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Abstract: Some authors, inspired by the theoretical requirements for the formulation of a 

quantum theory of gravity, proposed a relational reconstruction of the quantum parameter-

time—the time of the unitary evolution, which would make quantum mechanics compatible 

with relativity. The aim of the present work is to follow the lead of those relational programs 

by proposing a relational reconstruction of the event-time—which orders the detection of the 

definite values of the system’s observables. Such a reconstruction will be based on the modal-

Hamiltonian interpretation of quantum mechanics, which provides a clear criterion to select 

which observables acquire a definite value and to specify in what situation they do so. 

1.  Introduction 

Although the idea that time has a relational nature appeared already at the dawn of 

philosophy, it was with Leibniz that it acquired a more precise formulation that made it 

possible to discuss the ontology of time in the context of physical knowledge. Initially the 

discussion was overshadowed by the great success of Newtonian mechanics, with its 

assumption of absolute space and time; but later, various heirs of the Leibnizian perspective 

returned to defend the relational character of time. However, in general the debate between 

substantialism and relationalism remained confined to the realm of classical and relativistic 

mechanics, while the question about the nature of time was not a central topic in the highly 

developed field of the interpretation of quantum mechanics. 

Nevertheless, some authors, inspired by the theoretical requirements for the formulation 

of a quantum theory of gravity, proposed a relational reconstruction of quantum time, which 

would make quantum mechanics compatible with general relativity (Page and Wootters 1983, 

Wootters 1984, Rovelli 1990, 1991, 2008). But there are two notions of time in quantum 

mechanics: a parameter-time, through which the system unitarily evolves, and an event-time, 

                                                 
1 The three authors have contributed to the article to the same extent. The order of the names is alphabetical. 
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which orders the detection of definite values of the system’s observables. Those relational 

views point to a reconstruction of quantum mechanics that lacks the parameter-time as a 

fundamental item: the temporality of the evolution emerges as a relational result within the 

closed system itself, in particular, the universe as a whole. 

The aim of the present work is to follow the lead of those relational programs by 

proposing a relational reconstruction also of the event-time. With this purpose, we will appeal 

to the modal-Hamiltonian interpretation (MHI) (Lombardi and Castagnino 2008, 2010, 

Castagnino and Lombardi 2008, Ardenghi, Castagnino, and Lombardi 2009), which provides 

a clear criterion to select which observables acquire a definite value and to specify in what 

situation they do so. In this way, the two notions of time in quantum mechanics emerge as a 

result of the internal relations defined in a closed quantum system. 

In the light of this purpose, the paper is organized as follows. In Section 2 we will 

briefly review how the relational conception of time has been presented in both the 

philosophical and the physical fields. In Section 3 we will recall the peculiarities of time in 

quantum mechanics, stressing the relationship between time and energy and the two notions 

of time involved in the theory. Two relational programs about the parameter-time will be 

briefly and conceptually described in Section 4. Section 5 will be devoted to the presentation 

of the MHI, focusing on the relevant aspects for the discussion about the nature of the event-

time, in particular, the central role played by the Hamiltonian. In this interpretive context, in 

Section 6 we will show how the event-time can be constructed on the basis of the Hamiltonian 

structure itself, illustrating the proposal with the model of consecutive measurements. Finally, 

in Section 7 the proposal will be summarized, and the possible extrapolation of the event-time 

construction to the case of the Relational Quantum Mechanics will be considered. 

2.  Relational time in philosophy and physics 

The traditional presentations of the relational views of space and time usually begin by 

reminding Gottfried Leibniz. However, the idea of a relational time goes back much further. 

Aristotle already conceived of time (although not space) in relational terms. For him, the 

natural world is the realm of change: everything that is natural is subject to change; and 

although change and time are intimately related, he explained time in terms of change and not 

vice versa. For him, “there is no time apart from change….” (Aristotle, Physics, Chapter 11) 

because “time is the measure of change” (Aristotle, Physics, Chapter 12) (see Barnes 1984). 
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The next important step toward relational time is, certainly, Leibniz. In his well-known 

debate with Samuel Clarke ‒Isaac Newton’s spokesman‒ in the 18th century (see Alexander 

1956), Leibniz argued that space and time do not subsist independently of physical objects, 

but rather emerge as systems of relationships that take place between objects (relative 

distances in the case of space; relative durations in the case of time). One of Leibniz’s 

arguments depends on the metaphysical principle of the identity of indiscernibles: given that a 

reference frame at rest and any other reference frame moving at constant speed (with respect 

to a supposed absolute space) generate equivalent descriptions, the notions of absolute space 

and time must be removed from the ontology since metaphysically superfluous. 

The success of Newtonian theory, based on the assumption of an absolute space that 

made it possible to account for acceleration and rotation, left the Leibnizian vision in a 

lagging place in the context of physics. It was not until the end of the 19th century that Ernst 

Mach returned to Leibniz’s relationalist ideas, in the search of a mechanical theory formulated 

only in terms of the relationships between bodies. According to Mach (1883), dynamic effects 

such as centrifugal forces on rotating objects are a consequence of the relative motion of 

objects with respect to the mass distribution of the universe and not with respect to absolute 

space. This view gave rise to what was later christened as “Mach’s Principle” by Albert 

Einstein (for a detailed discussion of the several distinct ways of formulating the general idea 

of “Mach’s Principle” that Einstein adopted at various times, see Hoefer 1995). 

Although Mach focused his criticism on Newton’s postulation of absolute space, he also 

wished to eliminate absolute time, so obtaining a completely relationalist version of classical 

mechanics. Such a version would be provided, many years later, by Julian Barbour and Bruno 

Bertotti, who faced the problem in a Lagrangian framework, invoking only relative 

magnitudes. After a first theory that was not perfectly equivalent to Newton’s theory (Barbour 

and Bertotti 1977), the authors proposed a relational Lagrangian mechanics based on what 

they called “best matching,” which can be viewed as a relational substitute for the principle of 

least action. By starting from two instantaneous relational configurations of the bodies in the 

universe, an “intrinsic difference” parameter is defined, which measures how different the two 

configurations are. The dynamically admissible trajectories are those that minimize that 

intrinsic difference (Barbour and Bertotti 1982; see also Barbour 1982). This reformulation 

predicts that the universe will have zero angular momentum and total energy that can be made 

zero, as is to be expected in a universe where space and time are completely relational (for an 

accurate analysis of this proposal, see Pooley and Brown 2002). 
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When the strategy of best matching is transferred to relativity theories (see, e.g., 

Barbour 1999), however, the relationalist stance is not straightforward. Already in special 

relativity, the idea of instantaneous relational configurations of the entire universe stands in 

tension with relative simultaneity. In general relativity, in turn, best matching requires the 

foliability of space-time, and this is not a property of all possible models of Einstein field 

equations; moreover, if a space-time is foliable, in general there are many different possible 

foliations that define different instantaneous relational configurations of the entire universe 

(see Butterfield 2001). For these reasons, Barbour’s relational views, when applied to general 

relativity, have been taken with some skepticism. For instance, it has been claimed that 

general relativity, if cast in its 3+1, geometrodynamical form, can be considered a relational 

theory about time but not about space, and that this fact does not imply, nevertheless, that 

general relativity can also be viewed as a relational/Machian theory (Pooley 2001). 

Whereas the debates about the relational nature of time in classical and relativistic 

mechanics have been many and varied, the question about the nature of time in quantum 

mechanics has not received the same attention, especially when compared to the large amount 

of literature on interpretive issues. Perhaps a contributing factor to this situation is the dual 

character of the notion of time in quantum mechanics. 

3.  Time in quantum mechanics 

The symmetry group of quantum mechanics, the Galilean group, is the same as that of 

classical mechanics. Perhaps the invariance under the same symmetry group led many to 

think that the issue of the substantial or relational character of space and time in non-

relativistic quantum mechanics is automatically settled by the same discussion in pre-

relativistic classical mechanics. However, this view overlooks the peculiarities of the notion 

of time in quantum mechanics. 

3.1  Parameter-time and event-time 

In classical mechanics, the state of a system is defined in terms of the actual properties that 

the system acquires over time. In quantum mechanics, on the other hand, the state only 

provides probabilities on the possible values of the properties of the system, while such 

properties acquire current values only at some particular times (this view excludes the so-

called “wavefunction realism”, according to which the wavefunction is a physical field on a 
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high-dimensional space; see, e.g., Albert 2013). Therefore, at least two different notions of 

time need to be distinguished in the quantum realm (see Rovelli 1991, Busch 2008): 

‒ The parameter-time (also called ‘dynamical’ or ‘intrinsic’ time by Busch 2008) is the time 

along which the system unitarily evolves. It is represented by the variable t as it appears in 

the Schrödinger equation. 

‒ The event-time (also called ‘observable’ time by Busch 2008) is the time at which 

individual events occur. Those events are measurement results or, more generally, any 

acquisition of a definite value by a certain observable. 

The parameter-time is the notion of time involved in the characterization of the Galilean 

group; in quantum mechanics it is supposed to be homogeneous and isotropic as in the 

classical case. The Schrödinger equation rules how the probabilities on the possible values of 

all the observables of the system change along the parameter-time. The event-time, on the 

contrary, has no formal representation in quantum mechanics. Nevertheless, it is essential in 

order to endow the theory with physical meaning: testing the theory is only possible by means 

of the registration of specific events, such as the hit of an electron on a screen or the 

absorption of a photon by an atom, occurring at particular times. 

An additional feature of standard quantum mechanics is that the formalism of the theory 

does not establish any link between the parameter-time and the event-time. The quantum state 

only assigns a probability to each possible event and the Schrödinger equation gives the 

evolution of those probabilities along the parameter-time. However, there is no theoretical 

specification about when an actual event occurs. These facts are related to the obstacles to 

define an observable time, as will be considered in the following subsection. 

3.2  Time and energy 

On the basis of the Fourier analysis of wave packets, “uncertainty” relations between position 

and wave number (spatial frequency), and between time and (time) frequency, can be 

formulated: 2x k    , 2t   . By appealing to the de Broglie relations, p k  and 

E   , Niels Bohr (1928) proposed uncertainty relations for position-momentum and time-

energy with the same status: 

x p h          t E h   .        (1) 
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Since then, the debates about the meaning of the time-energy uncertainty relation became 

ubiquitous in the quantum foundations literature, with no general agreement (for a thorough 

discussion, see Busch 1990a, 1990b). 

The main obstacle to conceive the uncertainty relation for position-momentum and the 

uncertainty relation for time-energy on an equal footing is that, whereas position, momentum, 

and energy are represented by operators, time is represented by a scalar; in other words, time 

is not an observable of the quantum system. The natural strategy to overcome this difficulty 

would be to define a time observable T  that would allow obtaining the uncertainty relation 

for time-energy as a particular case of the general relation between any two observables A  

and B : 

 
1 1

,
2 2

A B A B AB BA  
     ,      (2) 

where   is the system’s state (     when the state is pure), and 
22 2O O O 

   . 

In fact, this was the idea of Werner Heisenberg (1927), who, in his famous paper on 

uncertainty relations, defined a time operator T , conjugate to the Hamiltonian H , and 

formulated the corresponding uncertainty relation. However, some years later, Wolfgang 

Pauli (1933) proved a theorem according to which the fact that any Hamiltonian is bounded 

from below precludes the existence of a self-adjoint operator T  acting as a generator of a 

unitary group representation of translations in the energy spectrum. 

Given the limitation imposed by Pauli’s theorem, the time-energy uncertainty relation 

was formulated by appealing to a generic observable R , incompatible with energy, which 

acts as an observable correlate of time (Mandelstam and Tamm 1945; for simple 

presentations, see Messiah 1961, Ballentine 1989). The characteristic time R  is defined as 

R

R

d
R

dt






 .          (3) 

By combining the Heisenberg equation  ,i dR dt A H  with the general uncertainty relation 

of eq. (2), the definition of R  leads to 

2R H  .          (4) 

However, the characteristic time R  cannot be considered a perfect substitute for time t , since 

it depends on the particular observable R . 
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Beyond the large amount of work on this topic, what is important here is how the 

uncertainty relation for time-energy relates to the two notions of time. When conceived in 

Bohr’s terms, or even in terms of a characteristic time, the uncertainty relation involves the 

parameter-time, that is, the time on which the wavefunction (the quantum state) evolves (or 

the observables evolve in the Heisenberg picture). On the other hand, the impossibility of 

defining a self-adjoint operator T  representing a time observable is the manifestation of the 

absence of the theoretical characterization of the event-time in quantum mechanics. This 

difference between the two notions of time will be relevant for the proposal of a relational 

reconstruction of quantum time. 

4. Relational parameter-time in quantum mechanics 

Although comparatively much less discussed than in classical and relativistic mechanics, the 

question about the nature of time in quantum mechanics has also been considered. Some 

authors focused on the characterization of a relational quantum time in order to pave the way 

for quantum gravity. In fact, as many specialists stress, one of the main obstacles to the 

formulation of a quantum theory of gravity is the difference between the notions of time in 

quantum theory and in general relativity, a theory invariant under general coordinate 

transformations. In Chris Isham’s words:  

A key ingredient in all these questions [the questions involved in the so-called 

‘the problem of time in quantum gravity’] is the realisation that the notion of time 

used in conventional quantum theory is grounded firmly in Newtonian physics. 

Newtonian time is a fixed structure, external to the system: a concept that is 

manifestly incompatible with diffeomorphism-invariance and also with the idea of 

constructing a quantum theory of a truly closed system (such as the universe 

itself). (Isham 1993: 6; see also Kuchař 1991).  

In the face of this situation, the idea of reducing quantum time through a relational 

construction appears as a promising solution. 

An interesting proposal in this direction is that put forward by Don Page and William 

Wootters with their “evolution without evolution” (1983; see also Wootters 1984). Their 

central idea is that the universe is a stationary scenario, and that time and evolution emerge in 

a subsystem of the universe, which is entangled with another subsystem that fulfills the 

conditions to be considered a clock. More precisely (for a simple presentation, see Marletto 

and Vedral 2017), the universe is assumed to be in a stationary state such that 0H   
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(which is in agreement with the Wheeler-De Witt equation for a closed universe, see De Witt 

1967). It is also assumed that there is a system CS  that can play the role of a clock: it has a 

large set of distinguishable states t  and it ideally does not interact with the rest of the 

universe RS : 

C R C RH H I I H    ,        (5) 

where CH  and RH  are the Hamiltonians and CI  and RI  are the identities of CS  and RS  

respectively. Moreover, the conjugate observable CT  to the clock Hamiltonian,  ,C CH T i , 

with CT t t t , is defined. Despite not interacting with each other, the clock CS  and the rest 

of the universe RS  are supposed to be entangled in the sense that 

t t

t

t    ,         (6) 

where the t  correspond to RS  and 0t   for some t  (ideally, for a very large number of 

t ). If the evolution of the clock is given by  exp 0Ct iH t  , where 0  is an eigenstate of 

CT  taken as an initial time, then the history of the rest of the universe RS  is given by the 

sequence of the correlated t . In turn, when the value of the observable CT  of the clock CS  

is t , the relative state, in the Everett (1957) sense, of RS  is t t t   . And given that CS  

and RS  do not interact (see eq. (5)), the evolution of the rest of the universe with respect to 

the parameter t takes the Schrödinger form: 

 ,t
t Ri H

t







  .         (7) 

On this basis, Wootters concludes that  

it is not necessary to include ‘time’ as an a priori element of physics. Clock time, 

which makes sense even within a stationary state, is the only kind of time that can 

be observed. Furthermore, even the existence of clock time is only a contingent 

property of the world […]. Only certain states of the universe admit such a 

universal time. (Wootters 1984: 710). 

A different but equally interesting approach to relational time in quantum mechanics is 

that advanced by Carlo Rovelli (1990, 1991, 2008). The first step of this proposal is to let 

aside the Schrödinger picture of quantum mechanics, in which states evolve and observables 

are time-independent, and to embrace the Heisenberg picture, according to which what 

evolves in time are the observables A  and not the state  : 

 
( )

( ),
dA t

i A t H
dt

 .         (8) 
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In this picture, the state   does not change, it is time-independent (which is in agreement 

with the Wheeler-De Witt equation, 0H  ). From this perspective, observables at 

different times are, strictly speaking, different observables. On this basis, Rovelli generalizes 

the Heisenberg picture by distinguishing between partial observables and complete 

observables (Rovelli 2002). A partial observable is a quantity to which a measuring 

procedure leading to a number can be associated; it is represented by such a procedure. A 

complete observable is a quantity whose probability distribution can be predicted by the 

theory; it is represented by an operator. In the generic case, a complete observable is 

composed of several partial observables. For example, the determination of the value of the 

electric field at a given space-time point, ( , )E tx , requires five measuring instruments: one 

electric field detector that measures E , three distance measuring devices giving the three 

components of x , and a clock measuring t . Therefore, ( , )E tx  is a complete observable 

composed of five partial observables: E , the three components of x , and t . 

From Rovelli’s perspective, the different partial observables should be conceived on the 

same footing: time is a partial observable with no privilege over the others. This means that 

dynamics expresses the relation between partial observables, as in the case of general 

relativity. If the unitary evolution of the partial observables with respect to a given specific 

partial observable is to be recovered, this last one has to satisfy certain requirements that 

make it to be called ‘clock’. But clocks may not exist for a particular system, or may exist 

only in particular circumstances. This idea can be expressed in mathematical terms. The set of 

the complete observables of a system has a structure. In certain cases, this structure can be 

foliated in such a way that the resulting leaves are one-dimensional sets containing all the 

“Heisenberg observables” 1 2 3( ), ( ), ( ),...A t A t A t  corresponding to the same “Schrödinger 

observable” A . Or, in Rovelli’s language, if the set can be foliated into one-parameter 

families that are given by the same partial observables with respect to another particular 

partial observable, this last one can be conceived as a clock that measures the time evolution 

of the partial observables of the system. In this case, it is said that the set of complete 

observables has a time structure. However, it may happen that, although dynamics always 

expresses the relation between partial observables, there is no such a time structure. In this 

sense, Rovelli agrees with Page and Wootters’s conclusion: the existence of time is only a 

contingent property of the universe. 

Both the programs of Page and Wootters and of Rovelli intend to show how and under 

which circumstances the time of the quantum unitary evolution (in the Schrödinger picture in 
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the first case and in the Heisenberg picture in the second case) can be reconstructed from 

correlations. In other words, the authors focus on the emergence of the parameter-time, but 

say nothing about the event-time. As Rovelli explicitly acknowledges:  

There are two independent notions of time in ordinary quantum mechanics: the 

time in which the system evolves, and the “time” that orders the measurements of 

the observer. These two are not related and may be non-coincident. I am talking 

here about the time in which the system evolves, not about the time of the 

observer. (Rovelli 1991: 130). 

This program would be completed if a relational reconstruction of the quantum event-time 

could be formulated. But, as explained above, the event-time has no formal representation in 

quantum mechanics. When and how observables acquire definite values is a question that 

depends on how the theory is interpreted. For this reason, we will appeal to the modal-

Hamiltonian interpretation to reconstruct the event-time, since this interpretation provides a 

clear criterion to select the observables that acquire definite values and to specify in what 

situation they do so. 

5.  The modal-Hamiltonian interpretation 

The roots of the modal interpretations can be found in the works of Bas van Fraassen (1972, 

1973, 1974), who distinguished between which physical properties the system may possess 

and what actually is the case. On the basis of this original idea, in the 1980s several authors 

presented realist “modal” interpretations (for an overview and references, see Dieks and 

Vermaas 1998) which, despite differences among them, agree on the following points (see 

Lombardi and Dieks 2021): 

 The interpretation is based on the standard formalism of quantum mechanics without the 

projection postulate. 

 The interpretation is realist in the sense that (i) it aims at describing how reality would be if 

quantum mechanics were true, and (ii) it assumes that quantum systems always possess a 

number of definite properties. 

 Quantum mechanics is a fundamental theory, which must describe not only elementary 

particles but also macroscopic objects. 

 Quantum mechanics describes single systems: the quantum state refers to a single system, 

not to an ensemble of systems. 
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 The quantum state of the system (pure or mixed) describes its possible properties and not 

its actual properties. The relationship between the quantum state and the actual properties is 

probabilistic.  

 A quantum measurement is an ordinary physical interaction. There is no collapse of the 

quantum state, which always evolves unitarily according to the Schrödinger equation. 

As it is well-known, the Kochen-Specker theorem (Kochen and Specker 1967) proves 

the contextuality of quantum mechanics, that is, the impossibility of ascribing precise values 

to all the observables of a quantum system simultaneously, while preserving the functional 

relations between observables. Therefore, realist no-collapse interpretations are committed to 

selecting a privileged set of definite-valued observables out of all observables. Each modal 

interpretation thus supplies an “actualization rule” that picks out, from the set of all the 

observables of a quantum system, the subset of definite-valued properties that constitutes the 

preferred context. 

5.1  The postulates of the interpretation 

The modal-Hamiltonian interpretation of quantum mechanics (MHI) (Lombardi and 

Castagnino 2008, Castagnino and Lombardi 2008, Lombardi 2018), which belongs to the 

modal family, endows the Hamiltonian of the quantum system with a determining role, both 

in the definition of systems and subsystems and in the selection of the preferred context.  

The MHI is based on the following postulates: 

Systems postulate (SP): A quantum system S  is represented by a pair ( , )H  

such that (i)  is a space of self-adjoint operators on a Hilbert space , 

representing the observables of the system, (ii) H   is the time-independent 

Hamiltonian of the system S , and (iii) if 0 '   (where '  is the dual space of 

) is the initial state of S , it evolves according to the Schrödinger equation in its 

von Neumann version. 

Although any quantum system can be decomposed in parts in many ways, according to the 

MHI a decomposition leads to parts which are also quantum systems only when the 

components’ behaviors are dynamically independent of each other, that is, when there is no 

interaction among the subsystems: 

Composite systems postulate (CSP): A quantum system represented by 

: ( , )S H  is composite when it can be partitioned into two quantum systems 
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represented by 1 1 1: ( , )S H  and 2 2 2: ( , )S H  such that (i) 1 2  , and 

(ii) 1 2 1 2H H I I H    , (where 1I  and 2I  are the identity operators in the 

corresponding tensor product spaces). In this case, we say that 1S  and 2S  are 

subsystems of the composite system, 1 2S S S  . If the system is not composite, 

it is elemental. 

Regarding the preferred context, the central idea of the MHI is that the Hamiltonian of the 

system defines actualization. Any observable that does not commute with and/or does not 

have the symmetries of the Hamiltonian cannot acquire a definite actual value, since this 

actualization would break the symmetry of the system in an arbitrary way: 

Actualization rule (AR): Given an elemental quantum system represented by 

: ( , )S H  the actual-valued observables of S  are H  and all the observables 

commuting with H  and having, at least, the same symmetries as H . 

This actualization rule has been applied to many well-known physical situations, such 

as the free particle with spin, the harmonic oscillator, the free hydrogen atom, the Zeeman 

effect, the fine structure, and the Born-Oppenheimer approximation, leading to results 

consistent with experimental evidence (see Lombardi and Castagnino 2008, Section 5). The 

MHI has extended its applications to further situations, such as the no-collapse account of 

consecutive measurements in physics (Ardenghi, Lombardi, and Narvaja 2013) and the 

problem of optical isomerism in chemistry (Fortin, Lombardi, and Martínez González 2018). 

The interpretation has been presented under a Galilean-invariant form, in terms of the Casimir 

operators of the Galilean group (Ardenghi, Castagnino, and Lombardi 2009, Lombardi, 

Castagnino, and Ardenghi 2010). It has also been argued that the MHI actualization rule can 

be transferred to the relativistic domain by changing the symmetry group accordingly: the 

definite-valued observables of a system would be those represented by the Casimir operators 

of the Poincaré group, which are the mass operator and the squared spin operator (Ardenghi, 

Castagnino, and Lombardi 2011, Lombardi and Fortin 2015). This conclusion is in agreement 

with a usual assumption in quantum field theory: elemental particles always have definite 

values of mass and spin, and those values are precisely what define the different kinds of 

elemental particles of the theory. From an ontological viewpoint, the MHI proposes an 

ontology of properties, lacking the ontological category of individual (da Costa, Lombardi, 

and Lastiri 2013, da Costa and Lombardi 2014), which supplies an adequate answer to the 

problem of entanglement of indistinguishable systems (Fortin and Lombardi 2021), but does 

not prevent the emergence of particles under particular circumstances (Lombardi and Dieks 
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2016). In this paper we will not discuss these aspects of the MHI, but will only focus on the 

answer to the measurement problem that it supplies. 

5.2  Quantum measurement 

A quantum single measurement (the difference between single measurement, frequency 

measurement, and state measurement is explained in Lombardi and Castagnino 2008, Section 

6) is a three-stage process: 

 First stage (I): The system : ( , )S SS H  to be measured and the measuring apparatus 

: ( , )M MM H  do not interact. Therefore, they are elemental subsystems of the composite 

system ( ) ( ) ( ): ( , )I I IU H , where ( )I S M   and ( )I S M S MH H I I H    . The 

system S  is in a state 
1

n

i ii
c a

  , where the ia  are the eigenstates of an observable A  of 

S , and the apparatus M  is in a ready-to-measure state 0p , eigenstate of the pointer P  of 

M . Thus, the state of ( )IU  in this stage is 

( )

0

1

n
I

i i

i

c a p


 
   

 
 .        (9) 

 Second stage (II): S  and M  interact through an interaction Hamiltonian intH  that 

introduces a correlation between the eigenstates ia  of A  and the eigenstates ip  of P . 

Therefore, the whole system becomes the elemental system ( ) ( ) ( ): ( , )II II IIU H , where 

( ) ( )II I  and ( ) intII S M S MH H I I H H     , and whose state is 

( )

1

n
II

i i i

i

c a p


   .        (10) 

 Third stage (III): The interaction ends and the whole system is again composite, 

( ) ( )III IU U : S  and M  become elemental systems as in the first stage. The state in this 

stage is ( ) ( )III II   . 

The measurement problem consists in explaining why the pointer P  of the apparatus 

M  acquires a definite value in stage III. When applied to M , the MHI actualization rule 

states that the definite-valued observables are the Hamiltonian MH  and all the observables 

commuting with MH  and having, at least, its same symmetries degeneracies. According to 

the MHI, P  is a definite-valued observable because P  commutes with MH  and does not 

break its symmetries. These features of P  are not required to make the MHI work, but are 

supported by plausible physical reasons. In fact, on the one hand, for the reading of the 

pointer to be possible, the eigenvectors ip  of P  have to be stationary, that is, , 0MP H    . 

On the other hand, in practice the apparatus is a macroscopic system, whose Hamiltonian is 
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the result of the interaction among a huge number of degrees of freedom. Since, in general, 

symmetries are broken by interactions, the symmetry of the Hamiltonian decreases with the 

complexity of the system. Then, a macroscopic system having a Hamiltonian with symmetries 

is a highly exceptional situation: in the generic case, energy is the only constant of motion of 

the macroscopic system. As a consequence, in practice MH  is non-degenerate, and the set of 

its eigenstates is a basis of the Hilbert space M  of the apparatus. But the pointer P  must not 

have a so huge number of eigenvalues as MH , because the experimental physicists have to be 

able to discriminate among them. This means that, in general, P  is a “collective” observable 

(see Omnés 1994, 1999), that is, a highly degenerate observable whose eigenprojectors 

introduce a sort of “coarse-graining” in M . In summary, given that , 0MP H    , and since 

P  has more degeneracies than MH  (which is non-degenerate), P  will be a definite-valued 

observable. 

This MHI answer to the measurement problem has proved to be able to supply an 

account of the problem both in its ideal and its non-ideal versions, overcoming some well-

known criticisms to the original modal interpretations (see Albert and Loewer 1990, 1993). In 

particular, it was applied to the Stern-Gerlach experiment taking into account the possibility 

of infinite “tails” (Elby 1993). Moreover, in the non-ideal case it gives a criterion to 

distinguish between reliable and non-reliable measurements (Lombardi and Castagnino 2008: 

Section 6), a criterion that can be generalized when expressed in informational terms 

(Lombardi, Fortin, and López 2015). 

According to the collapse interpretation, in each particular detection, the pure state 

( )II  of eq. (10) indeterministically “collapses” to a component of the superposition, say, 

k ka p , which is interpreted as that the system S  is in the state ka  and the apparatus 

M  is in the state kp  with certainty; in other words, as that the observable A  of S  and the 

pointer P  of M  acquire the definite values ka  and kp , respectively. The collapse hypothesis 

gives a straightforward account of the agreement between the outcomes of consecutive 

measurements of the same observable. In fact, a second measurement of the observable A  on 

the system S  will maintain the system in the same state ka  resulting from the collapse due 

to the first measurement. This means that the conditional probability of obtaining the value 

(2)
kp  of the pointer (2)P  of the apparatus (2)M  in the second measurement, given that the 

value (1)
kp  of (1)P  of (1)M  was obtained in the first measurement, is  (2) (1) 1k kpr p p  . The 

collapse hypothesis also supplies a simple explanation to the non-trivial correlations between 

the outcomes of consecutive measurements of different observables (see, e.g., Cohen-
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Tannoudji et al. 1977). As a consequence, any no-collapse interpretation is committed to 

explain the correlations in consecutive measurements in an empirically adequate way.  

In the case of the MHI, it can be shown that the correlations between the outcomes of 

consecutive measurements can be accounted for without collapse (see Ardenghi, Lombardi, 

and Narvaja 2013). Now measurement is a five-stage process: 

 First stage (I): The system : ( , )S SS H  to be measured and the measuring apparatuses 
(1) (1)(1): ( , )M MM H  and 

( 2) ( 2)(2): ( , )M MM H  do not interact. Therefore, they are elemental 

subsystems of the composite system ( ) ( ) ( ): ( , )I I IU H , where 
(1) ( 2)( )I S M M    

and 
(1) ( 2) (1) ( 2) (1) ( 2)( )I S M M S M M S M MH H I I I H I I I H         . In this case, the 

apparatuses (1)M  and (2)M  are in the ready-to-measure states (1)

0p  and (2)

0p , eigenstates 

of the pointers (1)P  of (1)M  and (2)P  of (2)M , respectively. Thus, the state of ( )IU  in this 

stage is 

( ) (1) (2)

0 0

1

n
I

i i

i

c a p p


 
    

 
 .       (11) 

 Second stage (II): S  and (1)M  interact through an interaction Hamiltonian 
(1)int SMH  that 

introduces a correlation between the eigenstates ia  of A  and the eigenstates (1)

ip  of 

(1)P . Therefore, now there are two elemental systems: 
(1) (1)(1) ( , )SM SMSM H , where 

(1) (1)SM S M   and 
(1) (1) (1) (1)intSM S M S M SMH H I I H H     , and 

( 2) ( 2)(2): ( , )M MM H . So, the whole system becomes ( ) ( ) ( ): ( , )II II IIU H , where 
(1) ( 2)( ) ( )II I SM M    and 

(1) ( 2) (1) ( 2)( )II SM M SM MH H I I H    , and whose state 

is 

( ) (1) (2)

0

1

n
II

i i i

i

c a p p


    .       (12) 

 Third stage (III): The first interaction ends and the whole system is again composite, 

( ) ( )III IU U , in a state ( ) ( )III II   . 

 Fourth stage (IV): S  and (2)M  interact through an interaction Hamiltonian 
( 2)int SMH  that 

introduces a correlation between the eigenstates ia  of A  and the eigenstates (2)

ip  of 

(2)P . Therefore, now there are two elemental systems: 
(1) (1)(1): ( , )M MM H  and 

( 2) ( 2)(2) ( , )SM SMSM H , where 
( 2) ( 2)SM S M   and 

( 2) ( 2) ( 2) ( 2)intSM S M S M SMH H I I H H     . So, the whole system becomes 

( ) ( ) ( ): ( , )IV IV IVU H , where 
( 2) (1)( ) ( )IV I SM M    and 

( 2) (1) ( 2) (1)( )IV SM M SM MH H I I H    , and whose state is 

( ) (1) (2)

1

n
IV

i i i i

i

c a p p


    .       (13) 
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 Fifth stage (V): The second interaction ends and the whole system is again composite, 

( ) ( )V IU U : S , (1)M , and (2)M  become elemental systems as in the first stage. The state 

in this stage is ( ) ( )V IV   . 

In stages III and V, (1)P  and (2)P  acquire definite values, respectively, because they commute 

respectively with 
(1)MH  and 

( 2)MH  and do not break their symmetries, as explained in the 

case of single measurement. But in this case, the correlations in the state of the whole system 

at the final stage explain the consistency between the measurements of the apparatuses (1)M  

and (2)M . In fact, on the basis of state ( ) ( )V IV   , the probability that (2)M  measures 

(2)
kp  given that (1)M  has measured (1)

kp  can be computed as 

 
 

 

2(2) (1)

(2) (1)

2(1)
1

k k k

k k

k k

pr p p c
pr p p

pr p c


   ,      (14) 

yielding the expected correlation. It is worth stressing that  (2) (1)

k kpr p p  is a legitimate 

probability since the pointers (1)P  and (2)P  are commuting observables because, in general, 

they belong to different measuring apparatuses which, as a consequence, are represented by 

different Hilbert spaces (see Laura and Vanni 2008). This result can be generalized for 

consecutive measurements of different observables and for any number of measurements.  

In summary, consecutive measurements can be adequately explained without collapse if 

the perspective of the whole system is taken seriously: reduced states are not used as 

representing the component systems, but the state of the complete system is always retained 

in such a way that it codifies all possible correlations. In the next section we will see how the 

event-time arises as the consecuence of the interaction relations internal to the whole system 

(typically, the universe as a whole). 

6.  A relational event-time for quantum mechanics 

6.1  When observables acquire definite values 

Any interpretation that postulates the actualization of certain facts (the acquisition of definite 

values by observables) as a not merely epistemic but objective phenomenon is committed to 

specifying when actualization occurs. In the traditional versions of the Copenhagen 

interpretation, the collapse of the wavefunction is conceived as a sort of actualization linked 

to the act of measurement: collapse happens when the quantum system interacts with a 

macroscopic device or when a conscious being becomes aware of the result of the 

measurement (see Faye 2019). In the GRW version of quantum mechanics (Ghirardi, Rimini, 
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and Weber 1986), collapse is a physical indeterministic phenomenon that repeatedly and 

spontaneously occurs with a probability 1 /   per second, where   is a new constant of nature. 

According to some versions of the many-worlds interpretation, every measurement or, in 

general, every interaction splits the universe into myriad of copies of itself (see, e.g., DeWitt 

1970). In the MHI interpretation, according to which actualization is an objective physical 

fact, the problem of deciding when such a fact occurs also cries for an answer. As explained 

below, a simple solution can be given when the definition of the preferred context is taken 

into account. 

It is interesting to compare the MHI interpretation with other modal interpretations with 

respect to this point. For instance, in the biorthogonal-decomposition and the spectral-

decomposition interpretations (see Lombardi and Dieks 2021), the preferred context depends 

on the instantaneous state of the system, which continuously changes over time. This means 

that actualization is a phenomenon that repeatedly occurs at each instant. This interpretational 

position leads to the need to account for the dynamics of actual properties (see Vermaas 

1996). In the MHI interpretation, on the contrary, this step is unnecessary since the dynamics 

of actual properties is trivial. In fact, the preferred context where actualization occurs is not a 

function of time, since it depends on the Hamiltonian: the definite-valued observables always 

commute with the Hamiltonian and, therefore, they are constants of motion of the system. In 

other words, the observables that receive definite values are the same during all the “life” of 

the quantum system as such precisely, as a closed system: they do not change from the time 

of the constitution of the system ‒due to the interaction between other systems or as the result 

of the cessation of an interaction‒ up to the time when the system disappears ‒by interacting 

with another system or by decomposing into different subsystems when an interaction ends. 

The idea that certain properties of a physical system, such as its energy, change only 

upon interaction is very natural in the classical realm. Nevertheless, quantum mechanics 

introduces peculiarities that need to be taken into account: due contextuality, not all possible 

properties can have definite actual values simultaneously. In the face of this essential quantum 

feature, different interpretations adopt diverse positions about actualization and, as 

commented above, according to some of them certain properties of a quantum system acquire 

definite actual values independently of interactions. By contrast, the MHI agrees with the 

natural intuition that interactions, when begin and end, lead to changes (this claim will be 

accurately illustrated in the model of the next subsection). Summing up, actualization occurs 

only once in a quantum system, at the time of its constitution as a closed system, and from 
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that time there is no change in the domain of actuality until the system disappears: the 

definite-valued observables with their corresponding definite actual values remain unmodified 

during the system’s entire life, delimited by interaction events. 

The MHI gives then a precise definition of which observables acquire definite values –

by means of its actualization rule– and of when these precise events occur –when the system 

is constituted as a closed system. This view can be naturally related to the difference between 

parameter-time and event-time:  

‒ The parameter-time is the evolution time of the state according the Schrödinger equation. 

Since the quantum state encodes probabilities and not actuality, the parameter-time is the 

time along which the propensities (in Popper’s terminology) or potentialities (in 

Heisenberg’s terminology) to actualization of all the observables of the system evolve. To 

the extent that there is no collapse, these potentialities keep changing unitarily throughout 

the parameter-time with no discontinuities. 

‒ The event-time does not correspond to the change of the quantum state, but is the time 

defined by the actualization of the system’s properties belonging to the preferred context. 

In other words, since events are actual and not merely possible facts, the event-time belongs 

to the realm of actuality and results from the relations between events. Moreover, according 

to this view: 

 Since the event-time is constituted by the relations between events, there is no event-time 

between events.  

 Since events are given by the interaction relations between systems, the event-time is a 

discrete time that emerges from those interaction relations. 

6.2  Event-time from interactions 

The interactions between systems are usually conceived as ordered in time. For instance, in 

the previous section consecutive measurements were described in this way, that is, as 

different stages that are consecutive regarding parameter-time. However, if the event-time is 

to be relationally constructed, that strategy is not legitimate. But this is not an obstacle, 

because the interactions involved in consecutive measurements can be described in a 

temporally neutral way, in terms of the corresponding events, that is, of the acquisition of 

definite values by the observables of the preferred context. 

Let us represent the event that the observable X  acquires a definite value x  with 

“  :X x ”. From an atemporal perspective, then, there are only events. If for simplicity only 
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the events related to the Hamiltonian are considered (the events referred to the rest of the 

observables of the preferred context are implicit), the events involved in the consecutive 

measurements described in the previous section are: 

‒ Event  
(1) (1)

: SM SM

kH  : The elemental system (1)SM  is constituted by the interaction 

between the system S  and the apparatus (1)M , so its Hamiltonian 
(1)SMH  acquires a 

definite value, say, 
(1)SM

k . 

‒ Events  : S S

kH   and  
(1) (1)

: M M

kH  : The elemental systems S  and (1)M  are constituted 

by the end of the interaction between them, so their Hamiltonians SH  and 
(1)MH  acquire 

definite value, say, S

k  and 
(1)M

k , respectively. 

‒ Event  
( 2) ( 2)

: SM SM

kH  : The elemental system (2)SM  is constituted by the interaction 

between the system S  and the apparatus (2)M , so its Hamiltonian 
( 2)SMH  acquires a 

definite value, say, 
( 2)SM

k . 

‒ Events  : S S

kH   and  
( 2) ( 2)

: M M

kH  : The elemental systems S  and (2)M  are constituted 

by the end of the interaction between them, so their Hamiltonians SH  and 
( 2)MH  acquire 

definite value, say, S

k  and 
(1)M

k , respectively. 

If the instants of the event-time are given by the events in themselves, four instants can be 

identified, which can be conventionally called: 

‒ 1 : the event-instant associated with event  
(1) (1)

: SM SM

kH  . 

‒ 2 : the event-instant associated with events  : S S

kH   and  
(1) (1)

: M M

kH  . 

‒ 3 : the event-instant associated with event  
( 2) ( 2)

: SM SM

kH  . 

‒ 4 : the event-instant associated with events  : S S

kH   and  
( 2) ( 2)

: M M

kH  . 

As it is now quite clear, the relations between those event-instants are the result of the 

web of interaction relations between the involved systems: interactions (let us call them “Int”) 

and ends of interactions (let us call them “¬Int”) give rise to a net of events from which the 

event-time emerges. In the case of the above example of consecutive measurements, such a 

net can be described as in Figure 1. 
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At this point it could be asked about what “imprints” directionality to the so constituted 

event-time. The natural answer is that the interaction relations Int and ¬Int are essentially 

directional phenomena that give rise to a directional network, which endows the emerging 

event-time with directionality. Although natural, this answer presupposes the existence of a 

privileged direction of time embodied in those interaction relations. But such a presupposition 

is far from trivial: the problem of the arrow of time is one of the traditional issues in the 

foundations of physics. The traditional view, which defines the future as the direction of time 

in which the entropy of isolated systems increases, does not seem to be appropriate in this 

case: here interactions are primitive and entropic considerations play no role. Nevertheless, a 

non-entropic approach can be adopted: according to John Earman’s “time direction heresy” 

(Earman 1974), the arrow of time is an intrinsic property of time (or of space-time), which 

does not need to be reduced to non-temporal features. Following Earman’s program, the 

arrow can be defined exclusively in terms of the structure of time (or of space-time) itself 

(although from the perspective of general relativity, this is the line followed in Castagnino, 

Lombardi, and Lara 2003, Castagnino, Lara, and Lombardi 2003, Castagnino and Lombardi 

2004, 2009). In this case, the difference between the two directions of time would be given by 

the asymmetry of the structure of the network of interaction events from which the event-time 

arises. Of course, the issue of the directionality of the event-time is not settled by these brief 

comments, but requires a discussion that goes beyond the limits of the present paper. Here the 

point to stress is that time directionality does not require entropic considerations, but can 

emerge from the properties of the very structure of events, as does the event-time itself. 

6.3  Event-time in a closed universe 

As explained, the MHI actualization rule applies to closed systems, and the preferred context 

is defined by the Hamiltonian of the whole system. In turn, actualization occurs when the 

system is constituted as such, and since then, to the extent that it remains closed, the event-

time does not “pass”. But, what about the universe as a whole? 

The above description might lead to suggest that in the universe, the closed system par 

excellence, there is no event-time. However, this is not the case. Let us recall that the MHI 

actualization rule applies to elemental closed systems, that is, non-interacting systems that 

     Figure 1: Net of interaction relations, events and event-time instants. 
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cannot be further analyzed into subsystems. Therefore, nothing prevents elemental systems 

from existing as subsystems of a closed system like the universe, and whose interaction 

relations establish the network from which the event-time emerges. For instance, let us 

consider the above example of consecutive measurements as a closed toy-model of the 

universe (see Figure 1): the internal structure of the interaction relations between the 

subsystems of the whole universe is sufficient to generate the event-time. 

However, somebody might reply that, whereas the Hamiltonian of the universe is 

unique and time-independent ‒as in the Wheeler-De Witt equation‒, the total Hamiltonian of 

the consecutive-measurement toy-model changes from stage to stage (see the description of 

the five stages in Subsection 5.2). The usual interpretation is that, in such a model, the 

Hamiltonian is a function of the continuous parameter-time: first, say from 0t  to 1t , there are 

no interactions; at 1t  and until 2t , S  and (1)M  interact through the interaction Hamiltonian 
(1)int SMH ; from 2t  until 3t , that interaction ceases; at 3t  and until 4t , S  and (2)M  interact 

through 
( 2)int SMH ; and, finally, from 4t , the interaction ceases again. However, from a 

coherent relational view about time, the parameter-time must be also relational and, as a 

consequence, this orthodox account is not legitimate. 

One strategy, perhaps the theoretically most elegant one, would be to reconstruct the 

parameter-time from the approaches of Page and Wootters or of Rovelli (recall Section 4). In 

this case, a particular system ‒in Page and Wootters’s proposal‒ or a particular partial 

observable ‒in Rovelli’s proposal‒ that can play the role of a “clock” should be found, in 

terms of which the unitary evolution of the system could be recovered and the different stages 

of our toy-model could be defined. But since in the context of our problem ‒the relational 

reconstruction of the event-time‒ the purpose is not to recover that unitary evolution but only 

to describe the changes of the Hamiltonian in atemporal terms, the strategy can be much 

easier. In fact, the total Hamiltonian can retain its time-independence if its “changes” are 

expressed in function of another, non-temporal variable.  

In the case of our consecutive-measurement toy-model, the selection of the non-

temporal variable and the construction of the time-independent total Hamiltonian seem 

natural. In order to perform the consecutive measurements, the measuring apparatuses have to 

be arranged in very precise spatial dispositions on a table and under very specific conditions. 

Let us call this system ‘measuring arrangement’ TM , whose parts are the different measuring 

apparatuses (1)M  and (2)M . Therefore, the system S  only interacts with TM , composing a 

single toy-universe TU SM , whose Hamiltonian UH includes the self-Hamiltonians of the 
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subsystems and all the interaction Hamiltonians, now expressed in terms of the spatial 

disposition of the subsystems. In the case of our toy-model,  

(1) ( 2) (1) ( 2) (1) ( 2)

(1) ( 2) ( 2) (1)int int

U S M M S M M S M M

SM M SM M

H H I I I H I I I H

H I H I

         

  
.   (15) 

The interaction Hamiltonians have the following form: 

(1) (1) ( 2) ( 2)int int( ) ( )SM SM SM SMH q H H q H   ,     (16) 

where ( )q  and ( )q  are double-step functions,  

1

1 2

2

0  if  

( ) 1  if  

0  if  

q q

q q q q

q q




   
 

         

3

3 4

4

0  if  

( ) 1  if  

0  if  

q q

q q q q

q q




   
 

,    (17) 

with 2 3q q . In this way, the space variable q , which is linked to the disposition of the 

elements of the measuring arrangement, replaces the parameter-time t  in the ordering of the 

interaction relations in the very inside of the toy-universe.  

Of course, this consecutive-measurement toy-universe is an extremely simplified model. 

Nevertheless, it contains all the conceptual elements necessary to show how the event-time 

arises from the network of interaction relations between the systems that compose the whole 

closed universe, and how the structure of that event-time is embodied in the internal structure 

of the Hamiltonian of that universe. 

6.4  Time and order 

As explained in the previous subsections, the event-time emerges from the network of 

interaction relations between the subsystems of the universe, and its directionality results 

from the directionality of those relations: if systems AS  and BS  interact yielding CS , the 

relation does not hold in reverse direction; if inside the system DS  an interaction ends leading 

to systems ES  and FS , the relation neither holds in reverse direction. Therefore, the start and 

the end of interactions establish a strict order relation in the set of events, that is, a relation 

that is irreflexive, asymmetric, and transitive. And given that the instants of the event-time are 

defined by the events themselves, this strict order relation is translated to the set of the 

instants of the event-time. For example, in the toy-model of the consecutive measurements 

described above, the strict order is 1 2 3 4       , where “<” represents the relation “being 



 23 

earlier than” (see Figure 1): the event-time with its order structure arises from the relations 

between events. 

Nevertheless, the above toy-model is a simple case, in which all the events and event-

instants are arranged in a total order, that is, an order relation on a set that links any two 

members of the set. But other cases are possible; for example, it may be the case that two 

systems never interact again after a first interaction. In other words, in the generic case, events 

and event-instants are not ordered as in a chain. The instants of the event-time (and the 

corresponding events) are related by a partial order, since it is possible that, given two 

instants, neither of them is prior to the other, so that the relation “being earlier than” does not 

hold for them. For instance, the event-time might bifurcate into two different lines when two 

systems stop interacting and never interact again, generating event evolutions completely 

disconnected (see Figure 2a); or two lines of the event-time, coming from disconnected event 

evolutions, might converge when two systems interact and yield a single evolution (see Figure 

2b). 

 

 

 

 

 

 

 

The possibility of an event-time with a partial-order structure is at odds with the traditional 

notion of time of classical physics, that is, a “unilinear” time, “the same” for all the events of 

the universe. But, in principle, nothing prevents the event-time of quantum mechanics from 

being completely different from the classical time. The debate about how time order should 

be conceived has already arisen in the context of the construction of a relational time in other 

fields of physics. 

In a relatively recent article about the problem of time in quantum gravity, Sean Gryb 

and Karim Thébault (2016) demur against the approaches based on a radical relational 

construction of time. In particular, they criticize what they call “the correlation, or partial 

observables, view of time” (2016: 665), closely associated with Rovelli’s works. The authors 

describe such a relational position as claiming that “all that it is for a physical degree of 

freedom to change is for it to vary with regard to a second physical degree of freedom.” 

  SD 

  SE 

  SF 

  disconnected 

  SA 

  SB 

  SC   disconnected 

               (a)       (b) 

Figure 2: Examples of event-time generating a partial order. 
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(2016: 684); and they add that, according to the relational view, “[w]e are free to choose any 

degree of freedom as an internal clock, and such an arbitrarily chosen clock may, for some 

finite interval, give us a useful means of marking both the duration between, and order of, 

events as defined by correlations between the other degrees of freedom.” (2016: 684). A point 

to note in this regard is that this presentation of Rovelli’s proposal is not entirely fair, since 

the author is very clear in that not just any degree of freedom can be used as a clock: a partial 

observable must satisfy certain requirements to play the role of a clock, and it may be the case 

that those requirements are not fulfilled for a given system. The same remark holds for Page 

and Wootters’s proposal, in which the existence of time is also a contingent fact. 

Anyway, this is not the central point here. What is relevant in the present context is the 

criticism that Gryb and Thébault direct against Rovelli’s partial-observables perspective, but 

which could also be applied to Page and Wootters’s “evolution-without-evolution” view. 

According to the authors, the radical relational position about time “generally will not give us 

an ordering of events in ‘time’ that is globally defined in terms of a linear sequence” (Gryb 

and Thébault 2016: 684; italics added). This is a problem in the light of their own conception 

of what the very concept of time means: “Although we can recover a weak sense of change as 

relative variation, there is no scope for the basic one-dimensional ordering structure that, in 

our view, is constitutive of time.” (2016: 666; italics added). Therefore, they propose a 

different relational approach, according to them Machian in nature, which leads to an absolute 

temporal-ordering structure: “for a notion of time to be relational in the Machian sense, it is 

not enough to be merely relational; it must also be unique and equitable” (2016: 686); 

“equitable in that it can be derived uniquely from the motions of the entire system taken 

together” (2016: 685).  

In the quantum context, the target of Gryb and Thébault’s criticism is the relational 

construction of the parameter-time. However, since the criticism is based on the fact that a 

time “globally defined in terms of a linear sequence” cannot be obtained, it can also be 

applied to the relational construction of the event-time as that proposed here. In fact, the so 

resulting event-time introduces a partial order between events and not a “one-dimensional 

ordering structure” as that required by the authors. The question is: Why should the relational 

time of quantum mechanics be linear and total-ordering? According to the authors’ view, 

those features are constitutive of the very concept of time. However, such a view could be 

seen as a metaphysical prejudice in favor of a pre-relativistic concept of time.  
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As it is well-known, in general relativity the concept of time appears under two different 

faces. On the one hand, the “coordinate time” is a coordinate on the space-time manifold and, 

therefore, it is expected to play no fundamental role in a theory that is invariant under general 

coordinate transformations (Isham 1993: 12). On the other hand, the “proper time” is the time 

measured along a certain world-line: it is linear and totally orders the events of such a world-

line, but cannot temporally coordinate all the events of the universe. Only if the space-time 

admits a cosmic time, can the proper times corresponding to the world-lines of all the bodies 

of the universe be coordinated by a single time (see Castagnino, Lombardi, and Lara 2003), 

that is, by a time that is “unique and equitable” as required by Gryb and Thébault. But the 

existence of a cosmic time ‒and even the weaker condition of the existence of a global time 

(see Hawking and Ellis 1973), equivalent to the foliability of the space-time required by the 

authors‒ imposes a relevant constraint to the set of space-time models. Such a constraint, 

although reasonable for studying certain aspects of the observable universe, seems 

inadmissible in a discussion about the very foundations of time: concepts of time that “refer to 

the description of special solutions of the Einstein field equations only […] are irrelevant in a 

discussion of the ontology of time, because a different ontology for different solutions of the 

same theory is certainly unsatisfactory” (Rovelli 2006: 34). 

In summary, the discussion about the order structure of relational time in quantum 

mechanics should take into account the general motivation of the relational project. Precisely, 

in view of the peculiar features of general relativity, the fact that the resulting event-time does 

not have the structure of classical time should be considered as an advantage for the 

construction of a truly fundamental quantum gravity. In other words, if one of the goals of a 

relational reconstruction of time in quantum mechanics is to face the so-called, in Isham 

words, “problem of time in quantum gravity”, then the possibility of a non unilinear event-

time, far from being an obstacle, should be welcome. 

7.  Final remarks 

The aim of the present work has been to extend the program of a relational time for quantum 

mechanics, which Page and Wootters and Rovelli developed for the parameter-time, to the 

case of the event-time. With this purpose, we have appealed to the modal-Hamiltonian 

interpretation, because it provides a precise definition of the quantum events and of the 

situations in which they occur. We have thus shown how the event-time can be constructed on 
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the basis of the structure of the Hamiltonian of the complete closed system, and we have 

illustrated the proposal with a universe toy-model based on consecutive measurements. 

A final remark is in order. Rovelli’s proposal of a relational time for quantum 

mechanics is in clear resonance with his Relational Quantum Mechanics (RQM) (Rovelli 

1996; see also Laudisa and Rovelli 2021), according to which the properties of a system 

acquire definite values objectively but only relative to another system. The MHI, by contrast, 

endows a closed system with certain definite-valued non-relational properties. In other words, 

whereas in the RQM the events involving a system are always relative to another system, in 

the MHI an event is the acquisition of a definite value by an observable of a closed system, 

independently of any other system. This difference might lead one to think that these two 

views cannot harmonize with each other at all. However, this may not be the case. Despite 

that difference, the two interpretations agree in the following relevant points: (i) events are 

objective; (ii) events occur only in interactions and, therefore, they are discrete; (iii) 

measurements are ordinary physical interactions; (iv) the quantum state does not describe a 

physical field but supplies a codification of probabilities. On this basis, perhaps the two 

interpretive stances can be made compatible if applied at different levels: the MHI gives the 

perspective of the entire closed system, strictly speaking, the universe as a whole, whereas the 

RQM describes the objective and relative values acquired by the properties of the subsystems 

of the universe in their incessant interactions. Therefore, the construction of the event-time as 

proposed in the present paper might be adapted to the perspective of the RQM; but this will 

be the subject of a future work. 
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