a case of genuine creative ab-

duction in this sense might be represented by an inference introducing a novel psycho-

logical concept, that is, a new entity in our scientific domain of cognitive functions, or 

cognitive ontology (see §2). This novel psychological concept might be a cognitive oper-

ation or sub-operations that has never been isolated before, such as a new type of memory. 
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Alternatively, it might be a new general function subsuming most or all of the cognitive 

functions previously associated to a certain brain region – as in the case of the “sensorimo-

tor integration” operation postulated by Price and Friston (2005) to explain why left pos-

terior lateral fusiform is active in a vast range of behavioural domains. Nevertheless, the 

objection goes, NeuroSynth or similar tools cannot foster these classes of inferential op-

erations. At most, these tools can sustain conceptual rearrangement but not concept crea-

tion in Peirce’s terms (see §1). Again, we believe that this first impression is misleading.  

 

Weak reverse inference as creative abductive inference (ii). In a recent paper, 

Genon et al. (2017) investigated the connectivity patterns and the functional organisation 

of the left dorsal premotor cortex (PMd). As a result of their analysis, they identified five 

functionally distinct sub-regions of PMd: rostral, central, caudal, ventral, and rostro-ven-

tral. Then, Genon and colleagues relied on the BrainMap database to characterise the 

functional profile of each of the PMd sub-region. Relying on Bayes theorem for a quan-

titative reverse inference analysis, they calculated which were the most likely cognitive 

domains (i.e., “behavioural domain” in the Brain Map’s terminology) and the most likely 

experimental tasks (i.e., “paradigm class”) conditional on the activation in each sub-re-

gion of PMd. Reverse inference across behavioural domains and experimental paradigms 

revealed that PMd is a highly multifunctional region, with different classes of cognitive 

processes associated with distinct sub-regions of PMd (fig. 5). 

Critically, in order to explain the specific functional profile of a particular sub-re-

gion of PMd, i.e., the rostro-ventral PMd, Genon and colleagues introduced a novel psy-

chological entity that was never discussed before. In the BrainMap database, the «rostro-

ventral PMd was associated with tasks related to explicit long-term memory, object or 

scene imagination, and deception paradigms» (p. 410). Based on such results, the authors 

speculated that such region underpins an abstract cognitive process, a «core computa-

tional function», which grounds all these behavioural associations but remains latent and 

is not directly observed. In a subsequent paper (2018), Genon and colleagues better char-

acterised the abstract cognitive operation underpinned by the rostro-ventral PMd intro-

ducing the concept of “sequential processing”: 

 
  

 [w]e can speculate that this abstraction property reflects the use of sequential processing 

(spatial or temporal) in the PMd for various types of predictions beyond the current frame-

work, in line with the Bayesian brain hypothesis (p. 357). 

 

Interestingly, Genon and colleagues’ reasoning fits quite well with what Schurz 

calls “hypothetical (common) cause abductions”, a kind of abduction that postulates a 

new entity or property to explain a set of empirical phenomena that were previously con-

sidered as unrelated (in this case, the set of behavioural tasks associated to activation in 

the ventro-rostral PMd). According to Schurz (2017), «this is the most fundamental kind 

of conceptually creative abduction», which is driven by «the search of explanatory unifi-

cation» (p. 162). As a consequence, the author’s hypothesis has the potential to trigger a 

cognitive ontology revision (see Anderson 2015), devising an entirely new cognitive kind. 

In turn, suggesting a more risky but potentially fruitful line of research, their abductive 

inference complies with the Peircean dictum of preferring “uberty” over “security”.  
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It is important to note that, as recognised by Genon and colleagues, these kinds of 

observations are only possible when neuroimaging researchers rely on quantified reverse 

inference with NeuroSynth, BrainMap, or similar meta-analytic tools, which allow for the 

integration activations across thousands of different tasks and behavioural domain: 

 
[a]s illustrated in [these examples], the patterns of associations across a wide range of tasks 

can foster new hypotheses, approximating as much as possible the core role of the region 

(and thus its operation-function), beyond the behavioural ontology of the original studies or 

the database (Genon et al. 2018, p. 357)  

 

Genon and colleagues’ reasoning is not an isolated case in the neuroimaging litera-

ture. For instance, different studies employing the NeuroSynth database have shown that 

the anterior insula is engaged in a wide range of fMRI tasks; on this basis, it has been 

suggested that this area supports a novel generic function, i.e., “task engagement mainte-

nance” (see Poldrack 2011). In these and other similar cases, we can construe reverse 

inference as a form of weak abducting reasoning that can suggest radically new hypothe-

sis about the cognitive function associated to a given brain region. When successful, this 

kind of reasoning seems to support what Peirce called “concept creation”, thus showing 

that NeuroSynth or similar tools can also be applied for performing weak, creative forms 

of reverse inference. 

Fig.3. A schematic representation of the quantitative reverse inference on the BrainMap database 

by Genon and colleagues (2017). Reproduced with permissions from Genon et al. (2018).  
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5. Conclusion 
 

In this paper, we offered the first comprehensive discussion of reverse infer-

ence as a form of abductive reasoning in cognitive neuroscience. Relying on previ-

ous philosophical discussion, we first introduced a distinction between two forms 

of this inferential strategy, i.e., weak and strong reverse inference. Then, we argued 

that distinguishing between these two functions of reverse inference – i.e., a justi-

ficatory (strong) and a strategic (weak) one – is crucial both to make sense of current 

neuroscientific practice and for assessing the methodological debate on reverse in-

ference in general. In support of this, we provided the first systematic exploration 

of both the justificatory and the strategic function of reverse inference.  

The main results of our discussion can be summarised as follows. On the one 

hand, strong reverse inference as a form of IBE clearly plays a role in some of the 

boldest attempts of deriving conclusions about the engagement of cognitive pro-

cesses based on fMRI data found in the neuroimaging literature. Accordingly, look-

ing at this pattern of reasoning as a form of strong abduction can surely advance the 

discussion on the justificatory role of reverse inference, especially for what con-

cerns precise comparative criteria for assessing competing cognitive explanations 

of activation patterns. At the present state of research, however, such a discussion 

is absent from the neuroscientific debate, and this has fuelled an undue pessimism 

on the reliability of reverse inference in general.  

On the other hand, the weak function of reverse inference has been virtually 

ignored in both the philosophical and neuroscientific literature. Still, weak reverse 

inference is indeed performed in current neuroscientific research and, as our dis-

cussion reveals, instantiates most of the strategic functions that philosophers have 

traditionally assigned to abduction. In particular, we examined three case-studies, 

illustrating both the selective function of weak reverse inference (i.e., individuating 

a restricted set of plausible hypotheses worth of further empirical testing) and its 

creative function (i.e., suggesting a partially or radically new psychological inter-

pretation of a given brain activation). Acknowledging the role of weak reverse in-

ference in current research practice thus sheds new light on its methodological role 

and may mitigate the scepticism that presently surrounds reverse inference within 

the community. 

Of course, the present paper has provided just the beginning of a more sys-

tematic exploration of the role of abductive reasoning in cognitive neuroscience; 

the spirit of the paper, hence, is programmatic. Indeed, we believe that the distinc-

tion between weak and strong reverse inference might shed new light on the debate 

on reverse inference as it currently stands, clarifying some important issues and 

even opening new directions for methodological reflection in the field. To this pur-

pose, a more detailed study of both the justificatory and the strategic function of 

reverse inference, as well as of the role of NeuroSynth and similar tools in support-

ing such functions, is surely needed. With the present contribution, we hope we 

provided a general framework to rigorously address such problems in future re-

search.  
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