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ABSTRACT. The principles of special and general relativity are
used to describe the relative motion of observers in terms of the co-
ordinate transformations between the rest frames associated with
each observer. It is demonstrated that a consistent application of
these principles requires one to ascribe to each observer an associ-
ated wave amplitude which governs the probability events within
one frame may be observed in another, leading the quantisation of
energy levels under appropriate conditions.

1. INTRODUCTION

While it is always our aim to write the laws of mechanics in a general
form independent of any particular coordinate system, we must be
aware that all mechanical quantities are themselves always defined with
reference to some coordinate system. The simplest mechanical system
of all, that of a uniformly moving point particle will have the character
of its motion altered when viewed from coordinate systems which are
themselves in a state of relative motion. However, associated with
every such particle there is a preferred coordinate system we refer to
as the rest frame of that particle, wherein the particle remains at some
fixed spatial location for all times.

Central to our understanding of mechanical laws is the principle of
relativity which essentially asserts that the laws of mechanics are valid
in all frames of reference, a principle which has been confirmed in a
wealth of contexts. In the current work we shall use this principle as
the motivation of our starting point, that the space-time coordinates
used by any particular observer are valid for the description of mechan-
ical process. In particular, it means that to with every body which we
ourselves would describe as a moving body, there is associated an ref-
erence frame in which that body is always at rest, and which with full
validity may be used as a frame of reference for the description of me-
chanical phenomena. As we will see in the following, this observation
will allow us to interpret these various states of motion between bod-
ies, in terms of the coordinate transformations between their associated

rest frames only.
1
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2. SYSTEMS OF COORDINATE TRANSFORMATIONS

Throughout the term “observer” is used in the broad sense of an
object that may serve as a point of reference to describe the relative
motion of other objects. Consider two such observers O and O’, where
O is at rest with reference to the coordinate frame ¥, while the ob-
server O is at rest in relation to the coordinate frame Y'. Without
loss of generality the observer O is assigned the space-time location
(¢,0,0,0) € X for all t € R, while the observer O is assigned the space-
time location (¢/,0,0,0) € ¥’ for all # € R. On the other hand, the
observer O’ will occupy some location (¢,x,y,z) € ¥ where the x, y
and z coordinates of O' may be functions of ¢, depending on the state
of relative motion between the two observers. In compliance with the
principle of relativity, this means the observer O will occupy some lo-
cation (t',z’,y, 2') whose spatial coordinates x’, ¥ and 2’ may also be
functions of ¢, depending on the relative state of motion between the
pair.

2.1. Uniform relative motion and coordinate transformations.
To simplify the description of a state of relative motion between O and
O’ it is assumed that the (z,y, z)-axes of the frame ¥ align with the
respective (2,1, 2')-axes of the frame Y. Furthermore the location of
O’ with reference to ¥ will take the form (¢, x,0,0) and similarly the
location of O with respect to ¥ will take the form (¢, 2’,0,0). As such,
when considering the location of observer O within ¥ it is only neces-
sary to refer to its (¢, x)-coordinates, and similarly the location of ob-
server O with reference to 3’ will be described by its (¢, 2’)-coordinates.

A state of uniform relative motion between O and O’ will appear in
the reference frame X as the observer O changing its space-time location
according to (t,0) — (¢t + dt,0) while the observer O" will change its
coordinate location according to (t,z) — (t + dt,z + dx). On the
other hand, as viewed within the reference frame ', the observer O’
changes its space-time coordinate according to (t',0) — (¢’ + dt’,0),
while the space-time location of O within Y’ will vary according to
(t',2") — (t' +dt', 2’ + dz’). A state of uniform motion will be taken
to mean that the spatial displacement of O within ¥, namely dz,
is related to the temporal change dt by a constant factor v giving
dr = vdt. Equivalently, within the frame >’ the displacement of O,
namely dz’, will be proportional to the temporal change dt’ according
to do’ = —wdt'. The coordinate changes dx, dx’, dt and dt’ may be
finite and we do not as yet restrict ourselves to infinitesimal coordinate
changes.

Under this scheme it is clear that to every space-time location (¢, z) €
¥ there are corresponding coordinates (', 2') € ¥/, and as such we may
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introduce a pair of maps ® and ® such that

L U VR 3

v (1)~ (%)= (0)

with the inverse given by

d:.Y -

(- (9)-()

Remark 1. Importantly we observer that the spatial locations within
either frame X or ¥/ are not necessarily a priori separate locations. To
emphasise this we consider the observer O’ within the frame ¥, which
may undergo a displacement from x — = + dx in some time interval dt.
However, within the frame >’ no such separation of spatial locations is
realised, instead the observer O perceives this as only an increment of
the time coordinate ¢ — t' + dt’. In line with the principle of special
relativity, the apparent spatial separation of the points z and x + dx
within X is realised as such only in that frame. Thus we do not ascribe
any fundamental significance to spatial separations as observed within
any reference frame.

2.2. The Lorentz Transformations. The derivation of the Lorentz
transformation between coordinate systems in uniform relative motion
relies on two significant conditions:

1) Linearity of the maps ®'(¢,z) and ®(t,2’) with respect to both of
their arguments

2) A universally agreed upon velocity ¢ (with which electromagnetic
waves are known to propagate) within any frame of reference

(see [3] for further discussion regarding the need for linearity of the
Lorentz transformations). Under these conditions, the coordinate maps
introduced in Section 2.1 are also seen to correspond to the well stud-
ied Lorentz transformations. To establish these transformations in the
current framework, we consider a pair of events as observed within X
with space-time coordinates (¢, z) and (¢ +dt, z+dz), while those same
events as observed within the frame X’ occur at space-time coordinates
(t',2") and (t' 4+ dt’, 2’ + dx’), where again, despite notation, the sepa-
rations dt, dz, dt’ and dx’ may be finite (as opposed to infinitesimals).

Given the linearity of ® we require it to be a coordinate transfor-
mation of the form

(1)
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up to additive constants, where k, [, r and s are all independent of
(t,z) (and (¢,2")). Owing to the linearity of ®’ it follows that the
coordinate separation of the events within X’ are realised as
dt' = T'(t + dt,x + dz) — T'(t, z) = kdt + ldx
de' = X'(t + dt,x + dx) — X'(t, z) = rdt + sdx.
Thus the velocity along the trajectory connecting the events at (¢, x’)
and (t' + dt’, 2’ + dz’), as observed within Y/, is given by
d_x’ o sfl—f
- dz
' k+1%;

where fl—f is the velocity along the trajectory connecting the events as

observed within X.
The condition 2) above means that if the velocity along the world

line within X is ‘é—f = ¢, then the velocity along the same world-line
within Y is also % = ¢, and so we observe
T+ sc
2 c= .
) kE+lc

On the other hand, we assume the observer O’ moves with a velocity v
within X, in which case a world-line with velocity Z—f = v within X will
appear with a fixed z’-coordinate within >, and so we deduce

dx’ 7+ sv
(3) =

= — = = r = —Sv.
dt’  k+lv
Moreover, since observer O moves with velocity —v relative to Y, it
follows that a world-line with velocity fl—f = 0 in X will have velocity

dz’
i’

= —v within ¥/, meaning

(4) —U:£:>r:—k;v
Thus equations (3)-(4) ensure

k=s,
while equation (2) now means

To establish the form of k we write the coordinate transformation
(1) in matrix form to give:

v [eien] =[] - [

Inverting the square matrix in this transformation, we find

EIlY 1s =l
[7“ s} :j{—r k:} J=ks—rl,



COORDINATE TRANSFORMATIONS & WAVE MECHANICS 5

and so the inverse coordinate transformation ® : ¥’ — ¥ is given by

- [9]-[)-2L 516

It follows that the coordinates (¢,x) and (¢',2’) may also be related
according to

v
(t' + gm’)

| =

(5) t==(t—s2')=

Tr =

S N e

(—kt' +ra') = %(x' + vt').

However, a consequence of the principle of relativity is that the trans-
formations are symmetric, in that ® may be obtained from ®’ (and
vice-verse) by simply changing the sign of the velocity and swapping
the roles of (¢,x) and (¢, 2"). Tt follows from equation (1) and the prin-
ciple of special relativity that the coordinates (¢, z) and (¢, ') may also
be related according to

v
(6) t=Fk(t'+ g:}:’)
= k(' + vt'),

and upon comparing (5) and (6) it becomes clear that J = 1 and so

1
2
V' &

with & > 0 corresponding to the restricted Lorentz group, that is to
say the space of Lorentz transformations continuously connected to the
identity transformation.

k==

Remark 2. We note that this derivation of the Lorentz transformation
does not require O and O’ to be both inertial observers. Indeed, the
derivation above may allow for both O and O’ have the same acceler-
ation relative to a third observer, it is only necessary that the relative
motion between the pair is uniform.

The reference frames ¥ with coordinates (t,x,y, z) and ¥" with co-
ordinates (¢, 2,1/, 2’), whose alignment and relative velocity we have
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already stipulated, are easily seen to be related according to
(' 2y, ) =®(t,x,y,2)

T/(t,x,y, z) =t = @

X'(t,z,y,2) =a" =

Y'(t,z,y,2) =y =y
Z(t,ry,2)=2 =z,

as expected, and whose inverse is given by

<t7 ‘/EJ y? Z) = @(t/7 ‘/E/7 y/7 Z/)

Tt 2y, 2)=t= e/

/ t,
X(t. ) = = T2

Let E) = mc? be the rest energy of observer O', that is to say its
energy with respect to its rest frame Y'; in which case the Lorentz
transformation may now be written according to

1
T(t,x,y,2) =t = — (Et — px)

1
(7) X'(t,x,y,2) =a" = o (Ez — pc’t)

Y'(t,z,y,2) =y =y
Z(t,x,y,2) =2 =z,

where (E,p,0,0) = ——— (mc?, mv, 0, 0) is the energy-momentum four-
1_v?

2
vector of the observer O with reference to the frame X. As we can

clearly see, the coordinate transformation ®’ is characterised by the
energy-momentum four vector of O’ within the frame X.

2.3. Relative acceleration. When O and O’ are moving relative to
each other with non-constant velocity it is still the case that the ob-
servers have associated reference frames ¥ and Y’ in which each is
always at rest. In general it is still expected that the space time loca-
tion in one reference frame has corresponding space time coordinates
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in the other, with maps from one frame to the other expected to sat-
isfy (® o ®')(t,z) = (t,x) and likewise (P’ o ®)(t',2’) = (', 2’) for all
(t,x) € ¥ (resp. for all (t',2') € ¥).

At any instant of this relative motion these coordinate systems are
require to satisfy the inverse function theorem

SO e ca ] st R e R

(cf.[8]) where subscripts denote partial differentiation with respect to
the relevant variable. Multiplying by mc? this matrix equation becomes

Ty (t',2") Xp(t', ) E  —p| [mc 0
Tu(t, o) Xu(t', )| |—p> E| | 0 mc?|’

having used equation (7) to write ®(¢, ) in terms of (E,p) the energy
momentum of Oy with reference to >. We may write the matrices as
such since at any instant the observer O’ moves with some energy-
momentum relative to the frame > and the Lorentz transformation
between ¥ and ¥’ should be valid at this the location of O’ at least
locally.

It follows at once that

Ty (t',2') Xp(t',z') _ 1L IE »p
T;D/(t/,x’) Xx/(t/,l’/) o mc? ch B’
and as such equation (8) may also be written according to
E p||Titz) Xitz)| _ [me 0
pc? E| |T.(t,z) X.(t,x) 0 mc|”
Differentiation with respect to ¢ yields

S [E p]\[T X __[E ], [T X
“Ipc2 E ™ X, pc? E tTfT X/

from which it follows
—1 —1
me? E p ) E p E p _ ' Too
ch FE t ch FE p02 FE F?O F%o

-1
having used {pCQ E} = — {_pCQ B } and introduced the Christof-

fel coefficients T, = T}, T'dy = X}, TYy = T,, and T'}, = &;. Given
A A~ is the constant identity matrix for any matrix A it also follows
that

QLA*l = —A*1(8HA)A*1,
and so we deduce

E —p , [T0 T ]
) = me 00 00
' |:—pC2 E] [F?O '}
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In a similar manner, it is easily shown that

E  —p|_ o[l Ty

% l—pc2 E} - e [F(ﬂ F%1:|

with T9, = T}, 'y = X, TY, = T/, and I'}; = X/. Since it is

always possible to introduce a coordinate transformation such that the

Christoffel coefficients vanish locally, it is always possible to ensure the

force E, = p; experienced by any observer can be eliminated, however

it means the force must appear to act on another observer in a state of
relative acceleration at another location.

2.3.1. Relative acceleration in a potential field. We consider two ob-
servers O, and O, in a state of relative acceleration, with ¥ the rest
frame of O, and ¥’ the rest frame of O,. Associated with the ob-
server O, is its mass m, and similarly O, has mass m;. The ob-
servers are assumed to interact with one another via a potential field
(o(t,x), A(t,x)), where the conserved energy of O" with reference to
the frame X is given by

E(t,mp) = By + ¢(t, xp)
while the associated generalised momentum(cf. [4] p. 48) is given by
P(t,zp) = py + A(t, xp).
The energy-momentum of O with reference to X are
E(t,1q) = mac* + ¢(t,2,) = mac® YVt ER,
and

P(t,x,) = A(t,z,) =0 VteR,

with F,, = \/mz’bc4 + i yC2
The potential field (¢(t, x), A(t, z)) is required to transform four vec-

tor under the Lorentz transformation since (£(¢, ), P(t,x)) is also re-
quired to change as a four vector. It follows that

] - 5 2t D)
)

(9) _ | By | [E(T(t, z), X( t;,,xb
Py By | |P(T(t,23), X(t, 7))

~mpe?
=101

since (E'(t,x}), P'(t,,x})) is the total energy-momentum vector of Oy,
in its rest frame X’ which is always (myc?,0) by definition of ¥'. Using
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S(T( ;)7 xg)7X( ?)7 SL‘Z)) =Ly + (b(ta xb) and ,P<T( va;)?X( Z’xg))) =Dt
A(t, xp) in the first line of (9) we have

e | o] = o)

Differentiating, it follows that

Ou0,u By + ¢ ApOupy + Ep(0up) + poc® 0, As _ |0
G0, + +Ap0, iy + ppOudy + Ap0u Ay 0]’
where p € {t,z} and we use the abbreviations ¢, = ¢(t, ;) and
Oudp = (0,0)(t, ) with similiar definitions in operation for A, and
0, A, and . It is immediately clear that

|:8ME(,:| - 1 (bb —C2Ab:|

By prT |:8u¢b:|‘

py| A — @2 | B p Eb | |0uAs

3. PARTICLES AND WAVES

Thus far we have considered observers O and O’ as strictly particle
like, in that it is assumed they occupy a unique spatial location = (or
xp) at any fixed moment ¢ (or t') within the frame 3 (or ¥’). Moreover,
it has been assumed that there is a unique map ®’ from X to ¥/, and
vice-versa. In Figure 1 we illustrate a simple container comprised of
two stationary walls located at x, and x; in the reference frame . We
suppose a particle of rest mass m is located between these walls and
moving with some velocity relative to them. We further assume there is
no interaction between this particle and the walls of the container, other
than a possible collision between the particle and either wall. Such a
collision will in turn set the walls of the container in motion, with
the relative velocity of the walls allowing us to deduce the momentum
change of the particle upon impact.

Crucially, we insist that the motion of the walls is defined in relative
terms only, that is to say, the wall at x, moves relative to the wall at
xp if and only if the wall at x;, moves relative to the wall at z,. Let
¥ be the rest-frame of the left-plate (which we call observer O) whose
location therein we denote (x,,t) for all ¢ € R, while the initial location
of the right plate (which we call observer O') is x = ;. At some time
t = t; the right plate begins to move and is observed at a new location
xr = xp + dx at a later time ¢; + dt, as illustrated in the top panel of
Figure 1. Conversely in the frame ¥’ the plate at ' = x, begins to
move at ¢ = t; and at a later time ¢’ = t; + dt’ this plate is located at
Zq + d2’, as illustrated in the lower panel of Figure 1.

However, this appears to contradict our usual experience of particle
motion. Our usual experience would indicate that a collision between
the particle and the wall at x, will cause this wall to accelerate and
thus move relative to the wall at x;, and conversely, an impact between
the particle and the wall at z;, will cause this wall to accelerate and
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o) z o’ o
X, V't (t1, xp)  (t1+ dt, xp + dx)
o) o h o)
(] +dt', xo + dx') (], Xa) xpVt

FI1GURE 1. The relative acceleration of the plates in the
rest-frame of the left plate ¥ (top panel) and in the rest-
frame of the right plate ¥’ (bottom panel)

thus start moving relative to the wall at x,. While we would at this
point insist it is the acceleration of the impacted wall which breaks
the symmetry of the problem, it is not clear that the acceleration of
the walls in this system can be defined in anything but relative terms
either (see [5] for further discussion on the principle of general rela-
tivity whereby all reference frames are considered equally valid for the
description of physical processes). Consequently as to which wall is
indeed moving appears to depend upon the reference frame used, and
as such the actual location of the impact between the particle and the
container is not defined in absolute terms. In such an experimental
configuration the location of the particle is not in fact well defined and
is only ever meaningfully defined up to a precision [ = x, — z,.

3.1. The Hamilton-Jacobi equation. Consider now a particle in
motion between the plates when these plates are a rest relative to each
other. This particle may also serve as an observer we call Oy and has
an associated rest frame Y, wherein its own space-time location has
coordinates (7,0) for 7 € R. The locations of the observers O and O’
will be of the form (7,&,) and (7, &,) where £, and &, are functions of 7
depending on the relative state of motion between Oy and the observers
O and O'. The map from the coordinate frame X to the frame Yy and
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its inverse are denoted by

Tt )| T T O] _ |t
vien = 0] = [f] weo=[xn8) - |
It is noted that ¥ and Y’ are the same coordinate system up to a simple
translation while O and O’ are at rest with respect to each other.
The quantum mechanical description of matter due to Schrodinger
relies on the description of a material particle in terms of the Hamilton-
Jacobi equation for the system, usually presented in the form

oS oS
E +H (q, a—q) = 0,

The functional

t
s= [ Lig.da
to
is the classical action associated with the particle motion, L [q, ¢] being
the associated Lagrangian and H (g, p) the corresponding Hamiltonian
obtained from the Legendre transformation
oL

H(q,p) =pq— Llq,4l, P= 5

(see [3] for a comprehensive discussion of the Hamilton-Jacobi equa-
tions in classical mechanics).

In the current scenario the generalised coordinate g of the observer
Oy corresponds to its spatial coordinate x (or §) within the reference
frame X (or ¥g). In particular, the classical action of the observer with
respect to its own rest frame 3, is simply

(10) S = —/ me*dr,

this action being invariant under the group of Lorentz transformations.
In terms of the Hamilton-Jacobi formalism the energy-momentum of
Oy with reference to the frame ¥ are given by

oS 8_5
ot P= ox’

in line with the transformation (7).

3.2. The wave equation. In [9, 10] a substitution of the form S =
K 'log v was used to demonstrate that a Keplerian system was describ-
able in terms of a wave function 1) where the quantisation of energy
levels in the system was understood in terms analogous to the discrete
modes of a vibrating string. In some sense this result is a formali-
sation of de Broglie’s original proposition that a complete description
of particle motion should be understood in terms of associated wave
properties (cf. [1, 2]). In the later work [7] it was demonstrated that
a particle following a trajectory governed by a classical action of the
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form (10) may be described in terms of a wave-function which shares
many similarities with de Broglie’s.
The associated wave equation is derived from the relativistic energy-

momentum relation

E? — p? = m2c
and the condition ensuring conservation of energy-momentum along
the trajectory, namely

10E 0Op
2ot Or
These conditions written using the Hamilton-Jacobi formalism are given

by

1 (0S\* [0S\
11 — = - (=] =m??
(11a) c2<8t) (8SE> me
1028 09%*S
11b ——— =0
(11b) 2 ot2 0x? ’
respectively. Following a procedure similar to that adopted in [9] we
propose S = K In where K is constant, which upon substitution into
(11a)—(11b) yields
182¢_82¢_m202¢_0
2 ot Ox? K2 "
Meanwhile the function 1 may be written in terms of the action integral

according to
( ) 1 7(t,z) )
Y(t,x) = exp ——/ medT p .
K T(tOJO)

In [6, 7] this expression for ¢ is interpreted as the probability amplitude
observer Oy s located somewhere along the classical trajectory with end
points (to, xo) and (t,z).

Given the map 7(t,z) (cf. equation (7)), we note that at any fixed
instant ¢ there is a spread in the possible values of 7 associated with
the observer Oy given by

(12)

pl
mc2’

(13) AT =7(t, ) — T(t, 1) =

depending on where Oy is with respect to ¥. If the plates of the ap-
paratus begin to move apart at some instant ¢ then it is required that
the probability amplitude at x, and x; should be of equal magnitude
which requires [1(t, z,)| = |¥(¢, x,)|, thus ensuring it is equally likely
the particle is at x, or x; at the moment of impact. Thus we deduce

1 7(t,zp) L )
+1l=exp{ —— mcdr p = e  KMEAT
K 7(t,za)
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which simply follows from £ (¢, x,) = 1(t, zp) having divided through
by ¥(t, z,). Having insisted Oy should have non-zero velocity relative
to the frame ¥ it follows that A7 # 0 (cf. equation (13)) and so it
follows that % =nmi forn € Z (since e* >0 and e* =1 < =0
for z € R). As such we set K = 2 with A the reduced Planck constant,
and equation (12) becomes

10% 0% m3?
2 ot?  Ox? h?
the familiar Klein-Gordon equation.

The basis of the solution space for equation (14) is of the form
eFWi=k2) where iw = E and hk = p with E? — p*c? = m2¢*, while
a general solution (¢, x) may be written as a superposition of such
basis solutions. Consider now the simplest such superposition

’lp(t, x) = a(k-)e’i(Dthka) + a(_k.)ei(wt+km)

where Oy is in a superposition of possible momentum states £p with
respect to the frame X as illustrated in Figure 2. It is important to

(14) Y =0,

EA

F1GURE 2. The possible momentum states of Oy as ob-
served in the reference frame X, the rest frame of O

note that in Figure 2 the observer Oy is not in collision with the plate
at xp in the classical sense as this would mean a transfer of energy-
momentum from Oy to O, which would in turn require Oy to undergo
a reduction in energy after the collision.

In the specific case where a(k) = —a(—k) we find

Y(t, ) = —2ia(k) sin(kx)e™,
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and imposing [ [4(t, 2)|* dz = 1, we find
1 = |a(k)|? [2 + cos(2kx,) — cos(2kz,)]

This must be true for any values x, = x, + [ since the coordinates are
simply labels, and so for the choice —x, =z, = é it follows that

L=2la(k)[*,
which must also be true for any z;, = z, + [, meaning
2kxy = 2kx, +2nm n € Z.

It follows at once that

nm
T?
as is familiar from the non-relativistic particle in a box and that such
a superposition generally takes the form

2 nmwry\
R B i(wnt—o)
(15) Un(t, ) \/;Sln ( l ) e ,

with w, = m;2‘34 + ”2?22‘32 the angular frequency associated with the

n-energy level E,, = hw, and where ¢ is an arbitrary real constant
phase.

k:

3.3. Interpretation of the wave function. It is clear that

rz: T(tyxb)
exp{ — / mcidr
h 7(t,za)
cannot represent the probability amplitude a particle is somewhere

along the trajectory connecting (t,x,) and (¢,x;) since the particle
cannot travel between these two locations without violating causal-

ity. Thus we abandon the interpretation that exp { L (L) mc2dT} is

i J7(to,wo)
the probability amplitude the particle is somewhere along a trajectory
connecting (o, xg) and (¢, x) even if the two space-time locations are
causally connected.
Instead we recall what the map 7(¢, z) actually represents classically:
it is the time coordinate ascribed to an even at (¢, x) according to the
observer Oy who is at rest with respect to the coordinate frame .

Thus exp{ ' /. (L) ) chdT} is the probability amplitude that events

h J1(to,zo

as observed in X at (tp, 7o) and (t,z) will appear at separate times
in Xy the time difference being 7(t,z) — 7(t9, o). Now owing to the
linearity of the map 7(t, x), fixing the values (¢, zo) and (¢, z) means a
specific value for the difference 7(¢, x) — 7(to, ) ensures unique values
for (E,p). As such the probability amplitude 7(to, z¢) — 7(¢,2) has a
certain value is equivalent to the probability amplitude the observer O
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has an appropriate energy-momentum (£, p) with respect to the frame
Y to ensure this difference in 7-values.

Consider now the observer Oy whose motion with respect to the co-
ordinate system is characterised by the wave function 1, (¢, x) given
in equation (15), and an event whose coordinates in 3 are of the
form (t,zp). Since 1, (t,x) is the probability amplitude that the cor-
responding 7-coordinate of the event in the frame % is 7(¢,z), then
the probability amplitude any event of the form (¢, x;) will have some
T-coordinate in > becomes zero. In particular there is a vanishing prob-
ability density [¢(t, zp)| associated with a coordinate correspondence
of the form (¢, z;) >~ (7,0), where =~ is used to indicate these are space
time coordinates for the same event as observed in different frames.
This in turn means Oy and O’ never occupy the same space time loca-
tion. Thus there is a vanishing probability density associated with a
collision between the Oy and O" when the coordinate map from ¥ to
Yo is characterised by ¥, (¢, x).
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