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Abstract:
The deflationary account of representations purports to capture the explanatory role representations
play in computational cognitive science. To this end, the account distinguishes between
mathematical contents, representing the values and arguments of the functions cognitive devices
compute, and cognitive contents, which represent the distal states of affairs cognitive systems relate
to. Armed with this distinction, the deflationary account contends that computational cognitive
science is committed only to mathematical contents, which are sufficient to provide satisfactory
cognitive explanations. Here, I scrutinize the deflationary account, arguing that, as things stand, it
faces two important challenges deeply connected with mathematical contents. The first depends on
the fact that the deflationary account accepts that a satisfactory account of representations must
deliver naturalized contents. Yet, mathematical contents have not been naturalized, and I claim that
it is very doubtful that they ever will. The second challenge concerns the explanatory power of
mathematical contents. The deflationary account holds that they are always sufficient to provide
satisfactory explanations of cognitive phenomena. I will contend that this is not the case, as
mathematical contents alone are not sufficient to explain why deep neural networks misclassify
adversarial examples.
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1 - Introduction

What are the factors turning a wrinkly clump of specialized cells like a brain into a representational system? “Classic” answers

to this question attempts to naturalize content; i.e. spell out the answer pointing to some privileged naturalistic relation.

Some such accounts center around causal/informational factors (Dretske 1988; Fodor 1990), others appeal to biological

functions (Millikan 1984), and others still centered around abstract notions of resemblance (O’Brien and Opie 2004). Yet

they all share a problem of content determinacy. They fail to specify conditions yielding unique and well-determined

contents to representations. Causal/informational accounts cannot decide whether distal or proximal objects are

represented (cf Artiga and Sebastian 2018). Theories based on biological functions face the terrible disjunction problem: the

contents they deliver being often unruly and open-endely disjunctive (cf Hutto and Myin 2013, Ch.4). Resemblance-based

theories have problems in determining contents too: resemblances are notoriously cheap (Sprevak 2001).

Egan (2014; 2019; 2020a) suggests these failures suggest a change of approach. Rather than striving to naturalize content, we

should aim at capturing the role representations play in cognitive science. To reach this goal, Egan’s (2014; 2020a)1

de�ationary account identi�es two distinct kinds of content: cognitive and mathematical. Cognitive contents are contents

usually understood (representations of distal worldly targets), and they pertain to a facultative gloss layered over

cognitive-scienti�c explanations. They’re not “inside” the systems cognitive science studies. Conversely, mathematical

contents really are “inside” these systems, and are thus genuine components of cognitive-scienti�c explanations. Yet, they

only represent abstract objects; namely the arguments and values of the functions cognitive systems compute.

I want to raise some problems for the de�ationary account. Thus, after having introduced it (§2), I will argue that it fails to

satisfy the desiderata it sets for itself (§3), and that it falls short of accounting for at least one interesting explanandum of

contemporary cognitive science: adversarial examples-induced misclassi�cations (§4). To anticipate the moral I will draw

from these objections (§5), I say this: that a thorough examination of the de�ationary account might prove useful in two

regards. On the one hand, it can help accounts of representations outside the “classical”, content-naturalization based,

tradition (Cohelo-Mollo 2021; Piantadosi 2021) to avoid some dangerous pitfalls. On the other hand, it is relevant for the

currently most talked about neurocognitive theory predictive processing and the free-energy principle. For, many

philosophers interested in representations and working within these frameworks have heavily relied on elements borrowed

from the de�ationary account (Wiese 2017; 2018; Ramstead et al 2020). The problem raised here, thus, might

(dangerously) propagate to the philosophical literature on predictive processing.

1 Really, in computational cognitive science. Since anti-computationalist are typically also anti-representationalsits (e.g. Hutto and Myin 2013), I will ignore
them here.
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2 - Egan’s de�ationary account of representations

Egan’s account is a reaction against “classical”, content-naturalization based, accounts of representation. This reaction is

motivated by the fact that “classical” accounts fail to meet a number of minimal and (almost) universally accepted

desiderata , namely:2

(1) Misrepresentation: A successful account of representations allows for
misrepresentation to occur

(2) Determinacy: A successful account of representations assigns determinate contents to
representational vehicles

(3) Empirical adequacy: A successful account of representations conforms to the actual
practice of cognitive science

(4) Naturalism: A successful account of representations speci�es, using non-intentional
and non-semantic terms, at least su�cient conditions for a state or structure to bear a
determinate content

(5) No pan-representationalism: A successful account of representations does not imply
that many clearly non-representational things count as representations

Some clari�cations. (1) and (2) are constitutively connected. The ability to misrepresent (2) identifies representations, setting

them apart from mere states or objects (cf Dretske 1986). But misrepresentation requires (1) determinate contents:

open-endedly disjunctive contents make misrepresentation, if not impossible, at least highly problematic. This is precisely

why content determinacy is such a big problem for “classic” accounts.

Though surely a desideratum in its own right, empirical adequacy (3) is pivotal for the de�ationary account. The de�ationary

account aims to capture the explanatory role of representations in cognitive science, so it must be empirically adequate to

succeed. Notice also (3) is connected with (1) and (2): cognitive scientists ascribe fairly well-determinate contents to

representations (e.g. Backer et al. 2021). The satisfaction of (1) and (2) is a prerequisite for satisfying (3).

Condition (4) captures the widespread idea that content supervenes on more basic facts and features of the world. Hence, it

should be explainable in terms of these more fundamental facts and features. Notice that these features may, but need not,

be the causal/informational, teleological or similarity based features mentioned in (§1). Content might, but need not, be

naturalized by a “classic” content-naturalizing relation. It may be naturalized by other factors, such as computational

implementation (Coelho-mollo 2021; Piantadosi 2021). What matters for (4) is only that the factors naturalizing content,

whatever they may be, are not already semantic or intentional.

Lastly, (5) descends from (3), at least insofar cognitive scientists do not label every behavior-producing structure a

representation (cf. Webb 2006). Moreover, it safeguards the explanatory power of representations: pan-representationalism

2 See Egan (2019: 248-249; 2020a 28-29). In her (2020a) Egan mentions more desiderata than I report. I omit those for the sake of brevity.
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trivializes the explanatory power of content, equating representations to mere causal mediators (see Ramsey 2007; Orlandi

2020).

Egan (2019; 2020a) argues that “classic” accounts always fail to satisfy (1) and (2). Hence, they should be rejected. But what’s

the shape of the alternative? Since the de�ationary account aims at spelling out the role representations play in cognitive

scienti�c explanations, these explanations provide the natural starting point.

Egan (2010; 2014; 2017; 2020) construes cognitive-scienti�c explanations as function-theoretic: they unveil the mathematical

function F computed by a cognitive device S. Function-theoretic explanations sit at Marr’s (1982) computational level: they

mathematically characterize the input-output behavior of a device. And indeed Marr’s account of vision provides Egan’s

paradigmatic example of a function-theoretic representation. According to Marr we explain what retinas - the system S - do

in vision by saying they compute a smoothing function F convolving a Laplacian operator with a Gaussian operator. But

what does it mean to say a system S computes a function F? Egan (2010; 2014; 2020a) suggests that S computes F just in

case:

(i) There exist a realization function fR mapping, in a many-to-one fashion, the physical states of S onto a
range of vehicle types; &

(ii) There exist an interpretation function fI mapping, in a one-to-one fashion, the relevant vehicle types
in (i) onto the values and arguments of F; &

(iii) For all argument - value pairs of F, if S is in a state that, according to (i) and (ii), maps on a speci�c
argument of F, then S is caused to enter in a state that, according to (i) and (ii) maps on the
corresponding value of F

Less formally: (i) fR identi�es the computational state types (or vehicle types) tokened in S; (ii) fI matches them to the

arguments and values of F in a one-to-one fashion, and (iii) says that S computes F just in case the state-transitions in S

“march in step” with the argument-value pairings of F. Egan (2014; 2020) provides this simple example. Suppose S

computes the addition function F. This means that (i): there is a function fR grouping S’s states together in well de�ned

vehicle types; & (ii) there is a one-to-one mapping fI from these vehicle types onto numbers, such that; (iii) if S is in a state

s’ (as identi�ed by fR) and fI(s’)=n, and then receives an input causing it to occupy state s’’ and fI(s’’)=m, then S is caused to

enter a state s’’’ and fI(s’’’)=n + m.

An alternative way to spell (ii) is by saying that fI gives to the vehicle types identi�ed by fR their mathematical contents.

Mathematical contents thus represent abstract objects; namely the arguments and values of the F computed by S.3

Mathematical contents are also the explanatory factors highlighted by function-theoretic explanations, of which they are an

essential component (Egan 2014: 122-123). Their explanatory power (but more of this in §4) consists in subsuming the

3 Which need not be numbers. If F is a function from vectors to labels (as many neural networks), the relevant mathematical contents will be vectors and labels,
which are not numbers.
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behavior of a physical system under a mathematical function we already understand. They translate something unknown (a

system’s behavior) into something independently known (a mathematical function), allowing us to postdict and predict the

behavior of the system in a wide range of possible circumstances (cf Egan 1999; 2010; 2014; 2017; 2020). Knowing

function-theoretic characterization of a device S, we know how S behaves given some relevant input.

According to Egan (2014; 2019; 2020) function theoretic explanations are not complete explanations of our cognitive capacities.

They only inform us that a system S computes a function F. They don’t illuminate how computing F contributes to a

cognitive capacity. To illuminate this, function theoretic explanations need to be complemented by an ecological component:

a series of assumptions about the environment that clari�es how computing F contributes to the exercise of a cognitive

capacity. The ecological component allows us to “make sense” of F; it makes us understand how computing F contributes

to cognition. To continue with Marr’s retinical example: it is only because in this environment adjacent retinal cells receive

(roughly) the same amount of light that computing a smoothing function allows to detect sharp changes in illumination

value (edges), thereby contributing to vision.

But note how the ecological component has let cognitive contents into the picture: computing a smoothing function allows

retinas to detect edges. Doesn’t this mean that retinas represent edges? Egan (2014; 2019: 254; 2020a) answers negatively:

ratinas really only represent mathematical contents. Yet, Egan concedes, rather than stating the function computed and the

ecological component, we can say for simplicity’s sake that retinas represent edges. It’s simpler and easier to understand.

Thus, we can “summarize” the job done by the ecological component via ascriptions of cognitive contents.

Yet, Egan holds, these ascriptions are just ascriptions. Whilst retinas really detect edges, they do not really represent edges. No

edge-representations are really tokened within retinas; only representations of the relevant values and arguments are (Egan

2014; 2020a). Indeed, in her view, no cognitive contents are really ever represented within cognitive systems. Only

mathematical contents are. So, there’s no fact of the matter about which cognitive contents cognitive systems really

represent (cf. Coelho Mollo 2020). Cognitive contents are only ascribed from the outside, based on our pragmatic and

explanatory interests - roughly, based on the intuitive grasp they a�ord over a system’s behavior. And thus the

cognitive-content based talk is revealed to be just and informal, and strictly speaking facultative, “gloss” over genuine

cognitive-scienti�c explanations (Egan 2014; 2019; 2020a.) 4

Egan (2014; 2020a) holds that realizing the pragmatic and “glossy” nature of cognitive contents allows us to satisfy the relevant

desiderata. We surely do ascribe determinate cognitive contents. We don’t say that retinas represent edges or shadows or…;

4 However, it can play a heuristic role in guiding the empirical investigation of a device, if no function theoretic characterization of the device is available (Egan
2020a: 45-48)
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we say they represent edges - full stop. Thus (2), content determinacy, is satis�ed. But (2) and (1) - misrepresentation - are

constitutively connected. Once content is well determined, misrepresentation is entirely possible, and (1) is satis�ed too.

Being built on several case studies, we can expect the de�ationary account to be empirically accurate, so (3) should be

satis�ed. Egan claims her account is safe from panrepresentationalims, satisfying (5). After all, on her account cognitive

contents are ascribed, and surely we don’t ascribe cognitive contents to everything. Lastly, the account is not naturalistic, so

(4) is not met. But, Egan (2020a) claims naturalism is now a “don’t care” factor. Since cognitive contents are no longer

really part of cognitive-scienti�c explanations, the naturalistic credentials of cognitive science are not under threat. The

non-naturality of cognitive contents is quarantined in an “informal gloss” over the theory, and thus does not spread to the

latter.

Egan thus holds her account allows cognitive contents to satisfy (1) to (5). But, I want to note, there is an important sense

according to which, this does not matter, at least if the de�ationary account is correct. After all, according to the de�ationary

account, cognitive contents are not really genuine components of cognitive science! Yet mathematical contents are. And it’s

not clear whether they satisfy (1) to (5). I claim they don’t.

3 - Mathematical contents don’t satisfy the desiderata

Do mathematical contents satisfy desiderata (1) to (5)? To answer, start with (4). Mathematical contents are either natural or

non natural. If they are natural, (4) is satis�ed. If they are not, they fail to meet the desiderata, and so Egan’s account falls

short of her own standards of adequacy. And this failure matters. Unlike cognitive contents, mathematical contents are not

quarantined in an “informal gloss”. Their non-naturality does threaten the naturalistic credentials of cognitive science. So,

are mathematical contents natural?

Egan (2014: 213) replies with a qualified no: no “classic” content-naturalizing relation manages to naturalize mathematical

contents. It’s not hard to see why: “classic” content naturalizing relations all have a hard time accounting for representations

of abstract and non existing targets. Causal/informational theories, for example, just seem unable to account for this case.

Further, the de�ationary account is proposed as an alternative to “classic” theories of representations based on content

naturalization. And, if mathematical contents were naturalized by a “classic” relation, the de�ationary account would fail to

be a real alternative. That would be almost a pragmatic contradiction (cf Egan 2014; 2020). But, if mathematical contents

must satisfy (4) and “classic” theories of content do not succeed in naturalizing them, what does?

Egan (2014: 117, 119) seems to endorse a minimalistic form of interpretational semantics. Her suggestion seems to be that the

vehicle types (identi�ed by fR) represent the mathematical contents they represent because there is an interpretation

function fI associating vehicle types and contents in a one-to-one fashion. This is to say: the vehicle types identi�ed by fR
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represent what they represent because they can be interpreted as arguments and values of some function F. Whilst such an

approach is naturalistic in the relevant sense , it fails to satisfy other relevant desiderata.5

First, such an account leaves us in the dark about fR. How are the relevant vehicle types identi�ed? Usually representations are

type identi�ed by their contents (cf. Egan 2012: 256), and physically di�erent states or objects are clustered together into a

vehicle type because of their common content. But, the vehicles representing mathematical contents cannot be

type-identi�ed this way: for fI to match vehicle types and mathematical contents one-to-one, the relevant vehicle types must

have already been identi�ed. And their identi�cation matters. If there is no constraint on how these vehicles are identi�ed,

then pretty much every system is interpretable as computing some function (cf. Putnam 1988; Searle 1992; Copeland 1996

Scheutz 1999). And since interpretability is all that matters for mathematical content to be there, panrepresentationalism

follows. Thus, (5) is unsatis�ed. And since panrepresentationalism is connected to empirical adequacy, (3) seems unsatis�ed

too.6

Secondly, even supposing that there is a somewhat restrictive way to identify vehicle types, a problem with content determinacy

looms large. Given a system, S and a well-de�ned set of vehicle types (i.e. a well-de�ned fR), it will typically be possible to

put them in a one-to-one correspondence with multiple sets of argument-value pairings. Take an imaginary device S and a

fR. Assume that, given fR S can be interpreted as computing a limited form of addition: the inputs can be interpreted as

numbers ranging from 1 to 9 and the outputs can be interpreted as numbers ranging from 2 to 18. Now, the same device,

under the same fR, can be interpreted as computing a function (isomorph to addition) from the �rst nine US presidents to

the set of presidents from Adams (2nd president) to Grant (18th president). The same sets of states can be interpreted as

realizing the addition function F F(7;9)=16 or a function F* F*(Jackson;Harrison)=Lincoln. So, given fR, S is interpretable7

under at least two functions. But what do the vehicles tokened inside S really represent? Numbers, presidents, or both? Do

they represent the arguments and values of any function isomorph to addition in the 1-9 range? If interpretability is all that

matters, then presumably they represent all these mathematical contents. But then their content is not well-determinate in

any ordinary sense of the term: well-determined contents represent one and only one clear target. So, content determinacy

fails. And since content determinacy is constitutively connected with misrepresentation, it fails to. Desiderata (1) and (2)

are thus not satis�ed.

7 Of course, they’re respectively the 7th, 9th and 16th US presidents.

6 Couldn’t this problem be avoided by limiting the scope interpretability to the systems studied by cognitive science? That would restrict the number of systems
to which the present account assigns contents, thereby avoiding the problems with (5) and (3). But the move is ine�ective, for current cognitive science studies
all sorts of systems, including plants (Calvo et al 2020), Bacteria (Lyons 2015), subcellular mechanisms (Yakura 2019) and even certain materials (McGivern
2019). Surely saying that these systems represent counts as a commitment to panrepresentationalism.

5 As Cummins (1989: Ch. 10) noticed, in order for some states to be interpretable as representing, there is no need of someone actually interpreting them. A
system S may be interpretable as computing F even if no-one actually interprets it as such.
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Worse still: given Egan’s minimalistic interpretational semantics, her account may be circular. Surely, a good reason as to why a

system S is interpretable as computing F is that it actually computes F. So, S is interpretable as computing F because S

actually computes F. However, Egan’s account of computation is semantic. In her view (conditions (i) to (iii) above) S

computes F because S represents the arguments and values of F. But, if the minimal interpretational semantic Egan proposes

is correct, S represents these arguments and values because it is interpretable as computing F. And it is interpretable in that

way because it really computes F! We’re caught in a circle.

Cummins (1989: 90-91) noticed the problem �rst, and argued it should be solved by prioritizing computation: according to

Cummins we should say systems represent because they compute - not the other way around. Here, the move is

advantageous for several reasons. A suitably robust account of physical computation (and computational implementation)

can restrict the number of systems that compute, thereby avoiding pancomputationalism. Given the link between

computation and mathematical contents, it will also avoid panrepresentationalism, making the de�ationary account

empirically adequate (or at least, more empirically adequate than it is). These are at least steps towards the satisfaction of (5)

and (3). Further, a suitably robust account of physical computation should enable us to say any physical system S computes

few (ideally one) function F. It can thus restrict the ways in which any system can be rightfully (or at least non-otiously)

interpreted. Thus, if mathematical contents are really grounded in interpretability, a robust account of physical

computation may make, or contribute to make, mathematical contents determinate and able to misrepresent, thereby

contributing to the satisfaction of desiderata (1) and (2).

Yet, I fear no account of physical computation will deliver these boons. For, accounts of physical computation can be clustered

together in three big families of approaches (semantic, “mapping”, and mechanistic; see Piccinini 2015; Piccinini and Maley

2020), and there are very general reasons as to why each approach cannot, in principle, provide us with the desired results.

Consider, �rst, semantic approaches. Such approaches can take a huge number of forms (Fodor 1975; O’Brien and Opie 2008;

Shagrir 2001; Maley 2021), but they all cluster together because they take representation to be necessary for computation.

Whilst individual accounts vary, they all agree with the “no computation without representation” motto. And this makes

these approaches unsuited to function as a platform to deliver well-determined and well-distributed mathematical contents.

For, presumably, representations require contents. Thus computation requires content. If the content required is cognitive

content, then the de�ationary account would simply be false: if computation requires cognitive content, then cognitive

content is not a “facultative gloss” on computational (function-theoretic) explanations, but sits at their very heart. But if

the content required is mathematical content, then we’re caught in a loop: our account of physical computation would

presuppose the kind of well-determined and well-distributed mathematical contents it is supposed to deliver.
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Consider now “mapping” approaches. In general, mapping approaches claim a system S implements a computational device C

computing a function F (minimally, the transition function of C) just in case the physical state transition of S and the

computational state transition of C “march in step”, meaning that there is a one-to-one mapping I from a relevant subset of

states of S onto the states of C, and, for all state transitions c’ → c’’ of C, S transitions for s’ to s’’ only if I(s’)=c’ and I(s’’)=c’’.

This is the necessary condition all mapping accounts share. If this condition is also taken to be su�cient, one reaches the

“simple” mapping account (Godfrey-Smith 2009). Otherwise, one could robustify the account adding further necessary

conditions. These vary from account to account, and won’t matter here (see Piccinini and Maley 2021 for a survey).

There are two reasons as to why “mapping” approaches will not deliver the desired boons. One has to do with computational

indeterminacy, and I will discuss it thoroughly when dealing with mechanistic approaches. The other is that all “mapping”

approaches entail a form of limited pancomputationalism. Minimally, they’re all forced to concede that every physical

system S implements an inputless �nite state automaton C computing the identity function (cf Chalmers 1995; 2011).8

Now, while this form of limited pancomputationalism need not be fatal for mapping accounts and may even be successfully

dealt with in various ways (see Orlandi 2018; Sprevak 2019; Schweitzer 2019 for discussion), it poses a large problem when

it comes to using “mapping” approaches to physical computation to deliver mathematical contents. For, if systems

represent mathematical contents because they compute, and all systems compute something, then all systems represent some

mathematical contents. And this is a form of panrepresentationalism. Thus, (5) is not satis�ed. Since desideratum (3) (i.e.

empirical adequacy) is connected to (5), it would fail to be satis�ed too.

Consider, lastly, mechanistic approaches. These approaches apply insights from (neo-)mechanist philosophy of science to9

unravel the nature of computational implementation. Roughly, they claim that a physical system implements a

computational device only if it is a mechanism with the function to compute (see Miłkowski 2013; Piccinini 2015). Roughly10

put, a mechanism (in the relevant sense) responsible for a phenomenon is a set of spatiotemporal components performing

certain functions and having certain spatiotemporal relations, such that they constitute the phenomenon under

investigation (cfr. Piccinini 2010: 285). “Computing” is here understood as the manipulation of digits according to rules.

Digits may be thought of as the minimal computationally-salient states manipulated by a device, which may be

concatenated to yield more complex computationally salient states. The rule according to which a mechanism yields digits

as output when “feed” some digit determines the mechanism’s computational identity. Importantly, such a rule must be

10 I will leave the relevant notion of function unspeci�ed because (a) it’s not relevant for my argument and (b) which notion to use is a contested matter (cf
Miłkowski 2013; Piccinini 2015) on which I need not take a stance.

9 Assuming, for the sake of discussion, that they are compatible with the de�ationary account. They may not be (cf. Egan 2017).

8 Alternatively: let C* be an inputless �nite state automaton with a single state x. Let its state transition function F* be F*(x)=x. Lastly, let the mapping I be a
mapping from all the states of any system S to x. Clearly given this mapping, any physical system S implements C*, and so computes F*.
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medium-independent: it must be sensitive only to the degrees of freedom of digit types, while ignoring any other feature of

their tokens.

Now, whilst the mechanistic approach is a robusti�ed version of the “mapping” account (cf. Piccinini 2015), it avoids

pan-computationlism. Not every physical system is a computational system in the sense just sketched: for one thing, not

every physical system has functions, let alone the function of computing. The mechanistic account thus avoids the

problems with (3) and (5) sketched above.

Yet, the mechanistic approach struggles in identifying the computational identity of certain devices (cf Sprevak 2010; Piccinini

2015: 36-39; 127-130; Dewhurst 2018, Fresco et al. 2021). And this prevents it from being a platform to assign

well-determined mathematical contents able to misrepresent. So, (1) and (2) remain unsatis�ed. Let me explain.

Let S be a computing mechanism, operating on two digit types “@” and “#”. S Takes two digits as inputs yielding one as output

according to the following rule: it outputs @ iff both inputs are @s; else it outputs #. Table 1 below summarized S’s

behavior.

Input1 Input2 output

@ @ @

@ # #

# @ #

# # #

Table 1: The input-output table of S

Table 1 looks similar to the truth table of the logical conjunction: a function from (pairs of) truth values to truth values. It is

thus natural to think @s represent the truth value true and #s represent the truth value false. It thus seems that the

mathematical contents carried by @s and #s are well determined. But the impression is misguided. Let @s carry the

mathematical content false and #s carry the mathematical content true. Now Table 1 looks like the (upside-down) truth

table of the inclusive conjunction. So, do “@”s represent the truth value true, false or both? Their mathematical content is

not well determined.

This problem reaches deeper still. For the mathematical contents of @s and #s may be undetermined even when the function

computed is determined. Consider a system S* displaying the computational behavior summarized in Table 2:11

Input Output

@ #

11 Thus, attempts to restore computational determinacy such as the ones in (Dewhurst 2018) and (Fresco and Miłkowski 2021) are not going to solve the
problem of indeterminacy I’m pointing at.
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# @

Table 2: the computational behavior of S*

S* takes one digit as input yielding one as output. If the input is a @, it yields a # and vice versa. It thus seems natural to

interpret S* as computing the logical negation function, and there seems to be no other interpretation around. But saying S*

computes the negation function it is yet not enough to determine whether @s represent the truth value true or the truth

value false. The relevant mathematical contents are left undetermined. So, (2) is not met, and since (2) is not met, (1) is not

met too.12

An obvious objection is this: whilst looking at S alone does not determine the mathematical contents of @s and#s, looking at

how S is embedded in a larger computational device, and how it cooperates with other computational mechanisms, will

determine the contents of @s nad #s.

The objection fails on several grounds. First, even if looking at how S contributes to a large computational system were

su�cient to determine the mathematical contents of @s and #s, S need not be embedded in a larger system to compute. S can

compute alone. And if computation is what determines mathematical contents, there are still cases in which mathematical

contents are indeterminate. Second, observing how S is embedded in a larger system does not yield well determined

mathematical contents. Consider a system M constituted concatenating S and S* as follows: S takes two inputs, yields an

output that function as S* input, and then S* yields the �nal output. The behavior of M is summarized in table 3:

Input1 input2 S S*

@ @ @ #

@ # # @

# @ # @

# # # @

Table 3: the computational behavior of M

If @s represent false and #s represent true, M computes the nor (not or) function. Under the opposite assignment of truth

values, M computes nand (not and). The mathematical contents in M are thus as undetermined as the ones in S and S*.

Note that, in principle, no amount of added computational machinery will make the mathematical contents of @s and #s

determinate. It will always be possible to “swap” the truth values and see the entire device as computing a function. Maybe

the function will not be interesting, useful or intelligent. But functions need to be interesting, useful or intelligent to be

functions!

12 Note, also, that thus far I’ve assumed that the relevant digits are given and that their identity can be easily de�ned. But that is not the case, and there’s an
indeterminacy problem there too, see (Papayannopolus et al forthcoming).
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Perhaps one could object to my analysis that computation is necessary, but not sufficient, for mathematical contents. Maybe an

extra ingredient is needed. Maybe not all computational devices represent the arguments and values of the function they

compute. Maybe. All of this is surely possible, and, whilst I cannot imagine what this “extra ingredient” may be, I’ve read too

much Dennett (1991a) to take a failure of my imagination to be an indicator of a metaphysical impossibility. So, I challenge

defenders of the de�ationary account to identify the “extra ingredient”. I contend this challenge will not be met - but unless

someone tries to meet it, there is not much to discuss.

So, the minimalistic form of interpretational semantics Egan endorses is “on hold”. And “classic” content naturalization

relations (e.g. causal/informational ones) seem unable to do the required job, as highlighted above. What’s left? As far as I

can see, all that is left is a semantic primitivism; that is, the view that there are natural primitive (non-analyzable) semantic

facts concerning mathematical contents (cf. Burge 2010). But semantic primitivism is unappealing. For one thing, absent

an account of such primitive semantic facts, the primitivist strategy is more a blu� than an account of content (Piccinini

2015: 35). Secondly, it seems that these primitive semantic facts are epiphenomenal: they make no di�erence to the

computational behavior of a system. Recall, b�ely system S, whose computational behavior is summarized below in table 1

bis:

Input1 Input2 output

@ @ @

@ # #

# @ #

# # #

Table 1 bis : The input-output table of S (again)

Suppose that as a matter of primitive semantic fact, S is an And Gate: it computes the conjunction function. So, as a matter of

primitive semantic fact, @s represent true and #s represent false. Still, I could use S as an Or Gate in an appropriate system. I

could even build a system for the purpose of using S as an Or Gate. Or, if you prefer, I could bring S with me while I travel

through possibile words, until I �nd a word W* in which, as a matter of primitive semantic facts, @s represent false and #s

represent true, and use S as an Or Gate there. It seems that the “primitive semantic facts”, whilst su�cient to give us

well-determinate mathematical contents, make them irrelevant to the actual functioning of a device. They lose their

explanatory power. And, thusly robbed of their explanatory power, it is not clear why we should look at mathematical

contents as something more than a simpli�catory gloss summarizing the physical/causal behavior of physical systems.
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So, at present, there seems to be no satisfactory way to naturalize mathematical contents. It seems that all avenues to

naturalization force us to pay too high of a price. To naturalize mathematical contents is to forego many of the desiderata in

the (1)-(5) list. It is thus tempting to keep them unnaturalized: just erase desideratum (4) out of the list.

Whilst the move may be legitimate, there would still be problems for the de�ationary account. Even with non-natural

mathematical contents, the de�ationary account fails to capture the role representations play in cognitive scienti�c

explanation. Below, my counterexample.

4 - De�ating the explanatory power of de�ated representations

On the view the de�ationary account proposes, cognitive scienti�c explanations consist of two ingredients: (I) the

function-theoretic characterization of the device unders scrutiny, and (II) the ecological component. To the extent that

function-theoretic characterization illuminate the mathematical contents a device represents, it seems the de�ationary

account commits to the view that mathematical contents (with the ecological component) explain cognitive phenomena.

How do mathematical content explain? The answer seems twofold. On the one hand, they explain by allowing us to predict and

postdict the behavior of a computational system. If I know that S computes F, I know how S would behave were it to receive

an input i; namely, S would produce the output o where o=F(i). On the other hand, mathematical contents allow us to

describe the behavior of the system in terms of successes and failures, and to account for these successes and failures. If S

computes F, S fails every time it does not output o in response to i; and we can say S’s failure is due to it having

miscomputed F. In Egan’s own words:

“In attributing a competence to a physical system—to add, to compute a displacement
vector, and so on—function-theoretic models support attributions of correctness and
mistakes. Just as the normal functioning of the system—correctly computing the speci�ed
mathematical function—explains the subject’s success at a cognitive task in its normal
environment, so a malfunction explains its occasional failure. [...] One’s hand overshooting
the cup because the motor control system miscalculated the di�erence vector is a perfectly
good explanation of  motor control failure” (Egan 2017: 158)

One important point, often stressed when it comes to cognitive content-based explanations, is that explanations of failures and

successes always account for patterns of failures and successes (cf Gładziejewski and Miłkowski 2017; Shea 2018). The point

can be easily illustrated elaborating on Egan’s example above: the hand overshoot because the device outputted a vector v*

larger than of v (the one it should have outputted). And here’s the relevant pattern of failures: the larger v*, the more severe

the overshoot. And the larger one specific component of v*, the more severe the overshoot in a specific direction. It’s possible to

elaborate further: were v* smaller than v, the system would not have overshoot: it would have under-shoot. Note that in

order for this kind of explanation to work, there must be a systematic correlation between mathematical contents and

failures: the larger v*, the more severe the overshoot. This correlation may (and it typically will be) more complex and less
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linear, but it needs to be there. If that correlation is absent, then mathematical contents do not do the desired explanatory

work, and the de�ationary account fails to capture the way in which representations are used in cognitive science.

I claim that, in the case of adversarial examples induced misclassification (AEIM), no such correlation can be found. Hence

AEIMs constitute a direct counterexample to the explanatory ambitions of the de�ationary account.

AEIM is a phenomenon concerning deep classifiers: a speci�c class of deep neural networks. These devices have a clear

computational pro�le: they compute a probability distribution over class labels, given an input vector (cf. Buckner 2018;

Mitchell 2019 and Skansi 2018). Thus their function-theoretic characterization is well known. Simplifying a lot, deep

classi�ers can be considered as “good old shallow” neural networks of the ‘80s: what changes is just their scale and the

number of computational layers. Thus, deep classi�ers compute by transforming vectors. The input vector is spread

through successive layers of units or neurons. Each neuron yields an output (a vector component) based on the activation

function it computes. All neurons in a layer thus collectively de�ne the output vector of that layer. That output is then

“funneled thought” weighted connections, which modify it proportionally to their weights, thus yielding the input for the

next layer. The process is repeated until the last layer (called output layer), is reached.

It is evident that deep classi�ers richly trade in mathematical contents. The weighted connections store the parameters of the

model the classi�er uses to classify its inputs. Neurons compute activation functions. They have (numeric) bias. The

network also represents its own learning rate - a number “telling” the network how much to update its parameters. All these

things, as well as the network topology (number of neurons and connections and how they’re disposed) are the

hyperparameters of the model, and they in�uence the classi�cation (and thus the computation) too.

Suppose now a deep classi�er C correctly classi�es an input vector v. An adversarial example to C is a slightly modi�ed version

v* of v that C misclassi�es with very high con�dence, despite the fact that v and v* are identical to human eyes. If, for

example, v and v* are images, their di�erence may be of just one pixel (e.g. Su et al. 2019). And, of course, when v* fools C,13

we assist to an instance of adversarial-example induced misclassi�cation (AEIM).

AEIMs call for an explanation for a number of reasons. Deep classi�ers are some of our best neurocognitive models of

classi�cation, especially when it comes to human visual classi�cation (Yamins and DiCarlo 2016; Rajalingham et al. 2018).

But we are immune from AEIMs! There’s thus a signi�cant di�erence between us and some of our best models of us.14

Understanding what this di�erence is is pivotal both to build better models and to understand ourselves.

14 At least, in normal conditions. Time pressured humans may be fooled by adversarial examples (Elsayed et al. 2018).

13 This is a huge simpli�cation. An “alternative” family of adversarial examples is constituted by “senseless” (to human) vectors which the machine classi�es with
high con�dence (cf. Nguyen et al. 2015). See (Yuan et al. 2019) for an up to date survey on adversarial examples.
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Yet the explanatory schema the de�ationary account proposes seems unable to account for AEIMs. For one thing, the discovery

of adversarial examples and AEIMs was a surprise (cf. Szegedy et al. 2013). It was not expected (nor predicted) given the

function-theoretic characterization of deep classi�ers. Nor knowing the function-theoretic characterization allows AEIMs

to be explained. In fact, they currently stand in need of an explanation. Worse still, the explanations currently proposed

massively involve cognitive contents. Consider the following two proposed explanations.15

Proposed explanation #1. Ilyas et al. (2019), start by mathematically de�ning features (the
properties guiding classi�cation). Then they mathematically de�ne a subclass of features:
useful features (i.e. features that correctly guide the classi�cation). This subclass is then
(again, mathematically) divided into two disjoint subsets: robust and non-robust. Robust
useful features correctly guide classi�cation even after the adversarial perturbation has been
applied. Non-robust ones do not. Thus adversarial induced misclassi�cation is due to the
classi�er reliance on non-robust useful features.

Proposed explanation #2: (Zhou and Firestone 2019) tested human subjects in a variety of
classi�cation tasks using adversarially perturbed images, asking the human participants to
pick up the label they think a machine would assign to the image. Strikingly, they found
that in all the experiments (using a variety of adversarially perturbed images in a variety of
experimental paradigms) participants were able to choose “like a deep classi�er” with a
percentage of success well above chance. This led Zhou and Firestone to suggest that
adversarial examples induce misclassi�cations because networks do not discriminate
between appearing like something and appealing like being something (e.g. a plush toy
might appear like a tiger, but it does not appear to be a tiger).

The explanation o�ered by Zhou and Firestone is clearly based around cognitive content. Prima facie, something can appear as

something else only if we represent it as a distal target which it is not. But representing distal targets involve cognitive, rather

than mathematical, contents. The explanation o�ered by Ilyas and colleagues mentions cognitive contents too, although in

a roundabout way. In fact, their mathematical de�nition of features is intended to capture the “folk” de�nition of features

as representations of salient distal properties (cf Hinton 2014; Olah et al. 2018). Further, robustness and non-robustness

are de�ned relative to a human-selected notion of similarity. And such a notion is plausibly based on how we represent

things as being alike.

Notice: contra Egan (2020a 46-48), these ascriptions of cognitive contents cannot have only the heuristic role of orientating the

research for a function-theoretic characterization. We do possess the relevant function-theoretic characterization. Deep

classi�ers are not objets trouvé whose computational pro�le must be discovered. They’re arti�cial systems we create for the

purpose of computing a mathematical function we already know - in the case at hand, a probability distribution over labels,

given an input vector. So, in the case of AEIMs, cognitive contents are not just “heuristic patches” we use while we wait for

the relevant function theoretic characterization to come. They must play a deeper explanatory role.

15 I use them just as examples. I do not want to imply they’re the only, or even the best, explanations. see also (Engstrom et al. 2019; Bucker 2020) for
discussion.
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And they must play such a role, for there is seemingly no correlation between mathematical contents and AEIMs. Given that

such a correlation is necessary in order for mathematical contents to explain, then it should be concluded mathematical

contents do not explain (in the relevant sense).

To see why no such correlation holds, consider that adversarial examples are transferable. If an adversarial vector v* fools a

classi�er C, then v* is likely to fool also a di�erent classi�er C* in the exact same way. AEIMs are thus in an important way

not random. There is a clear pattern in the failure they induce - a pattern that prima facie looks like a prima explanatory

target. And yet the pattern stands in no discernible correlation with mathematical contents: ceteris paribus, identical errors

should correlate with identical (or at least relevantly similar) mathematical contents. And yet, when it comes to deep

classi�ers, identical errors correlate with di�erent mathematical contents, for di�erent classi�ers are bound to have di�erent

mathematical contents. Indeed, not only adversarial examples are transferable across classi�ers with di�erent

hyperparameters (such as di�erent topologies, number of layers, biases, learning rate or activation functions, cf Szegedy et al

2013), even architecturally identical classi�ers trained on the exact same training set with the same training regime will

encode di�erent parameters (cf Churchland 1992: 177-178), thereby representing di�erent mathematical contents. Thus,

the situation looks like this: on the one hand, a tight and clear pattern of AEIMs; on the other, mathematical contents that

appear to vary ad libitum. This clearly prevents the two from correlating in any intelligible way.

One could object I’ve been too focused on mathematical contents. Maybe the ecological component holds the key to explain

AEIMs. Maybe yes, but it is hard to see what the ecological component may be in the case at hand. The only window on the

world available to classi�ers is their input data. And it seems that it can be altered too without compromising the

transferability of AEIMs (cf Szegedy et al 2013).

Alternatively, one might object that I’ve mischaracterized the explanatory role of mathematical contests. Cognitive contents are

said to explain in many ways. Maybe mathematical contents can explain in multiple ways too. A popular way in which

cognitive contents are said to explain is by being causes of a system's behavior (Dretske 1988; O’Brien 2015). But the

de�ationary account prevents mathematical contents from playing this explanatory role. On the de�ationary account,

contents have no causal powers (Egan 2014; 2020a). Another popular way in which contents are said to be explanatory

powerful is that of allowing us to grasp patterns we would otherwise fail to grasp (Dennett 1991b). The possible physical

manifestations of, say, my request to open the window is unruly and possibly open endedly disjunctive. I can request to

open the windows by asking it. Or by sending an email to the person closer to the window. Or by making gestures. To

explain why, in all these cases, a person reacted by closing the window, the best thing to do is to appeal to the content of

these gestures/mail/soundwaves. But mathematical contents cannot play this explanatory role either: the relation between
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them and vehicle types is one-to-one. So there’s no pattern holding among contents that is not also a pattern holding at the

level of vehicles.

Notice, to conclude, that the problem raised here is independent from the naturalistic credentials of mathematical contents.

Even if mathematical contents were to be naturalized, the explanatory problems of the de�ationary account would not be

solved. Pace the de�ationary account, cognitive contents do not seem to be just a gloss. Therefore, not (3): the account is

not empirically accurate.

5 - Concluding remarks

I’ve argued that the de�ationary account of representation faces several severe problems. But aside from “deflationary account

bad”, what’s the lesson to be learned? I want to point out two.

One concerns what currently is the most discussed neurocomputational theory, namely predictive processing (and the

free-energy principle). Several attempts to account for representational content in that frameworks have argued that

cognitive contents are grounded into mathematical contents (cf. Wiese 2017; 2018; Ramstead et al 2020). If the arguments

presented here are correct, these authors should reconsider their views: mathematical content is so riddled with problems

that it cannot ground naturalistically respectable cognitive contents. Or, minimally, if these authors want to stand their

ground and defend the idea that cognitive contents are rooted into mathematical ones, they should tell us where

mathematical contents “pop out from”. Given the link between mathematical contents and computational

implementation, this is an important challenge to meet, especially because how predictive processing is physically realized in

the brain is, to put it mildly, obscure (cf. Walsh et al. 2020; Cao 2020).

The other concerns a recent, and, as far as I can see, disorganized trend in thinking about representations in cognitive science.

The trend seems aimed at providing a naturalistic account of representations based on a naturalistic account of

computation (cf Cohelo-Mollo 2021; Piantadosi 2021). These accounts should be applauded, at least insofar as they

explore a territory which has traditionally been left unexplored by “classic” accounts of representations. Yet, they may su�er

from over-idealization: they either do not consider any actual computational system (Cohelo-Mollo 2021) or they restrict

their analysis to few, quite speci�c, ones (Piantadosi 2021). This might prove detrimental to the explanatory power of these

accounts: by focusing on few, well-selected examples, they may become too narrow to account for important cognitive

phenomena, just like the de�ationary account has proven to be too narrow to account for adversarial example induced

misclassi�cation.
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