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Abstract: Geometric cognition is still poorly understood. Concerning pure geometry, it is basically 
terra incognita. In the present paper, we develop a tentative model of the neural representation of 
geometric concepts; for that we adopt an interdisciplinary approach bringing together elements of the 
history of geometry and the cognitive neuroscience of semantic cognition. Our interest is to develop 
a model of the neural representation of abstract geometric objects in the Euclidean practice. To arrive 
at a coherent model, it is necessary to consider earlier forms of geometry.  For that, we address the 
change from practical to pure geometry, proposing models of the neural representations of geometric 
concepts for each of these practices. This will enable us to have an understanding of geometric objects 
in terms of a neural model and in relation to neural models of geometric figures. Our models are based 
on the hub-and-spoke theory. We will present a tentative model of the neural representation of 
geometric figures in ancient Greek practical geometry. We then propose a related model for the 
earliest form of pure geometry – that of Hippocrates of Chios. Finally, we develop the model of the 
neural representation of geometric objects in Euclidean geometry.   
  
 
1. Introduction 
 
The scientific study of geometric cognition is still in its infancy. There are, however, important results. 
Spelke and co-workers have determined what might be the cognitive core at the foundations of 
geometry.  This would be constituted by a system for navigation in the environment and a system for 
recognizing objects. These systems would become interconnected in this way enabling the arising of 
some form of geometrical cognition (see, e.g., Spelke 2011).2 While Spelke and co-works propose to 
identify this form of geometrical cognition directly with that of Euclidean geometry, this cannot the 
case (Ferreirós and García-Pérez 2020); the most we might arrive at is some form of proto-geometry, 
which we might try to relate to early stages of practical geometry.3 
     Presently, if we endeavor to address pure geometry in terms of geometric cognition, we can at best 
present tentative accounts of the cognitive underpinning of the practice of pure geometry. A 
philosophically oriented inquire can help in this endeavor. For example, regarding the reasoning 
during Euclidean proofs, Hohol and Miłkowski, propose “a list of desiderata that the future theory of 
geometric cognition should satisfy” (Hohol and Miłkowski 2019, 675). 
     In the present work, our interest rests in the semantic cognition of the abstract geometric objects 
of pure geometry. More specifically, in the neural representation of geometric concepts that underline 
our cognitive processes related to the practice of pure geometry.  With this objective, we want to 
propose tentative models of the neural representation of geometric concepts in different geometrical 
practices that are compatible with the views on these practices that we will set forward in the present 
work. By addressing the models of the distinct but related practices simultaneously we expect to 

 
1 This paper is part of my work made in the context of the research project “the genesis of geometrical knowledge” whose 
PI is José Ferreirós from the University of Seville. 
2 Exactly how this interconnection is established is rather hypothetical (see, e.g., Spelke, Lee, and Izard 2010; Spelke, 
and Lee 2012). 
3 It is not clear from Ferreirós and García-Pérez’s interpretation of Spelke’s ‘natural geometry’ in terms of a proto-
geometry (Ferreirós and García-Pérez 2020), how ‘much’ can it be identified with early stages of practical geometry as 
addressed in the present work. However, this is not an issue for the present work. Our approach is unrelated to Spelke’s 
work on core geometrical systems. 
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achieve a more consistent formulation of the model for pure geometry. In our view the model is only 
intelligible when taking into account the models for the previous practices. 
     We will develop our working models using the hub-and-spoke theory (Ralph, Jefferies, Patterson, 
and Rogers 2017).4 According to this theory, the neural representation of concepts is made in terms 
of spokes, which are modality-specific brain regions, involving sensory and motor processing, that 
codify modal features of concepts. For example, there are the spokes that encode visual, verbal and 
praxis representations.5 There are also integrative regions – the hub – which blends, in an amodal 
format, the different aspects codified in the spokes and gives rise to coherent concepts. The function 
of the hub goes beyond bringing together the modality-specific aspects of concepts; in the process, it 
also enables a modality-free codification of further aspects of concepts: 
 
[The hub] allows the formation of modality-invariant multi-dimensional representations that, through 
the cross-translation of information between modalities, code the higher-order statistical structure that 
is present in our transmodal experience of each entity. (Ralph 2014, 7) 
 
We can think of a particular concept directly in terms of ‘spokes’ and a ‘hub’ not has regions in the 
brain but as ‘parts’ of the concept. In this way, “each concept also has a ‘hub’ – a modality-
independent unified representation efficiently integrating our conceptual knowledge” (Eysenck and 
Keane 2020, 319). 
     This work has three parts. In section 2 – the first part – we will characterize practical geometry. 
The features we will mention are common to several historical examples of practices of practical 
geometry. We have taken into account aspects of the practical geometry of ancient Egypt, the ancient 
Near East, and ancient Greece. We endeavor to present the main features that Greek practical 
geometry had before the ‘dawn’ of pure geometry. In section 3 – the second part – we will consider 
the earliest (known) form of pure geometry, that of Hippocrates of Chios. We will tentatively propose 
what kind of change there is in the concept of figure when going from ancient Greek practical 
geometry to Hippocrates’ pure geometry. In our view, in this early form of pure geometry there was 
not yet a notion of abstract geometric object. The notion was that of what we call a perfect figure. In 
section 4 – the third part –, we will address the change from Hippocrates’ pure geometry to Euclidian 
pure geometry. We will present a view of how geometrical concepts change from that of a perfect 
figure to that of an abstract object. This change can be adequately taken into account in the hub-and-
spoke models proposed here. In each of these sections we will propose a tentative hub-and-spoke 
model. These models are developed taking into account the historical material of each section but 
also of different sections when relevant. 
     
 
2. Ancient practical geometry 
 
From the perspective of a philosophy of mathematical practices (see, e.g., Ferreirós 2016), we should 
take into account actual practices in their historical context. This is particularly the case if we need to 
address the arising of pure geometry. Not only should we consider the practice of pure geometry by 
the ancient Greeks but also their previous practice of practical geometry. When this methodological 
ideal is not possible to fulfill, we might try to approach it as much as possible. Not much is known 
about Greek practical geometry previous or contemporary to pure geometry (see, e.g., Asper 2003, 
109-114). So, in this work, we will consider basic aspects of the Greek practical geometric practice 
that are common to other practical geometries. We will include examples of these practices when 
helpful for us to grasp what practical geometry is. 

 
4 For the purpose of this work, we will only consider the original hub-and-spoke model and not the graded hub-and-spoke 
model. On the differences see Ralph et al. (2017). 
5 The spoke related to vision encodes representations in the visual modality related to visual features of concepts. The 
spoke related to the praxis can encode, e.g., representations related to object use. The spoke related to verbal (speech) 
descriptors encodes the ‘labels’ we use to name concepts. 
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     The basic characteristics that Greek practical geometry shares with others are as follows: 
 
1) There are metrological systems, in particular for length and area measurements. 
2) There are recurrent figures whose geometric properties are known (e.g., we have ‘formulas’ to 
calculate the area from length measures), like the square, the rectangle, the circle, or the triangle. 
3) There are no explicit definitions of geometrical figures, just names. 
4) There are instruments to draw and/or measure geometric figures; in particular, the rod or 
straightedge and the compass.6 
5) There is a didactic component to practical geometry. In particular, there are written problems that 
are useful in learning the basics of practical geometry. 
6) There is no pure geometry or at least no influence from it. 
7) The practice relies on oral and written language. 
 
A key aspect of land measurements is to have a common unit of length so that we have a common 
standard. In this way, different surveyors will arrive at the same measure when using different 
measuring instruments (e.g., rods or cords). These measuring instruments are ‘calibrated’ to the 
adopted standard. For example, in ancient Egypt, the unit of length measure was the cubit. This unit 
corresponds to the common measure of the forearm and it is divided into 6 palms or 24 fingers. It is 
represented by the drawing of a forearm (Imhausen 2016, 47; Rossi 2007, 59). For land-surveying, it 
seems that Egyptian used ropes having a standard length of 100 cubits, which were divided using 
knots placed at 1-cubit intervals (Imhausen 2016, 18; Rossi 2007, 154).7 
     Regarding the Greek length units there was no common unit adopted, and, like with other 
civilizations, the metrological systems changed with time. A widely used unit during Hellenistic times 
was the foot which was about 30-32 cm (Lewis 2004, xix). 
     Besides the measurement of the boundaries of fields, it was essential to calculate the areas of these 
fields. Agricultural plots along the Euphrates relied on a sophisticated irrigation system based on 
channels but also basins to store water, and structures to control as much as possible recurrent floods 
(Mori 2007, 42-4). The system of irrigation favored a rectangular shape for the fields (Mori 2007, 47-
8). The names adopted for the sides of the rectangle (for the long sides and the short sides) refer to 
the rectangular shape of agricultural plots. These might be translated as the ‘long side’ and the ‘front’. 
The term ‘front’ refers to the original agricultural plots where the rectangular shape was adopted. The 
‘front’ is the narrow side parallel to the irrigation channel (Høyrup 2002, 34). In the case of ancient 
Greece, there is evidence of the division of land in rectangular plots (Lewis 2004, 3; Cuomo 2001, 7-
8). 
     In the ancient Near East, surveyors adopted a formula to calculate the area of fields that, from our 
perspective, gives a good approximation to the area of rectangular-like shapes (being exact in the case 
of rectangles). Let l1, l2, l3, and l4 be the sides of a quadrilateral field plot that are measured by a 
surveyor (e.g., l1 and l3 are the ‘long sides’, and l2 and l4 are the ‘short sides’). The surveyors’ formula 
gives for the area of the field plot the value (l1 + l3)/2 x (l2+ l4)/2. 
     Here, we find an important and common feature of practical geometries. The lengths are measured 
(or taken to be measured), and as such are given in terms of a unit of measure. The area is calculated 
from these length measures and given in terms of a unit of area. For example, in the Old-Babylonian 
period, the main unit of length was the rod (approximately 6 m), and the unit of area was the sar, 
corresponding to one square rod (36 m2) (Robson 2008, 294). 
     For different reasons, in practical geometries, some figures are widely used and crucial aspects of 
them are well established: how to draw the figure precisely; the measured lengths that are taken into 
account; the ‘formula’ to calculate the area. These figures are clearly distinguished from all the other 

 
6 The difference between a rod and a straightedge is that the second is only for drawing line segments. The first enables 
also the measurement of length since it has a standard length and may even have markings for its subdivisions. One 
example is the Egyptian cubit-rod (Imhausen 2016, 168-9). 
7 There are also records of the existence of high-quality ropes made of plant fibers being 1000 or more cubit long (Rossi 
2007, 155-6). 
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possible figures by naming them, even if definitions do not exist (contrary to the case of the pure 
geometry in Euclid’s Elements). A good example is the circle. In ancient Mesopotamia, a circle, like 
other geometrical figures, was conceptualized in terms of its boundary. The circle was the shape 
enclosed in a circumference. In this case, both had the same name. A translation of the name might 
be “thing that curves” (Robson 2004, 20). The area of the circle was determined from the measure of 
the length of the circumference.  It was given by the square of the length of the circumference divided 
by 12 (Robson 2004, 18). This is not to say that the only length measure at play was that of the length 
of the circumference. While the length of the circumference was the main measure taken into account, 
there is evidence that the length of the diameter could also be adopted (Friberg 2007, 210 and 296). 
The circle was drawn using a specific instrument – the compass (Høyrup 2002, 105; Friberg 2007, 
207). The compass made it possible to have a precisely drawn figure. 
     In terms of a model based on the hub-and-spoke theory, we can conceive of the concept of circle 
as relying heavily on a ‘visual spoke’ that represents aspects related to the visual shape of a circle, a 
‘verbal spoke’ that codifies the name of the circle, and a ‘praxis spoke’ related to the drawing and 
measurements on the circle. Here, going beyond the spokes taken into account by Ralph and co-
workers (see, e.g., Ralph et al. 2017), we propose another spoke related to measure-numbers, i.e., 
numbers that result directly from measurements in the case of length, or indirectly in the case of areas, 
and are addressed in terms of abstract symbols in the context of metrological systems (see figure 1).8, 
9, 10 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
Figure 1. Hub-and-spoke model of the neural representation of geometric figure in practical geometry. 

 
8 There is evidence for a ‘symbolic number spoke’. Accordingly, “adult humans possess two distinct systems to support 
magnitudes: 1) a symbolic system used specifically to represent symbolic numerical magnitudes, and 2) a general 
magnitude system used to represent both discrete and continuous magnitudes” (Sokolowski, Hawes, Peters, and Ansari, 
2019, 20).   In this work we departure from the idea that the spokes consist in modality-specific representations. In our 
case the symbolic number spoke is amodal. Also, it might be best to address the verbal spoke in terms of an amodal 
representation if we are to include more than simple words in it. On the possible kind of amodal representation underlying 
language see Frankland and Greene (2020). See also footnote 24. 
9 We address the neural representation of the concept of geometric figure without trying to include in our account Spelke’s 
views. However, one might try to include one of the two core representational systems of geometry identified by Spelke 
and co-workers in the hub-and-spoke model. We hypothesize that the spatial layout system might not be too relevant for 
the neural representation of the concept of geometric figure, while the visual form system might be ‘connected’ to the 
visual and praxis spokes, since it is taken to “represent the shapes of 2D visual forms and movable objects” (Spelke 2011, 
303). Since this is too speculative, it will not be taken into account in the present work. 
10 In his study of the conceptual representation of triangles (the concept TRIANGLE), in relation to the linguistic label 
“triangle”, Lupyan concluded that “(even formal) concepts have a graded and flexible structure, which takes on a more 
prototypical and stable form when activated by category labels” (Lupyan 2017, 1). More specifically, he arrived at the 
following results: “(a) the representations of even a formally defined category like triangle reflect formally irrelevant, but 
perceptually relevant, properties; and (b), category names help to form a kind of idealized perceptual state—a prototype 
of sorts” (Lupyan 2017, 9). These results fit well with the model presented here: (a) The praxis spoke might provide for 
the typicality effects related to, e.g., prototypical drawings being favored; and (b) The verbal spoke  – the label “triangle” 
– is part of the neural representation of triangle. 
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Another aspect shared by different practical geometries is the existence of written geometrical 
problems. These are couched in the terminology of practical geometry. But they are a somewhat 
different way of doing practical geometry. It is not so much that there are suprautilitarian problems 
since it is still the case that many problems clearly originate from the practitioner’s work practice, 
even if they might be simplified for didactic reasons (see, e.g., Imhausen 2016, 193). The point is that 
by being written problems that are disconnected from an immediate surveying activity, there are no 
actual measures taken into account in the problems. The measures are putative measures that could 
have been made according to the practice of practical geometry. This led, for example, to the adoption 
of conventional lengths in the problems. In Old Babylonian mathematical texts, all circumferences 
are taken to have the same standard length. This is so independently of the actual length of the 
circumference drawn with a compass (Friberg 2007, 207). So, while there are references to length 
measures in problems, these have not been actually measured, and neither corresponds to the actual 
measures of the drawn figure. 
     Whatever cognitive processes are at play during actual measurements these are not active during 
problem solving with conventionalized measures. One still uses whatever conceptual representation 
is at play when also making measurements, but only part of it. For example, the concept of line 
segment must include aspects related to the act of measuring. These are the procedures by which one 
attributes to the line segment a number (its length). In problems, we address these segments taking 
into account that there is a number associated with them – it is part of the concept –, but we disregard 
the use of a measuring instrument and the procedure by which the number is obtained. In our view, it 
might be the case that some aspects of the concept are only loosely taken into account. 
     This is less speculative than it might seem. There is a cognitive basis for this loosening of the 
connection of lengths to metrological units in problem solving in the context of practical geometry.11 
We do not make use of concepts in a rigid way in which the ‘full’ concept is always taken into account. 
Conceptual processing is flexible, in the sense that “one aspect of a ‘concept’ may be used in one 
context or task, but another aspect of the concept may be used in another” (Mahon and Hickok 2016, 
949). A very simple way to take into account conceptual flexibility within a hub-and-spoke model of 
a concept is by taking a particular spoke not to be fully active during particular tasks. This can be 
accounted for by reduced neural connectivity between the hub and the spoke depending on the context 
(Chiou and Ralph 2019). In this way, during problem solving, the praxis spoke of the concept of 
geometric figure would not be fully taken into account. The only thing that is included is the 
association of measure-numbers to drawn lines that in a full practical geometric practice are measured. 
     One example of a geometrical problem is a Hellenistic geometrical problem from a papyrus written 
in demotic Egyptian in the third-century BCE (here, we take this problem not to have been influenced 
by the existing pure geometry). The statement of the problem is as follows: “A plot of land that 
<amounts to> 60 square cubits, [that is rec]tangular, the diagonal (being) 13 cubits. Now how many 
cubits does it make [to a side]?” (Cuomo 2001, 71). We have a rectangle and are asked to determine 
the length of its sides. These are calculated to have 12 and 5 cubits (Cuomo 2001, 71; Friberg 2005, 
125). This is a problem of practical geometry; however, we do not have an actual shape whose 
relevant lengths were measured. In fact, in a strictly practical practice, this problem is unfeasible. We 
can only calculate the area after measuring the lengths of the long side and the short side. In any case, 
as a didactic problem of practical geometry, the rectangle is conceived in terms of practical measures 
(in this case, the length of the diagonal) or values that are determined from practical measures (in this 
case, the area that is calculated from the lengths of the sides). In the problem, we consider a rectangle 
that is not measured nor even drawn, which has an area of 60 square cubits, a diagonal of 13 cubits, 
and sides that have (as calculated) 12 and 5 cubits. 
     The aspects we have seen of practical geometry have all traces in written accounts; like ‘reports’ 
on land surveying (see, e.g., Robson 2008, 61-6), markings of the use of compasses, or geometric 

 
11 This loosening is even more drastic in pure geometry. As we will see, one aspect of pure geometry is having concepts 
of figures in which their lengths are not conceived in relation to measurement practices. The loosening of the connection 
of lengths to metrological units reaches the point in which one disregards measuring units altogether. 
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problems. There are also aspects related to oral transmission of which we only have indirect evidence 
through inscriptions, images, or preserved artifacts, for example. This is the case in particular in what 
regards the fabrication and use of measuring tools (see, e.g., Rossi 2007, 153-6). Even the geometric 
knowledge is only attested somewhat indirectly mainly through the existence of written geometrical 
problems. If we consider Greek practical geometry, we have very little testimony (Asper 2003). We 
can, however, ‘reconstruct’ aspects of oral communication from ‘traces’ in written accounts. 
     It has been defended that a well-known passage in Plato’s Meno about finding a square that doubles 
the area of another square is an example of Greek practical geometry (Valente 2020). Regarding this 
passage, it had already been argued by Saito (2018) that it is an example of a written rendering of the 
oral teaching and discussion of geometry in ancient Greece. It might be the closest we get to the 
ancient oral communication of geometry.12 Here, we will address this passage taking into account this 
two-fold aspect of it.  Socrates helps a boy having recollections of his knowledge about a geometric 
figure – the square. We can re-frame it as an episode of geometrical teaching – a lecture on a particular 
geometrical subject. We may assume that the teacher begins the lecture by drawing a square on a wax 
tablet (Saito 2018, 928; Netz 1999, 15): “Tell me now, boy, you know that a square figure is like this? 
—I do. A square then is a figure in which all these four sides are equal? —Yes indeed.” (Plato 1997, 
881). The teacher draws two lines perpendiculars to the sides of the square and passing by the center 
(see figure 2): “And it also has these lines through the middle equal? —Yes.” (Plato 1997, 881). The 
teacher then starts to address issues related to the area of the square: 
 
And such a figure could be larger or smaller? —Certainly. If then this side were two feet, and this 
other side two feet, how many feet would the whole be? Consider it this way: if it were two feet this 
way, and only one foot that way, the figure would be once two feet? —Yes. But if it is two feet also 
that way, it would surely be twice two feet? —Yes. How many feet is twice two feet? Work it out and 
tell me. — Four, Socrates. (Plato 1997, 882) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The drawing of the figure at this point of the lecture. 
 
For our purpose, we do not need to go further with the lecture. In this part, we see a feature of practical 
geometry that we have called attention to. We have a drawing of a figure, but we do not measure its 
sides. We take it to have measures that are useful in a didactic context. The teacher (Socrates) asks 
the student (the boy) to consider that the sides of the square measure two feet, and asks him to 
calculate the area, which the student does, arriving at the result of four (square feet). We have here a 

 
12According to Asper, “the mathematical passages in Aristotle or Plato (minus the general differences between written 
prose and oral discourse) might be a model of how mathematicians talked about their objects” (Asper 2003, 119). It has 
been suggested that some well-known written works might have been first a series of lectures presented orally. This is the 
case with Proclus’ Commentary and Cleomedes’ The Heavens (Taub 2013, 358). In fact, taking into account Saito’s view 
about traces of oral teaching in Euclid’s Elements (Saito 2018), these might also have been oral lectures previous to being 
organized as a written text. These lectures might have consisted of presentations of propositions in which the students had 
to learn by memory the protasis (which is the general enunciation of the proposition) and the teacher showed with the 
help of an unlettered diagram, e.g., how to do a particular construction showing its correctness. There is written evidence 
compatible with these ‘lectures’ (see footnote 20). We will see more on this in the next sections. 
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clear example of a written rendering of oral teaching of practical geometry. This is an example of the 
cognitive loosening we mentioned before. We perceive the square to have a particular dimension – it 
might look as having approximately 0.5 feet, for example. But we conceive it as having two feet. All 
this is made without an actual measurement procedure. The kind of conceptual representation at play 
is in some way ‘vaguer’ than when we pick up a rod and measure the sides of the square and determine 
that they have 0.5 feet. 
     In the next section, we will consider the early Greek pure geometry, having as a background the 
basic characteristics of practical geometry and the hub-and-spoke model of the neural representation 
of geometric figure that we presented in the present section. 
 
 
3. Hippocrates’ pure geometry 
 
Hippocrates’ quadrature of lunules is taken to be the earliest evidence of Greek pure geometry (see, 
e.g., Netz 2004; Høyrup 2019). We know of Hippocrates’ work by a text of Simplicius from the sixth-
century CE. This text is based on two previous accounts, one by Alexander of Aphrodisias and the 
other by Eudemos.   Hippocrates’ work is believed to be from the early second half of the fifth century 
BCE. Written prose was rare; because of this Netz considers that “Hippocrates’ treatise on the lunules 
could well be among the first treatises written in Greek mathematics” (Netz 2004, 247). Regarding 
Eudemos account, Netz realizes an exercise of reconstruction, trying to determine what in the text is 
closer to Hippocrates’ original.13 Netz assumes that the text “should have two layers, one closer to 
Hippocrates’ original, and another closer to late fourth century mathematics” (Netz 2004, 259). The 
main difference between these layers is the adoption or not of lettered diagrams, and the use of letters 
in the text to refers to parts of these diagrams. Netz’s assessment is as follows: 
 
While Eudemus has written his own text, he had before him Hippocrates’ text and, even against his 
will, he would be likely to be influenced by this text. I suggest that he had in front of him an unlettered 
text, and that he had modernized it in the two more complicated quadratures. Even there, however, 
he let himself here and there reproduce the original structure of the argument, correlating it however 
with his own lettered diagram. Thus, some letters are redundant. (Netz 2004, 265) 
 
We can contrast this view with what Høyrup says about the two accounts taken into account by 
Simplicius. According to Høyrup: 
 
Alexander draws on Hippocrates’s teaching, being based either on lecture notes of his or on students’ 
notes; the Eudemos version may instead go back to what Hippocrates published more officially. 
(Høyrup 2019, 158) 
 
Simplicius’ account of Alexander’s text includes lettered diagrams. Taking into account Netz’s view 
that the Eudemos text on the first two lunules – relying on unlettered diagrams – might be closer to 
the original, it might be the case that what is closer to Hippocrates’ teaching are these passages.      
     Here, we want to suggest that the text might refer to an early written rendering of oral teaching by 
Hippocrates. This is not that a bold suggestion. We know that Hippocrates taught about astronomy 
and geometry (Høyrup 2019, 160). Even if Netz takes Hippocrates to have written a treatise he also 
mentions the following: 
 
If you wish to convey an argument which relies, among other things, on a diagram, then you must 
have at least the ‘written’, i.e., drawn diagram to accompany it […] Briefly, then, some use of writing, 
in the sense of a physical drawn object, is a necessary aspect of Greek mathematics. (Netz 2004, 246) 
 

 
13 The fragment that Netz considers is already a reconstruction by Becker in which parts added by Simplicius to Eudemus' 
text are taken out (Netz 2004, 252-5). 
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This is perfectly compatible with oral teaching of geometry like we have seen in the case of Plato’s 
Meno. Hippocrates might have presented his arguments orally to his students accompanying them 
with the corresponding drawing. Independently that Hippocrates might have made a written rendering 
of his lectures on geometry we take these to be the main vehicle of his approach to geometry. We 
suggest that like in the case of practical geometry, in pure geometry there is also an oral practice 
which might well be the earliest. 
     In what follows we will consider the passage about the first quadrature as a rewriting of an initially 
written rendering of oral teaching. It is as follows: 
 
(1) ... Therefore we shall discuss and quote them <=the quadratures> at length. (2) So he made his 
starting point by assuming, as the first among the things useful to the quadratures, that both the similar 
segments of the circles, and their bases in square, have the same ratio to each other. ((3) And this he 
proved by proving that the diameters have the same ratio, in square, as the circles). (4) This being 
shown to his satisfaction, he first proved by what method a quadrature was possible, of a lunule having 
a semicircle as its outer circumference. (5) He did this after he circumscribed a semicircle about a 
right-angled isosceles triangle and, about the base, <he drew> a segment of a circle, similar to those 
taken away by the joined <lines>. (6) And, the segment about the base being equal to both <segments> 
about the other <sides>, and adding as common the part of the triangle which is above the segment 
about the base, the lunule shall be equal to the triangle. (7) So the lunule, having been proved equal 
to the triangle, could be squared. (8) In this way, taking the outer circumference of a semicircle as the 
<outer circumference> of the lunule, he readily squared the lunule. (Netz 2004, 248-9) 
 
Our purpose here is to determine what has changed in relation to practical geometry that leads us to 
say that here we are in the context of a pure geometric practice. 
     We can see that the text begins by calling the attention that the starting point of Hippocrates’ 
argumentation is the assumption that the similar arcs of circumference of the circular figures and their 
bases in square have the same ratio to each other.14, 15 Here, we do not have postulates like those of 
the Elements. In fact, this presupposition enters the argumentation in the same way that in problems 
of practical geometry. It is taken to be known by the interlocutor and without any need of justification. 
According to Høyrup, this presupposition was “known by Near Eastern practical geometers at least 
since the beginning of the second millennium BCE” (Høyrup 2019, 165). Possibly, the only difference 
with the use of background knowledge in practical geometrical problems is that the assumption that 
will be used during the argumentation is stated explicitly at the beginning. Both Høyrup and Netz 
consider that when in the text is written that this assumption was proved by Hippocrates this was 
included there by Eudemus to make the text closer to the geometrical practice of his times (Høyrup 
2019, 170-1; Netz 2004, 258). So, we take this aspect of the argument to be similar to how background 
knowledge was used in practical geometry. As it is, by now we could still be considering the written 
rendering of an oral exposition related to practical geometry. 
     The first quadrature is that of a lunule whose outer circumference can be seen as a semicircle. 
Thinking in terms of an oral presentation, Hippocrates after mentioning the assumption to his 
audience might have drawn an isosceles triangle and using a compass drawn a semicircle 
circumscribing it (see figure 3). 
 

 
14 Whatever notion of ratio Hippocrates is using, we take for granted that it is consistent with his geometry. According to 
Heath, Hippocrates might be using in a somewhat intuitive way the idea that segments of circles are in the same ratio as 
the circles (in this case, squares) if they are ‘the same part’ of the circles respectively (Heath 1981, 182). Knorr agrees 
with this view. Accordingly, “Hippocrates seems to appeal to a concept of proper ‘parts’ as the basis of his notion of ratio” 
(Knorr 1986, 45). 
15 Similar arc segments can be defined from the following: “similar sectors are those which make up the same part of the 
circle, for example half-circle to half-circle and third-circle to third-circle” (Høyrup 2019, 167). 
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Figure 3. Initial drawing with a semicircle circumscribing an isosceles triangle.   
 
Afterward, he might have completed a square based on the triangle and using a corner of the square 
as the center of a circle drawn an arc segment that is similar to the two formed previously. According 
to Netz’s rendering of the text in English, “<he drew> a segment of the circle, similar to those taken 
away by the joined <lines>” (Netz 2004, 249) (see figure 4; this approach is taken from Harper and 
Driskell 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Completion of the drawing of the lunule. 
 
As Høyrup mentions, Hippocrates’ arguments have a ‘single-level’, directly based on the assumptions 
taken into account (Høyrup 2019, 179). Based on the presupposition mentioned at the beginning, 
Hippocrates simply mentions that the area of the circular figure about the base is equal to that of both 
circular figures about the other sides of the triangle. He then proceeds to add the area not included in 
either of these to each one of them. We have what we might call a visual operation in which we 
alternatively imagine each of the area addition operations (see figure 5, left and right).16 
 
  

 
Figure 5. Two ways of doing the ‘visual operation’ of adding areas of figures. 
 

 
16 This aspect of Hippocrates’ practice is found also in the Elements. For example, in the proof of proposition 1 of book 
1, we can see three segments as just that or we can make the visual operation of seeing them as the sides of a triangle 
(Euclid 1956, 241-242). This corresponds to a practice of seeing a figure in different ways (Macbeth 2010). 
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Evidently, the area of the two figures is the same and so “the lunule, having been proved equal to the 
triangle, could be squared” (Netz 2004, 249). This addition of areas is something that we find in 
practical geometry. In fact, it is one of the basic elements of ancient Near Eastern geometry. It was 
clear to practitioners that “the size of a figure which consists of partial areas equal the sum of these 
partial areas” (Damerow 2016, 115). We have what we might call the principle of conservation of 
area. For example, we can ‘cut’ a part of a figure and move it around and add it – ‘past’ it – to the 
figure in a different part of it (see, e.g., Høyrup 2017). Or, like in the present case, we might conceive 
of different figures touching each other and unifying them in different ways, like in figure 5, left and 
right. 
     What is it then that makes this example a case of early Greek pure geometry and not of Greek 
practical geometry? The key evidence that we are not engaged in a practical geometrical practice is 
the lack of reference to metrological units. They are completely absent. This corresponds to a crucial 
conceptual change that is at the crux of the reformulation of practical geometry as pure geometry. We 
assist to a perfectioning of the geometrical figures that leads to what we might call the exactification 
of lengths. 
     We have seen that within practical geometry we assist to a loosening of the conception of 
geometric figure by not taking into account directly the measurement practices. As we have seen, we 
can have geometric figures that we do not measure but conceive as having lengths that cannot be even 
approximately like those of the figure. We mentioned the case of circles in Old Babylonian problems 
that adopt a conventional length for the circumference or the case of the passage in Plato’s Meno, in 
which the sides of the square are taken to have a particular measure not related to the actual measure 
of the drawing. In Hippocrates’ pure geometry we have what we might call perfect figures. These are 
figures that look as having no irregularities and that if we were to measure them, we would find 
measure-numbers that are the same. That is, whatever small differences there are, they are invisible 
to the eye even when using the available measuring tools. This perfection of the geometric figure 
does not correspond to doing a more precise practical geometry. It is the opposite; not measuring the 
figures with better measuring techniques we take them to be perfect. In this way, e.g., the sides of a 
square are taken to be exactly equal. This is what we mean by the exactification of lengths. In this 
context, the lengths are exact and ‘belong’ to the figures.  A length as a measure-number is the result 
of a measurement procedure in which, e.g., we put a measuring rod side by side with the side of a 
square and check that they are congruent. The length as a measure-number arises from this 
measurement procedure. In Hippocrates’ case, we do not have this anymore. The sides of the square 
have lengths ‘of their own’, independently of whatever measurement we might make, and it is 
senseless to mention a metrological unit in this context. 
     As it is, early Greek pure geometry is the geometry of perfect figures (not yet of geometric objects). 
Like in the case of practical geometry, these are not explicitly defined. As mentioned by Høyrup, 
“there is not the slightest reference to a definition in the Eudemos text” (Høyrup 2019, 179). This has 
important consequences that we will address in the next section when comparing Hippocrates’ pure 
geometry to that of the Elements. The main difference with the previous practical geometry is a further 
loosening of the concepts in relation to its more practical aspects related to measurements. 
     In terms of the very simple hub-and-spoke model of geometrical concept that we are using in this 
work, the main difference in relation to the concept of geometric figure of practical geometry is in 
the praxis and symbolic number spokes. In the praxis spoke the main features represented are related 
to the drawing of figures; however, there is still a representation not so much of particular 
measurement procedures as of the possibility of making measurements on the figure – there are ‘traces’ 
of the praxis of measuring.17 Regarding the symbolic number-magnitude spoke there is no encoding 
of measure-numbers or metrological units. Instead, we have a representation of length, which, taking 
into account the praxis spoke, is dissociated from any particular measurement procedure.18 The visual 

 
17 As we will see in the next section, this is necessary for a coherent transition between the models corresponding to the 
different but related geometrical practices. 
18 Here, we hypothesize that the symbolic number spoke is also the spoke that represents symbolic continuous magnitudes, 
like in the case of the non-symbolic representation of both discrete and continuous magnitudes, which is made by a general 
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spoke is basically the same; it encodes the visual shape of a geometric figure. The verbal spoke is 
also the same. It encodes the ‘label’ for the figure. A ‘higher order’ change can be taken to occur in 
the hub that would enable to encode a conceptualization of figure as a perfect figure (see figure 6). 
     What are then, according to our view, the basic characteristics of early Greek pure geometry? 
 
1) The propositions rely on unproved presuppositions that are part of a shared knowledge whose 
origins can be found in practical geometry. 
2) There is a standard order in presenting propositions, in which the presuppositions are presented 
previous to the argumentation. 
3) The original mode of argumentation is oral, being the extant text a rewriting of the originally 
written rendering of lectures. 
4) Unlettered diagrams are drawn during the lecture (and reproduced in the treatises). These are 
conceived by the audience as perfect figures even if they are not. 
5) The conceptualization of figures is made without resort to notions related to length measurements. 
This leads to the exactification of lengths. 
6) Geometrical figures are drawn using drawing instruments like those used in practical geometry but 
are (conceived as) visually ‘perfect’. 
7) There is no linguistic definition of geometrical figure, just a name like in the case of practical 
geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Hub-and-spoke model of the neural representation of geometric figure in Hippocrates’ pure 
geometry. 
 
So far, we have addressed Hippocrates’ pure geometry mainly in relation to the previous practical 
geometry. We developed hub-and-spoke models of the neural representation of geometric figures in 
both geometrical practices that are compatible with the main changes we have found to have occurred 
when going from one practice to the other. 
     We are now at a position where we can address the neural underpinning of the Euclidean 
geometrical practice. We will consider the changes that occur when going from Hippocrates’ pure 
geometry to Euclid’s. By taking into account the model of geometric concept in the earlier form of 
pure geometry and how it changed from the previous model from practical geometry, we will set 
forward a hub-and-spoke model of the neural representation of an abstract geometric object that 
makes more understandable how we go from perfect figures to abstract objects and how this can be 
encoded neurologically. 
 
 
 

 
magnitude system (see footnote 7). Accordingly, we change the naming of the spoke from ‘symbolic number spoke’ to 
‘symbolic number-magnitude spoke’. 
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4. Euclidean pure geometry 
 
That Hippocrates’ pure geometry is not that of Euclid’s Elements should not be surprising. From the 
perspective of a philosophy of mathematical practices, this is quite natural. A particular practice is 
historically situated; we need to analyze a mathematical practice in its historical context, and we need 
history to address the historical development of practices (Ferreirós 2016). 
     Nobody would say, e.g., that the geometrical practice of Hilbert’s pure geometry is like that of 
Euclid’s. However, some repeat the mistake of Simplicious or Eudemos in relation to the Hippocratic 
practice by analyzing the Euclidean practice from the perspective of a more recent one, in terms of 
modern reformulations of Euclid’s geometry. We have to address Euclid’s geometry from within the 
Euclidean geometrical practice (Dal Magro and García-Pérez 2019). This is also the case with 
Hippocrates’ pure geometry. 
     Instead of considering modern reconstructions of ancient practices, it is more interesting and 
meaningful for our purpose to address the evolution of Hippocrates’ pure geometry (PG1) to that of 
Euclid’s (PG2) from within these practices. Taking into account the interest of this work on the 
cognitive underpinning of geometrical practices, we are interested in unveiling cognitive changes that 
occur when going from PG1 to PG2. In this way, like in previous sections, looking back into history 
is most of all a way to uncover possible aspects of the semantic cognition underpinning these 
practices.19 
     We think that we can conceive the early stages of the geometry of the Elements in terms of lectures 
in which the teacher helps the student to memorize the enunciation of the proposition (the protasis). 
According to Saito the role of the protasis was to enable to memorize and refer to the propositions 
(Saito 2018, 928-9). It suffices to memorize the protasis and the corresponding diagram. Accordingly, 
“with the [unlettered] diagram in your memory, you can surely understand the protasis” (Saito 2018, 
929). With these two elements, a practitioner can recover the whole of the content related to a 
proposition as manifested in the Elements. 20  In Saito’s view, “mathematical teaching was very 
probably performed directly and orally by drawing a diagram in front of pupils, and explaining it” 
(Saito 2018, 924). We can conceive of a lecture as starting with the teacher reciting an enunciation 
(protasis) of a proposition. He would then proceed to the ‘doing’ or the ‘showing’ (Rodin 2014, 15-
35); i.e., the teacher would construct a particular figure by starting to draw a diagram and pointing to 
the correctness of the successive steps until the final figure is constructed. Alternatively, he would 
show a particular result with the help of the diagram. 
     The diagram was probably drawn “on sand or a wax tablet” (Saito 2018, 928), and, importantly, 
the teacher would indicate the “points and other geometrical objects by finger”. (Saito 2018, 928). In 
the context of an oral presentation, it is very unlikely that the teacher assigned labels to the diagram. 
As Netz shows, there is a close relationship between lettered diagrams and the type of written text 
adopted in the demonstrations of pure geometry (Netz 1999). According to him, “the introduction of 
letters as tools is a reflective use of literacy”. (Netz 1999, 62). In this way, with the written form, “the 
lettered diagram is the tool which […] was made more central” (Netz 1999, 66). By contrast, the oral 
teaching as rendered in Plato’s Meno reveals that “the diagram is not lettered, and the geometrical 

 
19 The nature of this aspect of our work is so tentative that we do not claim to be doing cognitive history. Cognitive history 
as proposed, e.g., by Netz, would enable us to study as historical phenomena ‘central cognitive processes’ like the 
reasoning underlying geometrical proofs (Netz 1999, 7). Netz focus on two ‘cognitive tools’, the lettered diagrams and 
the mathematical lexicon (in particular the definitions and the linguistic formulae). It is beyond the scope of this work to 
address Netz’s views; we only make a few remarks we consider necessary. The historical elements taken into account in 
this work lead us to consider that lettered diagrams were not essential to the arising of PG1 or even PG2 and so also not 
essential to demonstrations. Formulae are also not relevant in the early development of PG1 and PG2. Regarding 
definitions, as we will see, these seem to be central in the arising of PG2 from PG2; this would not agree with Netz’s 
account of definitions in geometrical practice. Netz considers that “the existence of a definition must strengthen, to some 
extent, the tendency to employ the definiendum instead of other” (Netz 1999, 103). In our view, this is not the case. The 
definitions ‘stabilize’ the Euclidean idealizations which are at the crux of passing from a pure geometry of perfect 
geometric figures (PG1) to a pure geometry of abstract objects (PG2). 
20 A proposition in the Elements can be conceived a formed by the protasis, ekthesis, diorismos, kataskeuē, apodeixis, and 
sumperasma (see, e.g., Mueller 1981, 11). 
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objects in it are referred to by the word ‘this’” (Saito 2018, 932). According to Saito, “the written text 
of the Elements with lettered diagrams shows certainly a more developed stage” (Saito 2018, 932). 
     In a more organized lecture, the teacher would first present the necessary definitions, postulates, 
and common notions, or he would refer to them as needed.21 This would be the counterpart of 
Hippocrates’ practice, where we would start by mentioning the presuppositions that are used in the 
demonstration. We can see the Euclidean approach as resulting from the Hippocratic one when the 
presuppositions are “assumed as principles for which no justification is given” (Cellucci 2013, 68).22 
     Where do we find then a cognitively relevant difference between PG1 and PG2? In our view, the 
difference is in the way we learn to look at the diagrams and use them. That there is a crucial change 
from the Hippocratic practice can be seen in the fact that in the Euclidean practice we have explicit 
linguistic definitions at play. For example, a point is defined as “that which has no part” (Euclid 1956, 
153). Regarding lines, according to definitions 2 to 4, “A line is breadthless length. The extremities 
of a line are points. A straight line is a line which lies evenly with the points on itself” (Euclid 1956, 
153). 
     According to Harari, the definition of point makes reference to the idea of measurement by 
‘contraposition’: “a point is characterized as a non-measurable entity, as it has no parts that can 
measure it” (Harari 2003, 18). In the models of geometrical concept that we tentatively suggest in 
this work, when going from practical geometry to PG1 there is a loosening in the praxis spoke of 
aspects related to measurements. The change from PG1 to PG2 might be seen as the ‘overwriting’ 
using the verbal spoke of any encoding related to a measurement praxis still existing in PG2 (and 
‘inherited’ from PG1). This is achieved by extending the content of the verbal spoke that would consist 
now of a definition and not just a label. The changes in the spokes go hand and hand with changes in 
the hub that gives rise to a coherent concept. That this might be so can be seen, e.g., in the definitions 
related to lines. In PG1 we already have a perfect figure but one that has a breadth; in PG2 we move 
beyond this and conceive of something that is breadthless. This linguistic term points to something 
that is not even visualizable – it is an abstract object. 
     Taking this into account together with the definition of point we see that this definition goes 
beyond the “non-measurability” mentioned by Harari. The point is also an entity that goes beyond a 
visualized figure – as perfect as it might be. The verbal spoke helps to recreate the concept of perfect 
figure of PG1 as the concept of abstract object of PG2. 
     What does this imply regarding the diagrams that are drawn during the lectures? These are not 
conceived anymore as perfect figures. They are representations of geometrical objects as defined and 
instantiated following the postulates in the Elements (Valente 2020, 27-9). This has consequences 
concerning how we address the diagrams during the oral lectures (or in the written treatises). 
According to Ferreirós: 
 
The first definitions indeed suggest a way of reading diagrams, a perspective for seeing or conceiving 
what is implied by a diagram, and what is not. And this way of reading is not at all evident, especially 
if one previously knows only practical geometry. For the definitions and the reading that comes with 
them lead the practitioner to certain crucial idealizations. More importantly, the definitions suggest 

 
21 This is not such a bold suggestion as one might think. Several books of the Latin version of the Elements that was most 
influential in the Latin West during the 12th and 13th centuries have these characteristics. In book 1, in the beginning, we 
find the definitions, postulates, and common notions; then, we have the enunciation of proposition 1, an unlettered 
diagram, and a commentary giving indications about how to carry out the proof (Busard and Folkerts 1992, 113-115). If 
we consider the books to be used by the student with the aid of a teacher this is all that is needed. Other examples are, 
e.g., a second-century CE fragment that contains proposition 9 of book 1 of the Elements. It consists only of the 
enunciation with an unlettered diagram (Brashear 1994), and a fragment from the third century CE with identical 
characteristics (Cairncross and Henry 2015, 24). 
22  However, even in the Euclidean practice some assumptions function as background presuppositions and not as 
‘principles’. The demonstration by Hippocrates takes into account, as a background assumption, the ‘conservation of area’ 
we mentioned above. This is also the case with Euclidean demonstrations. According to Høyrup, the ‘arithmetic of areas’ 
(additivity and subtractivity) is “something not even Euclid considered worth arguing for specifically but just included in 
his common notions 2 and 3 (“if equals be added to equals, the wholes are equal”, etc.)” (Høyrup 2019, 165). 



 14 

certain forms of response (and of indifference) to some aspects of the diagram: thus, the crossing of 
two drawn lines will be a (very small) planar region, but we are taught to disregard this and consider 
in the argumentation that one and only one point has thus been determined. (Ferreirós 2016, 144).23 
 
We suggest that the conceptual change leading from PG1 to PG2 might have arisen in a practice based 
on oral lectures with PG1 where the above-mentioned way of looking into and reading diagrams arose. 
That is, PG2 does not lead to this particular way of attending to the diagrams; it would be the other 
way around. This way of attending to the diagrams (or a very similar precursor) would give rise to an 
early oral version of PG2. This change would be made more explicit and stable by developing explicit 
linguistic definitions that help to stabilize the concepts, and further ‘sedimented’ by written treatises 
and a teaching practice that would rely more and more on these.24 
     In terms of the simple model of geometrical concept that we are working with in the present paper, 
the verbal definition might be encoded in the verbal spoke that would be much more developed than 
in the cases of practical geometry and Hippocrates’ pure geometry. In these cases, the content of the 
verbal spoke consisted only of the label used to name a geometric figure. Now we have a definition. 
The main difference would occur in how the hub re-represents the encoding in the spokes (see figure 
7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Hub-and-spoke model of the neural representation of geometric object in Euclidean pure 
geometry. 
 
The representations in the visual, praxis and symbolic number-magnitude spokes are represented in 
a highly abstract way by taking into account the encoding of the verbal spoke. When we look at a 
figure there is a particular indifference and responsiveness to its features related to the verbal 
definition such that we re-conceive the figure in terms of an abstract geometric object and not as a 
perfect figure anymore (as mentioned, the figure becomes for us a representation of the geometric 
object).25 In this way, the verbal spoke becomes decisive in how the representations in the visual, 

 
23 In a footnote, Ferreirós mentions that “indifference and responsiveness to features of representations is a topic that I 
have seen Manders elaborate on in an unpublished conference” (Ferreirós 2016, 144). 
24 Hippocrates himself is said to have written a treatise (but see Netz 2004, 275) and there are references to treatises 
written previous to the Elements during the fourth-century BCE (Knorr 1986, 102). 
25 It must be noticed that this is a very tentative suggestion. In fact, the hub-and-spoke theory has not been developed by 
taking into account anything like the definitions in the Elements, only individual words (for concrete objects like ‘apple’ 
and ‘rope’, or abstract concepts like ‘rule’ and ‘hope’. See, e.g., Hoffman, Binney, and Ralph 2015; Kemmerer 2015, 343-
4).  A model in terms of cross-modal convergence zones might be more appropriate. In this kind of model instead of one 
main brain hub one considers a hierarchy of cross-modal convergence zones (Kuhnke, Kiefer, and Hartwigsen 2020). 
This is so because in a definition we engage with complex features of linguistic semantics that seem to be addressed in 
different brain regions than the anterior temporal lobes identified in the hub-and-spoke theory as the main hub. For 
example, there is evidence that what we call thematic role (e.g., agent and patient in an event verbally described as “the 
dog chased the cat”) might be represented in two subregions of the left-mid superior temporal cortex (Frankland and 
Greene 2020, 289-90). The situation with Euclidean definitions is possibly much more complex at a neural level. Even if 
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praxis and symbolic number-magnitude spokes are interpreted and recombined in the hub giving rise 
to a ‘higher order’ representation of geometric abstract objects.    
     In our view, the hub-and-spoke models of the neural representation of geometric figure/object 
make more intelligible what a geometric object might be since we can relate its neural representation 
to that of a geometric figure in Hippocrates’ pure geometry and in practical geometry.26 
  
 
5. Conclusions 
 
The purpose of this work is to set forward a tentative model of the neural representation of abstract 
geometric objects. This model might be useful in relation to the development of a future theory of the 
semantic cognition underpinning pure geometry. 
     To develop the model consistent with the previous geometrical practices, we have considered a 
historically informed account of practical geometry. The objective was to provide a basic 
characterization of practical geometry. Taking into account these basic ‘characteristics’ we build a 
model of the neural concept representation of geometric figure in practical geometry using in a very 
simple way the hub-and-spoke theory of neural concept representation. 
     We then address pure geometry. Previous to the geometrical practice related to Euclid’s Elements, 
there was a development of a pure geometry that was an intermediary stage between practical 
geometry and the pure geometry of the Elements. 
     In this work, we present a basic characterization of this geometrical practice as revealed in 
Hippocrates’ work on the quadrature of lunules. In our view, this pure geometry deals not with abstract 
objects, but still with geometric figures – perfect figures. We provide a model of the neural concept 
representation of perfect figures again relying on the hub-and-spoke theory. 
     We then address what kind of neural representation of geometric concept we have in Euclidian 
pure geometry. For that, we reconstruct some aspects of the Euclidean practice taking into account 
how these are different from the corresponding aspects in the Hippocratic practice. Taking these 
differences into account together with the models of neural concept representation in practical 
geometry and Hippocrates’ pure geometry we proposed a simple model of abstract geometric object. 
Comparing this model with the ones related to geometric figures makes more intelligible what it is to 
have a concept of abstract object and how this concept may underline the Euclidean practice. 
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