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Abstract

This is a general introduction to and review of the philosophy of quan-
tum mechanics, aimed at readers with a physics background and assuming
no prior exposure to philosophy. It is a draft version of an article to appear
in the Oxford Research Encyclopedia of Physics.

If philosophy of physics has a central problem, it is the quantum measure-
ment problem: the problem of how to interpret, to make sense of, perhaps even
how to fix, quantum mechanics. Other theories in physics challenge our intu-
itions and our everyday assumptions, but only quantum theory forces us to take
seriously the idea that there is no objective world at all beyond our observations
— or, perhaps, that there are many. Other theories in physics leave us puzzled
about aspects of how they are to be understood, but only quantum theory raises
paradoxes so severe that leading physicists and leading philosophers of physics
seriously consider tearing it down and rebuilding it anew. Quantum theory is
both the conceptual and mathematical core of 21st-century physics, and the gap-
ing void in our attempt to understand the worldview that 21st-century physics
gives us.

Unsurprisingly, then, the philosophy of quantum mechanics is dominated by
the quantum measurement problem, and to a lesser extent by the related prob-
lem of quantum nonlocality, and in this article I give an introduction to each. In
section 1 I review the formalism of quantum mechanics and the quantum mea-
surement problem. In sections 2–4 I discuss the three main classes of solution
to the measurement problem: treat the formalism as representing the objective
state of the system; treat it as representing only probabilities of something else;
modify it or replace it entirely. In section 5 I review Bell’s inequality and the
issue of nonlocality in quantum mechanics, and relate it to the interpretations
discussed in sections 2–4. I make some brief concluding remarks in section 6.

A note on terminology: I use ‘quantum theory’ and ‘quantum mechanics’ in-
terchangeably, to refer to the overall framework of quantum physics (containing
quantum theories as simple as the qubit or harmonic oscillator and as compli-
cated as the Standard Model of Particle Physics). I do not adopt the older
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convention (still somewhat common in philosophy of physics) that ’quantum
mechanics’ means only the quantum theory of particles, or perhaps even non-
relativistic particles: when I want to refer to non-relativistic quantum particle
mechanics I will do so explicitly.

1 The quantum formalism and the measurement
problem

In general, scientific models of systems tell us what those systems are and how
they behave; they explain the observed phenomena in terms of the dynamical
processes of those systems; through doing so, they make predictions about the
system’s properties, and those properties can then be tested through observation
and experiment. The quantum measurement problem arises because quantum
mechanics appears to be different: it is not obvious how to understand the
formalism at all, let alone how to understand it as telling us about the dynamics
and properties of systems prior to those systems being observed, and although
there is a rough and tacit consensus among physicists about how to use the
theory in practice, it is notoriously difficult how to make clear theoretical sense
of, far less justify, that consensus.

The problem is most obviously associated to what happens when a system is
measured in the lab — hence ‘measurement problem’ — but equally apt names
would be ‘the problem of quantum-classical transition’ (since it is through that
transition that the theory makes observable predictions, whether or not a formal
experiment is carried out) or ‘the problem of interpretation’ (since at issue is
what the quantum formalism means and what kind of account it gives us of
quantum systems).

1.1 The quantum formalism

To see how the measurement problem arises, let’s briefly review the quantum
formalism, which can be thought of as having four parts.

1. To each quantum system is assigned a state space: a complete, complex
inner-product space (i.e. a Hilbert space). The states are represented by
rays in this space: that is, by normalised vectors, up to a phase factor,
representing the fact that |ψ〉 and eiθ |ψ〉 are physically equivalent. (So
strictly the state space might better be identified as projective Hilbert
space, the space of rays.)

2. The self-adjoint operators on the Hilbert space are taken to represent
the physical quantities (sometimes called observables) that characterise
the system, and at least some of those operators are explicitly treated
as representing specific physically meaningful quantities, such as particle
positions or the values of conserved quantities like momentum.

2



3. One dynamical variable, the Hamiltonian (identified with the system’s
energy) has a particular physical role: it determines the evolution of the
system’s state via the Schrödinger equation:

d

dt
|ψ〉 = − i

~
Ĥ |ψ〉 . (1)

4. An explicit rule — the Born probability rule — relates the quantum states
and the observables to the result of experiments. The rule has two aspects,
each of which applies to a measurement of a physical quantity represented
by self-adjoint operator Ô for a system with state |ψ〉. Any such operator
(ignoring some infinite-dimensional technicalities) can be written as

Ô =
∑
o

oΠ̂o (2)

where the sum is over all eigenvalues of Ô and Π̂o is the projector onto
eigenstates with eigenvalue o. (In the simplifying special case where Ô is
nondegenerate, this becomes

Ô =
∑
o

o |o〉 〈o| (3)

where |o〉 is the unique eigenstate of Ô with eigenvalue o.) Then:

(a) The measurement process is in general indeterministic, and the pos-

sible outcomes of the measurement are the eigenvalues of Ô;

(b) The probability of outcome o obtaining is given by Pr(o|ψ) = 〈ψ| Π̂o |ψ〉 .
In the nondegenerate case this simplifies to Pr(o|ψ) = | 〈ψ|o〉 |2.

The Born rule can equally be expressed as a rule for the expectation value
of a measurement: If the dynamical quantity corresponding to Ô is mea-
sured, the expected value of the outcome is

〈O〉|ψ〉 = 〈ψ| Ô |ψ〉 .

(The reason that this is equivalent is that for any eigenvalue o of Ô, there
is a function fo such that f(o) = 1, f(o′) = 0 for any other eigenvalue;
the expected value of a measurement of fo(O) equals the probability of

measuring Ô and obtaining o.)

It is through the Born rule — and only through the Born rule — that we
connect the formalism to experiment and observation. Only via the Born rule
can we connect the abstract formalism of state and observable with any claims
about what values of observables will actually be measured when a quantum
system is observed. The form of this connection is entirely novel, in that it
builds the notion of measurement into the very formalism of the theory, and it
is that novelty that gives rise to the measurement problem. We can see this
clearly by comparing the quantum formalism with two classical formalisms.
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1.2 Comparison: The formalism of classical mechanics

Firstly, consider the Hamiltonian formulation of classical mechanics. Here, there
are clear analogs of the first three parts of the quantum formalism:

1. A classical system is assigned a state space (phase space), with states
represented by points in this space.

2. Certain functions on phase space are assigned physical significance by tak-
ing them to represent the physical quantities that characterise the system
(in particle mechanics, for instance, we identify certain coordinate func-
tions with the components of position and momentum of each particle).

3. One dynamical variable, again called the Hamiltonian and again identified
with the system’s energy, determines the evolution of the system’s state
via Hamilton’s equations.

But there is no need for an analog of the Born rule, since the the interpretation
of the system is simple, transparent, and makes no mention of probabilities:
the classical state assigns a unique value to each physical quantity, such that
given a physical quantity represented by function O, and a system in state
x, the value of the physical quantity is just O(x). Indeed, since the physical
quantities coordinatize the phase space, the classical state just is an assignment
of values to all the physical quantities. In classical mechanics, whether some
further physical process accurately measures the value of a physical quantity
depends on the dynamics of that process, and is a matter for the designers of
experimental apparatus: the formalism of the theory just says what values the
quantities actually have, and ’measurements’ are just processes that attempt to
report those actually-possessed values.

In classical Hamiltonian mechanics, the system’s state is representational :
the state represents the physical properties of the system, and different states
correspond to different ways the system might be. (An alternate name in the
literature is ontic, borrowing from the philosophers’ term ontology, meaning
what exists, what there is.)

The representational notion is not the only notion of ‘state’ in classical me-
chanics. Another arises in classical statistical mechanics, the formalism of which
might be summed up as:

1. A classical statistical state is not a point in phase space, but a probability
distribution over it — so that the space of statistical states is not phase
space, but the much larger space of such distributions.

2. Just as in Hamiltonian classical mechanics, certain functions on phase
space are assigned physical significance by taking them to represent the
physical quantities that characterise the system.

3. The statistical state evolves by the Liouville equation, which is just the
equation for how a probability distribution over phase-space points changes
with time if those points themselves evolve under Hamilton’s equations.
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4. Given a physical quantity represented by function O, and a statistical
state ρ, the expectation value of O is

〈O〉ρ =

∫
dpqρ(p,q)O(p,q).

(This can readily be reformulated as a rule for the probability density of
the system having a given value of O.)

Again, the first three parts of the formalism match the quantum case, and the
Hamiltonian case: a state space, the representation of physical quantities by
mathematical objects defined on that space, and a dynamical equation for states.
The fourth part imposes the interpretation of the statistical state as a probability
distribution over the physical quantities. In classical statistical mechanics, the
state is not representational: it is probabilistic, encoding the fact that the system
might have many possible values of its physical quantities, and assigning a
probability to each possibility. (An alternate name in the literature is epistemic,
borrowing from the philosophers’s term epistemology, meaning the study of
knowledge and reflecting the common interpretation of statistical-mechanical
probability as ignorance of the true state.)

We can now ask: which version of state dynamics, mechanical or statistical-
mechanical, applies to quantum mechanics? Or, put another way: is the quan-
tum state representational or probabilistic? And the measurement problem
arises because neither conception of state straightforwardly works in quantum
mechanics.

1.3 Why the state doesn’t seem to be representational

The problem with a representational concept of the quantum state is that it is
apparently incompatible with the Born rule. Consider a measurement of some
quantity represented by operator Ô. It is reasonably simple to make the rep-
resentational concept work if the system’s state is an eigenstate of Ô, say |o〉
with eigenvalue o. In that case, a measurement of Ô returns o with 100% cer-
tainty, and so we could suppose that |o〉 represents a system with value o of that
quantity. But what about a superposition α1 |o1〉+ α2 |o2〉, where |o1〉 , |o2〉 are

eigenstates of Ô with different eigenvalues o1, o2 — what value of the quantity
does that state represent? It is common to say that it represents the system
having an ‘indefinite’ value of the quantity, but it is not at all clear what that
means — and more importantly, the Born rule tells us that if we measure that
quantity, the result of the measurement is not ‘the quantity has an indefinite
value’, but either ‘the quantity has value o1’ or ‘the quantity has value o2’, with
some probability of either. So ‘measurements’, whatever they are, do not seem
to return the actually-possessed value.

The problem can be sharpened by considering a measurement as a physical
process (measurement devices, after all, are made of atoms, and atoms are
subject to the Schrödinger equation). For definiteness, suppose we have a spin-
half particle, and measure its spin along the z-axis. A very simple model of a
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measurement device would have the device begin in some ‘ready’ state, |Ready〉,
and evolve into some state |Records ’Up’〉 if the particle initially has spin up in
the z direction, and |records ’Down’〉 if it has spin down. That is, the combined
system of device and particle implements this dynamics:

|+z〉⊗|Ready〉 −→ |+z〉⊗|Records ‘Up’〉

|−z〉⊗|Ready〉 −→ |−z〉⊗|Records ‘Down’〉 . (4)

But if the device is now used to measure a spin-half particle with an indefinite
value of z-spin, from the linearity of the Schrödinger equation we know that the
result is

(α+ |+z〉+ α− |−z〉)⊗ |Ready〉

−→ α+ |+z〉⊗|Records ‘Up’〉+ α− |−z〉⊗|Records ‘Down’〉 . (5)

The measurement device (more precisely: the combined system of measurement
device + particle) is in an indefinite state, neither definitely recording ’Up’ nor
definitely recording ’Down’. It is extremely hard to understand what a state
like this could represent, but more to the point, it flatly contradicts what the
Born rule would predict, which is that the measurement interaction in this case
should be indeterministic:

(α+ |+z〉+ α− |−z〉)⊗ |Ready〉 −→ |+z〉⊗|Records ‘Up’〉 (probability |α+|2)

(α+ |+z〉+ α− |−z〉)⊗ |Ready〉 −→ |−z〉⊗|Records ‘Down’〉 (probability |α−|2).

(It is not difficult to see that this indefinitess arises simply from the linearity
of the Schödinger equation: a more realistic model of the measurement would
allow for the possibility of macroscopically many post-measurement states but
would not change the basic result.)

A particularly vivid realisation of the problem arises when the device ‘records’
the measurement outcome via Schrödinger’s unfortunate cat: the cat is killed if
the measurement outcome is ‘Up’, spared if it is ‘Down’. If the input state is a
superposition of z-spin states, then according to the representational concept of
state, the cat is in an indefinite state of alive and dead; according to the Born
Rule, it is alive with some probability, dead with some other probability.

1.4 Why the state doesn’t seem to be probabilistic

The probabilistic conception of the quantum state, by contrast, handles macro-
scopic superpositions very naturally. On that conception, a state like

α+ |+z〉⊗|Records ‘Up’〉+ α− |−z〉⊗|Records ‘Down’〉 (6)

just describes a situation where the measurement device has probability |α+|2 of
recording ‘up’ and probability |α−|2 of recording ‘down’; similarly, a Schrödinger-
cat state just represents a cat that might be alive and might be dead, not some
weirdly indefinitely-alive creature. The problem with a probablistic conception

6



Figure 1: Mach-Zender interferometer

of the quantum state is, instead, that it is apparently incompatible with micro-
scopic superposition and interference. We can begin seeing this by asking how,
on that conception, we should interpret a state like

1√
2

(|+z〉+ |−z〉) (7)

— is it a system that is equally likely to have spin up or spin down in the z-
direction, or a system that definitely has spin-up in the x direction? Quantum
mechanics does not distinguish the two, but at least on the face of it, the
probabilistic conception has to do so.

The problem gets sharper when we consider how an interference experiment
plays out on this conception. Consider a Mach-Zender interferometer like the
one in Figure 1, tuned so that detector ‘A’ always fires (that is: the two paths
to A constructively interfere, while the two paths to B destructively interfere
and cancel out). Schematically, we can represent the quantum physics as

|input〉 → 1√
2

(|Path 1〉+ |Path 2〉)
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|Path 1〉 → 1√
2

(|Approaching A〉+ |Approaching B〉)

|Path 2〉 → 1√
2

(|Approaching A〉 − |Approaching B〉) . (8)

So if we block one path so that all photons have to go down the other, there
will be an equal chance of detecting the photon at each of A and B, but if we
allow it to go down either path, interference means that the photon is certainly
detected at A. On (at least the most straightforward version of) the probabilistic
conception, a superposition like

1√
2

(|Path 1〉+ |Path 2〉) (9)

represents a photon that is either in Path 1, or in Path 2. But now we can
reason as follows:

Either the photon is in Path 1, or in Path 2.

If it is in Path 1, it is 50% likely to be detected at each detector.

If it is in Path 2, it is also 50% likely to be detected at each detector.

—

So whichever path it is in, it is 50% likely to be detected at each
detector.

We seemed to have used no more than elementary logic1 and the basics of the
probabilistic conception — and yet we reach a contradiction with experiment.
We can reach a similar conclusion by noting that the detections can be shifted
from ‘A with certainty’ to ‘B with certainty’ by changing the path length by 1/2
wavelength in either Path 1, or Path 2 — which seems to imply that something
physically relevant is going on on both paths, on every run of the experiment.

1.5 The measurement problem and its solutions

We can now give a clean statement (following [5]) of the quantum measurement
problem:

The quantum measurement problem: How do we understand quantum the-
ory in general, and the quantum state in particular, given that we are led
to paradox if we think of it as either representational or probabilistic?

This is far from the only statement in the literature. (Influential alternatives in-
clude [6, 7, 8].) Philosophers of physics often take for granted that the quantum

1There is a long tradition of considering whether ‘elementary logic’ itself needs to be
revised in light of quantum mechanics. The idea was mooted in philosophy by Quine [1]
and Putnam [2], and led to the field of quantum logic; despite interesting technical results,
though, that field has largely fallen from favor in contemporary discussions of the measurement
problem Recent reviews are [3, 4].

8



state is supposed to represent the world, and phrase the measurement problem
as: how can we reconcile this with macroscopic superpositions? Less commonly,
one finds versions that take for granted that the quantum state is probabilistic,
and phrase the measurement problem as: what is the probability space on which
quantum probabilities are defined? The virtue of the statement I give here is
that it avoids confusing the problem (‘how can we understand the quantum
state?’) with aspects of the solution (‘given that the state represents the world,
how do we make sense of macroscopic superpositions?’)

So: how do we solve the problem? Physical practice finesses it by moving
inconsistently between the representational and probabilistic conceptions: in
interference experiments we treat the state as representational; at macroscopic
scales, or when we make a measurement, we shift to treating it as probabilistic.
We could try to resolve the inconsistency by defending either the representa-
tional or probabilistic conception of the quantum state against the criticisms I
have given — and as we will see, there are substantive defenses available for both
the conceptions. For the second in particular, a popular move — going back
to the founders of the field — is the instrumental (or pragmatic) conception of
the quantum state, which I treat here as a subcategory of the probabilistic con-
ception. On this conception, we abandon any attempt to extract understanding
of the underlying physics from quantum dynamics and the quantum state, and
instead treat the state as an instrumental tool to predict and manipulate other
physical systems. The urgent issue for such approaches is to tell us how those
‘other physical systems’ are to be described, if not using quantum physics.

The remaining conception of quantum mechanics is revisionary (or modi-
ficatory). Adherents of this approach take at face value the apparent contra-
dictions embedded in the representational and probabilistic conceptions of the
state, and conclude that quantum mechanics is wrong, or at least not com-
pletely right; they seek modified versions of quantum mechanics that avoid the
measurement problem. Ideas of this kind again go back to the dawn of quan-
tum mechanics, to Dirac and von Neumann’s postulate of wavefunction collapse
upon measurement (indeed, sometimes this postulate is actually counted as
part of the quantum formalism), but this approach uses an unalysed concept
of ‘measurement’ that most have found unsatisfactory or even in contradiction
with the known microphysics of measurement devices, and contemporary advo-
cates of the revisionary conception have looked to develop more microphysically
principled modifications. Several are known, at least in the domain of nonrel-
ativistic particle mechanics — extending any such approach to quantum field
theory, and carrying out decisive empirical tests that distinguish the revisions
from unmodified quantum mechanics, remain open problems.

In the next three sections I will consider each of these three conceptions
of quantum mechanics: representational, probabilistic (including instrumen-
tal/pragmatic), and revisionary. A great deal has been learned about each
over the years, even if the community remains far from consensus on which is
preferable.
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2 The representational conception of the quan-
tum state: decoherence, Everett, shut-up-and-
calculate

The distinctive feature of representational approaches to quantum theory is
that the unitary dynamics of quantum theory suffices to analyze any quantum
problem, including those in which measurement and observation occur. The
most pressing problem for these approaches is then how to provide this unitary
analysis of measurement, and there is a fairly wide consensus that this requires
decoherence theory, which I review briefly in section 2.1 (see also [ORE deco-
herence article] and [9]). In the remainder of this section I consider whether
decoherence suffices by itself, and if not then what else is needed.

2.1 Decoherence and the quantum-to-classical transition

As I observed above, physical practice attempts to avoid the measurement prob-
lem by inconsistently moving between different conceptions of the state: repre-
sentational when we need to think about interference or entanglement, proba-
bilistic when we need to think about measurements and observations. It is not
obvious why this works: why couldn’t interference or entanglement effects per-
sist at the scale of macroscopic observation and lead to outright contradiction
in our physics?

The answer — known in outline since the dawn of quantum theory, but
enormously clarified since the development of decoherence theory in the late 20th
century2 — is that it is difficult to place large physical systems in superpositions
without them becoming uncontrollably entangled with their environment, in a
way which makes superpositions impossible to distinguish from probabilistic
mixtures. As an extreme example, suppose that we somehow placed Jupiter in
an equally-weighted superposition of two different positions X and Y, millions
of miles apart. To distinguish this quantum state from the merely probabalistic
state ‘Jupiter has a 50% chance of being at X and a 50% chance of being at
Y ’, we would need to carry out some kind of interference experiment, some
experiment that would give different results for

|J+〉 =
1√
2

(|Jupiter at X〉+ |Jupiter at Y〉) (10)

than for

|J−〉 =
1√
2

(|Jupiter at X〉+ |Jupiter at Y〉) (11)

But now consider a single photon, coming in from interstellar space and passing
through X. If Jupiter is at X, the photon will be affected (reflected, let’s assume).
If it is at Y, the photon will pass through X undetected. So the joint quantum

2See, e. g. , [10, 11] for detailed reviews.
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state of photon and Jupiter is now

|J±; photon〉 =
1√
2
|Jupiter at X〉⊗|photon scattered〉

± 1√
2
|Jupiter at Y〉⊗|photon unaffected〉 . (12)

And it is now impossible to distinguish |J+; photon〉 from |J−; photon〉 —
and hence, impossible to distinguish Jupiter-in-superposition from Jupiter-in-
probabilistic mixture — by any physical process involving Jupiter alone. We
could see this formally by constructing the density operator for Jupiter in the
absence of the photon and noting that it is the same for both states, but it is
simpler just to see that a phase transformation made on the photon alone (flip-
ping the phase of the deflected photon, leaving the unaffected photon alone) is
enough to move us from one state to the other. So an interference experiment
that confirmed that Jupiter is really in a superposition would have to be an
experiment operating jointly on Jupiter and the photon.

But of course, interstellar space contains more than one photon. Countless
numbers scatter off Jupiter every second, along with dust motes, cosmic rays,
and all manner of other detritus, and every single one of them will get entangled
with Jupiter’s position just as our first photon does. The only way to carry out
that interference experiment on Jupiter is to make it a joint interference exper-
iment in which we manipulate both Jupiter and the vast number of degrees of
freedom of Jupiter’s environment. And even if, impossibly, we were actually to
capture that environment, it would no more be possible to perform the experi-
ment than it would be to turn back time in a complex macroscopic system by
reversing the velocities of all the constituents.

This is the process of environment-induced decoherence. Its hallmarks are
that a physical system’s environment is constantly and redundantly measuring
it with respect to some basis (usually — as in the case of Jupiter — the position
basis, or in some coarse-grained combination of position and momentum), and
that as a consequence:

• no remotely realistic interference experiment could distinguish between a
superposition with respect to that basis, and a mere probabilstic mixture
of basis terms;

• no remotely realistic preparation process could prepare the system in a su-
perposition with respect to that basis, without it instantly and irreversibly
becoming entangled with its environment;

• the internal dynamics of the system itself (e.g., Jupiter’s movement through
space) cannot involve interference between terms in that basis, and so will
be formally indistinguishable from some deterministic or stochastic pro-
cess.

Of course, systems don’t need to be as big as Jupiter to decohere. Even
dust motes are very rapidly decohered by the atmosphere or by ambient ra-
diation, and the process only gets quicker for larger systems. Nor does the
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‘environment’ doing the decohering have to be external to the system: the low-
wavelength vibrational modes in an iron bar can be decohered by the bath of
shorter-wavelength phonos in that same bar; the various cells and tissues of
Schrödinger’s poor cat swiftly and redundantly record whether it lived or died.

Decoherence has by now been studied extensively by a variety of theoretical
methods and in a variety of experimental contexts. Much remains to be learned
about it, but there is not much disagreement that it is a ubiquitous feature of
unitary quantum dynamics for large, complex systems, and that at least ‘for all
practical purposes’ (to use John Bell’s [8] intentionally-derisive phrase) it ex-
plains why we can get away with ignoring interference and treating the quantum
state probabilistically when we apply quantum theory to those systems.

2.2 The Everett interpretation: many worlds?

Nonetheless decoherence alone does not appear to solve the measurement prob-
lem. It tells us that a probabilistic interpretation of the state can work in certain
large-scale situations, but that interpretation is still unavailable at the micro-
scopic level. And decoherence is by its nature an emergent, approximate process.
It does not define a sharp boundary beyond which interference disappears, but
only a fuzzy boundary beyond which it is extremely small. And although it
tells us that macroscopic superpositions like Schrödinger’s cat will rapidly get
entangled with their environment, that just seems to make the superposition
still more macroscopic (now cat and environment are in a superposition). The
problem remains: we don’t observe systems in superpositions at all.

Or do we? Following Hugh Everett [12], let’s see what happens if we model
observation itself — say, observation of the cat — within unitary quantum
mechanics. If I observe a dead cat, I go into a quantum state (more precisely,
one of a large class of quantum states) that could be schematically written as
|I see dead cat〉 . Similarly, my observation of a live cat puts me in a quantum
state |I see live cat〉. But then the linearity of quantum mechanics tells us that
if I observe a cat in a superposition of alive and dead, the joint state of me and
the cat after the observation looks something like

|ψ〉 =
1√
2
|Dead cat〉⊗|I see dead cat〉

+
1√
2
|Alive cat〉⊗|I see alive cat〉 . (13)

Importantly, there is no term in the superposition that we would write schemat-
ically as

|I see weird indefinite cat〉 .

According to unitary quantum mechanics itself, the result of measuring a macro-
scopic superposition would not be to experience something bizarre; it would be
to end up in a superposition of having two mundane, non-bizarre experiences.

So how are we to understand a state like (13)? The idea which de Witt [13]
and many others took from Everett (it’s a matter of controversy [14, 15] whether
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it was Everett’s own interpretation) is that (13) is to be interpreted as multi-
plicity : as two (or two families of) observers, one seeing a dead cat, one seeing
a live cat — and indeed, as two cats, one dead and one alive. On a broadly
physicalist interpretation of the human mind, experiences and thoughts depend
on physical processes in the brain, and these processes are multiply present, so
the quantum state describes multiple, independent observers, each with their
own definite experiences. And as more and more observers and other physical
systems get entangled with the original cat-observer pair, the quantum state
quickly ends up as something like

|ψ〉 =
1√
2
|Dead cat〉⊗|Everyone on Earth records ‘dead cat’〉

+
1√
2
|Alive cat〉⊗|Everyone on Earth records ‘live cat’〉 . (14)

In short order we have not just two observers, but two Earths, and before long
two Solar systems. Hence the more popular name for Everett’s interpretation
of quantum mechanics: the ‘many-worlds theory’.

The basic content of the Everett interpretation3 is:

1. The quantum state is representational: different states correspond to dif-
ferent physical systems, not to different levels of knowledge about the
system.

2. Unitary quantum mechanics is complete.

3. Correctly understood, unitary quantum mechanics describes a branching
multiplicity of approximately-classical worlds.

Given the frequency with which quantum theory magnifies microscopic su-
perpositions up to classical scales (any flickering fluorescent light-bulb does so;
so do classically chaotic processes), there really are many, many worlds — the
Everett interpretation describes a Universe vastly more complex and highly
structured than what we see around us. (Although of course this complexity was
not added by hand: mathematically it is present in the unitarily-evolving state,
however we interpret that state.) Many critics have been regarded such claims
as grandiose, radically violating Ockham’s Razor and committing us unscientif-
ically to the existence of unobservable entities. Defenders have responded that
Ockham’s Razor is concerned with the simplicity of theories rather than crudely
with the number of entities they posit, that we don’t regard the vastness of the
astronomical Universe as a reason to reject astrophysics and cosmology, that we
are justified in accepting other worlds because of the essential explanatory role
they play in well-confirmed science, and that in any case their unobservability is
a matter of degree and that degree changes every time we test the superposition
principle in new circumstances.

3For detailed presentations see [16, 17].
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More productive criticisms4 of the Everett interpretation have mostly fallen
into two classes, known collectively as the ‘preferred basis problem’ and the
‘probability problem’. The preferred basis problem asks: if superpositions are
to be understood as parallel worlds, with respect to which basis does this take
place? Why is a state like (13) correctly described as two worlds in each of which
the cat is definite, rather than one world with an indefinite cat in? Doesn’t uni-
tary quantum mechanics need to be supplemented with some explicit rule that
tells us which the preferred basis is — and in doing so, doesn’t it after all become
a revisionary theory? The probability problem asks: since unitary quantum me-
chanics is deterministic, how is it to be reconciled with the probabilistic nature
of our evidence for quantum theory? And how do we understand unequally
weighted superpositions: if

|ψ〉 = α |Dead cat〉⊗|I see dead cat〉
+ β |Alive cat〉⊗|I see alive cat〉 (15)

describes a living cat and a dead cat irrespective of α and β, what becomes
of the Born rule intepretation of |α|2 and |β|2 as probabilities? Shouldn’t the
probabilities be 50% irrespective of α and β, and in contradiction of the evidence
for the theory?

It is fairly widely accepted that decoherence provides a solution to the
preferred-basis problem. It does not provide a precise definition of the pre-
ferred basis, nor should it be expected to, because the ‘worlds’ or ‘branches’
in the Everett intepretation are not part of its fundamental structure but are
high-level, emergent entities. The core physical idea here [21, 22] is that the
decoherence-preferred basis is the one in which we can find autonomous, robust
higher-level dynamics - fluid dynamics and the like in the first instance, but
ultimately the still-higher-level processes of biochemistry and biology. What
makes the decomposition into ‘dead’ and ‘alive’ branches is that with respect to
that decomposition - but not with respect to wildly nonclassical ones — we find
those autonomous high-level processes playing out multiply and independently.
More philosophical work in the 2000s [23, 24] incorporated this approach to
quantum branches into a more general framework of emergence and higher-level
science in which emergent entities in general — phonons, tigers, mountains —
are to be understood in this structuralist way (so that the Everett interpretation
just arises from quantum theory when we apply already-understood principles
of emergence to this specific case).

(The preferred-basis problem continues to concern some authors who object
that no emergent account of the macroscopic world can be understood without
a clear account of the microscopic world, and that unitary quantum mechanics
fails to provide this account. According to this position (often called ‘primitive
ontology’ [25] or ‘primary ontology’ [26]) a physical theory should be specified
by first giving an ontology (a list of those entities which the theory describes,
preferably understandable as local entities like particles or classical fields) and
only then specifiying a dynamics for those entities. Unitary quantum mechanics

4For details see [17, 18, 19, 20] and references therein.
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certainly fails this requirement, as do most physical theories of the 20th and 21st
century; whether this is an indictment of physics or of the primitive-ontology
strategy lies beyond the scope of this review.)

The probability problem remains largely intact when decoherence is con-
sidered, and has been the main locus of controversy about the Everett in-
terpretation in 21st-century discussions. But decoherence does clarify what
the conditions are by which the mod-squared amplitudes have the right formal
properties to act as probabilities, in particular when they can be used to define
transition-probabilities in a consistent way. (In the ‘consistent histories’ [27, 28]
or ‘decoherent histories’ [21, 29] approach to decoherence, this so-called ‘con-
sistency condition’ is taken as a formal definition of decoherence.) And so it
shows that the problem is essentially philosophical: given that some quantity
in our mathematically-stated theory has the right mathematical properties to
count as probability, what more needs to be said to justify the claim that it
emphis probability. A range of arguments has been advanced as to why there
is indeed a problem here; defenders of the Everett interpretation have variously
argued (i) that formal properties are sufficient and that any further issue is part
of the general problem of understanding probability and is not specific to this
context [30, 31, 32],[16, ch.4], or (ii) that the Born rule can be derived in unitary
quantum mechanics by various frequency-based [33], symmetry-based [16, ch.4],
decision-theory-based [34, 35, 16], entanglement-based [36] or other [37, 38, 39]
methods. (For criticism see, e.g., [40, 41, 42]).

2.3 Everett without the worlds

Although decoherence theory has been associated with Everett’s ideas since its
inception (see, e. g. , [43]), also since its inception there have been attempts
(mostly, though not exclusively, by physicists) to get the advantages of decoher-
ence, and of Everett’s insights about measurement processes in unitary quan-
tum mechanics, without the (arguably) unattractive commitment to a plethora
of unobservable ‘worlds’. Prominent examples of approaches along these lines
include (but are by no means limited to):

• Griffiths’ and Omnes’ ‘consistent-histories’ approaches [27, 44, 45], in
which (roughly) each precisification of the decoherence basis provides a
legitimate probability space but it is impermissible to describe physics
using more than one such space at a time.

• Gell-Mann and Hartle’s decoherent-histories approach [29, 22] (and Halli-
well’s related approach [21, 46]) which is very closely related to the Everett
interpretation as I described it above but is at least officially not commit-
ted to a multiplicity of really-existing worlds.

• Zurek’s decoherence-based interpretation [47], which attempts to combine
aspects of the Copenhagen interpretation with Everettian quantum me-
chanics.
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• Rovelli’s relational quantum mechanics [48, 49], which abandons the idea
of giving any description of a physical system in isolation and instead in-
corporates as a central principle that any system can be described only
from the perspective of another system (without any requirement, how-
ever, that this second system be a conscious observer or similar).

These approaches have had less attention in the philosophical and foundational
literature than the ‘mainstream’ Everett interpretation (for critical discussion
of consistent- and decoherent-histories approach, see [50, 51, 52, 53, 54]; for
critical discussion of relationalism, see [55, 56]). The challenge for them is to
state a view that (a) is sufficiently clear and unambiguous to be an intelligible
solution to the measurement problem, without (b) collapsing into to Everett
interpretation. (So, for instance, Gell-Mann and Hartle officially disavow many
worlds, but it is difficult to find any actual difference between their discussions of
decoherence, quasi-classicality, and emergence and those of self-confessed ‘many-
worlders’, raising the suspicion that the difference is not much more than verbal).
Those approaches that do seem to meet this challenge mostly do so at the price
of abandoning an unequivocal, objective, third-party-available description of a
physical system; of course, their advocates (like Griffiths or Rovelli) would see
this not as a price but as a substantive discovery about the nature of science
and/or the world.

3 The probabilistic conception of the quantum
state: toy models and no-go theorems

There are really two different — though related — probabilistic conceptions
of the quantum state, which share the idea that quantum states simply code
probabilities but differ as to what the probabilities are probabilities of. In what
we might call ‘objective’ or ‘epistemic’ versions, there is an underlying sub-
quantum reality, and an as-yet-unknown physical theory which describes that
reality; quantum theory encodes our partial information about the underlying
facts. On the more ‘operationalist’ or ‘measurement-first’ versions, quantum
states directly encode outcomes of measurements or operations, or perhaps our
beliefs or expectations about them, or the best advice available to us as to what
to expect from them. I discuss the two versions in order.

3.1 The ontic-model framework and ψ-epistemic hidden
variable theories

The ontic models framework [57] provides a very general way to fill in the
details of the more ‘realist’ probabilistic conception of the quantum state.. There
is an underlying state space — S, say — each point of which represents a
possible actual, underlying state of the system, and a dynamics on S. On any
particular run of an experiment, the results of the experiment are determined
by the underlying state (this determination could itself be probabilistic, say
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if the underlying dynamics is stochastic). Concretely, we can assume a set of
measurement probabilitiesMA, indexed by quantum observables A: MA(a|x) is
the probability that a measurement of A gives result a, given that the underlying
state is x.

There is then a probability distribution on S, to be interpreted in the same
way we interpret statistical-mechanical probability distributions,5 In an exper-
imental context, this probability distribution will be determined by the physics
of the state-preparation process. For each quantum state |ψ〉, we can define a
probability distribution ρ|ψ〉, so that ρ|ψ〉 is the probability that the system’s
underlying state is x, given that the system is prepared by some method which,
according to quantum mechanics, would give it quantum state |ψ〉.

If we then carry out an experiment whose description in the language of
quantum mechanics would be ‘prepare system in state |ψ〉, measure A’ then the
probability of getting an outcome a is fully determined by the two distributions
ρ|ψ〉 and MA:

Pr(A = a) =
∑
o∈S
MA(o)ρ|ψ〉(o).

And to reproduce the predictions of quantum mechanics, this will need to
equal the Born-rule probability of that same outcome: that is, an ontic model
for a quantum-mechanical system must satisfy∑

o∈S
MA(o)ρ|ψ〉(o) = | 〈ψ| Π̂a |ψ〉 | (16)

for all |ψ〉, A and a. (The summations would need to be generalized to integrals
in case of a continuum state space.)

Theories of this kind were once called hidden-variable theories, the idea being
that the underlying — ‘hidden’ — physics is the physics of the variables rep-
resented by points in S, and quantum mechanics is obtained from the hidden-
variable theories in a manner analogous to how statistical mechanics is obtained
from classical mechanics. More recently, ‘hidden-variable theory’ has come also
to be used for theories which retain the quantum state in their microphysics but
supplement it with additional degrees of freedom (this is an example of the re-
visionary approach; we will discuss it more in sections 4.3.–4.4). Theories of the
current type are now called ψ-epistemic hidden-variable theories, in reference
to the idea that the quantum state is a probabilistic summary of our partial
knowledge and does not represent some independent part of reality.

3.2 Observable-based hidden variable theories

An extremely natural choice for the hidden variables is to suppose that they
assign actual values to the various quantum observables (and then measurements
of observables just return those actual values). In an observable-based hidden-
variable theory like this, we suppose that at least some of the observables are

5Not that it there is any consensus on how that should be done; see [reference ORE top-level
article on statistical mechanics].
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represented by functions on the state space S of the hidden variables. I write
VA : S → R for the function corresponding to observable A, so that if the
underlying state is x, the value of A is VA(x). In a complete observable-based
hidden variable theory, a point in S encodes the values of all the quantum
observables, and then condition (16) for the viability of an ontic model reduces
to ∫

dxVA(x)ρ|ψ〉(x) = | 〈ψ| Â |ψ〉 |2 (17)

for all |ψ〉 and A. This appears to have been Einstein’s own conception of
quantum mechanics (see [57]); it is extensively discussed in [58].

There are concrete models that reproduce some fragments of realistic quan-
tum theories in this way. A good example is Gaussian quantum mechanics [59],
the sector of nonrelativistic quantum mechanics we get by (i) restricting atten-
tion to Gaussian wave-packet states (or incoherent mixtures of those states), and
(ii) requiring the potential function in the theory to be quadratic (so that Gaus-
sian states remain Gaussian). (With further restrictions, the theory can also
incorporate at least some classes of repeated measurements.) It is reasonably
straightforward to interpret this sector of the theory probabilistically, so that
there are underlying classical trajectories in phase space and the quantum state
just represents our ignorance of those trajectories; it is also possible to construct
Gaussian quantum mechanics directly from classical mechanics by adding an
epistemic restriction on how much we can know about the classical microstate.
And the resultant model can reproduce a number of quantum-mechanical phe-
nomena, such as teleportation and the no-cloning theorem which at first sight
might have appeared intrinsically quantum-mechanical.

However, there are strong no-go theorems which make it quite unlikely that
an observable-based hidden-variable theory can be found for the whole of non-
relativistic quantum mechanics, or indeed for any quantum-mechanical system
with a Hilbert space of three or more dimensions. (Concrete models are known
in two dimensions.) These results arise from two classes of assumptions: that
the hidden-variable theory is complete, which is to say that VA exists, and (17)
holds, for any observable A, and that the algebraic relations between observables
are mirrored at least to some degree by the functions VA.

The strongest such relation that could be assumed is

V(f(A,B)(x) = f(VA(x),VB(x)). (18)

For instance, if the Hamiltonian is given by H = p2/2m+U(q), then this would
require that

VH(x) = Vp(x)2/2m+ U(Vq(x)). (19)

von Neumann demonstrated [60] that no complete observable-based hidden-
variable theory can satisfy this relation (even in two dimensions); indeed, that
none can satisfy the linear restriction of this relation,

VλA+µB = λVA + µλVB . (20)
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John Bell [61] sharply criticized relations of this kind, however, in part on the
grounds that they relate non-commuting observables, which according to the
rules of quantum mechanics cannot be measured simultaneously: we cannot then
operationalize the claim that measured values of (e.g.) position, momentum and
energy should be related via (19). Whether or not this would be a reasonable
objection to von Neumann’s proof in the context of observable-based hidden
variable theories is moot (Bell raised the objection in the context of the de
Broglie-Bohm theory, which is not a hidden-variable theory of this kind) since
in any case he, and Kochen and Specker [62], demonstrated that even a much
weaker relation suffices to ground a no-go result.

Specifically, let us describe a hidden-variable theory as non-contextual if it
satisfies (18) whenever Â and B̂ commute. In this circumstance, it is possible to
measure A and B simultaneously, and indeed one standard method of measuring
f(A,B) is just to measure A and B and then calculate f(A,B). In fact, since

whenever Â and B̂ commute there is some Ĉ, and some functions f1, f2, such
that Â = f1(Ĉ), B̂ = f2(Ĉ), we can rewrite the requirement of non-contextuality
as

Vf(A) = f(V(A)). (21)

And now non-contextuality looks almost trivial: what is it, after all, to measure
A2, if not to measure A and square the result? Yet the Bell-Kochen-Specker
theorem demonstrates that in a Hilbert space with 3 or more dimensions, there
can be no complete and non-contextual observable-based hidden-variable theory.

If we tighten the conditions of the theorem so as to require a 4-dimensional
Hilbert space, it becomes simple enough to demonstrate here (following [63]).
Consider two spin-half particles, and let σ̂x, σ̂y, σ̂z be the usual sigma-matrices
for a spin-half particle, satisfying σiσj = iεijkσk (εijk is the usual completely-
antisymmetric 3-tensor). Then we can set up the following grid of observables
for the pair of particles:

σ̂x ⊗ 1̂ 1̂⊗ σ̂x σ̂x ⊗ σ̂x
1̂⊗ σ̂y σ̂y ⊗ 1̂ σ̂y ⊗ σ̂y
σ̂x ⊗ σ̂y σ̂y ⊗ σ̂x

We can easily verify that in each fully-filled in row, and each fully-filled-in
column, the first two operators commute and their product is the third operator.

Suppose there is a complete, non-contextual hidden-variable theory for the
two spin-half particles. Then each hidden variable must assign some value to
each operator in the table, and that value must be an eigenvalue of the operator:
that is, it must be ±1. Fix some choice of hidden variables, and let the values
they assign to the operators in the top-left four boxes be a, b, c, d, like so:

a b
c d

Then by non-contextuality, the remaining four values are fixed, so we have
a b ab
c d cd
ac bd
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Now, the two operators on the bottom row also commute. So by non-
contextuality, the hidden variables must assign value abcd to their product.
And the two operators in the right-hand column also commute, so the hidden
variables must assign abcd to their product. But

(σ̂x ⊗ σ̂y)(σ̂y ⊗ σ̂x) = +σ̂zσ̂z (22)

and
(σ̂x ⊗ σ̂x)(σ̂y ⊗ σ̂y) = −σ̂zσ̂z. (23)

So we are assigning value abcd both to σ̂zσ̂z and to −σ̂zσ̂z. Again using non-
contextuality, we get abcd = −abcd. But each of a, b, c, d must equal ±1, so this
is impossible.

What do we learn from the Bell-Kochen-Specker theorem? That at most
a subset of the quantum-mechanical observables (the ‘non-contextual observ-
ables’) of the system can correspond to objective features of the system in the
usual sense. For the others, their measured value depends on the context of mea-
surement, which is to say that what is being measured is not a property of the
system alone but some joint feature of the system and the measurement process.
If we want to hold on to the idea of an observable-based hidden-variable the-
ory as simply encoding already-possessed properties of the system, we instead
need to drop completeness, so that only some observables actually correspond
to possessed values.

In this sense, incompleteness and contextuality are two sides of the same coin:
at most a subset of observables have non-contextual values; the processes that
quantum physicists call ‘measurements’, when applied to the other observables,
do not in the literal sense ‘measure’ anything. And in fact, the restrictions on
the size of that subset are severe [64, 65]: if Ô is a nondegenerate observable,
then for a generic state |ψ〉 the only noncontextual observables are functions of

Ô.
Of course, a probability distribution over the outcomes of measurements of

any one observable severely underdetermines the quantum state: if {|o〉} are the

eigenstates of Ô, then

|ψ1〉 =
∑
o

λo |o〉

and
|ψ1〉 =

∑
o

λoe
iθo |o〉

determine the same probability distribution. But since the phase information
encoded in the θo may be dynamically relevant — even to the probability dis-
tribution over measurements of Ô at later times — this tells us that the non-
contextual hidden variables are not the whole story, and hence (in the termi-
nology of section 3.1) that no observable-based hidden variable theory can be
fully ψ-epistemic. The quantum state is not simply probabilistic; at least some
features of it encode features of the system directly.
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In fact, one can go further than this. The Pusey-Barrett-Rudolph (PBR)
theorem establishes that under weak assumptions, essentially all features of the
quantum state directly encode features of the system: no part of the state can be
understood purely probabilistically, in terms of the probabilities of underlying
properties of the system.

3.3 The PBR theorem and related results

The PBR theorem [66] is proved in the very general ontic-models framework of
section 3.1. PBR (following [57]) assert that for the quantum state to be at least
partially epistemic (that is, probabilistic), there ought to exist distinct quantum
states |ψ1〉, |ψ2〉 which are compatible with the same ontic state — that is, there
should be some ontic state x, or set X of such, that is given nonzero probability
by both |ψ1〉 and |ψ2〉: ρ|ψ〉(X) > 0 for |ψ〉 = |ψ1〉 and for |ψ〉 = |ψ2〉. If
this does not hold, then (modulo some measure-theoretic subtleties if there are
continuously many ontic states), there would be a unique way to recover the
quantum state from the ontic state.

Put another way, to each quantum state we can assign its ‘ontic support’:
the set of ontic states to which it gives nonzero probability. (Again, there are
measure-theoretic subtleties here if there are continuously many ontic states.)
The theory is ψ-epistemic to the degree that quantum states have overlapping
ontic support: if no two quantum states have overlapping ontic support, the
theory is in no way epistemic.

Here is how the theorem works: suppose we have a collection of identical
systems each of which has been independently prepared either in state |ψ1〉 or
in state |ψ2〉, with | 〈ψ1|ψ2〉 | = cos θ. Without loss of generality, we can choose
an orthonormal pair of states {|0〉 , |1〉} for each system such that |ψ1〉 = |0〉
and |ψ2〉 = cos θ |0〉 + sin θ |1〉, and confine our attention to the 2-dimensional
subspace of each system spanned by {|0〉 , |1〉}.

To illustrate the general idea (following PBR’s own account), consider the
special case where there are just 2 systems and where cos θ = 1/

√
2, so that

|ψ1〉 = (1/
√

2)(|0〉 + |1〉), and define |±〉 = (1/
√

2)(|0〉 ± |1〉). There are then
four ways in which the two systems might have been prepared:

I. System 1 in state |ψ1〉, system 2 in state |ψ1〉 — joint state |00〉.

II. System 1 in state |ψ1〉, system 2 in state |ψ2〉 — joint state |0+〉.

III. System 1 in state |ψ2〉, system 2 in state |ψ1〉. — joint state |+0〉.

IV. System 1 in state |ψ2〉, system 2 in state |ψ2〉 — joint state |++〉.

Now suppose the joint system is measured in the following orthonormal basis of
entangled states:

|I〉 =
1√
2

(|01〉+ |10〉)
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|II〉 =
1√
2

(|0−〉+ |1+〉)

|III〉 =
1√
2

(|+1〉+ |−0〉)

|IV 〉 =
1√
2

(|+−〉+ |−+〉)

(one can readily verify that this is indeed orthonormal). The state |I〉 is or-
thogonal to |00〉, so that if I is how the systems were prepared, |I〉 will never
be obtained on measurement — or, put another way, if we obtain measurement
result I we have ruled out preparation process I. Similarly, |II〉 is orthogonal
to |0+〉, so that measurement result II rules out preparation process II, and so
forth.

But now: suppose that there is any ontic state x given non-zero probability
by both state |ψ1〉 and |ψ2〉. Then there is a non-zero probability for any of
preparation processes I-IV to have have left the combined system in the joint
ontic state (x, x). Since preparation process I has zero probability of leading to
outcome I, we know that (x, x) has zero probability of leading to outcome I (in
terms of the ontic-model framework, we have

0 = | 〈I|0+〉 |2 =
∑
o

A|I〉〈I|(o)ρ|0+〉(o) (24)

so if ρ|0+〉(x, x) > 0, A|I〉〈I|(o) = 0.) But by the same argument, (x, x) has zero
probability of giving results II, III or IV either. And this is impossible, because
outcomes I-IV are exhaustive. So our original assumption must be false: there
is no such x; the ontic supports of |ψ1〉 and |ψ2〉 are non-overlapping.

The full PBR theorem generalizes this result to arbitrary states: it shows
that if | 〈ψ1|ψ2〉 | = cos θ < 1, there is some N such that we can consider
N identical systems each prepared in |ψ1〉 or |ψ2〉 and then construct a joint
measurement on the combined system such that each outcome rules out one
of the 2N possible preparations. It follows that any two distinct states have
non-overlapping ontic support; the PBR theorem thus apparently rules out ψ-
epistemic hidden variable theories altogether.

Of course, results of this kind always have assumptions. In the case of the
PBR theorem, the most significant asssumption is Preparation Independence,
the assumption that if two systems X,X ′ are independently prepared in pure
quantum states |ψ〉, |ψ′〉, then the joint probability over ontic states of X ×
X ′ from this preparation is just the product of the probability distributions
associated to the two states:

ρ|ψ〉⊗|ψ′〉(o, o
′) = ρ|ψ〉(o)ρ|ψ′〉(o

′). (25)

Violation of Preparation Independence would imply some very subtle underly-
ing correlation of the state of the Universe, such that completely disconnected
preparation processes in labs on opposite sides of the world nevertheless had
correlated outcomes; it is extremely hard to see how any such theory could be

22



constructed. (But at some level, this is just a bet on how future theory devel-
opment will go: if we actually had any such theory, the PBR theorem would
be of limited significance in assessing it, since we could study the theory itself
directly See also section 5.4.)

The PBR theorem, and the substantial literature developing and extend-
ing its results and varying its assumptions (see [67] for a review), has by no
means ended attempts to develop ψ-epistemic hidden-variable theories. But
it does seem to give significant support either to the idea that the quantum
state is not after all to be understood probabilistically, or that any such under-
standing must make more explicit connection to observation, experiment and
measurement, and abandon the classical conception of physics as describing an
observer-independent reality; I now turn to how this latter move avoids the dif-
ficulties arising from the BKS and PBR theorems, and to its broader goals and
challenges.

3.4 Measurement-first approaches to quantum mechanics

All the empirical content of quantum mechanics arises via the Born probability
rule, 〈O〉|ψ〉 = 〈ψ| Ô |ψ〉, and the starting point for the broad class of approaches
we might call ‘measurement-first’ is that this rule also gives a complete under-
standing of the quantum state. |ψ〉 does not represent any physical features
of the underlying system, either directly or through defining probabilities over
underlying hidden variables; it simply defines the rule by which the probabil-
ities of experimental outcomes are determined. On this approach to quantum
mechanics, ‘measurements’ are misnamed, since they do not really ‘measure’
anything. They are simply indeterministic physical processes, and the role of
quantum mechanics is simply to calculate the probabilities associated to those
processes.

Measurement-first approaches in a certain sense take the quantum state as
probabilistic, and so bypass the problem of Schrödinger’s cat: if the cat’s state
is in a superposition of alive and dead, that just means that a measurement
of whether it is alive might give either outcome. But since the probabilities
are defined directly over measurement outcomes, and not over any intermediary
hidden variables, these approaches also bypass the BKS and PBR theorems.

Approaches of this kind are often called ‘instrumentalist’ or ‘operationalist’
given the central role they assign to measurements. (These terms have sub-
tly different meanings in the philosophy literature; in physics they are largely
conflated.) The idea has been present since the dawn of quantum mechanics:
Heisenberg’s view seems to have been fairly operationalist, and operationalism
is one of the sometimes-contradictory strands in the so-called Copenhagen in-
terpretation (see [68, 69] and references therein for more on the vexed question
of what ‘the Copenhagen interpretation’ really means).

In more recent physics, operationalism has been advocated in an influential
Physics World article by Fuchs and Peres [70], and developed by Fuchs and
others into “quantum Bayesianism’ [71, 72] and later ‘QBism’ [73, 74] (for critical
discussion see, e. g. , [75, 76]). The distinctive feature of the former is that
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the probabilities of quantum mechanics are simply taken to encode an agent’s
beliefs about measurement outcomes, without any commitment to there being
anything underlying those outcomes; the further distinctive feature of the latter
is its insistence that no fully-third-personal account of physics is possible, even
at the level of observers: all probabilities are probabilities for some localized
agent, and there is no guarantee of a consistent account of two or more agents,
except insofar as the second agent is treated as one more system about which
the first agent has beliefs and assigns probabilities just as they would to any
other system. Turning from physicists to philosophers, Richard Healey [77, 78]
has developed a ‘quantum pragmatism’ which treats the quantum state not as
an encoding of an agent’s belief, but as pragmatic advice to that agent as to
how they should act; related accounts include [79, 80, 81]. (In each case these
are simplified accounts of subtle positions and interested readers are referred to
the references; see [82] for a general review.)

It would beg the question to criticize measurement-first approaches for failing
to tell an objective, agent-indepedent story about the external world: their
advocates typically deny that there is any such story to be told, or at any rate
that quantum mechanics is supposed to tell it. A sharper criticism [83, 84] is that
if quantum mechanics simply tells us the probabilities of outcomes, we need a
language or a mathematical framework to say what those outcomes are which is
not itself quantum-mechanical. In the heyday of the Copenhagen interpretation,
that language was classical physics: Bohr’s insistence in a classical description
of any experiment can be seen as recognition that the classical language needed
to be intelligible independent of the quantum. But it is hard to maintain that
approach in modern physics, in which inherently-quantum terms like ‘laser’
or ‘condensate’ are ubiquitous even in describing experimental apparatus, in
which the workings of that apparatus rely on quantum principles, and in which
quantum mechanics is applied to systems like plasmas, superconductors and the
early Universe which resist classical descriptions. (Put another way, treating
‘measurement’ (still less ‘belief’) as a primitive concept in our interpretation
of quantum mechanics runs into the problem that the practice of physics itself
does not treat measurement as primitive: measurement devices are physical
systems, built according to physical principles.) The most severe challenge
for operationalist approaches — the same challenge, in fact, that philosophical
operationalism in general has struggled to overcome — is how to make adequate
contact with the way in which physics in fact uses quantum theory, outside the
somewhat stylized quantum-information contexts in which they are most often
developed.

4 Modifying quantum mechanics

The conceptually most straightforward way to address the paradoxes of quantum
mechanics is to decide that they are not merely paradoxes by contradictions,
demonstrations that quantum mechanics is wrong. Any theory that predicts
that cats are alive and dead at the same time, when manifestly they are not,
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might be said to have refuted itself; perhaps the issue is not how to understand
quantum mechanics but how to modify it — or replace it — so that it is not
in flat contradiction with the facts. Given how fantastically successful quantum
mechanics is, of course, such modifications have to be done delicately, to preserve
those successes — and this is easier said than done.

There are a vast number of proposed strategies for how quantum mechan-
ics can be modified, but most proposals — including almost all those which
have been developed far enough to reproduce the predictions of a non-trivial
part of quantum mechanics — can can be classified as either hidden-variable or
dynamical-collapse theories. This classification follows a famous observation by
John Bell [85, p.201] that “either the Schroödinger equation is not everything,
or it is not right” — that is, either the quantum formalism needs to be supple-
mented with additional ‘hidden’ variables which describe the actual outcomes of
experiments, or else the linear quantum dynamics need to be modified so that
macroscopic superpositions are suppressed.

4.1 Dynamical collapse theories

To understand how dynamical-collapse theories work, consider again a Schrödinger-
cat state,

|ψ〉 = α |Alive〉+ β |Dead〉 (26)

Since (putting aside Everett’s move, and the possibility of a probabilistic reading
of the state) this is not what we find when we look at the cat, the theory needs
to be modified so that states like this do not arise, or at any rate do not persist
when observed. This amounts to changing the equations of quantum mechanics,
to introduce a new evolution that can be written as

|ψ〉 −→ |Alive〉 with probability |α|2

|ψ〉 −→ |Dead〉 with probability |β|2. (27)

If this ‘quantum state collapse’ has always occurred by the time that we actually
observe the cat, it resolves the measurement problem we find the cat either alive
or dead (and not in a weird superposition of both), and the probability of each
matches what the Born rule predicts.

In the infancy of quantum theory, Dirac [86] and von Neumann [60] proposed
that it should occur exactly when a system is measured. That is, there should be
two different sorts of quantum-mechanical dynamics unitary (Schrödinger) dy-
namics, which applies whenever a system is not being measured, and the collapse
rule, which occurs at the point of measurement. If we adopted the probabilistic
reading of the quantum state, collapse would be trivial, corresponding only to
our update of information when we actually discovered whether the cat survived.
But as a proposed modification of quantum theory to solve the measurement
problem, it cannot be thought of that way: instead, it is an instant, random
change of the actual state the cat is in. (As such, if we introduce quantum
state collapse to solve the measurement problem, we do so as part of a physical
interpretation of the quantum state — the probabilities now occur because of
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the randomness in the collapse rule, not as part of the very interpretation of the
state.)

This way of presenting quantum mechanics is still found in introductory
textbooks, but it has largely been abandoned [5] in the actual practice of quan-
tum mechanics. (It treats measurement as a primitive, unanalyzed notion, and
thus shares in the problems of ‘measurement-first’ interpretations, but it lacks
their advantages.) But there is an alternative way to think of quantum state
collapse: instead of including a fundamental posit that collapse occurs upon
measurement, we could imagine a theory where collapse occurs for some other
reason, in some other circumstances, that can be described and defined sharply
in terms of microscopic physics — and yet those circumstances are in fact such
as to ensure that collapse has occurred well before actual measurements are
completed. This alternative would be a dynamical collapse theory — dynami-
cal referring to some microscopically-defined, bona fide dynamical mechanism,
instead of collapse by definition being triggered by the macroscopic concept of
measurement.

The constraints on any such theory are strict. If collapse happens too soon, it
will suppress the interference effects which quantum theory relies on for its pre-
dictions and explanations, and so will falsify itself. If it happens too late, it will
fail in its duty to suppress Schrodinger-cat states. But in the non-relativistic
regime at least, such theories can be constructed. Probably the best-known,
the GRW theory (for Ghirardi, Rimini and Weber) will be briefly described
in the next section; other important examples are the CSL (continuous state
localization) theory [87] and the proposals of Diosi, Penrose, Stamp and co-
workers [88, 89, 90, 91, 92] that attempt to link dynamical collapse to the prob-
lem of quantum gravity.

4.2 The GRW theory

The GRW theory [93] applies to a finite number (say, N) of distinguishable,
non-relativistic particles, and is most straightforwardly presented in the position
representation. Its basic assumptions are:

1. each particle has some small, independent probability of undergoing spon-
taneous collapse in any small time interval, so that the probability of
particle i collapsing over a time δt is δt/τ .

2. If collapse occurs for particle i, it occurs at some ‘collapse center’ a, and
is represented mathematically by

ψ(x1, . . . xn; t)→ ψ′(x1, . . . xn; t) = Nψ(x1, . . . xn)ρ(xi − a) (28)

Here ρ is some reasonably-narrowly-peaked wave-packet centered at 0, so
that ρ(x− a) is a function of x centered at a: standardly it is taken to be
a Gaussian,

ρ(x) ∝ e−x
2/2Λ2

. (29)
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N is a normalization constant, chosen to preserve the standard normal-
ization condition for the wavefunction.

3. If (without loss of generality) particle 1 undergoes a collapse, the prob-
ability of that collapse having center a (conditional of collapse having
happened in the first place) is

Pr(collapse at a) =

∫
dx 2 · · · dxN |ψ(a, x2, . . . xN )|2. (30)

In other words, the probability of the collapse center being at a is nu-
merically equal to the Born-rule probability that a measurement of the
position of particle 1 would give result a. (And similarly for the other
particles.)

4. Collapses are instantaneous, and between collapses the wavefunction evolves
unitarily according to the Schrödinger equation.

The parameters τ and Λ are to be thought of as new constants of nature,
ultimately to be determined empirically: in the original GRW paper, the sample
values were τ = 1016s and λ = 10−7m.

To see how the theory works, consider two scenarios. In the first, we have
(say) 1020 particles, all unentangled with one another. Every second, thousands
will undergo collapse, and if each is delocalized over a region & 10−7m, the
collapse will significantly alter its quantum state; however, since the particles
are unentangled, the collapse only affects the particle which collapses. Hence
any empirical data is highly unlikely to detect the collapse, because the vast
majority of particles will not undergo collapse in any reasonable period, and any
given particle will typically evolve unitarily for ∼ 109 years before collapsing.

In the second scenario, we still have 1020 particles, but they are bound to-
gether into a dust mote, and the dust mote is in a superposition of two macro-
scopically distinct locations, say with centers of mass at ±X/2, so that the
combined wavefunction is something like

ψ(x1, . . . xN ) = αψ0(x1+X/2, . . . xn+X/2)+βψ0(x1−X/2, . . . xN−X/2) (31)

where ψ0(x1, . . . xn) is the wavefunction of a dust mote centered at 0. Writing

ψ±(x1, . . . xN ) = ψ0(x1 ∓X/2, . . . xN ∓ x/2) (32)

we can express this more compactly as

ψ = αψ− + βψ+. (33)

Within ∼ 10−4s one of the particles will collapse, and with probability ∼ 1
the collapse centre will be in the vicinity of either X/2 or −X/2. The new
wavefunction, to a very good approximation, will be either

ψ′ ' ψ− + (β/α)e−
1
2 (X/Λ)2 ψ̃+ (probability |α|2) (34)
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or
ψ′ ' (α/β)e−

1
2 (X/Λ)2 ψ̃− + ψ+ (probability |β|2) (35)

where ψ̃± are distorted [94] versions of the original ψ±. Assuming that X � Λ,
the wavefunction goes from being a macroscopic superposition to being (ex-
tremely close to) a macroscopically definite state. Furthermore, the probability
of the system collapsing to a state localized at −X/2 is exactly the ordinary
quantum probability (|α|2) of a position measurement finding the system at
−X/2. And any subsequent collapse is almost certain also to be at that loca-
tion.

So: as long as we are considering small systems, GRW is empirically indis-
tinguishable from unitary quantum mechanics; once we start trying to construct
macroscopic superpositions, GRW very rapidly collapses them, and does so with
the correct probabilities. These are the two central requirements for a collapse
theory.

There has been a certain amount of foundational discussion of GRW as
though it was a candidate for a fundamental theory, in which context some philo-
sophical problems become salient, notably the ‘problem of tails’ ([95, 96, 97];
for a review see [98]): state (34) is still, technically, a macroscopic superposi-
tion, just one with very uneven amplitudes, so can we really take it to solve
the measurement problem? But it is probably better to think of GRW as a
phenomenological parameterization of what a more fundamental modification
to quantum theory might look like in the non-relativistic regime. And from this
point of view, probably the most important feature of GRW is that in principle
it is a testable alternative to quantum mechanics.

More precisely, for any given choice of Λ and τ , GRW makes concrete pre-
dictions that disagree with quantum mechanics; testing GRW, then, means
constructing superpositions of many particles and either (i) detecting dynami-
cal collapse or (ii) not doing so, and so constraining the choice of Λ and τ . No
experiment can rule out all possible values (if τ is so large that only one parti-
cle in the Universe would have collapsed by now, we would have no chance of
detecting that collapse) but sufficiently large values of τ or Λ will fail to achieve
GRW’s basic goals of suppressing macroscopic superpositions and so solving the
measurement problem.

The difficulty in carrying out these tests (and this applies to all collapse
theories of which I am aware, not just to GRW) is that superpositions of many
particles tend to be very prone to decoherence, and decoherence is very hard to
distinguish from genuine non-unitary dynamics (decoherence provides an effec-
tive rather than a real collapse of the quantum state, but we can only tell the two
apart by implausibly precise measurements of the environment). So the trick
is to somehow construct a system which is macroscopic (hence prone to GRW
collapses) but with very few effective degrees of freedom (hence protected from
internal decoherence) and very isolated from its environment (hence protected
from decoherence from the external environment). A very cold, very isolated
metal bar, for instance, is a potentially promising system for testing dynamical
collapse. Some experiments of this kind have been carried out (by far the most
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impressive is the LIGO gravity-wave observatory, which of course was not built
to test collapse theories but in fact tests them quite stringently); so far there
has been no evidence of dynamical collapse (GRW-style or otherwise), but there
are still regions of parameter space not ruled out (see [99] for a review).

For general reviews of GRW theory, and the related CSL theory, see [100,
101].

4.3 Hidden-variable theories

In section 3.1, we met ψ-epistemic hidden-variable theories. In these theories,
the real physical content of quantum mechanics was supposed to be expressed
in terms of some new degrees of freedom — the hidden variables — and their
dynamics. The quantum state was to be understood as an indirect represen-
tation of a probability distribution over those new degrees of freedom, to be
understood in the same way that the probability distributions of statistical me-
chanics are to be understood. We also saw that — thanks to no-go results like
the Bell-Kochen-Specker and Pusey-Barrett-Rudolph theorems — the prospects
for finding any such theory for realistic quantum systems are fairly dim.

But there is an alternative conception of hidden-variable theory which em-
braces the dual nature of the quantum state as both representational and prob-
abilistic. In these theories, the hidden variables are added to the quantum
formalism, physical measurements are supposed to return information about
those variables, and the probabilities of quantum mechanics are taken to arise
from some probability distribution over the true, unknown, values of the vari-
ables. But the quantum state is not interpreted probabilistically: it remains
in the theory, evolves unitarily, and serves to determine the dynamics of the
hidden variables. Theories of this kind are variably called ψ-ontic or dualist
hidden-variable theories — ψ-ontic because the quantum state represents part
of the ontology of the theory and not just our ignorance or some other measure
of probability, dualist because the theory’s ontology contains both whatever the
quantum state represents and whatever entities are described by the hidden
variables.

Constructing a hidden-variable theory normally requires selecting some sub-
set of quantum observables and taking the hidden variables to be the actually-
possessed values of those observables (so that measurements of the observables
return those actually-possessed values). In accordance with the no-go results
of section 3.2, that subset needs to be taken to be (at most) a complete set of
commuting observables, and ‘measurements’ of observables not in the set are
determined contextually and do not simply return already-possessed values.

There is then a choice to make: is the preferred set of observables to be de-
termined by the quantum state, or is it fixed, state-independently, as part of the
specification of the dynamics? The first option leads to so-called modal inter-
pretations [102, 103, 104], which were popular in the 1980s and 1990s but have
somewhat fallen out of favor due to fairly severe technical problems ([105, 106];
see also [98] and references therein). Most hidden-variable theories discussed
at present choose the second option; at least in the nonrelativistic context, by
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far the most common choice of preferred observable is particle position, and by
far the most commonly-discussed hidden-variable theory is the de Broglie-Bohm
theory (also called Bohmian mechanics or the pilot-wave theory), developed by
Bohm [107] in the 1950s following earlier work by de Broglie. In the following
section I briefly present the de Broglie-Bohm theory, both for its own interest
and as an illustration of the general structure of hidden-variable theories of this
kind.

4.4 The de Broglie-Bohm theory

The de Broglie-Bohm theory is a ψ-ontic hidden-variable theory for a finite
number N of distinguishable spinless nonrelativistic particles (generalization to
spin and to indistinguishable particles is relatively straightforward). Physically
it consists of N point particles, together with the wavefunction (or more accu-
rately: together with whatever the wavefunction is taken to represent). It is
specified in three steps:

1. The state of the theory at a time t is given by:

• The wave-function, a complex, differentiable, square-integrable func-
tion ψ(x1, . . . xN ; t) with square-integral 1. (This is basically the nor-
mal wavefunction in position representation, though the de Broglie-
Bohm theory places stricter constraints of differentiability on the
wavefunction than ordinary quantum theory does.)

• N points q1(t), . . . qN (t) in three-dimensional space, representing the
positions at time t of the N particles.

2. The dynamics of the theory are given by:

• The normal Schrödinger dynamics for the wave-function,

i~
∂ψ

∂t
= −

∑
I

~2

2mI
∇2
Iψ + V ψ (36)

where ∇I is the gradient with respect to the ith coordinate, and mI

is the quantum-mechanical mass of the ith particle.

• The guidance equation,

mJ
dqJ
dt

= ~ Im
(
∇Iψ
ψ

)
. (37)

Here the right-hand side of the equation is evaluated at the point
(q1(t), . . . qN (t) determined by the joint positions of all of the parti-
cles; the guidance equation thus makes the velocity of each particle
depend on the positions of all of the particles, via its dependence
on the wavefunction in the vicinity of the configuration-space point
picked out by their joint locations.
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3. The probabilities of the theory are given by a probability function ρ(x1, . . . xn; t),
representing the probability density to find the N particles at time t in the
vicinity of (x1, . . . xN ). At some fixed time t0, the probability distribution
is required to satisfy

ρ(x1, . . . xN ; t0) = |ψ(x1, . . . , xN ; t0)|2. (38)

It is easy to verify that if (38) holds at time t0, and the guidance equation holds
for all times, then ρ(x1, . . . xN ; t0) = |ψ(x1, . . . , xN ; t)|2 = 0 for all times t, not
just the specific time t0 (a property called equivariance).

The de Broglie-Bohm theory connects to experimental results through a 2-
part interpretative assumption, logically independent of the formal specification
of the theory:

Interpretative assumption 1: Those quantum measurements that physicists
treat as ‘position measurements’ in fact return the positions of the de
Broglie-Bohm particles.

Interpretative assumption 2: All quantum measurements are ultimately re-
describable as measurements of position; or, put another way: the results
of any measurement are ultimately encoded in the positions of particles.

Given assumption 1, the probability distribution over measurements of position
is in fact given by ρ — but, by construction, it is numerically equal to the Born
probability distribution, and so reproduces the empirical predictions of quantum
theory as far as position measurements are concerned. Given assumption 2, this
can be extended to all quantum measurements. In addition, the guidance equa-
tion implies that when the quantum state is in a macroscopic superposition, the
particles jointly respond to only that part of the wavefunction corresponding to
one term in the superposition; other parts of the wavefunction can in practice
be discarded. The de Broglie-Bohm theory thus effectively reproduces wave-
function collapse despite its unitary quantum dynamics, ensuring that repeated
measurements give the same outcomes.

(To see the importance of this last condition, contrast the de Broglie-Bohm
theory with the so-called ‘Everett(?)’ theory described by Bell [108] (its con-
nection to the actual Everett interpretation is tenuous). In that theory, the
guidance equation is dropped and the probability rule is just imposed inde-
pendently at each instant of time, describing a wildly stochastic dynamics in
which the particles constantly jump around in space. The Everett(?) theory
reproduces the instantaneous probabilities, but implies that Schrödinger’s cat
is constantly fluctuating from alive to dead and back again, with our memo-
ries and records constantly being rewritten; theories of this kind are normally
deemed unacceptable — though see [109] for a defense.)

Interpretative assumption 2 (originally stated in [110]) seems fairly unprob-
lematic; as a last resort, one can always fall back on the fact that lab results
can be written down on paper and discussed by scientists, and both these pro-
cesses encode the results in position data. Assumption 1 is more controversial.
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Advocates of the de Broglie-Bohm theory have generally [111, 25, 112] claimed
that a core presumption of the theory is that ordinary macroscopic objects are
comprised of the de Broglie-Bohm particles (so that, for instance, the needle
on a measurement device is a swarm of such particles); as such, measurements
just are correlations of particle positions with one another, and indeed the def-
inite world we observe around us is simply a vast collection of these particles.
From this perspective it is the wave-function, not the de Broglie-Bohm par-
ticles, that is ‘hidden’: it affects our observations only indirectly, through its
dynamical influence on the particles. (Some advocates of the de Broglie-Bohm
theory (e. g. [113]) go so far as to suggest the wave-function might be akin to
a law of nature rather than representing any physical quantities.) Critics have
countered that the claim that the observable world is just the particles needs to
be argued for and not stipulated, and that since the structural features of the
world are encoded in (one branch of) the wave-function, there is no clear reason
to regard measurements as recording that structure rather than the particle po-
sitions. The ‘Everett-in-denial’ version of this argument [114, 115, 116, 117, 118]
asserts that since the de Broglie-Bohm theory is unitary quantum theory plus
some particles that do not interact with the wavefunction, it should be regarded
as a version of the Everett interpretation equipped with additional, redundant,
ontology.

Any resolution of this debate turns on fairly philosophical issues of how the-
ories can and should be interpreted — and this is typical of debates about the de
Broglie-Bohm theory since — unlike collapse theories — the theory is generally
taken as empirically equivalent to ordinary quantum theory. This fact, together
with the clear mathematical observation that the theory is unitary quantum me-
chanics plus additional particles (however this is to be interpreted physically or
metaphysically) probably accounts for the relative lack of interest in the theory
in the mainstream physics community. (Its advocates would respond that its
practical — and pedagogical significance is the much greater level of explanatory
clarity it offers.)

That said, it is not uncontroversial that the theory cannot be tested empir-
ically against standard quantum mechanics: there is a research program [119,
120, 121] that seeks to understand the probability assumption (38) as having
the character of statistical equilibrium, so that one might imagine exotic cir-
cumstances (the early Universe) in which the probability rule does not hold. In
this circumstance, the de Broglie-Bohm theory’s predictions would deviate —
perhaps wildly, from standard quantum predictions. No empirical evidence has
been found to support this idea to date, but work continues.

For reviews of the de Broglie-Bohm theory, see [122, 123, 110, 124, 125].

4.5 Beyond non-relativistic quantum theory

The most severe problem for modificatory theories is, of course, the enormous
empirical success of standard quantum theory and the corresponding challenge
for any research program that seeks to replace it. The de Broglie-Bohm theory
and various developments of the GRW theory are the furthest-developed of
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any such modifications so far, and neither has really succeeded in going far
beyond nonrelativistic particle mechanics into relativistic quantum field theory:
specifically, to the best of my knowledge, neither has developed to the stage of
being able to reproduce a prediction in (say) quantum electrodynamics beyond
leading order, or reproduce the renormalization analysis at the core of modern
quantum field theory. (There are developments of both that incorporate some
features of quantum field theory short of this test: in the de Broglie-Bohm
theory, see [126, 127, 128, 129, 130, 131]; for the GRW theory, see [132, 133,
134]. There are also versions of dynamical collapse [92] which appear to match
quantum field theory at the microscopic level but as yet lack a demonstration
that the collapse mechanism actually solves the measurement problem.)

This is a very substantial limitation on the scope of these theories, going
well beyond an inability to apply them to high-energy physics [84]. A proper
quantum description of light requires quantum field theory; hence, at present
neither the GRW nor the de Broglie-Bohm theory can provide a full account
of classic quantum experiments like the (photon) two-slit experiment, or the
spectral lines of hydrogen. Furthermore, there is at least some tension between
the strategy of these theories (which rely on a relatively direct encoding of
macrosopic observables in the fundamental structure of the theory) and the
modern understanding of quantum field theory (in which the theory is taken as
an effective description of the world at certain scales, and in which the relation
between ‘fundamental’ ontology and phenomena is opaque and indirect). At any
rate, extending the theory to quantum field theory in a reasonably systematic
matter remains the overwhelmingly most substantial challenge for any proposal
to modify quantum mechanics.

5 Quantum nonlocality

Since Einstein, Podolsky and Rosen’s famous EPR thought-experiment [135]
it has been clear that there are at least subtleties, and perhaps even tensions
or outright contradictions, between quantum entanglement and the idea that
physics is local. Philosophical discussion of this issue mostly focuses around
Bell’s inequality; in this section I present a modern version of that inequality
and consider its implications for the various approaches to quantum mechanics
which we have discussed so far.

5.1 Bell’s inequality

Put aside quantum mechanics for the moment and consider this simple coordi-
nation game (adapted from [136]). Alice and Bob are in separate rooms, and
each has a card with ‘+’ on one side and ‘-’ on the other, along with a ran-
domizing device that can read either ‘Heads’ or ‘Tails’. The device might be a
simple tossed coin, or a pseudo-random-number generator, or it might generate
the random numbers by consulting the ambient background noise or the New
York Stock Exchange — all that matters is that it gives each outcome with
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Figure 2: Scoring in the Bell-inequality game
Randomizer results Score for ++ or – Score for +- or -+
HH 1 0
HT 1 0
TH 1 0
TT 0 1

probability 50% and that Alice’s device and Bob’s are uncorrelated.
In each round of the game, Alice and Bob each activate their randomizer, and

then place the card with either ‘+’ or ‘-’ face-up. Scoring is simple (see figure 2):
they (jointly) score a point whenever their cards display the same symbol —
except that if both randomizers display ’tails’, they score the point whenever
the cards display different symbols. Alice and Bob can consult beforehand, but
cannot communicate with one another between the randomizers being triggered
and the cards being laid down.

For the moment, suppose that Alice and Bob adopt deterministic strategies.
In principle any such strategy might win on 0, 1, 2, 3, or all 4 or the four
possible outcomes from the randomizer, and so might give an average score per
round of 0, 0.25, 0.5, 0.75, or 1. For instance, Alice might choose to play ‘+’ if
the randomizer reads H and‘’-’ if it reads T, while Bob decides to play ‘+’ on
every run, a strategy which scores on average 0.75 per round. Or they might
both choose to play ‘+’ if the randomizer reads H and ‘-’ if it reads T, in which
case they will average only 0.25 per round. It is easy to see, however, that no
deterministic strategy scores higher than 0.75 (or lower than 0.25). For any
strategy beating 0.75 would have to win every round, and that cannot be done.
(Suppose that Alice plays x if her randomizer reads H. To win in an HH round,
Bob must also play x if his randomizer reads H; to win in an HT round, he must
also play x if his randomizer reads T. In other words, he must play x always.
To win in a TH round, Alice must play x if her randomizer reads T. But then
both Alice and Bob will play x in a TT round, and will lose.)

The restriction to deterministic strategies can easily be lifted. Any random-
ness (say, Alice playing ‘+’ with 75% likelihood on H and 25% likelihood on T,
or Alice and Bob randomly selecting their joint strategy before each round) just
causes Alice and Bob to be playing a ‘mixed strategy’, a probabilistic mixture
of deterministic strategies. The expected score from that strategy will just be a
weighted average of the expected scores from the deterministic strategies; since
each of those expected scores is between 0.25 and 0.75, the mixed strategy will
likewise average between these bounds.

Suppose Alice and Bob manage to score outside the 0.25-0.75 range (and
to do so consistently enough and over a long enough period to rule out dumb
luck as an explanation). How could they have done it? There seem to be
only two possibilities. The most obvious is that they can signal between their
rooms: if Alice and Bob sneaked a cellphone in with them, for instance, their
score becomes unmysterious. It is helpful [137, 138] to distinguish two forms
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of signalling: Alice and Bob violate parameter independence if their choice of
card played can depend on the other player’s randomizer output; they violate
outcome independence if their choice of card played can depend on the other
player’s choice of card. Violating either principle will allow them to exceed the
0.75 bound. We can make this form of cheating more difficult if we arrange
for Alice and Bob’s play in each round to be spacelike separated; in that case,
violation of either principle seems to involve some sort of superluminal signalling.

There is a subtler way for them to cheat: they might have advance knowl-
edge of what the randomizer outputs will be. If Alice and Bob can predict the
randomizer results in advance to some extent, and if they can select their strat-
egy so that they make a different choice if they anticipate different randomizer
outputs, they can again get outside the 0.25-0.75 range. Alice and Bob violate
the no-conspiracy requirement if they somehow arrange this.

All of this can be put somewhat more precisely. On a given run of the exper-
iment, let a and b be, respectively, the outcomes of Alice and Bob’s randomizers,
and let A and B be, respectively, Alice and Bob’s plays; let λ represent their
choice of strategy. Then a given strategy is defined by a probability measure
Pr(AB|abλ): the joint probability that Alice plays A and Bob plays B, given
randomizer outputs a and b and strategy λ. The overall setup of that run is given
by a probability measure PrS(abλ): the joint probability that the randomizers
read a and b and the strategy chosen is λ.

Our requirements to avoid cheating are then:

Parameter independence: Pr(A|abλ) = Pr(A|ab′λ) and vice versa.

Outcome independence: Pr(A|Babλ) = Pr(A|B′abλ) and vice versa.

No conspiracies: Pr(abλ) = Pr(a)Pr(b)Pr(λ).

The restriction of Alice and Bob’s joint score to between 0.25 and 0.75 is called
the Bell inequality ; more precisely, it is the CHSH inequality (for Clauser, Horne,
Shimony and Holt [139]), a form of the Bell inequality. It is often expressed using
a different scoring system, where Alice and Bob score +4 if they win a round and
-4 if they lose; so expressed, the inequality bounds their average score between
+2 and -2, and the inequality can be re-expressed as

CHSH ≡ |C(HH) + C(HT ) + C(TH)− C(TT )| ≤ 2 (39)

where C(ab) is the correlation coefficient between Alice and Bob’s play, given
randomizer results a, b: that is,

C(ab) = Pr(+ + |ab) + Pr(−− |ab)− Pr(+− |ab)− Pr(−+ |ab). (40)

Bell’s theorem is then the result that if Alice and Bob conform to these
requirements, the Bell inequality holds. Of course, the coordination-game way
I have presented it is optional (and was not how it was originally presented; see
[140, 141] for more traditional versions): we can take ‘strategies’ simply to be
relevant facts about the physical setup of a particular run and replace Alice and
Bob’s choice of cards with some mechanically-realized process with two possible
outcomes.

35



5.2 Cheating with qubits

There is a different (or, perhaps, not so different) way in which Alice and Bob
might cheat so as to violate the Bell inequality. Suppose that before each round
of the experiment they share a pair of qubits — spin-half particles, say — in an
entangled singlet state:

|ψ〉 =
1√
2

(|+〉⊗|−〉 − |−〉⊗|+〉). (41)

Depending on the outcome of their randomizers, Alice and Bob then decide to
measure the spin of their particle along an axis at some chosen angle from the
z axis in the x-z plane (they can coordinate their choice of axes in advance).
Since singlet states are rotationally invariant, all that matters in predicting the
result of their joint measurement is the angular difference θ between their two
measurement axes. Taking Alice to measure (without loss of generality) in the
(|+〉 , |−〉 basis, Bob is then measuring in the

|+(θ)〉 = cos(θ/2) |+〉+ sin(θ/2) |−〉 , |−(θ)〉 = sin(θ/2) |+〉 − cos(θ/2) |−〉 (42)

basis. Elementary quantum mechanics tells us that the probabilty of correla-
tion (++ or –) is sin2(θ/2) and the probability of anticorrelation (+- or -+) is
cos2(θ/2), so that the correlation coefficient is − cos(θ).

Alice and Bob adopt the following specific strategies. If Alice’s randomizer
gets H, she measures spin at −φ to the +z axis; if she gets T , she measures spin
at +φ to that axis. Meanwhile, if Bob’s randomizer gets H, he measures spin
along the −z axis; if he gets T , he measures spin at +2φ to the −z-axis. The
result is that Alice and Bob’s measurements differ by an angle of 180◦−φ in all
cases except when their randomizers read TT , in which case their measurements
differ by 180◦ − 3φ. Using the second scoring rule, and the correlation result
just established, we get

CHSH = 3 cos(φ)− cos(−3φ). (43)

It is easy to show that there are values of φ for which this violates Bell’s in-
equality: indeed, differentiating and setting to zero, we find this expression for
CHSH takes its maximum for φ = 60◦, at which

CHSH(φ = 60◦) = 2
√

2. (44)

Quantum theory violates the Bell inequality. And the specific setup Alice
and Bob use here to violate the inequality has been experimentally realized
many times (replacing Alice and Bob with simple mechanisms), including with
spacelike separation between the two sets of measurements: the quantum-
mechanically predicted result of 2

√
2 has been robustly reproduced. (For a

survey of the experimental situation, see [141].)
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5.3 The scope of Bell’s theorem

In the philosophy literature there are two main interpretations of Bell’s theorem.
The narrow interpretation takes it specifically as a result about hidden-variable
theories: Bell’s setup (it is claimed) tacitly assumes exactly the sort of classical
physics that quantum theory rejects. For advocates of the narrow interpreta-
tion, Bell’s theorem is just another nail in the coffin of the quixotic project to
construct hidden-variable alternatives to quantum theory. On the narrow inter-
pretation, experimental violation of the Bell inequality is further evidence for
the supremacy of quantum mechanics (advocates of the narrow interpretation
tend to be sceptical of the project of modifying quantum theory to solve the
measurement problem). Careful advocates of the narrow interpretation include
[142, 143]; there are many more careless advocates.

The wide interpretation takes Bell’s theorem as a result about pretty much
any physical theory at all: if a theory is local (captured by outcome indepen-
dence and parameter independence) and if it satisfies no-conspiracy, it will sat-
isfy the Bell inequality. And since the Bell inequality has been violated in the lab
(and assuming the no-conspiracy rule is reasonable) it follows that any empiri-
cally adequate scientific theory is non-local. In particular, quantum mechanics,
insofar as it is empirically adequate, is non-local: or, more precisely (since ad-
vocates of the wide interpretation normally take the measurement problem very
seriously) any empirically adequate modification or interpretation of quantum
mechanics must be non-local. On the wide interpretation, experimental vio-
lation of the Bell inequality is a result of profound significance, transcending
quantum mechanics itself (Shimony called it a piece of ‘experimental meta-
physics’ [144]). Advocates of the wide interpretation include [6, 145].

Rather than attempt directly to adjudicate this interpretative dispute, I will
briefly consider some of the various interpretative approaches I have already
discussed and ask what forms of nonlocality we see in them and how those
relate to the Bell inequality.

The Everett interpretation: At least in the mainstream ‘many-worlds’ read-
ing of the Everett interpretation, Bell’s inequality fairly obviously is in-
applicable, since the proof of the inequality tacitly assumes that measure-
ments have unique outcomes. So there is no reason (at least, no reason
arising from Bell’s theorem) to think that Everettian quantum mechanics
involves any sort of dynamical nonlocality, or any consequent clash with
relativistic covariance. (This could have been expected in any case from
the fact that the Schrödinger equation is exceptionless in Everettian quan-
tum mechanics and that, at least in relativistic quantum field theory, that
equation is explicitly covariant and local. See [142] for more on locality in
quantum field theory.)

Relativised to a world, however, Bell’s theorem can be proved; as such,
it follows that any world-defining rule — insofar as it applies globally
— must involve nonlocality. (Again, this might have been expected: if
any measurement causes the whole universe to split, that seems to define
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a preferred simultaneity surface on which it splits.) So if branching is
an objective — albeit emergent — feature of the world and not just a
convention, the branching process must after all proceed locally. (For
detailed attempts to develop theories of branching along these lines see
[146], [16, ch.9].)

For the same reason, Bell’s theorem seems to hold for ‘single-world’ ver-
sions of Everett, raising further questions as to whether such versions
really can be coherently described without modifying quantum theory.

ψ-epistemic hidden-variable theories: If there is an underlying (and single-
world) theory which stands to quantum theory as classical mechanics
stands to classical statistical mechanics, Bell’s theorem must apply to
that theory; since Bell’s inequality is violated, that theory must violate ei-
ther outcome independence, preparation independence, or no-conspiracy.
This stands as a further constraint (alongside those already imposed by
the PBR theorem) on constructing any such theory.

Operationalist/pragmatist interpretations: Insofar as it is possible to de-
scribe even an operationalist-interpreted quantum theory in terms of ob-
jectively recorded measurement outcomes and parameter choices, Bell’s
theorem ought to apply to that theory; hence it must violate one of the
premises of Bell’s theorem (probably outcome independence). That said,
it is not obvious that it is possible to describe all operationalist inter-
pretations in this way. One supposed advantage of QBism, for instance
(cf [73]) is that the only possible descriptions of a system are from the per-
spective of a single observer or agent, so that (for instance) it makes sense
to discuss Alice’s belief’s about what measurement result by Bob will be
reported to her but not about what measurement result he obtains. Since
these reports travel subluminally, there is — arguably — no violation of
locality.

Dynamical-collapse theories: Dynamical-collapse theories fairly clearly vi-
olate outcome independence: there are correlations between Alice and
Bob’s measurement outcomes that are not factored out by any shared
initial state. It is less clear that this nonlocality should be interpreted
as action at a distance [147], or that it entails any clash with relativistic
covariance: indeed, there is a known relativistically-covariant version of
GRW [132], albeit only for non-interacting particles.

The de Broglie-Bohm theory: The de Broglie-Bohm theory explicitly in-
cludes action at a distance: the trajectory taken by Alice’s particle can
be directly influenced by Bob’s choice of measurement parameter and vice
versa, though Alice and Bob’s ignorance of the exact positions of their
particles prevents them using this information to signal to one another.
This is a violation of parameter independence; it also strongly suggests
that any theory along these lines will have to involve a preferred choice
of simultaneity surface, in violation of relativistic covariance. Bell [110]
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and other advocates of the de Broglie-Bohm theory have argued that since
Bell’s inequality tells us that any empirically-adequate theory must violate
locality in some fashion, it is a virtue rather than a vice of the de Broglie-
Bohm theory that it makes explicit how the trick is done. Of course, this
argument will have no traction with anyone who thinks unmodified quan-
tum mechanics can evade Bell’s theorem via Everettian or operationalist
means.

We can usefully extract from this discussion two tacit principles that seem
to be presupposed in the proof of Bell’s inequality, along with its explicit re-
quirements:

Objectivity: It must be possible to give a third-party description of an experi-
ment, even one spread over an extended region, without having to localize
that description to the first-personal experiences of a particular observer
or agent.

Single outcomes: Measurements must have unique outcomes: it must actu-
ally be the case that the measurements used in Bell’s theorem in the end
have as outputs ’+’ and ’-’, rather than superpositions of such.

The two are even somewhat related. The Everett interpretation permits an
objective description, but that description will be of an entangled superposition
in a macroscopically non-classical state. If we require a classical description,
that description is restricted to the past light cone of an observer.

5.4 The conspiracy loophole

Before leaving Bell’s theorem, let’s briefly consider its no-conspiracy require-
ment. The dominant view in foundations of physics is that no physically rea-
sonable theory could exploit this loophole: the random processes that might be
used in violations of Bell inequalities could be anything at all and it beggars
belief that the world could be so conspiratorially interconnected as to make,
say, stock market prices or weather patterns subtly correlated with quantum or
subquantum processes here and now in the lab. Recent tests of Bell’s theorem
have selected the settings of the measurement devices using photons from astro-
nomically distant sources [148], and 100,000 human subjects making choices in
an online video game [149]; both robustly violated Bell’s inequality. It is often
claimed ([150, p.266],[145]) that the scientific method itself requires something
like a no-conspiracy assumption. Discussions between the more fervent advo-
cates of this view, and the minority (e. g. , [151, 152]) who have continued to try
to develop ‘conspiratorial’ (or, as they are sometimes called, ‘superdeterminis-
tic’) hidden-variable theories, have mostly produced more heat than light.

The point to keep in mind about any such discussions is that they occur
only because we do not have concrete examples of any (non-toy) version of
quantum mechanics that holds on to locality by violating no-conspiracy. If we
did, we could discuss that theory directly: if it was usable to do science, and
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especially if it made novel predictions deviating from quantum mechanics, and
especially if some of those predictions were confirmed, then we could discuss
the theory directly without reference to Bell’s theorem. In the absence of that
theory, critics of the conspiracy loophole are saying in effect that it will not in
fact be possible to construct any scientifically useful theory via that loophole. I
strongly suspect they are right, but it is hard to see what a completely conclusive
argument might look like. (An analogy: Einstein thought [153] that the scientific
method requires something like a locality assumption, someone who agreed, and
who knew Bell’s theorem but not the de Broglie-Bohm theory, might conclude
that searching for a single-outcome, objective (and non-conspiratorial) theory
would be fruitless, since any such theory would be non-local. The de Broglie-
Bohm theory — whatever its virtues or vices — proves that this prediction
about future theories was wrong: it is after all possible to build a scientifically
coherent non-local theory.)

6 Conclusions

Among physicists, the (more operationalist versions of the) probability-based
approach, and the Everett interpretation, are roughly as popular as one an-
other, with different sub-communities having different preferences. (The mod-
ificatory strategies are much less popular among physicists, although they are
probably the most common choice among philosophers of physics.) But more
popular than either is the ‘shut-up-and-calculate’ approach [154]: the view that
we should not worry about these issues and should get on with applying quan-
tum mechanics to concrete problems.6

In its place, there is much to be said for ‘shut up and calculate’. Not everyone
needs to be interested in the interpretation of quantum mechanics; insofar as a
physicist working on, say, solar neutrinos or superfluidity can apply the quantum
formalism without caring about its interpretation, they should go right ahead
— just as a biochemist may be able to ignore quantum mechanics entirely, or
a behavioral ecologist may be able to ignore biochemistry. Division of labor
is unavoidable in science, and often desirable. But there is a more aggressive
reading of ‘shut up and calculate’ — not just as a description of a physicists
own approach, but as an exhortation to the community to stop wasting their
time. That exhortation is often accompanied by the claim that since all the
‘interpretations of quantum mechanics’ give the same predictions anyway, it is
pointless or even unscientific to worry about which one is correct.

Philosophers of physics tend to give a a high-minded response to such skep-
ticism: quantum theory tells us about the deepest nature of reality; how could
we not be interested in its nature? (This response is often (e.g., [156, p.xiv])
accompanied by a lament about physicists’ own retreat from seeking conceptual
clarity in their deepest theories.) But there is a more pragmatic response: the
various approaches to the measurement problem are not just different verbal
glosses on the same quantum formalism but constitute significantly different

6Part of this section is adapted from [155, pp.129–132].
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strategies for using and applying — or even modifying — that formalism. This
is most obvious for modificatory approaches, which are proposals for genuinely,
mathematically distinct theories. In some cases, these theories already make
predictions — albeit difficult to test — that differentiate them from unmodi-
fied quantum theory; in others, they are the seeds of research programs which
may lead in a testably different direction from quantum theory. One can re-
gard this as promising or unpromising science, but it is clearly, recognizably,
science. (Which is not to say that all advocates of these theories treat them
this way — a good test of how serious an advocate of a dynamical-collapse or
hidden-variable theory is for their proposal as science is whether they welcome,
or resist, the implication that their theory might have testable deviations from
quantum mechanics.)

But even within those approaches that leave the quantum formalism un-
modified — approaches which treat the quantum state as probabilistic, and
Everett-type approaches based on decoherence and the emergence of a classical
branching structure — there are major differences of scientific method. The
probability-based interpretation has generally been applied in situations where
the goal is to understand the interventions and manipulations we might make
on a system; it is extremely well suited to the study of computability and in-
formation processing, where it has inspired a great deal of insightful work; it
naturally leads us to ask why the framework of quantum theory is what it is
and not something else; it is the dominant approach in quantum information
theory.

The decoherence-based approach has been applied more to situations where
the goal is to understand how systems evolve and develop when left to them-
selves. It has been central in our understanding of quantum/classical transitions,
in environments ranging from the present-day laboratory to the early Universe;
it provides a framework and a language to handle situations where experiment
and measurement do not have a clear meaning; its language of branches and
worlds has been valuable in quantum cosmology and in non-equilibrium sta-
tistical mechanics; it treats the framework of quantum theory as a given and
uses it to understand and explore issues in specific quantum theories; it is the
dominant approach in high-energy physics and in string theory.

(Indeed, when physicists in those communities ‘shut up and calculate’, they
are normally calculating in unitary quantum mechanics, eschewing any talk of
external observers, modelling measurement physically, using decoherence to me-
diate the quantum/classical transition, and accepting the in-principle possibility
that macroscopic superpositions could be recohered, even as they stress its in-
practice impossibility; the gap between this position and full-on advocacy of the
Everett interpretation is thin and largely verbal.)

This is not to say that everyone who has used decoherence-based methods
to study cosmology is explicitly committed to the Everett interpretation and its
language of many worlds, or that everyone who was inspired by a probabilistic
interpretation of quantum theory to prove a valuable theorem in quantum in-
formation is explicitly committed to one or other variety of instrumentalism. It
is to say that there has been, and continues to be, a continuous flow of ideas
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and inspiration between considerations of the quantum measurement problem
toand more concrete issues in quantum theory.
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