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Abstract 

Recent advances in the field of artificial intelligence (AI) are providing automated and in many 

cases improved decision-making. However, even very reliable AI systems can go terribly 

wrong without human users understanding the reason for it. Against this background, there are 

now widespread calls for models of “explainable AI”. In this paper we point out some inherent 

problems of this concept and argue that explainability alone is probably not the solution. We 

therefore propose another approach as a complement, which we call “verifiability”. In essence, 

it is about designing AI so that it makes available multiple verifiable predictions (given a ground 

truth) in addition to the one desired prediction that cannot be verified because the ground truth 

is missing. Such verifiable AI could help to further minimize serious mistakes despite a lack of 

explainability, help increase their trustworthiness and in turn improve societal acceptance of 

AI. 
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1. Introduction 

Recent advances in the field of artificial intelligence (AI) are providing automated and in many 

cases improved decision-making in critical areas, including medical diagnostics and therapy 1–

3, but also in many other areas. This raises high hopes for positive impacts on society. However, 

these hopes are countered, among other things, by fears associated with the rare but 

unintelligible mistakes generated by AI. As some prominent examples have shown even very 

reliable AI systems can go terribly wrong without human users understanding the reason for it 

(Heaven 2019). Accordingly, these are systems that are very difficult or impossible for humans 

to assess. Against this background, there are now widespread calls for models of “explainable 

AI” (XAI), which should make it possible to make AI decision-making transparent and 

comprehensible for human users. This demand is generally correct. However, it leads to some 

follow-up problems: On the one hand, explainable AI will often have a lower accuracy, so that 

difficult trade-offs between the two objectives will have to be found. Secondly, current 

explanations already overload human understanding 4 and the growing complexity of AI could 

exceed the limits of human comprehensibility, so that especially high-performance systems 

cannot fulfil the requirement of explainability. This demand for XAI, albeit with its own merits, 

seems somewhat paradoxical against the historical backdrop of the failure of “expert 

systems”—an older kind of AI-–which was partly responsible for the AI winter in the late 

1980s5. One of the challenges faced by expert systems was the difficulty in knowledge 

acquisition, i.e., extracting and capturing the domain knowledge from an expert to codify it as 

a part of an expert system. Experts found it difficult to describe their knowledge and decision 

processes, especially in a way that could be automated. But now, ironically, we are demanding 

that AI systems to provide explanations regarding their decisions and their inner workings in a 

human understandable form. In other words, we are expecting AI to provide explanations to us 

that we humans cannot provide to ourselves. Consequently, we should consider that the 

https://sciwheel.com/work/citation?ids=11556325,12389922,7900176&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11556325,12389922,7900176&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12513258&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12568562&pre=&suf=&sa=0&dbf=0
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limitations of human reasoning extend to AI systems as they “are not significantly more opaque 

than human brains/minds” making any decision—human or AI—nontransparent 6. 

We therefore propose another approach as a complement, which we call “verifiability”. In 

essence, it is about designing AI so that it makes available multiple verifiable predictions (given 

a ground truth) in addition to the one desired prediction that cannot be verified because the 

ground truth is missing. Such a verifiable AI could help to further minimize serious mistakes 

despite a lack of explainability, help increase their trustworthiness and in turn improve societal 

acceptance of AI. 

 

2. Reliability is a necessary but insufficient criterion 

Today's AI is often very reliable, i.e., the systems only rarely generate results that turn out to 

be wrong in retrospect. If you compare AI with other technologies, you will hardly be able to 

say that it is a particularly error-prone technology. The problem does not really lie in the 

frequency of the errors, but rather in the fact that the errors that occur are incomprehensible to 

us. 

In a news feature article in Nature, Douglas Heaven compiled a whole series of studies showing 

how easy it is to mislead Deep Learning systems 7. The amazing thing is not that highly complex 

systems fail at certain tasks, but much more that we cannot understand how they can err so 

thoroughly at tasks that seem completely trivial to us. One of the by now probably quite well-

known examples is about the recognition of street signs. A specially trained deep neural 

network fails to recognize a stop sign when it has some small rectangular black and white areas 

on it. Instead of identifying it as a stop sign, the system classified the sign as a speed limit (45). 

No child who knows road signs would make this mistake. It is completely incomprehensible 

that the system could be so wrong. Countering this by pointing out the rarity of the errors the 

system makes does not seem to be enough. A system should simply never make such errors. 

https://sciwheel.com/work/citation?ids=12513243&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7620160&pre=&suf=&sa=0&dbf=0
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Or, to put it the other way around, a system that makes such errors seems highly dubious to us, 

even if they are rare. 

To put it bluntly, one could say that the use of AI is a kind of Russian roulette. In rare cases it 

hits someone, and you never know when and why. This is obviously not a very attractive 

prospect. So, we should try to design AI in a way that avoids the problem in the first place. 

 

3. Explainability as an attempt to solve the problem 

One currently much-discussed approach to solving the problem described is to make AI 

explainable 8. The rationale behind this approach is as simple as it is obvious: if the epistemic 

opacity of AI means that we cannot understand errors (as well as correct outcomes), then we 

need to overcome opacity. The “right to explanation” is also enshrined in the European Union's 

General Data Protection Right, though its scope and impact yet remains to be seen 9. Indeed, 

many technical solutions have been proposed to achieve explanations of different kinds 10–13. 

An example of XAI is prediction of schizophrenia symptoms using neuroimaging data where 

the predictive ability of literature derived networks (i.e., a collection of brain regions whose 

interaction is then derived from neuroimaging data) such as theory-of-mind and default mode 

network was used to ascribe network-level interpretation that neuroscientists and psychiatrists 

are familiar with 14. The same work could then extend the interpretation by identifying 

predictive importance of network edges as it was based on a “conventional” machine learning 

algorithm called relevance vector machine 15 which is considered intrinsically interpretable 16. 

These two types of interpretations—network-level and edge-level—demonstrate the 

complexities associated with an apparently simple application using interpretable models. Deep 

neural networks, on the other hand, are not intrinsically interpretable which makes it harder to 

understand their internal architecture and several methods have been proposed to extract 

explanations—most of them post-hoc—each with its own pros and cons. A detailed review of 

these methods is out of scope, and we refer the reader to recent reviews 11,13. 

https://sciwheel.com/work/citation?ids=7331624&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7760292&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11680725,11296209,12336256,12567172&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9777542&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6132753&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6377975&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12567172,11296209&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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As convincing as XAI may be as a research program, it raises two fundamental problems: 

Firstly, it must be assumed that transparency is always bought at the expense of performance 

or accuracy. If one decides in favor of explainable AI, then one will at the same time decide in 

favor of less efficient systems. On the other hand, it is not unlikely that as the amount of data 

and computational capacity grows very powerful systems will become so complex that the 

methods of explainability will quickly reach their limits. The billion parameter natural language 

models that were state-of-the-art just a few years ago, e.g., the GPT-3 model with 175 billion 

parameters (already a big leap compared to its predecessor GPT-2 with 1.5 billion parameters 

17 trained by OpenAI researchers on 570 GB of clean data 18 now look miniscule in front of 

trillion parameter models. The trillion-parameter race is on and the natural language model 

"with outrageous numbers of parameters”, 1.6 trillion 19 is now surpassed by the multimodal 

(learning from both text and images) model with 1.75 trillion parameters 20. Technological and 

conceptual advances make it possible to train such large models and this trend is likely to 

continue. The emphasis of these models is on better performance by learning complex 

representations that can be only learnt by complex models. Explaining such models is going to 

be clearly difficult if not impossible even for expert human audience.  

Furthermore current XAI is limited and faces many challenges, biases deter learning and 

explanations 2, information overload might preclude interpretation 4, techno-scientific 

explanations might not be desirable 6, human subjectivity in background and expertise in AI 21 

and cognitive biases 22 make it challenging to design and consume XAI, the explanations might 

lack robustness 23,24, and human skill might impact modern deep learning models in ways that 

are hard to explain 25. Such considerations have led to calls for abandoning explaining complex 

models in favor of simpler interpretable models for high stake decisions 26. It is worth noting 

that AI, as in deep neural networks, made great headway in the last decade because of their 

complexity and technical advances devoid of an explicit requirement for expandability which 

only became a part of the narrative at later stages. Explanations, if available, are a welcome 

https://sciwheel.com/work/citation?ids=12567184&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352918&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12567189&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12352954&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12389922&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12513258&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12513243&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12520147&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12520188&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12567220,6378209&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12520159&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6975826&pre=&suf=&sa=0&dbf=0
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outcome but imposing them as a requirement can slow the rate of development of AI systems, 

which still have a long way to go. 

These considerations of explainability are not intended to fundamentally call the concept into 

question. We merely want to point out inherent problems of the concept and argue that 

explainability alone is probably not the solution. But what then? 

 

4. Verifiability as a new method for safeguarding AI 

Let us say we developed an AI to predict a mental disease and trained it on large amounts of 

data. Let us further assume that the system has achieved a remarkably high level of accuracy in 

tests. Finally, let us assume that the system is so complex that current methods of explainability 

fail, i.e., we do not really understand how the system arrives at its (predominantly correct) 

results. This is certainly not a science fiction scenario, but rather corresponds to the current 

state of research. What could help us to accept the results of the system and, perhaps more 

importantly, what could help us to detect errors in the system? One obvious answer is: further 

forecasts provided by the system, which we ourselves can check directly. Let us assume that 

we would not only let the system predict the occurrence of the mental illness (which of course 

we cannot check ourselves, that is what we need the AI for), but further characteristics of the 

person that are known to us (e.g., age and sex), but are not explicitly contained in the data about 

the person (e.g., MRI-based neuroimaging) with which the AI was fed. If all these other 

predictions were accurate, then they would in a way verify the actual prediction we are 

interested in. Of course, it would not be a verification in the sense of a watertight proof. It could 

be that the AI is simply wrong in all predictions equally. If the predictions were somewhat 

independent of each other, however, the probability of this would be very low. So, it might be 

promising to develop just such a verifiability, at least in such cases where explainability does 

not work or is too limiting. 
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As a welcome side effect, the verifiable AI will be resilient to biased decision making as 

suspected biases (e.g., sex differences) could be incorporated as verification tasks (e.g., sex 

prediction). Furthermore, verification can also serve as an explanation. Take the classic 

example of the dog versus cat classification. If we have a verification task of "color" of the 

animal in addition to the species, then a human can verify the color (assuming species itself is 

not verifiable). This will result in a more robust classier as it also needs to provide an 

explanation that is the color in this case.  

The issue of confounding 27 with which the scientific community as well as more recently the 

machine learning community has grappled with can also be handled within the verifiable AI 

framework. Broadly speaking, confounding refers to unwanted biases in the data that get 

encoded in the model biasing what they learn and their predictions. If such confounding 

information is available, it can be conceptualized as a “non-learning task” where the prediction 

should be (on average) wrong—essentially verifying chance-level predictability of a 

confounding task. Luckily, the AI community has already provided solutions to this effect, for 

instance the Fader Network architecture 28. 

A more complex output-space of AI is also advocated as a response to requirements of a 

complex task, e.g., for use of language in a social context 29. Such synergies and associated 

technological developments can thus help the field to grow. In a sense, we propose a more 

“general” AI than a single-task AI but still restricted nonetheless and far from the goal of 

human-like AI which has been argued cannot be realized 30. 

Taken together, existing technology can be indeed used to train a verifiable AI if the verification 

tasks are defined, and corresponding data is available. Essentially, verifiable AI will need to 

learn representations that are common across the several tasks it is expected to perform as 

depicted in Figure 1. 

 

https://sciwheel.com/work/citation?ids=10546046&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7881178&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12267852&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10895215&pre=&suf=&sa=0&dbf=0
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Fig 1. Proposed verifiable AI framework. The “big data” is fed into a deep neural network 

which first learns a latent representation. This latent representation is then used for prediction 

of different tasks. Here the sex and age are verification tasks while predicting Alzheimer’s is 

the task of interest. 

 

The outputs of a verifiable AI model can be either directly consumed by a human or they might 

be fed into machine-learning models to quantify confidence in a prediction. Such a model, of 

course, needs to be trained using historical gold-standard data. 

 

5. Objections 

The verifiable AI framework raises several (obvious) questions. Primarily, what the verification 

tasks should be and what is their sensitivity and specificity for the goal of verification. For 

instance, do different primary tasks (e.g., prediction of AD status or prediction of Schizophrenia 

severity from neuroimaging data) require different verification tasks? The answer is obviously 

yes, but that leads to other the hard-to-answer question, which ones? So, if not properly 

conceived and implemented, verifiable AI will be just a gimmick rather than a useful tool. It 

can also cause a loss of accuracy as including additional tasks that do not share similar latent 

representation will degrade the performance. 

Furthermore, one could object that the proposed concept does not solve the actual problem of 

opaqueness and inexplicability, but merely conceals it. It is true, of course, that a verifiable AI 



 9 

would still be opaque. However, we do not even want to claim that this problem is solved. On 

the contrary, our argument is rather that it could be that - with increasing complexity of the 

systems - it is unsolvable. The concept of verifiability proposed here is an attempt to deal with 

inexplicable AI. If we have to decide whether or not to use unaccountable systems, then perhaps 

verifiability could support a positive response in favor of AI. 

 

6. Conclusion 

In the foregoing, we have made a conceptual proposal of how AI might be developed. We 

assumed that the growing complexity of AI will lead to the fact that the - basically correct - 

approaches for "explainable AI", which are currently pursued by many, will reach their limits. 

Verifiability could provide a way to enable the estimation of errors even when a system is not 

understood. This could make the use of AI defensible even when it is opaque to us. 
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