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Abstract

Climate scientists frequently interpret climate models as providing prob-
abilistic information, a practice that has come under substantial criti-
cism from philosophers of science. In this paper, I argue that this prac-
tice has (previously unacknowledged) advantages. In particular, though
the literature has focused on the use of probabilities in communicat-
ing results, climate scientists regularly treat probabilities generated by
models not as the final products of research but instead as evidence or
as an intermediate step in a longer reasoning process. In these cases,
inter-model variation provides important information about the amount
of uncertainty that is warranted by the evidence—information that can
only be captured in some sort of probability distribution. Even if we ac-
cept extant arguments against the probabilistic interpretation of climate
models in the context of communication, therefore, the advantages of
the probabilistic interpretation of climate models in other areas makes
it a substantive question whether those arguments can be extended to
the more general case.
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0 Introduction

Climate scientists frequently employ groups or “ensembles” of climate models
when evaluating hypotheses about the past, present, and future climate. In
many cases, they interpret the results given by these ensembles as providing
probabilistic information—that is, they treat the variation between the dif-
ferent members of the ensemble as providing evidence about the probability
of various alternative scenarios. Philosophers have written extensively about
both these “ensemble-based methods” and the probabilities that they gener-
ate, most of it quite critical: though the details of the arguments differ, the
broad consensus within philosophy seems to be that extant ensembles are not
properly “independent” in the way that they would need to be to (e.g.) apply
statistics to them, and thus that the probabilistic results of such applications
are not worthwhile.1

Most of the critical literature has focused exclusively on the use of proba-
bilities in communicating the results of climate science to policy-makers or the
public. Communication is not a particularly representative use of ensemble-
based methods and the probabilities that they generate, however. On the con-
trary, climate scientists regularly employ the probabilities generated by models

1For examples, see Betz (2007, 2015), Carrier and Lenhard (2019), Jebeile and Barber-
ousse (forthcoming), Katzav (2014), Katzav et al. (forthcoming), Parker (2010a,b, 2013),
Parker and Risbey (2015), and Winsberg (2018). There is to my knowledge only one paper
that explicitly defends the practice (Dethier forthcoming).
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not as the final products of research but instead as evidence or as an inter-
mediate step in a longer reasoning process. In these contexts, the probabilistic
interpretation of ensembles is crucial, because the variation between models
provides important evidence about how we should distribute our confidence
over various possibilities. Not only is there good philosophical motivation for
paying attention to this information, but methods that make use of it have
been shown in at least some cases to be more accurate and reliable than meth-
ods that don’t.

Interpreting climate models as providing probabilistic information thus
plays an important role in climate science—there are distinct advantages to
this approach and no good alternatives. The upshot: even if we accept extant
arguments against the probabilistic interpretation of climate models in the
context of communication, it is a substantive question whether those argu-
ments can be extended to the probabilistic interpretation of climate models in
general.2 Whether or not climate scientists should adopt a probabilistic inter-
pretation of climate models in a particular context depends on the costs and
benefits of doing so relative to the available alternatives, and the literature
simply has not demonstrated that the alleged costs outweigh the very real
advantages.

In more detail, the plan is as follows. Section 1 discusses a general problem
for simulations made using of climate models, namely that such simulations
fail to uniquely support a single posterior probability function. Section 2 shows
how moving to the probabilistic interpretation of an ensemble of models mit-
igates this problem. Finally, section 3 argues that there’s no good alternative
to the probabilistic approach in these cases.

Two quick notes. First, in what follows, I’ll focus on a paradigm case of
ensemble-based methods, namely the application of statistics to the set of
results generated by simulations run on an ensemble of climate models. As
I’ll stress, however, what the arguments really motivate is not the use of this
particular method but rather merely that we use some method that takes the
variation between model results into account. There are worthwhile debates
to be had about which ensemble-based methods (in this broad sense) climate
scientists should use, and I want to leave the door open for other approaches
so long as they take account of inter-model variation in some way.

2The extent to which the prior literature is interested in the more general case is an
open question. Certainly, Betz (2007), Parker (2010b), and Parker and Risbey (2015) are
explicitly narrowly constrained to the question of communication. By contrast, Katzav et al.
argue that precise probability functions “should not be used in the climate context” (Katzav
et al. forthcoming), and there is nothing in the text to indicate whether they in fact intend
a narrower claim.
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Second, as may already be clear, I don’t intend the arguments given in this
paper to settle the issue of whether climate scientists should employ a prob-
abilistic interpretation of climate models (though, cards on the table, I think
they should). As such, I won’t be considering all of the arguments against
the probablistic interpretation. This is partly simply a matter of space and
partly because those philosophical arguments that might be thought to apply
beyond the communicative context have been addressed by Dethier (forthcom-
ing). Mostly, though, it’s because I think the best versions of those arguments
have components that I’m not in the best position to evaluate—in particular,
the questions to ask are how severe the misrepresentations are in practice and
how we should weigh the advantages of the probabilistic representation against
the risks.

1 Climate modeling and imprecision

1.1 Using climate models to evaluate hypotheses

Here I briefly outline how climate models are used in evaluating hypotheses
about the (future) climate. To make the discussion more concrete, consider
equilibrium climate sensitivity (ECS), the ◦C change in temperature that will
be observed given a doubling of the atmospheric CO2 concentration.

Were we Bayesian rational agents in an ideal situation, our estimate for
ECS would consist in a precise probability distribution over possible values of
ECS, and this distribution would be generated by conditionalizing our prior
expectations on the total evidence. In practice, of course, this isn’t feasible.3

We’re rarely if ever in a position to directly employ our total evidence in eval-
uating hypotheses. It’s not as though we have access to a complete description
of all of the evidence collected up to this point, let alone an understanding of
the probabilistic relationships between that description and various hypothe-
ses. Instead of calculating the probability of a hypothesis like ECS = 2.5◦C
directly on the total evidence, therefore, scientists build theories and models
that systematize the evidence as well as possible. These theories and models
then tell us what we should believe about the future.

3It’s common for (Bayesian) epistemologists to wave away concerns about feasibility by
pointing out that the relevant standards are “evaluative” rather than “normative.” Fair
enough. Science isn’t concerned with the reasons that an agent might have in an abstract
evaluative sense, however, but instead with the reasons that can be made intersubjectively
salient (Longino 1990): you have to be able to demonstrate to other people that a hypothesis
is warranted. Feasibility questions—e.g., can your evidence be communicated?—are thus
relevant to philosophy of science in a way that they (arguably) aren’t to (ideal) epistemology.
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In the context of climate science, the relevant models are usually global cli-
mate models. We can think of global climate models as consisting of a number
of gridded shells, with each shell representing a layer of the atmosphere and
each grid box a location in that layer. Each grid box is assigned a number of cli-
mate variables, representing (e.g.) the average temperature and precipitation
in that region over the course of a time-step (say, a month). The relationships
between the variables found in various grid boxes are given by a series of equa-
tions that determine how a change in the climate variables of one box affects
other variables in that box as well as the variables in its neighbors. At the
simplest level, quantities like heat will simply defuse through the system, but
of course there are more complicated effects as well.4

To use a global climate model in estimating a quantity like ECS, climate
scientists run computer simulations in which the model is “forced” to take on
a new state by an exogenous change; in the case of ECS, for instance, one
standard procedure is to rapidly double the amount of CO2 in the (simulated)
atmosphere.5 Comparing the end-state of the simulation to the initial state
yields a point-value quantity for the change in average temperature in the
model. So suppose that the in-model change in average temperature, repre-
sented by ∆T̄ , is 2.5◦C. In what follows, I’ll speak of a model “saying” or
“reporting” that ∆T̄ = 2.5◦C. The idea here is that the “model report” is
akin to an “instrumental reading”: the quantity that our computer simulation
spits out is like the quantity that we read off a thermometer. It’s a data point
to be recorded and interpreted and which our hypotheses about the climate
will be expected to account for (compare Parker 2020).

In what follows, I’ll often speak about the interpretation of model reports
in Bayesian language (though nothing hangs on this particular choice of frame-
work). In this framework, “interpreting” model reports means conditionalizing
on them in accordance with Bayes’ rule. In our ECS example, that means that
the probability that we (should) assign to a hypothesis like ECS = 2.5◦C on
the basis of the model report that ∆T̄ = 2.5◦C is given by

Pr∗(ECS = 2.5) = Pr(ECS = 2.5 | m : ∆T̄ = 2.5)

=
Pr(ECS = 2.5)Pr(m : ∆T̄ = 2.5 | ECS = 2.5)

Pr(m : ∆T̄ = 2.5)

4The picture I’ve presented here is simplified in a number of ways. For a deeper discus-
sion, see a climate modeling primer such as Gettelman and Rood (2016) and McGuffie and
Henderson-Sellers (2014). For a philosophical introduction, see Winsberg (2018, 27–54).

5These simulations are only one of the different ways that climate scientists estimate
ECS. For a comparison, see IPCC (2013, 922–923, 1110).
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where “m : ∆T̄ = 2.5” indicates that the model m is reporting that ∆T̄ =
2.5◦C. The crucial point is that what we take from the model report depends
on how well (we think) the model is tracking the truth, or, in the Bayesian
framework, on the likelihood ratio.

1.2 The problem of imprecise evidence

It is uncontroversial that climate models are not perfect: they misrepresent or
idealize some real climate processes, omit or paramaterize others, and rely on
assumptions that are risky or arbitrary in the sense that we don’t know whether
they’re true.6 It is also uncontroversial that climate models are (relatively)
“opaque” in the sense that it is hard to tell how any one idealization affects
the accuracy of the model with respect to a variable of interest.7

The upshot of these two facts is that climate scientists are rarely (if ever)
in a position to know exactly how to interpret a given model report—in our
Bayesian framework, they don’t know the likelihood of a given model report
on different hypotheses. It’s helpful to be slightly more concrete. So suppose
that our model generates a report of ∆T̄ = 2.5◦C. For the sake of simplicity,
suppose further that we know that the likelihood of observing different values
for ∆T̄ given some hypothesis h is given by a normal distribution centered
on the truth. Essentially: we know that the hypothesis on which our model
report has the highest likelihood is ECS = 2.5◦C, and that the likelihood of
the model report falls off as we move to hypotheses that assign more distant
values to ECS. The sole question in this simplified example is how quickly
the likelihood falls off. If the normal distribution has a standard deviation of
.25, our confidence in different values of ECS will look like the graph pictured
in figure 1a. And if the normal distribution has a standard deviation of .5,
our confidence in different values of ECS will look like the graph pictured
in figure 1b. Insofar as we’re uncertain about which assumption about the
model’s accuracy we ought to adopt, we’ll be equally uncertain about which
distribution we should prefer.

Situations like this one are sometimes described by epistemologists as in-
volving “imprecise evidence” (see, e.g., Carr 2019). That terminology can be
confusing, however. It’s not the case that the datum that we’re conditioning on
is itself imprecise; on the contrary, the model’s reported value for ∆T̄ can be

6See IPCC (2013, chapter 9). The point is also widely acknowledged by philosophers: see
Carrier and Lenhard (2019), Jebeile and Barberousse (forthcoming), and Parker (2010a).

7The terminology of “opacity” is owed to Humphreys (2004); for discussions of opacity
in the context of climate models, see Carrier and Lenhard (2019), Lenhard and Winsberg
(2010), and Parker and Winsberg (2018).
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given by P (m : ∆T = x|∆T =
.5) ∼ N (.5, .1).
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(b) Expected model accuracy is
given by P (m : ∆T = x|∆T =
.5) ∼ N (.5, .2).

Figure 1: Posterior probability distributions for values of ECS at the 1/4th of
a ◦C level induced by different views about likelihoods. Priors assumed to be
identical and uniform.

calculated with as much precision as we like. Instead, the problem is that we’re
not in a position to justify a precise interpretation of the model report—we
can’t pick out a single probability function as the assignment of probabilities
that the report supports.

Here’s another way at getting at this contrast. Evidence can warrant more
or less precise conclusions in at least two different senses. On the one hand, the
evidence can warrant more or less precise conclusions in the sense of ruling out
possible values for a quantity. To illustrate, contrast learning the proposition
that [[ECS falls between 0.5 and 4.5◦C]] with learning the proposition that
[[ECS falls between 1.5 and 3.5◦C]]. The latter rules out more possible values
for ECS and is thus more precise in what we might call a first-order sense.

On the other hand, the evidence can warrant more or less precise conclu-
sions in the sense of ruling out possible distributions over values. The most fa-
miliar (but not the only) way to understand this higher-order sense of precision
is in terms of what are called imprecise probability distributions.8 So, in a stan-
dard Bayesian framework, updating your priors Pr(·) on a piece of evidence E
yields a single preferred posterior probability function Pr∗(·) = Pr(·|E). That
is: the standard Bayesian framework treats all evidence as maximally precise
in that it only allows for a single probability distribution. In the example we

8For an overview, see Bradley (2019) and Mahtani (2019). The alternative that I have in
mind replaces imprecise probability’s sets of functions with a modal frame and the accom-
panying access relations (see Dorst 2019; Dorst et al. forthcoming). The differences between
these two approaches shouldn’t matter for the present discussion.
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saw above, however, our uncertainty about likelihood functions meant that we
were uncertain about which of two posterior probability functions to adopt—
rather than a single probability function Pr∗, we had a set of them {Pr∗1, P r∗2}.
In this example, E is less than maximally precise in a higher-order sense: it
doesn’t rule out all but one distribution over the possible values.

To summarize, climate modeling—or at least the project of using climate
models to estimate quantities like ECS—faces a problem. Due to the heavily
idealized and relatively opaque nature of climate models, climate scientists
often don’t know the likelihood of a given model report on different hypotheses
about quantities of interest. Their uncertainty about likelihoods renders the
evidence provided by the model report imprecise in the second-order sense
just sketched: the evidence allows for a variety of possible distributions over
different values for ECS.

Generally speaking, imprecision in our evidence is undesirable: we prefer to
be in situations where the evidence warrants more precise hypotheses rather
than those in which it only warrants less precise ones. This general preference
holds regardless of what sense of precision is at issue and is particularly acute in
climate science. As is widely discussed in the scientific literature, the available
evidence places much tighter bounds on the low end for ECS than on the high
end. Given that higher values for ECS represent relatively disastrous scenarios,
however, practical questions concerning (e.g.) what CO2 concentrations we
should aim to stay beneath are highly sensitive to the probability distribution
over various unlikely high-end options (Weitzman 2012). In climate science,
therefore, imprecise evidence is not just undesirable in an abstract sense—it
presents a genuine practical problem.

In the next section, I’ll argue that ensembles of models help: they provide
evidence that is more precise than the evidence provided by a single model.

2 From a model to an ensemble

2.1 Ensemble-based methods: a primer

As we saw above, one way that climate scientists estimate quantities like ECS
is by running a simulation on a climate model to generate what I’ve called a
“model report,” which are like instrumental readings in the sense that they are
evidence that needs be “interpreted.” (We modeled this “interpretation” step
with Bayesian updating, but we could represent in other ways.) “Ensemble-
based methods” proceed along largely the same lines: the same simulation is
run on each of the models in the ensemble, generating a set of model reports.

8



The crucial difference is that scientists do not reason from or interpret the
individual model reports directly; instead, they reason using the features of
the set of model reports as a whole.

The standard method for turning the set of reports generated by an ensem-
ble into evidence involves employing statistics. In short, this means assuming
that the set of reports behaves as though it were drawn from some sort of
population according to a given sampling procedure. In the simplest case, for
instance, climate scientists might assume that the reports behave as though
they were randomly drawn from a population centered on the truth. Or (more
realistically), they might assume that each of the members of the ensemble is
an equally realistic representation of the true climate and thus that the ensem-
ble behaves like a random sample from a population that contains the truth
as one of its members.9 These assumptions are essentially qualitative ways
of fixing what’s called a “statistical model,” a set of assumptions about the
probabilistic relationship between various hypotheses and the observed data
(i.e. the model reports). Given a statistical model, the observed reports can be
used to generate a probability distribution over various alternatives, and these
probability distributions (again, as opposed to the individual model reports)
are then what climate scientist employ in making judgments about how much
confidence we should assign to various hypotheses.

It’s worth being a little bit more concrete here. So consider the second
of the two assumptions given above. Essentially, this assumption amounts to
the stipulation that for any temperature x, the probability that ECS = x
is equivalent to the probability that an arbitrary model generates a report
that ∆T̄ = x. Given this stipulation, the likelihood of observing a given set
of model reports on the assumption that ECS = x is just the probability of
drawing a report that ∆T̄ = x from the same distribution that characterizes
the (imagined) population. So, for instance, if the underlying population is
normally distributed, then the likelihood of observing a sample with mean ∆T̄
of 2.5 and standard deviation of .25 on the assumption that ECS falls between
2 and 3 is given by:

Pr(µ = 2.5, σ = .25 | 2 < ECS < 3) = Pr(2 < mi < 3 | µ = 2.5, σ = .25)

=

∫ 3

2

1

.25
√

2π
e
−1

2(z−2.5
.25 )2

dz

We can then use these likelihood assignments as part of either a Bayesian
updating procedure or a classical hypothesis test—climate scientists use both

9The contrast between these two options is discussed at length in Annan and Hargreaves
(2010, 2011) and Sedláček and Knutti (2013).
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approaches, though the classical one is currently much more popular.
There are three points that I want to stress before moving on to a discussion

of how the use of ensembles helps address the problem identified in the last
section. First, what I’ll be arguing below is that the proper parallel to draw
here is not between the reports generated by the ensemble and the individual
model report but rather between the probability distribution generated by
the ensemble-based method and the individual model report. That is: the
probability distributions need to be “interpreted” in the same way that an
individual model reports does. In this respect, the ensemble-based method is
no different from a method based on a single model. What differs between
the two cases is that the probability distribution provides us with information
that a single model report doesn’t. In particular, there’s no analogue of the
variance (the second moment of the distribution of ensemble results) in the
single-model case.

Second, to reiterate a point from the introduction, the ensemble-based
method I’ve sketched here is simply a paradigm case of the most popular ap-
proach, and other approaches are possible. Some climate scientists have exper-
imented with interpreting ensembles by weighting the different members and
taking their weighted average (Knutti et al. 2017; Sanderson, Knutti, and Cald-
well 2015); alternatively, some philosophers have suggested a pooling approach
that employs imprecise probabilities and explicitly accounts for the stakes in
interpreting the ensemble (Roussos, Bradley, and Frigg 2021). Which of these
approaches is best is an interesting question that I don’t want to address here;
as we’ll see, my contention is solely that there are good reasons for climate sci-
entists to use some ensemble-based method that takes account of the variation
between the different model reports. In other words, climate scientists should
interpret ensembles in a “probabilistic” manner. My arguments leave room
for disagreement about how to calculate (and use) the relevant probabilities,
when and where to coarse-grain or invoke “imprecise” probabilities, but not
as to whether the interpretation should be probabilistic.

Finally, as should already be clear, the move to an ensemble doesn’t solve
the problem of the last section. Recall: in a Bayesian framework, the problem is
that we don’t know the likelihood relationship between the observed data and
various hypotheses. Exactly the same problem arises here, as illustrated above:
the debates about which statistical model we should employ in interpreting
ensembles are essentially debates about the proper assumptions to make about
the likelihood of observing a particular distribution of model reports. The
upshot is that the probability distribution generated by an ensemble-based
method counts as “imprecise evidence” in the same sense that a single model
report does: both allow for a variety of posterior probability distributions over
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different values for ECS.

2.2 Ensembles and precise evidence

Nevertheless, moving to an ensemble helps. The easy way to illustrate this
point is by considering the simplified example of the last section. There, we
stipulated that the likelihood function—that is, the probability of observing a
model report of ∆T̄ = x given a hypothesis ECS = y—was given by a normal
distribution centered on the truth. Unfortunately, even given this strong as-
sumption, a single model report just doesn’t provide us with any information
to narrow down the class of possible distributions. In other words, even when
we know that the distribution is normal, a single model doesn’t tell us how
wide or narrow we should expect the normal distribution to be.

An ensemble does. Given the assumption that the likelihood function is
given by a normal distribution centered on the truth, an ensemble will allow
us to pick out a preferred distribution over possible values for ECS. The crucial
difference between the two cases is the inter-model variation, which provides
information about the width of the likelihood function: the more variation
there is in the sample, the wider we should expect the normal distribution
that represents the likelihood function to be. So, just to be concrete, in this
case, the likelihood function for an arbitrary model report mi would be given
by a probability density function, meaning that we can calculate the likelihood
of any observed report as follows

Pr(x < mi < y | ECS = µ) =

∫ y

x

1

σ
√

2π
e
−1

2(z−m̄σ )2
dz

where m̄ is the ensemble mean and σ is given by:

σ =

√√√√ 1

n− 1

n∑
i=1

(mi − m̄)2

with n being the number of models in the ensemble.
Of course, we know that extant ensembles aren’t actually like random sam-

ples from a normal distribution centered on the truth—indeed, they don’t
approximate such random samples terribly well (Knutti et al. 2010)—and so
the assumption just outlined is not in fact warranted. That’s why, as stressed
above, we cannot say that ensembles solve the problem of imprecise evidence.
But they do help: the variation between ensembles allows us to narrow the
range of plausible likelihood functions and thus to rule out as implausible some
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possible posterior probability distributions over values of ECS. Returning to
the language of imprecise probabilities, we can think of single-model methods
as delivering a large set of permissible probability functions and ensemble-
based methods as delivering a (strictly) smaller set of such functions. Insofar
as we desire less imprecision (all other things being equal), we should prefer
the ensemble-based method.

What’s going on here is basically that inter-model variation provides what
epistemologists term higher-order evidence. Both a single model and an en-
semble provide us with an estimate for the true value of ECS—the model
report on the one hand and the mean of the distribution on the other. What
the ensemble provides, in addition, is variation between ensemble members,
which serves as higher-order evidence concerning how accurate we should ex-
pect this estimate to be; all other things being equal, the more variation, the
less we should trust the mean as an estimator. The information provided by
this variation is what’s gained by shifting from the single point-value report
to the distribution generated by the ensemble-based method. Of course, the
relevant distribution is itself imperfect—it may be misleading or inaccurate in
the same way that the first-order evidence may be—but the mere possibility
of these sorts of problems doesn’t mean that it’s not useful.

Here’s a slightly different way of making the point. Suppose there’s a set of
mutually exclusive propositions {P , Q, R, ...} and that we don’t know exactly
what probability we should assign to each of them. One way to proceed here
is to adopt the one that seems most likely to be true and to treat it as true—
e.g., to work under the assumption that Pr(P ) (say) is equal to 1. Later
on, we can qualify our results to address the fact that our work was carried
out under this risky assumption. Obviously, this isn’t an ideal strategy, but
it’s essentially the strategy that we employ when using a single model. We’re
taking our “best guess” at how to represent the world, proceeding as though
it’s entirely accurate, and then keeping our concerns about reliability in mind
when updating on the resulting report.

In this analogy, using an ensemble-based method is akin to adopting a
more equitable distribution of probabilities over the set. So, for example, if our
models are equally divided between P , Q, and R and we weight each model
equally, that’s equivalent to assigning each proposition a probability of 1/3.
Since we don’t know what probability distribution our total evidence warrants
in this case, the resulting probability distribution may be misleading—just as
in the single model case, we shouldn’t update on the results without taking our
concerns about reliability into account. Importantly, however, the ensemble
allows us to build some of our concerns about reliability into the method
itself: the ensemble-based approach accounts for the possibility of error due
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to assuming P rather than Q or R. As a consequence, the ensemble and the
probability functions that it generates are likely to be better at capturing what
we should believe than the single-model and its point-prediction. Essentially,
the latter requires us to assign 100% of our confidence to one option, while the
former allows us to adopt confidence distributions that more closely track our
true confidence. The end result is information that requires less qualification
than that provided by a single model. Adopting a particular distribution over
the set is risky, but the risk is less substantial than in the single-model case.

The important takeaway is that ensemble-based methods mitigate the
problem of imprecise evidence outlined in the last section in virtue of the
fact that there’s variation between ensemble members that isn’t present in
a single model. Or, in plainer English, methods that make use of the differ-
ences between models provide us more guidance about how to distribute our
confidence than methods that don’t.

2.3 The concrete benefits of variation

The advantages of ensemble-based methods are not merely philosophical. Of
course, it’s widely recognized that ensemble means are generally more accurate
than the report generated by any single model. The point is made explicitly by
the empirical work on ensembles that is commonly cited in the philosophical
literature (see, e.g., Knutti et al. 2010) and is in some sense unsurprising:
basically any average of a set of estimates will have a higher expected accuracy
than the individual estimates (Roussos 2020, 119–20).10

In saying that the advantages of ensembles are not merely philosophical,
however, I don’t have this kind of increase in accuracy in mind. After all, my
claim in this section is that the variation between ensemble members provides
valuable information—it’s open for a critic to argue that ensemble means are
valuable but that the variation between ensemble members isn’t. I’m going
to wrap up this section by arguing that that position is wrong: variation be-
tween ensemble members provides climate scientists with concrete advantages
over and above the advantage of having a point-value estimate with higher

10That said, I think the increase in accuracy gained by averaging is underappreciated.
As Annan and Hargreaves (2011) argue, the degree to which ensemble means outperform
individual models is not fixed by abstract mathematical considerations and demands ex-
planation. To me, this looks like a problem for the critic of ensemble-based methods: the
surprising accuracy of ensemble averages looks like empirical disconfirmation of the view
that ensembles are too “opportunistic” to be useful. My thanks to Joe Roussos for pointing
out to me that the mathematical property here holds not just for means but for a wide
variety of averages.
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expected accuracy. Briefly, the reason why is that the estimates generated by
climate models aren’t just treated as ends in themselves but are frequently
used as parts of longer and more complex strings of reasoning. In these con-
texts, the variation between ensemble members is crucial: even adopting the
ensemble mean in these longer chains of reasoning introduces an additional
source of error that climate scientists avoid through the use of ensemble-based
methods—in short, it’s like rounding in the middle of a calculation.

Our running example can be used to illustrate this point. As noted above,
ECS is estimated in a wide variety of ways. So far, we’ve focused on direct
estimates generated by running a simulation on a climate model or set of
models that generates a value for the change in temperature. One of the other
ways that climate scientists estimate ECS involves using temperature data to
estimate the effect that past increases in CO2 have had on temperature and
then extrapolating from those results.11

Speaking roughly, this method of estimating ECS works in the following
way. Climate scientists collect substantial data on past changes to temperature
and then run complex regressions to determine how much of the past temper-
ature change can be attributed to CO2 and how much to other factors such
as the interval variability of the climate system. To run these regressions, we
need a quantified understanding of how different factors affect the climate. So,
for example, we consistently observe that while the planet as a whole is warm-
ing, the upper atmosphere is actually cooling. To determine how much of the
observed warming is caused by CO2 and how much by other factors, we need
to know how these different factors affect the distribution of heat throughout
the atmosphere. This information—what’s sometimes called the “signature”
or “fingerprint” of a particular factor—is usually provided by climate models.

Simplifying and abstracting substantially, the resulting regression equation
looks like this:

Y =
n∑
i

βiXi + vY

where Y is the observed data; βi and Xi are the percentage of the increase
due to the ith factor and the signature of that factor, respectively; and vY is
the internal variability of the climate. Standard least squares algorithms are
then used to estimate the β terms. The results indicate how much of observed

11Stott et al. (2006) is the earliest paper that I’m aware of to estimate quantities like ECS
in this way; many, perhaps most, contemporary papers on the attribution of climate change
to humans now include sections in which ECS and other variables are estimated using the
methods described below.
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warming a particular factor is responsible for; if the least squares analysis yields
a result that βGHG = .95, for example, that would indicate that greenhouse
gases are responsible for 95% of observed warming.12 Climate scientists can
then use results that the regression spits out for CO2 to estimate ECS.13

The point of this example is that the methodology relies on the accu-
racy of the “signatures” for the different factors—the X terms—and these are
estimated using climate models. Standard regression techniques require the
assumption that the signatures are given (that is, perfectly accurate). Since
our climate models are not perfectly accurate and thus cannot be expected to
deliver perfectly accurate estimates for the X terms, this presents a concrete
problem for climate scientists: when using standard regression methods, errors
in the estimation of the X terms will lead to errors in the estimation of the β
terms and thus errors in the estimation of ECS (Carroll et al. 2006).

To address this problem, climate scientists employ ensemble-based meth-
ods. There are a couple of different approaches that they have adopted. The
first, developed by Huntingford et al. (2006), replaces the X terms with a
probability distribution over possible values for X estimated using an ensem-
ble of climate models. The more recent approach, first outlined by Schurer
et al. (2018), runs a standard regression for each estimate of X given by the
different models to generate probability distributions for the relevant β terms
and then uses a Bayesian updating procedure to generate a ensemble probabil-
ity distribution for the β terms based on the set of distributions generated by
each model. In both cases, the end result is a probability distribution over the
β terms that can then be used to estimate ECS. Unsurprisingly, tests against
data with known properties indicate that both methods generate results that
both more accurate and more reliable than those generated by regressions that
employ either a single model or just the ensemble mean (Hannart, Ribes, and
Naveau 2014; Schurer et al. 2018).

The key takeaway is the following. To estimate ECS in the manner sketched
above, we need some representation of the signature of factors like CO2 and
thus some estimate for the X terms. We can either (a) adopt a point-value
estimate for each X term (generated either by a single model or, better, by
taking the mean of an ensemble of estimates) or (b) adopt the probability
distribution generated by an ensemble-based method. Both options are vul-
nerable to misrepresentation: the first might assign the wrong value to an X

12Papers on attribution from the late 90s—paradigmatically, Allen and Tett (1999)—fit
the present description relatively well. Contemporary work is often much more complicated.

13For various reasons, this isn’t quite as simple as taking the observed change in temper-
ature, multiplying it by βCO2 and dividing by the observed increase in CO2, but we can
forego the details of this last step for present purposes.
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term; the second might assign the wrong probability to a possible value for
an X term. In this sense, they’re analogous. Nevertheless, as stressed above,
there’s an important sense in which the latter is less of a misrepresentation
because even if it only loosely approximates the confidence that we should
assign to each possible value for X, it approximates that distribution better
than the first option. After all, the first option can be thought of as adopting a
probability distribution that assigns probability 1 to a particular estimate for
X. And in providing this more accurate representation of the actual state of
our uncertainty, ensemble-based methods allow us to generate more accurate
and reliable estimates of related quantities like ECS.

In short: when estimating some quantity of interest (ECS), climate scien-
tists often find themselves needing to rely on model-generated estimates of
some other quantity (the X terms). In these contexts, employing a probability
distribution over the other quantity can improve the estimate of the quantity of
interest. Since the variation found in ensembles provides higher-order evidence
about what distribution to adopt, methods that take account of this variation
in generating probability distributions allow us to more accurately and reliably
estimate the quantity of interest. The upshot is that the higher-order evidence
provided by ensembles is not just valuable in an abstract philosophical sense;
its presence concretely improves the science.

3 Is there another way?

I’ve argued that there are real (and concrete) advantages to the probabilistic
interpretation of climate models—that is, there are real advantages to taking
the inter-model variation to provide evidence about the probability of vari-
ous scenarios. Given that this approach has been so roundly criticized in the
literature, however, we might wonder if there is some other way of captur-
ing the same advantages. There isn’t: while there are different probabilistic
approaches that may be better or worse, non-probabilistic approaches cannot
provide the same information. After all, inter-model variation is the thing, and
non-probabilistic approaches are committed to ignoring the information that
it provides.

That said, one might reasonably expect that there would be non-probabilistic
approaches that would be nearly as good and that wouldn’t share the (alleged)
defects of the probabilistic approach. So, for instance, philosophers such as
Carrier and Lenhard (2019) and Jebeile and Barberousse (forthcoming) have
advocated for the use of “model spread” on the grounds that it captures some
features of the distribution between models while better approximating the
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true level of precision that is warranted by the evidence. Similarly, Betz (2015),
Katzav (2014), and Katzav et al. (forthcoming) have argued in favor of “possi-
bilist” interpretations in which each model represents a “real possibility” but
where the distribution of the models tell us nothing more than that.

Neither of these alternatives is capable of capturing the advantage of extant
ensemble-based methods—worse, there are good reasons to think that they are
liable to be even more misleading than the probabilistic approaches defended
here.

To see why, it’s helpful to consider the oldest and most frequently repeated
objection to the use of ensemble-based methods, namely that extant ensembles
don’t accurately represent the full spread of possibilities, and (thus) that the
probabilities that they generate don’t accurately represent the uncertainty that
we either do have or should in fact have. This complaint is driven largely by
empirical work aimed at evaluating how accurately ensembles represent those
targets that we can test them against. Though there’s some debate about
how exactly to interpret the empirical results—see Annan and Hargreaves
(2011) and Sedláček and Knutti (2013)—the general picture that emerges is
that, when compared to a random sample, ensembles under-represent the ex-
tremes.14 And there’s a clear explanation for why: extant ensembles are “op-
portunistic,” meaning they’re not designed with the goal of covering all of
the possibilities. Instead, each model is individually designed to be as accu-
rate as possible—they differ because different scientists make different choices
about how best to represent the relevant targets. To build the most accurate
model, scientists will follow the successful work of previous scientists, tune the
variables in their model using empirical data, and reject assumptions or ap-
proaches that lead to results that are “too far” from the empirical data already
collected. As a consequence, we should expect ensembles to cluster around the
strategies and choices that have proved to be most successful so far.

Note that the mere fact that extant ensembles misrepresent provides us
with a very poor argument for rejecting ensemble-generated probabilities. In-
deed, philosophers of science have roundly rejected the inference in its general
form: the received wisdom is that all scientific representations misrepresent
their targets in some ways but that many (if not most) are nevertheless useful
and informative (see Teller 2004). It’s no good to object to the use of idealiza-
tions here when we happily accept them in other cases; you can’t consistently
argue against ensemble-based methods on the grounds that extant ensembles

14This has arguably changed over the last couple years (Tokarska et al. 2020). These
changes only further undermine the motivation for rejecting the probabilist interpretation,
however, so I’ll forego discussing them here.
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are idealized unless you’re also willing to argue against the use of climate
models—or indeed, all models—on the same grounds.

If there’s a good objection to the use of ensemble-based methods here, it’s
a more specific one, namely that in actual practice the fact that climate models
under-represent extreme scenarios is liable to lead to erroneous decisions about
climate policy in a way that we cannot correct for using background knowledge.

To be clear, I think this is the most important objection to the use of ex-
tant ensembles and that whether it succeeds largely depends on an empirical
question, namely: in practice, how predictable are the deficiencies in extant
ensembles, and how well can climate scientists account for them via adjusting
the assumptions embedded in ensemble-based methods? After all, as Horowitz
(2019) stresses, evidence that is predictably misleading is not really mislead-
ing at all—you simply have to correct for known errors. To my knowledge,
however, no one has yet even attempted a systematic demonstration that cli-
mate scientists can never account for the known deficiencies in ensembles, and
the success of ensemble-based methods relative to those methods that don’t
employ ensembles (see §2.3 and note 10) provides at least face-value evidence
that the practical problems here are not always insuperable.

More importantly, however, if the “opportunistic” character of extant en-
sembles is a problem for the probabilistic interpretation, it’s more of a problem
for non-probabilistic approaches. For purely mathematical reasons, we should
expect that the model reports of an ensemble of any realistic size will fail to
capture extreme scenarios: even if the models were genuinely randomly sam-
pled from the full range of possibilities, the probability of getting a model that
represents the extreme possibilities is relatively low in ensembles of only 10 or
so models. There is, for example, only a roughly 40% chance of having a model
that represents an extreme that has a probability of .05. Of course, we know
that the models aren’t randomly sampled—as just discussed, we have good rea-
son to think that ensembles under-sample from the extremes—meaning that
we should expect the chances of observing model reports at the extremes are
even lower.

Since both the possbilist interpretation and model spread rely on model
reports in the same way that the probabilist interpretation does, they can’t fix
this problem: they won’t tell us about some of the relevant possibilities. But
in the fact the situation is even worse for these alternative views. By making
use of inter-model variation, ensemble-based methods allow climate scientists
to estimate what the tails of the distribution look like even in cases where we
don’t have samples from them. (This is true, for what it’s worth, regardless of
whether we assume that the sample is normally distributed around the truth
or shares some other relationship with it.) To be sure, the resulting distribu-
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tions may misrepresent the probability of these extreme scenarios—they may
underestimate how likely they are even after corrections—but by extrapolating
from the actual model reports, climate scientists are able to gain some insight
into extremes that the ensemble doesn’t represent. The same isn’t true of the
non-probabilistic alternatives: neither model spread nor the possibilist reading
allows for this kind extrapolation. Insofar as our worries about ensembles con-
cern the misrepresentation of extreme possibilities, therefore, we’re better off
making use of the variation between models to generate probability distribu-
tions than we are using proxies like model spread or less informative possibilist
approaches that offer us no tools for extrapolating the data we do have to the
extreme cases.

To reiterate from above, none of this is to say that ensemble-based methods
are perfect or that the probabilities that they generate should be taken as the
final word on a subject. On the contrary, one of the main lessons of the fore-
going is that ensemble-based methods are defensible precisely because climate
scientists can often account for their (known) flaws using background knowl-
edge or empirical corrections. Once we understand ensemble-based methods
in this way, it becomes clear that they provide us with more tools for investi-
gating unexplored and unconceived scenarios than we would otherwise have.
Rejecting ensemble-based methods because extant ensembles under-represent
certain scenarios is thus not just under-motivated, it’s counter-productive.15

It’s worth discussing one final alternative that has been raised by both
Betz (2007) and Katzav et al. (forthcoming), namely the use of “imprecise”
probability functions. Given the discussion of the prior sections, it’s easy to
motivate the use of imprecise probabilities rather than precise ones. As we’ve
already seen, ensemble-based methods don’t solve the problem of imprecise ev-
idence. Ensembles allow us to make more precise judgments—in the setting of
imprecise probabilities, they justify adopting a strictly smaller set of probabil-
ity functions—but they don’t warrant adopting the single precise probability
function generated by the application of statistical tools. So even if ensembles
help, we should still prefer imprecise probabilities to the precise ones generated
by most ensemble-based methods.

I’m sympathetic to this argument, but not convinced. It seems to me to
be an open question whether the imagined imprecise methods would in fact
be preferable in practice, where this question is one about the costs and ben-

15Katzav et al. (forthcoming) allege that precise probability functions “lose” information
about uncertainty. That’s true insofar as the contrast class is an (idealized) more complex
probabilistic representation (Bradley and Drechsler 2014). It’s at least not clear that it’s
true for any alternative to precise probability distributions on the table, however, and the
opposite is true for any non-probabilistic alternative.
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efits (compare Bradley 2019, §3.5). Perhaps imprecise probabilities buy us an
increase in accuracy, but only a marginal one and only at substantial costs in
terms of complexity or the amount of processing power and/or data required.
In such circumstances, it may not be worthwhile to use imprecise methods as
opposed to precise ones. Regardless, I see this alternative as a friendly one—
after all, “imprecise” probabilities are still probabilities. The question of which
probabilistic approaches we should prefer in the practice of climate science re-
mains a relatively unexplored area, and the aim of the present paper is not to
stump for one probabilistic approach rather than another. For now, given the
widespread criticism of probabilistic approaches in the literature, it’s enough
to show that they have distinct advantages over non-probabilistic approaches.

Allow me to step back. Climate scientists need to represent aspects of the
climate that are not perfectly understood. There are many desiderata for such
representations. One is that they should accurately capture our uncertainty
with respect to the feature in question. But others include that they should be
as constrained by the empirical evidence as possible; that they should be math-
ematically tractable; that they should be reliable, accurate, and trustworthy
in realistic (as opposed to heavily idealized) conditions; and that they should
be informative and easily understood. I think that it’s likely that the precise
probabilities generated by ensemble-based methods will, in many contexts, be
the best representational tool according to this suite of desiderata. Strictly
speaking, however, my position is a weaker one, namely that taking account
of the variation between models should be treated as one desideratum—this
variation is informative and ignoring it only worsens our epistemic situation.

4 Conclusion

This paper offers an argument in favor of the use of ensemble-based methods
in climate science and the probabilities that they generate. There are three key
takeaways. First, that climate modeling faces a problem due to what episte-
mologists call “imprecise evidence”: we don’t know (precisely) how to interpret
the evidence produced by climate models. Second, that ensemble-based meth-
ods are able to mitigate this problem by making use of inter-model variation.
Importantly, the value added by these methods is not merely philosophical; as
we saw, there are least some cases where employing ensemble-based methods
improves the accuracy and reliability of the results. Third, and finally, while
there may well be probabilistic alternatives to the methods that are currently
employed in climate science, non-probabilistic alternatives cannot capture the
same advantages and we should even expect them to be worse—to misrepresent
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in a more serious and problematic fashion. It may still be the case that on the
final accounting the ensemble-based methods employed by climate scientists
are ultimately too flawed to be worthwhile, and in particular, there remain
unaddressed arguments for why it’s a bad idea to use these probabilities in
communicating the results of climate science to the public. What we’ve seen,
however, is that there are very real advantages the probabilsitic interpretation
of climate models outside that context and it’s a substantive question whether
the arguments that hold in that restricted domain can be extended the general
case.
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