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ABSTRACT: Multiscale modeling techniques have attracted increasing attention by philosophers 

of science, but the resulting discussions have almost exclusively focused on issues surrounding 

explanation (e.g., reduction and emergence). In this paper, I argue that besides explanation, 

multiscale techniques can serve important exploratory functions when scientists model systems 

whose organization at different scales is ill-understood. My account distinguishes explanatory 

and descriptive multiscale modeling based on which epistemic goal scientists aim to achieve 

when using multiscale techniques. In explanatory multiscale modeling, scientists use multiscale 

techniques to select information that is relevant to explain a particular type of behavior of the 

target system. In descriptive multiscale modeling scientists use multiscale techniques to explore 

lower-scale features which could be explanatorily relevant to many different types of behavior, 

and to determine which features of a target system an upper-scale data pattern could refer to. 

Using multiscale models from data-driven neuroscience as a case study, I argue that descriptive 

multiscale models have an exploratory function because they are a sources of potential 

explanations and serve as tools to reassess our conception of the target system. 
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1. Introduction 

In recent years, multiscale modeling techniques have attracted increasing attention by 

philosophers of the physical and the life sciences. Multiscale models tackle the so-called 

tyranny of scales (Batterman 2013). Inactive materials like steel, but also active materials in 

biological systems display drastically different behaviors at different spatial, temporal or kinetic 

scales. These scale-dependent behaviors are governed by different physical principles (e.g., 

behaving liquid or solid-like) whose description requires mathematical models tailored to each 

scale. The scale-dependent behaviors also depend on each other, which is why researchers need 
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a multiscale modeling schema to link scale-specific models together via top-down boundary 

conditions and bottom-up homogenization techniques. The goal of using these multiscale 

techniques is to select information from multiple scales that is relevant to explain a particular 

overall behavior of the system (e.g., the cracking of steel under macroscopic stress, Wilson 

2017, ch. 5).  

Multiscale models gain their explanatory power by referring to processes at non-

fundamental scales. Hence philosophers of physics have largely discussed them with regard to 

issues of explanation, such as reduction and emergence (Batterman 2013, Morrison 2018). In 

biology, the success of multiscale models “offer[s] resistance to the idea that multi-scale 

systems can be modeled and explained “bottom up”” (Green and Batterman 2017, p. 21). So 

far, the philosophical discussion of multiscale modeling focuses on its role in explaining the 

behavior of multiscale systems.  

Although the explanatory role of models is widely acknowledged, several philosophers 

of science emphasize that models serve important roles besides explanation. Gelfert (2014, 

2018) argues that exploration should stand alongside explanation (and prediction) as a genuine 

epistemic function of models. Like experiments, models serve exploratory functions when the 

target system is poorly understood, e.g., because no well-articulated theory is available to 

describe it. In these situations, exploratory models can serve as (i) a starting point for future 

inquiry (ii) a proof of principle, (iii) a source of potential explanations or (iv) a tool for 

reassessing the target system. In a similar vein, Ankeny (2000) has introduced the notion of a 

descriptive model to emphasize that biologists often generate descriptions of model organisms 

in a pre-explanatory context, but later use these descriptions in several different explanations 

of the behavior of these organisms. Because the literatures on exploratory/descriptive models 

and on multiscale models have not intersected so far, it is an open question if the latter also 

have exploratory and descriptive roles, alongside their role in explanation and prediction. 
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In this paper, I argue that besides explanation, researchers also use multiscale modeling 

to explore systems whose organization at different scales is ill-understood, and to describe the 

relationship between those scales. I distinguish between explanatory and descriptive multiscale 

modeling based on which epistemic goal scientists aim to achieve. In explanatory multiscale 

modeling, the overall behavior and the lower-scale behaviors of the system are sufficiently well-

understood to explain the former in terms of the latter. Thus, researchers use multiscale 

modeling techniques to select scale-specific information that is relevant to the macroscale 

behavior being explained. In descriptive multiscale modeling, however, both the descriptive 

adequacy of upper-scale data patterns and the explanatory relevance of lower-scale information 

is partially or completely unknown. Researchers thus use multiscale techniques to (a) explore 

lower-scale features which could be explanatorily relevant to many types of behavior of the 

target system, and to (b) determine which feature of a system the upper-scale data pattern could 

refer to.  

By grounding the difference between explanatory and descriptive modeling in the goal-

oriented use of multiscale techniques, my distinction is ecumenical with regard to different 

philosophical accounts of explanation. Here I only assume that explanatory models aim to 

identify information which is relevant to a particular type of behavior of the target system. This 

assumption should be acceptable regardless of whether multiscale models are explanatory 

because they identify multilevel mechanisms (Craver 2007), dynamic principles (Chemero and 

Silberstein 2013) or universality classes (Batterman 2019). As it happens, I do think that the 

multiscale models in neuroscience discussed in this paper fit a mechanistic account of 

explanation, but defending this point is not necessary to justify my account of descriptive 

multiscale modeling.1 Rather I restrict my comments to the relation between my account and 

 
1 A mechanistic view of explanatory multiscale models in connectomics would emphasize the importance of 

network organization (Zednik 2018) and use a notion of decomposition that accounts for context-sensitivity and 

dynamic interaction (Burnston 2019). 
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mechanistic accounts of discovery when discussing the exploratory role of descriptive 

multiscale models. 

I support the distinction between explanatory and descriptive multiscale modeling by 

discussing models from the data-driven field of neuroscience called connectomics. Such models 

describe anatomical and functional brain organization based on connection patterns between 

neural entities and their activities at different spatial and temporal scales. Recently, 

connectomics researchers developed multiscale models to explore the relation between cortical 

gradients—systematic progressions of scale-specific features across the brain—and 

hierarchical information processing (Haueis 2021). I argue that multiscale models of cortical 

gradients are descriptive because (a) they use multiscale techniques to explore which micro- 

and mesoscale features are relevant to hierarchical information processing and because (b) they 

use this lower-scale information to determine what features of brain organization macroscale 

data patterns could refer to. These descriptive models have exploratory functions because they 

are resources for potential explanations of many types of brain function, and because they help 

neuroscientists to reassess hierarchical organization at different scales.2 

The paper proceeds as follows. In section 2, I introduce explanatory multiscale modeling 

using the case of explaining cracking behavior in steel (section 2.1). I then analyze an influential 

multiscale model in connectomics to argue that the goal of using multiscale techniques in 

connectomics is not explanatory (section 2.2). This motivates the need for an account of 

descriptive multiscale modeling, which I develop in section 3. I introduce the main 

characteristics of descriptive models, extend them to multiscale models (section 3.1), and then 

analyse two descriptive multiscale models of cortical gradients (section 3.2). I finally show why 

 
2 Serban (2020) equally argues for the exploratory function of network models in biology. My discussion 

complements Serban’s analysis since she focuses on the exploratory function of providing novel concepts and 

proofs of principle, whereas I focus on descriptive models being sources of potential explanation and tools for 

reassessing the target system. 
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multiscale gradient models are sources for potential explanations and tools for reassessing the 

target system (section 4). Section 5 concludes. 

  

2. Explanatory multiscale modeling 

2.1 Explanatory multiscale modeling: the case of steel cracking behavior 

Many physical and biological systems are organized at multiple length scales. “Scale” can refer 

to spatial sizes, temporal rates or amounts of energy. Although scale dimensions are continuous, 

a multiscale model describes a system with a discrete number of scales because entities in the 

system exhibit different behaviors at characteristic length scales (Batterman 2013, Bursten 

2016, Wilson 2017). What is missing in the philosophical literature, however, is a principled 

answer as to when a change in spatial size, temporal rate or amounts of energy leads to a change 

in scale. I propose the following working definition which I think is implicit in the literature: 

Different Scales: Two entities e1 and e2 and their behaviors b1 and b2 of system S are at 

different scales s1 and s2 if and only if (1) e1 and e2 differ in spatial size, or b1 and b2 occur 

at different temporal rates or require different amounts of energy and (2) there are 

nonredundant and recognizable regularities about b1 and b2, respectively. 

Condition (1) captures that spatial, temporal or kinetic differences are necessary for 

entities to show different scale-dependent behaviors b1 and b2. Condition (2) says that such 

differences suffice for scale changes when b1 and b2 display regular patterns that are 

epistemically recognizable and provide scientists with nonredundant information about the 

organization of the system (Kästner and Haueis 2019).3   

 
3 The conditions can be strengthened by demanding that s1 and s2 differ by an order of magnitude (scale-separation, 

cf. Hillebrand 2015, p. 75), and that higher-scale regularities cannot be derived from lower-scale ones (a version 

of emergence). I do not rely on these assumptions here because it is unclear if scale separation holds for living 

systems (Batterman and Green 2021) and because multiscale modeling does not imply that the modeled system 

displays emergent behavior (Morrison 2018). 
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This minimal explication of the scale concept captures well how scientists model systems 

at multiple scales. Consider first the standard example of steel displaying different scale-

dependent behaviors. Figure 1 shows that at the macroscale above 0.1mm, steel consists of 

homogenous hunks (e1) which respond elastically to stress. Regularities about elastic behavior 

(b1) are discernable via a Hookean continuum model describing resistance to change in volume 

(Young’s modulus of elasticity) and amount of deformation under stress (shear modulus). At 

the intermediate mesoscales between 0.1mm and 0.001μm, steel consists of inhomogeneous 

structures like dislocations (0.5μm). Dislocations (e2) differ from continuous steel hunks in 

spatial size, and regularities about dislocation line shifts (b2) are discernable via laminate 

models which provide nonredundant information about steel stress responses. Finally, at spatial 

sizes below 0.001μm, steel consists of a rigid lattice structure of carbon and iron atoms (e3). 

Atoms exhibit regularities about ionic bonding strength (b3) that are included in molecular 

models to determine when continuous stress turns steel brittle.  
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Fig. 1. The structure of steel at different spatial scales. Adapted from Batterman (2013). 

In explanatory multiscale modeling, scientists choose regular behaviors b1, … bn to 

delineate scales s1, … sn depending on the phenomenon they want to explain. In the steel case, 

regularities about elasticity, dislocation line shifts and ionic bonding strength affect how steel 

bars respond to stress, such as when a train moves across a railroad. Engineers need to know 

why railroad steel cracks under repeated stress. Answering this question allows them to predict 

under which circumstances cracking behavior occurs.4 When steel cracks, it loses its capacity 

to respond elastically at the macroscale of homogenous continua. The capacity is lost because 

 
4 Note that explanation and prediction can come apart. A model can be explanatory but lack predictive power, 

which happens when the phenomenon to be explained occurs stochastically and depends on background conditions 

not included in the model (Craver 2007, p, 68). Conversely, a model can be highly predictive but of little 

explanatory value because it does not quote factors on which the occurrence of the phenomenon depends (Craver 

2006, p. 358). By contrast, the multiscale model of steel predicts cracking behavior from factors without which 

cracking does not occur. 
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mesoscopic dislocations stop moving around freely and start piling up along larger cementite 

walls. When dislocation pile-up occurs, the molecular bonds are exposed directly to macroscale 

stress, which turns the steel bar brittle and eventually induces a crack. The cascade of effects is 

shown in Fig. 2a.  

 

Fig. 2A. Cracking behavior of steel multiple spatial scales. B. Multiscale modeling schema of 

cracking behavior. Based on Wilson (2017, pp. 222, 224). 

A multiscale modeling schema of cracking behavior (Fig. 2B) mimicks the cascade of 

effects when a steel bar is exposed to macroscale stress.5 At the macroscale, we use a continuum 

model to calculate how locomotive weight affects Young’s modulus of elasticity, shear 

modulus and the fracture strength of the entire steel bar. The calculation allows us to select steel 

regions where the applied weight causes the highest stress levels. We then switch to a laminate 

model of the preselected regions and calculate dislocation line shifts at the highest stress levels. 

In the next step we select all regions where dislocations pile-up at a cementite wall, and switch 

to a molecular model. At this scale, we calculate where shear stress is coherent enough to 

weaken or break molecular bonds in the lattice structure.  

 
5 I simplified the schema to illustrate core features of explanatory multiscale modeling (Wilson 2017, p. 223 

discusses further details).  
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Each of these modeling steps is then repeated. The iteration is necessary in part because 

cracking behavior results from hysteresis, i.e. the loss of elastic responses depends the history 

of prior stresses. By iteratively correcting the results of each scale-specific submodel, “the 

computational architecture of a multiscalar modeling scheme can successfully ape the physical 

manner in which hysteresis effects slowly corrupt the properties of a macroscopic body” 

(Wilson 2017, p. 224). In other words, the multiscale modeling schema can be used to explain 

why the steel bar cracks when it does because it reflects the causal processes at different scales 

which occur when the steel bar responds to stress imposed by a macroscopic object. 

To explain why cracking occurs, scale-specific models must be linked together by the 

multiscale techniques of boundary conditions and homogenization. The techniques exploit 

physical information about how regular behaviors of entities at different scales affect each 

other. For example: dislocation pile-up only occurs under high stress levels. The laminate model 

incorporates this physical constraint in the form of a boundary condition, i.e. by “imposing 

limits on the domain of the model” (Green and Batterman 2017, p. 21). The laminate model 

only calculates dislocation line shifts for those regions where dislocation pile-up most likely 

occurs. Similarly, molecular modeling only calculates directional coherence of shear in regions 

where pile-up occurs. Thus, in explanatory multiscale modeling, boundary conditions have the 

function to restrict the lower-scale modeling domain to regions where information relevant to 

the overall behavior most likely occurs.  

To incorporate the lower-scale information during the iterative modeling process, 

researchers use the technique of homogenization. For example: researchers cannot incorporate 

information about dislocation pile-up into the continuum model directly because that model 

describes steel as a homogeneous continuum without dislocations. Homogenization overcomes 

this problem because it takes an asymptotic limit to describe the heterogenous mesoscale 

structure of steel as a fictitious homogenous material which exhibits the same behavior 
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(Batterman and Green 2021, p. 1169). The homogenized description allows researchers to 

correct the macroscale elasticity and fracture strength parameters in regions where dislocation 

pile-up occurs (Wilson 2017, p. 224). Thus, the function of homogenization in explanatory 

multiscale models is to correct the upper-scale parameters using explanatorily relevant 

information from lower scales. The success of homogenization depends on achieving moment 

closure, i.e. finding a finite number of parameters which reasonably approximate the lower-

scale behaviors which are homogenized. Although various mathematical approaches to closure 

have proved practically successful, their utility is limited to certain system configurations 

(Kuehn 2016, p. 264).6 

The steel case shows that in explanatory modeling contexts, the use of multiscale 

techniques is tailored to the particular behavior or phenomenon one tries to explain. Change the 

phenomenon and you change which length scales should be delineated, which behavioral 

regularities are relevant, how to restrict lower-scale models via boundary conditions, and how 

to correct upper-scale models via homogenized descriptions of lower-scale processes. These 

core features of explanatory multiscale modeling are equally found in the life sciences. 

Multiscale models of embryo development use boundary conditions to restrict the number of 

possible movements of embryonic tissue that need to be modeled (Green and Batterman 2017, 

p. 24). Multiscale models of bone use homogenization to correct upper-scale parameters with 

lower-scale information that is relevant to explain bone fracture (Batterman and Green, 2021, 

p. 1179). Yet, not all uses of multiscale techniques have such an explanatory function. 

 

 

 

 
6 I thank an anonymous reviewer for drawing my attention to the limits of homogenization techniques.  
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2.2. Multiscale modeling in connectomics is not explanatory 

To analyse multiscale models in connectomics, I use Different Scales to distinguish three scales 

of cortical organization. At the macroscale, the brain is organized into cortical areas which form 

networks via large-scale fiber pathways and via stable, recurring patterns of functional activity. 

These regular patterns of structural connectivity and functional connectivity (b1) are discernable 

with different parameters of structural and functional magnetic resonance imaging—MRI and 

fMRI—respectively.   

At the mesoscale, the brain is organized into cortical circuits (e2) which consist of 

different inhibitory and excitatory cell types. Cell types occur in different layers of the cortex 

and are connected by stereotypic anatomical patterns. Cortical circuits are modeled in units of 

1mm3 volume (Potjans and Diesman 2014, Schmidt et al. 2018). At this scale, circuits exhibit 

regular, layer-specific oscillations (b2) that provide nonredundant information about neural 

function and which are discernable via electrophysiological recordings and computational 

models (Bastos et al. 2015, Deco et al. 2013).  

At the microscale, the brain consists of cellular and subcellular components. At this 

scale, the cortex differs in density of neuronal cells, their dendritic spines (parts where neurons 

receive excitatory and inhibitory inputs) and myelin (the insulating layer around the axon). 

These properties determine regular spike patterns (b3) of individual neurons which are 

discernable via singe-unit recording methods (Fellous et al., 2004). Figure 3 displays neural 

entities and their regular behaviors at each scale.  
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Fig. 3. Scales of brain organization in multiscale connectomic modeling. Top: parcellation of the brain 

into seven networks (visual, somatomotor, dorsal attention, salience, limbic, control and default mode 

network, adapted from Wang et al. 2019). Middle: canonical microcircuit model (adapted from Beul 

and Hilgetag 2015). Bottom: schematic drawing of neurons, Creative Commons CC0 1.0. 

A multiscale modeling schema in connectomics attempts to describe the relationship 

between these different scale-dependent features of brain organization. In particular, multiscale 

models of cortical gradients describe how systematic progressions of network connectivity, 

circuit architecture and cellular/subcellular densities relate to each other (section 3.2). These 

gradient models build on an influential multiscale model by Deco et al. (2013). I analyze this 

model now to show that multiscale techniques in connectomics do not serve an explanatory 

function.  
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A common assumption in connectomics is that structural connectivity patterns constrain 

the functional connectivity patterns observed with fMRI, but it is largely unknown how these 

macroscale patterns are related to mesoscale circuit dynamics and microscale spiking patterns. 

To investigate these relationships, Deco et al. developed the multiscale modeling schema shown 

in Figure 4. 

 

Fig. 4. Multiscale modeling schema developed by Deco et al. (2013). For explanation of model 

parameters, see text. 

The microscale model in this schema is the full spiking model, which describes brain 

dynamics in terms of individual spiking neurons with three receptor types at the synapse. The 

spiking model couples multiple integrate-and-fire model neurons (Fig. 4 bottom), which 

produce spiking patterns by integrating local excitatory (NMDA and AMPA) and inhibitory 
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(GABA) synaptic inputs, long-range excitatory inputs and external inputs over time. Each 

cortical area is modeled as a network of recurrently connected integrate-and-fire neurons. To 

connect models of cortical areas together, the full spiking model uses values from the structural 

connectivity matrix C, which specifies strength of large-scale fibers between two areas derived 

from diffusion MRI measurements (Fig. 4 top, dotted lines). The C values thus provide 

macroscale constraints on microscale spiking behavior.    

The full spiking model contains a large set of equations, which makes the use of 

macroscale constraints on neuronal spiking behavior across the entire brain computationally 

intractable. The mean dynamic field model overcomes this limitation (Fig. 4, middle). The 

model describes each cortical area in terms of mesoscale circuits with recurrently connected 

inhibitory and excitatory neuron populations (red circles and blue triangles in Fig. 4). Circuit 

activity is modeled by looking at two statistical moments: the mean of the synaptic gating 

variable S in each cortical area, and the covariance of S between two cortical areas.  

By focusing on these statistical moments, Deco et al. homogenize full synaptic activity. 

Their homogenization assumes that circuit dynamics are dominated by the synaptic receptor 

with the longest timescale, which is the NMDA receptor in the full spiking model. This 

homogenization method achieves moment closure by considering first- and second-order 

moments only, which has previously been shown to reasonably approximate neuronal dynamics 

(Rodriguez and Tuckwell 1996). Such moment closure is only valid for certain system 

configurations—such as the resting state in the case of Deco et al.—and therefore cannot be 

assumed to hold equally in other system states such as task-induced activity patterns. 

At the macroscale Deco et al. constrain the mean dynamic field model by linking it to the 

Balloon-Windkessel model, which simulates macroscale functional connectivity patterns (Fig. 

4, top). The main idea is that synaptic activity levels in each cortical area differ, causing 

different blood oxygenation levels that are observable as macroscale patterns in the fMRI 
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signal. Deco et al. therefore use observed structural connectivity strengths (C values between 0 

and 0.1) and functional connectivity patterns to parametrize two variables in the mean dynamic 

field model. The first is dimensionless parameter of recurrent excitatory strength w and the 

second is the global coupling factor G, which is a free control parameter. The connection 

strength between two areas is defined as the product of C and G values. The parametrized circuit 

model picks w and G values which maximize the statistical similarity between observed and 

simulated functional connectivity patterns across the brain. The multiscale modeling schema in 

Fig. 4 thus explicitly links microscale brain dynamics (via the homogenized S variable) to 

macroscale connectivity structure (via the parametrization of w and G with structural and 

functional connectivity patterns). 

I contend that the function of parametrization in multiscale connectomic modeling is not 

explanatory. In explanatory contexts, top-down boundary conditions restrict the scope of the 

lower-scale modeling domain to regions where explanatorily relevant information is expected 

to occur (section 2.1). But Deco et al.’s parametrization does not restrict the scope of mesoscale 

model to a specific set of cortical areas. Instead, their parametrization picks w and G values 

which fit simulated to empirical functional connectivity patterns across the entire brain (Fig. 4, 

grey arrows). The reason for this use is that these researchers want to fit the mesoscale model 

to functional connectivity patterns recorded at rest, i.e. in the absence of external stimuli or 

particular task demands. Therefore, no restriction to cortical areas where task demands change 

functional connectivity patterns is necessary.  

The same goes for Deco et al.’s use of homogenization (black arrows, Fig. 4). 

Homogenization techniques often use mean and covariance to upscale a lower-scale model 

because they describe how interacting lower-scale entities behave collectively. In explanatory 

multiscale modeling, such homogenizations allow researchers to explain how a collection of 

heterogeneous lower-scale behaviors contribute to macroscale behavior (Batterman 2013). 
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Because of their explanatory relevance, upscaled values are used to correct the values of the 

upper-scale model that were initially estimated (Wilson 2017, ch. 5). Deco et al. also use mean 

and covariance of the S variable to upscale the microscale spiking model. And they also upscale 

S values by using the Balloon-Windkessel model to generate simulated functional connectivity 

patterns. But these simulated patterns are not used to correct upper-scale parameters. They are 

instead fitted to the empirical functional connectivity patterns by parametrizing the mesoscale 

parameters w and G. Rather than correcting upper-scale parameters with explanatorily relevant 

information, the use of mean and covariance allows researchers to “explore the parameter space 

of the [mesoscale] model” (Deco et al. 2013, p. 11247, emphasis added).  

Based on the homogenized S values, Deco et al. discovered that the parametrized G and 

w values lie close to a critical point. At this point the low activity state of the brain (the resting 

state of spontaneous activity present independently of specific tasks) becomes unstable and 

switches to higher activity states to a high activity state (e.g., a network state responding to task 

demands). Like parametrization, Deco et al. use homogenization to discover previously 

unknown relations between different scale-dependent features of brain organization. I claim 

that this is an exploratory use of multiscale techniques, which should stand alongside their 

explanatory function in the philosophical analysis of multiscale modeling. 

One may object that even though this multiscale model does not explain any particular 

type of brain function or behavior of the organism, it nonetheless explains the dynamics of the 

observed functional connectivity patterns themselves. The full spiking model describes how the 

dynamic behavior of each area arises from the interaction of inhibitory and excitatory synaptic 

activity, and Deco et al. link this behavior to functional connectivity patterns via multiscale 

techniques. The fact that the parametrized G and w lie close to a critical point illuminates the 

functional relevance of functional connectivity patterns:  
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[W]orking at the edge of a critical point allows the system to rapidly compute a specific brain 

function by representing it in an attractor. This may be a fundamental reason why [functional 

connectivity patterns] reflect cognitive functions and why [they] are so interesting for basic and 

clinical neuroscience (Deco et al. 2013, p. 11250).  

I agree that discovering information about critical brain dynamics can be important to 

explain brain function. But discovering such information is nonetheless different than using 

such information to explain a particular type of function or behavior. This difference is reflected 

in the difference between exploratory and explanatory uses of multiscale techniques.  

Suppose that researchers aim to show that critical dynamics explain how the brain 

switches from low to high activity states, e.g., from resting state to task-related functional 

connectivity patterns. These switches do not occur uniformly across the brain. The default mode 

network, for example, has higher activity levels at rest than during self- or goal-oriented tasks 

(Margulies et al. 2016). Researchers can incorporate this prior knowledge into multiscale 

modeling. They can use boundary conditions to restrict the scope of the mesoscale model to 

regions outside the default mode network. This allows them to search for circuits whose G and 

w values lie near the critical point where the brain switches from low to high activity states. 

Calculating the values for NMDA, AMPA and GABA receptor activity in those pre-selected 

circuits would then reveal which subcellular activities underlie critical brain dynamics. This 

information can be fed back to the macroscale. It would help researchers to distinguish between 

parts of the observed functional connectivity patterns that are relevant to switching from task 

to rest, and parts which reflect other aspects of brain function, such as metabolic activity or 

homeostatic maintenance mechanisms (McCaffrey and Danks 2017, Haueis 2018).  

The biophysical characteristics of the fMRI signal at rest are still too poorly understood, 

however, to determine exactly to which lower-scale behaviors functional connectivity patterns 

are related to, and what their exact functional relevance is. Thus Deco et al. use multiscale 

techniques to explore which lower-scale features of brain organization the upper-scale data 
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patterns could be related to. This exploratory use of multiscale techniques is consistent with the 

discovery of explanatorily relevant information since exploratory models can function as 

sources for potential explanations (section 4.1). 

 

3. Descriptive multiscale modeling  

3.1 From descriptive models to descriptive multiscale models in connectomics 

The nonexplanatory function of multiscale techniques in connectomics is congenial to 

philosophical accounts which analyse descriptive models of brain organization (Ankeny 2000, 

Haueis and Slaby 2017). Descriptive models are not constructed to test a particular theory or 

hypothesis of how the target system functions. Rather, they identify patterns (i.e. discernable 

regularities) that “can serve as the basis for further development of explanations and ultimately 

theories” (Ankeny 2000, S269). Unlike explanatory models, which only include information 

that is relevant to a particular type of behavior, descriptive models describe patterns of system 

organization that are relevant to multiple types of behavior of the target system. I now extend 

this notion of descriptive models from mono- to multiscale models in connectomics.  

To gather information relevant to many types of behavior, descriptive models formulate 

a fundamental presupposition about the overall organization of the target system. In 

connectomics, a fundamental presupposition specifies the relation between neural structure and 

function in a nervous system or a class of nervous systems. Information about the overall 

organization of a system will be relevant to any behavior whose explanation refers to this 

organization. For example: the fundamental presupposition of the descriptive model analyzed 

by Ankeny—the wiring diagram of the nematode worm c.elegans—is that the function of 

individual neurons is directly determined by their morphology (e.g. receptor density) and their 

synaptic structural connectivity. This presupposition us sometimes abbreviated as structure 
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determines function (cf. Ankeny 2000, S266). Information about synaptic structural 

connectivity patterns is relevant to explain multiple types of worm behaviors—e.g. how one set 

of neurons is active during egg-laying behavior, and how another set of neurons is active during 

touch-avoidance response. The wiring diagram thus describes patterns which researchers can 

use to explain different types of behavior of the target system. Note that fundamental 

presuppositions are revisable by further research. For example: further research showed that 

one cannot derive the derive inhibitory and excitatory nature of connections from the c.elegans 

wiring diagram, which let to the revised presupposition that that synaptic structural connectivity 

is necessary but insufficient to determine neuron function (Haueis and Slaby 2017, p. 155).  

The explanatory pluripotency of descriptive models can be found both in anatomical and 

physiological models. Consider the mesoscale model of the canonical microcircuit in the 

mammalian neocortex (Fig. 3 middle). The model selects information about the physiology and 

connectivity of neuron types based on the fundamental presupposition that form follows 

function (Douglas and Martin 1992). This presupposition emphasizes basic commonalities in 

the circuit mechanisms found across brain areas. Consequently, researchers can use the model 

to explain how circuit activity in particular areas contributes to specific types of cortical 

function. Each explanation typically adds further area-specific details to the model, e.g. 

temporal information about subcortical inputs to explain direction-selective processing in 

primary visual cortex (Haueis 2018, Fig. 5) or structural connectivity information to explain 

eye-saccade behavior in the frontal eye field (Heinzle et al. 2007). These examples show how 

a fundamental presupposition helps descriptive modelers to select information about the overall 

organization that is relevant to many types of behavior of that system. Just as in the case of 
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explanatory modeling, this type of modeling is used by researchers from various fields to 

explore the systems they study.7  

In multiscale systems, many different features can realize the overall organization 

specified by a fundamental presupposition. Researchers thus use scale-specific modeling 

assumptions to link data types to scale-specific features that realize the overall organization 

specified by the fundamental presupposition (Haueis and Slaby 2017). For example: in the 

c.elegans wiring diagram, a scale-specific assumption is that electron microscope images reveal 

connection patterns that are invariant between individuals, and that occur between neuron types 

(Ankeny 2000, S264). In the canonical microcircuit model, a scale-specific assumption is 

Peters’ rule, which allows researchers to link reconstructions of individual cell morphologies 

and in-vivo physiological recordings to cell-type specific connectivity patterns (Potjans and 

Diesmann 2014).  

Like their single-scale counterparts, descriptive multiscale models use a fundamental 

presupposition and scale-specific assumptions. Consider again the multiscale model by Deco 

et al. (2013). Its fundamental presupposition is that “the relation between anatomical structure 

and functional [fMRI] correlations is strongly dependent on the local dynamics and the global 

dynamical state of the network” (Deco et al. 2013, p. 12240). To implement this presupposition, 

Deco et al. use scale-specific assumptions to link structural and functional MRI data to 

parameters of the multiscale model (Fig. 4). First, they assume that the global dynamics are 

determined by connection strength C between two cortical areas, which is multiplied by the 

global coupling factor G. Second, they assume that the empirical functional connectivity 

patterns depend on local circuit activity, which is represented by the local excitatory strength w 

and the synaptic gating variable S. As pointed out above, fundamental presuppositions such as 

 
7 An example from physics would be descriptive models of the hydrogen emission spectrum such as Balmer’s 

formula, see Wilholt (2005), pp. 156–160 and Craver (2006), p. 358 for discussion. 
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Deco et al.’s are revisable in light of further research into system organization that the 

descriptive model enables (see section 3.2).  

The descriptive character of multiscale connectomic models reveals the exploratory role 

of multiscale techniques in these models. In an exploratory context, the scale-specific 

assumptions which link data types and model parameters are preliminary, because the relation 

between discernable regularities at different scales is only poorly understood. The use of 

multiscale techniques helps researchers to justify these assumptions because they ensure that 

the parameter values of the multiscale model satisfy the fundamental presupposition.  

For example: Deco et al. use homogenization and parametrization to justify that 

functional connectivity patterns depend on global and local brain dynamics. Consider first their 

use of homogenization. The synaptic gating variable S is a homogenized description of synaptic 

activity which is dominated by the receptor with the longest timescale (the NMDA receptor, 

Deco et al. 2013, p. 11242). Furthermore, the simulated functional connectivity patterns 

generated with the Balloon-Windkessel model homogenize S, because “only gating variable 

correlations at slow time scales are transmitted through the [Balloon-Windkessel] model” 

(Deco et al. 2013, p. 11246). This homogenization suggests that macroscale functional 

connectivity patterns in part reflect the slow dynamics of NMDA receptor activity (microscale) 

in cortical microcircuits (mesoscale).  

I suggest that this exploratory use of homogenization helps determine the reference of 

upper-scale data patterns. Such reference determinations are tentative and revisable since in 

exploratory contexts, the relation between upper-scale data patterns and lower-scale features of 

the target system are only poorly understood. Nonetheless, homogenization at least temporarily 

fixes the reference of the upper- scale data patterns for the users of the model, just as operational 

definitions temporarily fix the reference of a scientific concept for its users (Feest 2011, p. 403).   
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Consider now Deco et al.’s use of parametrization. The Balloon-Windkessel model alone 

can only simulate an fMRI time-course from S values of each region. It cannot couple these 

signals across brain regions. Thus parametrization is used to set the w and G values to 

parameters which maximize the fit between simulated and empirical functional connectivity 

patterns. This suggests that besides NDMA receptor dynamics at long timescales, functional 

connectivity patterns also in part depend on the strength of recurrent excitatory connections w 

in cortical microcircuits, as well as dynamic processes reflected by the G parameter.  

This link to lower-scale parameters is tentative. Further research can change which upper-

scale data types should be used, or how exactly they should be used to parametrize a lower-

scale model, and what the homogenized parameters themselves represent (section 3.2). Yet the 

exploratory use of parametrization contributes to the overall aim of descriptive modelling: to 

discover patterns of organization that are relevant to many types of behavior of the target 

system. For example, Deco et al.’s parametrization reveals that w and G values lie near a critical 

point of two activity regimes. This information could be relevant to many types of cognitive or 

behavioral tasks where the brain switches from low to high activity states, e.g. allocating 

attention, response inhibition, working memory or mental rotation (Shine and Poldrack 2017, 

Burnston and Haueis 2021, p. 136f.).  

 Descriptive multiscale 

modeling 

Explanatory multiscale 

modeling 

Aim of multiscale modeling Discovery of patterns that could 

be relevant to different types of 

behaviors of the target system 

Explanation of a particular type 

of behavior of the target system 

Feature determination Fundamental presupposition 

specifies overall organization of 

target system 

Macroscale behavior determines 

explanatorily relevant 

regularities of the system 

Utility of scale-specific 

models 

Scale-specific modeling 

assumptions link data types to 

features realizing the overall 

organization 

Scale-specific mathematical 

equations to model regular 

behaviors at each scale 
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Utility of upper-scale 

information 

Upper-scale values are used to 

parametrize a lower-scale model 

across entire domain and justify 

scale-specific assumptions 

Upper-scale boundary 

conditions are used to restrict 

lower-scale model domain 

Utility of lower-scale 

information 

Lower-scale information is 

homogenized to determine the 

referent of upper-scale data 

types 

Lower-scale information is 

homogenized to explain upper-

scale behavior 

Table 1. Different types of multiscale models. 

Abstracting from the details of the case, Table 1 describes the general characteristics of 

descriptive multiscale models, and how they contrast with explanatory multiscale models. 

Rather than defining two nonoverlapping sets of models, these characteristics systematize the 

pragmatic difference between two types of modeling activity.  Whether a multiscale modeling 

schema is descriptive or explanatory depends on whether researchers aim to explore patterns 

that could be relevant to many types of behavior, or whether they aim to explain one particular 

type of behavior exhibited by the target system. That behavior determines which scale-

dependent regularities the explanatory multiscale model will describe.  

In explanatory contexts, the relations between scale-dependent regular behaviors are 

sufficiently well understood such that each can be modeled mathematically by a theoretical 

model. Each model can be connected by boundary conditions and homogenization to restrict 

the model domain and select lower-scale information that is explanatorily relevant to the upper-

scale behavior. In exploratory contexts, the relevance of scale-dependent regularities and their 

relations is only poorly understood. Consequently, homogenization and parametrization are 

used to temporarily fix the reference of upper-scale data parameters to scale-specific features. 

Here, the focus is on features which realize the overall organization specified by the 

fundamental presupposition of the descriptive multiscale model. 
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3.2 Descriptive multiscale models of cortical gradients 

The above account of descriptive multiscale modeling illuminates how connectomics 

researchers to explore the organization of cortical gradients across multiple scales (see Haueis 

2021 for a detailed analysis). Here I focus specifically on the models of Wang et al. (2019) and 

Demirtaş et al. (2019) to support my claim that descriptive modelers use multiscale techniques 

to explore relations between scale-dependent patterns which are poorly understood.  

Cortical gradients are systematic progressions of scale-specific features of brain 

organization across the entire cortex (Fig. 3). At the microscale, neuronal and myelin density is 

highest in primary sensory areas (e.g., primary visual or auditory cortex) and decreases 

systematically to lowest values in so-called “association areas” (e.g., areas in the default mode 

network or the frontoparietal control network). By contrast, dendritic spine density increases 

systematically from primary sensory to areas in the prefrontal cortex (Elston 2003). At the 

mesoscale, connections between excitatory and inhibitory neuron types vary systematically 

between cortical areas (Beul and Hilgetag 2015). At the macroscale, connectomics researchers 

recently discovered a principal gradient of functional connectivity—i.e. the axis of greatest 

variance in functional connectivity runs from primary sensory areas via attention networks to 

regions of the default mode network (Margulies et al. 2016).  

Descriptive multiscale models of gradients pick these scale-specific features based on the 

fundamental presupposition that cortical gradients are related to a hierarchy of information 

processing in the brain. The basic idea is that an anatomical hierarchy of feedforward and 

feedback connections underlies a processing hierarchy of input/output relationships (Felleman 

and Van Essen 1991). Along the hierarchy, unimodal sensory representations are subsequently 

elaborated into more categorical and rule-based ones, integrating different types of information. 

This view of hierarchy is representational because different hierarchical levels are individuated 
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by the degree of abstraction in representational content processed by cortical areas at that level 

(Burnston and Haueis 2021). Different scale-specific gradient measures are assumed to relate 

to different aspects of the representational hierarchy, but they are commonly assumed to 

measure one and the same gradient of hierarchical information processing from primary sensory 

areas to association areas. This pattern of overall brain organization can be used to explain many 

types of neural function, such as information processing in sensory systems (Burnston and 

Haueis 2021), or why the default mode network is more active in self-oriented than in goal-

oriented tasks. (Margulies et al. 2016).  

To explore the relation between scale-specific gradients and hierarchical brain 

organization further, Wang et al. (2019) and Demirtaş et al. (2019) both developed modified 

versions of the multiscale modeling schema by Deco et al. (2013). The original schema assumes 

that mesoscale circuit architecture is homogeneous across the cortex (Fig. 4). Thus, Deco et 

al.’s parametrization chooses one w value and one G value for the mean dynamic field model 

to maximize the fit between simulated and empirical functional connectivity. By contrast, the 

modified schemas systematically vary circuit features across the cortex. Thus, the 

parametrizations choose different mesoscale parameter values for different regions of the brain. 

Wang et al.’s parametrization chooses heterogenous values for the recurrent connection strength 

w and the subcortical input I, whereas Demirtaş et al. leave I constant but split w into recurrent 

excitatory connections wEE and excitatory-to-inhibitory connections wEI. The resulting 

gradients in mesoscale circuit parameters are shown in Fig. 5.  
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Fig. 5. Two parametrizations for multiscale modeling of cortical gradients. A Top: Same macroscale 

network parcellation as shown in Figs. 3 and 4. Bottom: Parametrization results in high w values in 

sensory and low values in association areas; I values show the inverse pattern. Adapted from Wang et 

al. (2019, Fig. 2). B. Same network parcellation as in Wang et al. (2019) plus auditory network, five 

circled regions are shown to illustrate circuit differences across the brain. Left: A homogenous 

parametrization assigns uniform parameter values (y-axis) across 180 brain areas (x-axis) Right: A 

heterogenous parametrization based on MRI contrast values across the brain (x-axis) assigns low w 

values to primary sensory areas (dark colors in the brain map) and high values in association areas 

(bright colors). Adapted from Demirtaş et al. (2019, Figs. 1 and 2). 

 

Both multiscale models in Fig. 5 associate the gradient in w and I values with a 

representional hierarchy running from primary sensory to association areas. Surprisingly, 

however, the two parametrizations produce opposing trends for the w values: in Demirtaş et al. 

(2019), both wEE and wEI values increase along the hierarchy, whereas in Wang et al. (2019), w 

values decrease from primary sensory to association areas.  

It is unlikely that this discrepancy stems from one model being a poorer empirical fit to 

the data than the other. The parametrized values of both models correlate highly with several 

empirical measures of cortical gradients: MRI contrasts which indirectly measure differences 

in myelin density (so-called T1w/T2w maps, Wang et al. 2019, Fig. 4D, Demirtaş et al., 2019 

Fig. 1E); estimates of neuronal density (Wang et al. 2019, Fig. 5) and dendritic spine density 
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(Demirtaş et al. 2019, p. 10). Additionally, both models outperform the Deco et al. (2013) in 

terms of goodness of fit between simulated and empirical functional connectivity patterns. They 

also produce better correlations between functional and structural connectivity data. This 

increased fit is a robust result since Demirtas and Wang et al. use optimization procedures with 

different assumptions (hierarchical Monte Carlo versus dynamic causal modeling).8 

I think that rather than reflecting poor empirical fit or being a methodological artefact, 

the discrepancy in w values arises from an epistemic uncertainty about the referent of upper-

scale data patterns. Because it is partially unknown to which lower-scale features the upper-

scale pattern is related, several parametrizations are plausible for a given descriptive multiscale 

model. Subtle differences between the Demirtaş and Wang parametrization justify different 

scale-specific assumptions that link macroscale data to meso- and microscale features of 

cortical organization. Demirtaş et al. parametrize wEE and wEI values with values from a 

hierarchical heterogeneity map (Fig. 5B upper right). The heterogeneity map is a conversion of 

the T1w/T2w map generated from MRI data. This parametrization justifies the assumption that 

increasing w values are linked to increases in dendritic spine density along the cortical 

hierarchy. Recent cross-species comparisons suggest that low T1w/T2w values in human 

association cortex provide a homogenized description of increased dendritic spine density of 

excitatory neurons (Burt et al. 2018). The Demirtaş parametrization further justifies this 

proposal because high w values in association areas imply that neurons with more dendritic 

spines are able to receive an increased number of excitatory inputs. 

In contrast to Demirtaş et al., Wang et al. parametrize w and I values directly with fMRI 

data and nowhere mention dendritic spine density to justify different w values. Instead, their 

parametrization justifies the scale-specific assumption that the principal gradient of functional 

 
8 One might worry that these researchers are overfitting their model to spurious features of the particular dataset, 

which decreases descriptive power of both descriptive and explanatory models in neuroimaging. Wang et al. (2019, 

p. 8) acknowledge this limitation and Demirtaş et al. (2019, e9) run various tests to rule out overfitting.  
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connectivity reflects different degrees of abstraction along the representational hierarchy. First, 

high I and w values provide further justification of placing primary sensory areas at the 

‘concrete’ end of the gradient of abstraction (Margulies et al. 2016). Circuits in primary sensory 

areas must quickly represent changes in the sensory environment. Strong subcortical inputs 

from the sensory periphery and strong connections for local processing support this functional 

role. Second, high I values but lower w values justify placing attentional networks in the middle 

of the gradient. Strong subcortical inputs support the representation of attentional targets 

because the allocation of attention depends on stimuli from the environment (Wang et al. 2019, 

p. 8). Finally, low I values justify that the default mode and control networks are situated at the 

‘abstract’ end of the gradient. Weak peripheral inputs imply “the lack of a direct flow of 

information from the external milieu” in these networks” (Wang et al. 2019, p. 7), whereas 

weak recurrent connections support their role in integrating information from many different 

systems.  

The lesson to be drawn from this case study is that because descriptive modeling operates 

under considerable uncertainty, we should expect that scientists put forward multiple different 

proposals of how scale-dependent patterns are related. Given the sparse knowledge about 

interscalar relations, these proposals are equally plausible (or implausible) at a given stage of 

research. One reason for this uncertainty is that upper-scale data patterns can be related to 

multiple different lower-scale features, or combinations of such features. In the connectomics 

case, functional connectivity fMRI patterns and T1w/T2w maps are related to mesoscale circuit 

features such as recurrent connections, subcortical input, or microscale features such as 

dendritic spine density or myelin density.  

Multiscale methods can reduce this uncertainty, because they temporarily fix the 

reference of the data patterns to certain features. Multiscale techniques also justify scale-

specific assumptions about why certain features realize the fundamental presupposition of the 
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descriptive model. In the case of cortical gradients, the relationship between different scale-

specific features of hierarchical organization remains poorly understood. At this stage of 

research, the parametrizations of Wang et al. and Demirtaş et al. are both plausible because they 

temporarily fix the reference of mesoscale parameters to micro- and macroscale features which 

realize the hierarchical organization of the brain.   

 

4. Exploratory functions of descriptive multiscale models 

4.1 Descriptive multiscale models as sources of potential explanation 

While descriptive multiscale modeling primarily aims to explore system organization at 

multiple scales, it also has an important relation to explanatory modeling. According to Gelfert 

(2014), one important exploratory function of models is that “they help us devise potential 

explanations, for example by envisaging scenarios that, if true, would give rise to the kinds of 

phenomena that constitute the explanandum” (Gelfert 2014, p. 87). In exploratory models from 

physics, chemistry and biology, such potential explanations commonly—although certainly not 

exclusively—describe possible mechanisms which could produce the behavior of the target 

system (Gelfert 2014, p. 89, p. 92; 2018, p. 258). How do descriptive multiscale models fulfil 

this exploratory role of being sources for potential explanation? 

The idea that descriptive multiscale models describe possible mechanisms fits well with 

mechanistic accounts of discovery in the life sciences. According to such accounts, researchers 

use different epistemic activities such as experimentation or modeling to isolate patterns in the 

behavior of the target system from noise and background conditions, and to search for entities 

and activities at multiple scales to explain why these patterns occur (Kästner and Haueis 2019).  

During discovery, researchers put forward several potential explanations by describing how 

entities and activities at different scales might be organized such that the target system produces 
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the pattern. According to mechanistic accounts, the exploratory function of models lies in 

constructing a space of possible mechanisms which can be explored by further experimentation 

and modeling (Craver 2007, p. 112). 

The multiscale modeling of cortical gradients fits this account insofar as Wang et al. 

(2019) and Demirtaş et al. (2019) describe possible mechanisms which could produce patterns 

of hierarchical brain organization. For example, Wang et al. describe possible circuit 

mechanisms which could explain why networks along the principal gradient represent 

information with different degrees of abstraction (Margulies et al. 2016). They argue that strong 

subcortical input and strong recurrent connections could explain why circuits in primary 

sensory areas represent simple features of external stimuli and are specialized in the local 

processing of sensory information. They also say that weak subcortical input and weak recurrent 

connections could explain why circuits in the default mode and control networks process self-

related information that is removed from stimuli in the environment and integrate information 

from many different neural systems.  

By contrast, Demirtaş et al. (2019) describe possible circuit mechanisms which could 

explain why the temporal duration at which networks integrate information increases along the 

cortical hierarchy (Chauduri et al. 2015). Their model suggests that low excitatory strength in 

primary sensory areas stems from the lower density of dendritic spines. This finding could 

explain why circuits in these areas are excited for shorter periods of time because their neurons 

can sum over fewer excitatory synaptic inputs. By contrast, the model relates high excitatory 

strengths in prefrontal areas to higher dendritic spine density. This finding could explain why 

circuits higher up in the hierarchy are active over longer timescales since their neurons can sum 

over many different synaptic inputs.  

We can see here how these multiscale models construct a space of possible mechanisms 

which could explain patterns of hierarchical brain organization. Through parametrization and 
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homogenization techniques, both models are constrained by empirical information from 

multiple scales. And while many model parameters (e.g., w and I and C parameters) can be 

physiologically interpreted, others represent filler terms (such as the global coupling factor G) 

to model neural entities and activities whose structure and function remains poorly understood. 

The fact that researchers can construct equally plausible but yet opposing parametrizations 

suggests that their models describe different possible mechanisms which could explain 

hierarchical patterns of organization. 

This mapping of the exploratory function of multiscale connectomic models to 

mechanistic accounts certainly captures neuroscientists’ intentions to “discover the mechanisms 

underlying the experimentally observed resting global brain dynamics” (Deco et al. 2013, p. 

11244). But the mapping does not capture that descriptive multiscale models contain 

information relevant to multiple types of behavior of the target system. According to 

mechanistic accounts, multiscale models of mechanisms are always models of a particular 

phenomenon (Craver 2006, p. 368). This requirement does not accommodate descriptive 

models because they do not select information based on its explanatory relevance to a particular 

type of behavior of the target system. Descriptions of wiring diagrams, canonical microcircuits 

or cortical gradients do not explain any particular brain function or behavior of the organism. 

Yet these models are clearly more than mere data summaries. They describe patterns which can 

be used in multiple different explanations.  

For example: Wang et al. do not provide one, but three different potential explanations 

for how mesoscale circuit parameters could explain (i) how sensory networks represent external 

stimuli, (ii) how attention networks represent attentional targets, and (iii) how the default mode 

network represents self-related information (e.g., autobiographical memory). The fact that all 

three explanations mention representation reflects that the model picks scale-specific features 

which realize fundamental presupposition of representational hierarchy. Similar points hold for 
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Demirtas et al.’s use of dendritic spine density values to explain of different integration times 

along the cortical hierarchy. Mechanistic accounts rightfully stress that during scientific 

inquiry, researchers often provide multiple how-possibly models of the same mechanism. My 

account of descriptive multiscale modeling additionally highlights that scientists often use the 

same descriptive model in multiple (mechanistic) explanations. This insight suggests that 

descriptive models are not mere precursors of what will once be full-fledged explanatory 

models. They rather serve as stable repositories of information which exist alongside a 

multiplicity of explanatory models drawing on them.  

 

4.2. Descriptive multiscale models as tools for reassessing the target system 

Besides being usable in many different explanations, a descriptive multiscale model can also 

provide researchers with a better understanding of what target system the model actually 

describes. Gelfert (2014) argues that this exploratory function is important in early stages of 

inquiry when there is no well-defined theory under which the model of the target system can be 

subsumed:  

In order to delineate a target phenomenon and converge upon a set of relevant properties and 

relations (which may subsequently come to define the target system or phenomenon), we must 

operate with some preconception of which factors are significant or salient […]. At an early stage 

of inquiry, before the stability of the target phenomenon has been ascertained, our conception of 

the target phenomenon will necessarily be subject to revision (Gelfert 2014, p. 93). 

One example of reassessing the target system is Turing’s exploratory model of biological 

pattern formation (Gelfert 2018). Turing’s model fell initially out of fashion in developmental 

biology because his choice of biological examples were not good target systems in which 

patterns are formed by local activation and long-range inhibition. But it nevertheless inspired 

subsequent experimental and theoretical research, which eventually did point out that this 
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mechanism plays an important role for understanding how biological patterns form during 

biological development. This example illustrates a historical process in which a model “can go 

out of fashion and subsequently rebound” (Gelfert 2014, p. 266) because researchers have 

revised their conception of the target system.  

The case of multiscale gradient models supports Gelfert’s analysis of this exploratory 

role, but additionally points out that reassessing the target system remains important beyond 

the early stages of inquiry (Colaço 2020). Like the Turing model, the discovery of the principal 

gradient of functional connectivity (Margulies et al. 2016) has reignited interest in the so-called 

structural model. This model is a “classical and hitherto largely overlooked theoretical 

framework” which posits that “the built-in architecture of the cortex varies systematically along 

the cortical landscape” (García-Cabezas, Zikopoulos and Barbas 2019, 1). This insight was 

already known to neuroanatomists in the 1960s but remained largely forgotten once researchers 

focused on the anatomical organization of individual areas and studied their contribution to 

cognitive functions in task-based neuroimaging experiments. Through the ascent of novel 

connectomics methods, researchers have realized that these areas are not only organized into 

large-scale networks, but also that these networks can be characterized by multiple scale-

dependent features which change systematically across the cortex (Figs. 4 and 5). It is for this 

reason that the structural model has rebounded and is now part of several multiscale models of 

cortical gradients (Schmidt et al. 2018, Paquola et al. 2019, Wang et al. 2019).  

These multiscale models go beyond the original structural model by connecting the 

gradient concept to hierarchical brain organization. A common assumption in these models is 

that there is only one gradient of hierarchical information processing, which runs from unimodal 

sensory to association areas. Gradients of scale-dependent features are related to different 

aspects of hierarchical information processing: microscale gradients of dendritic spine density 

relate to increased integration time across the representational hierarchy (Chauduri et al. 2015). 
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Macroscale gradients of functional connectivity are related to differences in degree of 

abstraction (Margulies et al. 2016), while microscale gradients of neuronal density are related 

to increases in flexible changes to momentary task demands (Paquola et al. 2019). Importantly, 

the exploratory use of multiscale techniques shows that mesoscale features such as recurrent 

excitation strength vary along the representational hierarchy (Wang et al. 2019, Demirtaş et al. 

2019). There is evidence that this gradient in circuit architecture runs from granular areas, which 

have a highly differentiated granular layer 4, to agranular areas which lack layer 4 altogether 

(Beul and Hilgetag 2015) 

It is this extension of the gradient concept to the mesoscale which could revise the 

assumption that that the cortex exhibits only one hierarchical gradient with a uniform spatial 

end-points. It is possible that the scale-dependent features do not cohere into one spatially 

uniform hierarchical gradient, but rather terminate in different endpoints of the cortex (Haueis 

2021). If Margulies at al. (2016) and Wang et al. (2019) are right, then the degree of abstraction 

could be highest in transmodal areas of association cortex such as the default mode network. 

By contrast, the best available anatomical evidence suggests that dendritic spine densities are 

highest in parts of the prefrontal cortex outside the default mode network (Elston 2003). 

Therefore, integration time may be longest in areas which do not have the highest degrees of 

abstraction.  

Additionally, the mesoscale granular-to-agranular gradient terminates in paralimbic areas 

of the cortex, which show an increased presence of molecules which enhance synaptic plasticity 

mechanisms. According to the structural model, these mechanisms enhance the capacity to 

switch information processing flexibly according to momentary task demands. This suggests 

that the capacity for flexible information processing may reach peak levels in paralimbic areas. 

But these areas process visceral, gustatory and olfactory inputs, and thus do not represent 

information with the highest degree of abstraction (Haueis 2021).  
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If this divergence of the endpoints of scale-dependent gradient descriptions can be 

confirmed by further studies, then multiscale descriptive modeling could revise our 

understanding of the brain as a hierarchical system. While Gelfert’s description of this 

exploratory role uses ‘target system’ and ‘phenomenon’ interchangeably, I think is it is better 

to distinguish these notions in the context of descriptive modeling. If we revise our conception 

of the brain as a hierarchical system, we need to also revise our characterization of multiple 

phenomena which can be explained using descriptive models of hierarchical organization.  

Moreover, the multiscale modeling of hierarchical gradients reveals that the exploratory 

reassessment of target systems proceeds beyond the early stages of inquiry. The concept of 

hierarchy is one of the most well-known and established organizational principles in systems 

neuroscience. Yet, the concept has recently evolved due to new methods being used to study 

brain networks (Burnston and Haueis 2021). Together with the gradient concept, these advances 

have allowed neuroscientists to explore different senses in which the brain can be described as 

a hierarchical system, and whose relations to each other we are just beginning to understand 

(Hilgetag and Goulas 2020). The case study of multiscale gradient models suggests that the use 

of multiscale techniques is one important tool by which scientists continue to improve their 

understanding of the target system. Descriptive multiscale modeling can thus function as a tool 

for reassessing the target system beyond the early stages of inquiry. 

5. Conclusion 

This paper introduced the notion of a descriptive multiscale model to highlight that the 

exploratory function of multiscale modeling should stand alongside its role in explanation. I 

illustrated the exploratory role of such models by discussing examples of descriptive models in 

data-driven neuroscience, specifically connectomic models of cortical gradients. These models 

do not aim to select information that is relevant to one type of behavior of the target system. 

Rather, researchers use multiscale techniques to describe scale-dependent patterns to better 
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understand the relation between upper-scale data patterns and lower-scale features which 

realize an overall organization of the target system. Because that organization is relevant to 

many types of behaviors, information in descriptive multiscale models can be used in many 

different explanations.  

Because of this explanatory pluripotency, descriptive multiscale models should not be 

seen as mere precursors to how-actually models of a target behavior. They rather act as 

repositories of information that can be used in all explanations which reference the overall 

organization of the target system specified in the fundamental presupposition of a particular 

descriptive model. Besides being a source of potential explanation, descriptive multiscale 

models can serve as tools to reassess the target system. In the case of cortical gradients the 

existence of scale-specific gradients could revise our conception that the representational 

hierarchy has one unique endpoint in the cortex. While it is too early to tell how this revision 

will pan out, the case of cortical gradients highlights that exploratory uses of multiscale 

modeling are an integral feature of scientific practice. An adequate philosophical understanding 

of multiscale models should account for the specifics of exploratory uses rather than simply 

assimilate them to explanatory modeling. 
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