
Synthese manuscript No.
(will be inserted by the editor)

Computer Verification for Historians of Philosophy

Landon D. C. Elkind

March 18, 2022

Abstract Interactive theorem provers might seem particularly impractical in
the history of philosophy. Journal articles in this discipline are generally not
formalized. Interactive theorem provers involve a learning curve for which the
payoffs might seem minimal. In this article I argue that interactive theorem
provers have already demonstrated their potential as a useful tool for historians
of philosophy; I do this by highlighting examples of work where this has already
been done. Further, I argue that interactive theorem provers can continue to
be useful tools for historians of philosophy in the future; this claim is defended
through a more conceptual analysis of what historians of philosophy do that
identifies argument reconstruction as a core activity of such practitioners. It
is then shown that interactive theorem provers can assist in this core practice
by a description of what interactive theorem provers are and can do. If this is
right, then computer verification for historians of philosophy is in the offing.
Keywords Formal methods · Formalization · History of philosophy ·
Interactive theorem provers · Metaphilosophy

1 Introduction

In this paper I discuss the place of some computational formal methods in
doing history of philosophy. Specifically, I describe how to apply interactive
theorem provers—these are (software) applications of a certain sort described
more fully in §2—in textual interpretation and argument reconstruction, to
the benefit of both researchers and their broader scholarly community.1 More

Landon D. C. Elkind
Department of Political Science, Cherry Hall 306; Western Kentucky University; 1906 Col-
lege Heights Blvd; Bowling Green, KY 42101-1086; USA
E-mail: landon.elkind@wku.edu
ORCID 0000-0003-0513-2937

1 In this paper I will use “interactive theorem provers” and “proof assistants” as rough
synonyms, although there are non-interactive theorem provers; see §2.

2 Landon D. C. Elkind

concretely, such applications involve formalizing key notions in the argument
or text in a manner that the file can read and understood, compiling the file
and fixing any runtime errors, and then identifying the philosophical results
of executing a file in the interactive theorem prover. This last step usually in-
volves producing a human-readable writeup of what was done, problems found,
solutions implemented, and lessons learned, perhaps with some excerpted code
from the application file.

All of this can occur alongside and as a supplement to research produced
using more traditional, informal, or non-computational methods in history of
philosophy, that is, interactive theorem provers are not a replacement or sub-
stitute for critically thinking about a text as historians of philosophy have done
for thousands of years, nor are they a replacement for longstanding methods in
history of philosophy. Rather, deploying interactive theorem provers can com-
plement and support historians’ usual activities, especially by automating for
readers much of the mental labor of verifying arguments and spotting informal
and formal fallacies. Perhaps most importantly, utilizing interactive theorem
provers can spare others the labor of rewriting formalized arguments again
once it has been done once because the formalization sources from argument
reconstructions in interactive theorem provers can be open-source. Thus, such
code can be downloaded, modified, retooled, and fit to new purposes.

For any historian of philosophy, particularly if one is unfamiliar with inter-
active theorem provers, the natural question to ask at this stage is, ‘Why would
I do all of that?’ What I described sounds like much more work for not terribly
much payoff. After all, arguments of past philosophers can be reconstructed
and even formalized on paper, as they have been for over a century, without
the need to translate them into some interactive theorem prover’s system. Such
translations might even negatively effect the work: whichever formal system is
used within some interactive theorem prover may have a distorting effect on
the past philosopher’s argument. So such applications of interactive proof as-
sistants appear at first blush to involve much work with little or no gain, and,
as a historian of philosophy sensitive to issues of translation is well-positioned
to notice, could even be a substantial step backwards.

In this paper I address these concerns. My view is that interactive theorem
provers have already been, and stand to continue being, useful to historians
of philosophy. So much may seem obvious after reviewing some research in
history of philosophy that leverages interactive theorem provers, which I do
below. The novelty in my argument here is to indicate the untapped potential
of interactive theorem provers to historians of philosophy. Interactive theorem
provers cannot do philosophy for us, or, to make a more modest claim, nothing
in my argument hinges on claiming that they can. But the ways in which inter-
active theorem provers can assist research in history of philosopher are about
as plenitudinous as the ways in which computer verification and sharing code
assists software development. That is what I argue for here. If this conclusion
is true, then interactive theorem provers can be very useful tools indeed.

This paper builds on work by other philosophers in a similar vein, especially
those applying interactive theorem provers in philosophy. There have been at

Computer Verification for Historians of Philosophy 3

multiple applications of the contemporary metaphysical and epistemological
notions in philosophy. For example: Fitelson and Zalta (2007) have done ax-
iomatic metaphysics in the interactive theorem prover Prover9. Benzmüller
et al. (2015) have formalized various modal systems and the relations between
them in the interactive theorem prover Isabelle/HOL. Novak (2015) has used
the computer proof-assistant MetaPRL to formalize certain epistemological
notions and then used that formalization in MetaPRL to analyze well-known
puzzles like the Surprise Examination Paradox. Blumson (2021) has axioma-
tized classical mereology in Isabelle/HOL.

Additionally, interactive theorem provers have been applied to the texts
of past figures, including philosophers. For example: Fleuriot (2001) has for-
malized arguments in Isaac Newton’s Principia Mathematica using interactive
theorem provers. Lokhorst (2011) has formalized Mally’s deontic logic and
meta-ethical principles in the interactive theorem prover Prover9. Alama et al.
(2015) have formalized (an interpretation of) Leibniz’s theory of concepts in
the E and Vampire theorem provers (plus the Paradox model searching pro-
gram). Benzmüller and Paleo (2015) and Fuenmayor and Benzmüller (2017)
have formalized multiple readings of Gödel’s ontological argument for the ex-
istence of God in Isabelle/HOL. Building on the informal work in (Smith
2020), Koutsoukou-Argyraki (2019) has formalized in Isabelle some of Aristo-
tle’s proofs and meta-theoretical results concerning his syllogistic.

Citing all these developments, Kirchner et al. (2019, §4) have defended the
“benefit from interdisciplinary studies in which computational techniques are
applied” and shown some use for interactive theorem provers in metaphysics.
Fuenmayor and Benzmüller (2018a) discuss the use of interactive theorem
provers in formalizing natural language arguments and describe their approach
as “computational hemeneutics.” As yet, though, philosophers have not consid-
ered the general applicability of interactive theorem provers in doing history
of philosophy, especially by reference to the scholarly activities of historians
of philosophy and to the specific issues raised in applying formal methods,
including computational ones like interactive theorem provers, in doing his-
tory of philosophy. This lacunae exists in the literature despite the fact that
answers to some significant methodological issues are implicitly assumed in
some applications of interactive theorem provers just noted, especially in the
formalizations of Leibniz’s theory of concepts and Gödel’s argument for the
existence of God. Hence, there is a real need for the present essay.

First I briefly describe what interactive theorem provers are (§2). The
purpose of doing that will be to show how these applications can be used in
the philosophical historian’s practice of formalizing arguments.2 Those already
familiar with interactive theorem provers might skip this section, referring back

2 So far as I know, the phrase ‘philosophical history’ was coined by Michael Kremer
(2013, 294). Kremer (2013, 298-299) offers this terminology in a way that builds on Bernard
William’s distinction between two interrelated endeavors, “history of ideas” and “history of
philosophy”: history of ideas produces something that is history first and philosophy sec-
ond, the history of philosophy produces something that is philosophy first and history second
(Williams 1994, 19). Since I am convinced of Kremer’s claim that philosophical history is a
valuable and distinctive intellectual enterprise, and since philosophical history is the enter-

4 Landon D. C. Elkind

to specific details as needed. Next I discuss the metaphilosophical issues raised
by formalizing arguments in doing history of philosophy (§3). There I argue
that what is commonly called rational reconstruction of arguments can benefit
from formalization using interactive proof assistants, and further, that such
argument formalization can serve as a helpful complement to the other kinds
of investigation undertaken by historians of philosophy.

Then I discuss some examples of applying interactive theorem provers in
history of philosophy (§4). Considering these applications will support my
claim in §3 that formalizing arguments using interactive theorem provers can
benefit the practice of doing history of philosophy. Finally I tie all of this
discussion together to offer a prospective view of what interactive theorem
provers can assist historians of philosophy in doing (§5). To give away the
ending, computationally verifying argument reconstructions using such appli-
cations offers definite benefits to philosophers working in history of philosophy.
Thus interactive theorem provers can be a useful tool to an important activity,
rational reconstruction, in doing history of philosophy.

2 Interactive theorem provers

What is an interactive theorem prover? This question implicitly raises two
difficult and longstanding subsidiary questions: (1) What is a theorem? (2)
What is a proof? But we do not need to dive into these trenches. Rather, we
can explain interactive theorem provers without having to endorse a specific
account of theorems and proofs.3

In introductory logic textbooks, philosophers usually say that an argument
is a collection of sentences, one of which is the conclusion, and the rest of which,
if any, are the premises offered in support of the conclusion.4 For purposes of
the argument here, we can remain largely agnostic on further thorny issues
in the philosophy of logic and mathematics by considering three subclasses
of arguments in this sense. First, deductive arguments are those arguments
wherein it is logically necessary that, if the premises hold, then the conclu-
sion holds.5 Second, axiomatic arguments are those that ultimately depend

prise that is my focus here, I will use ‘philosophical history’ and ‘philosophical historians’
interchangeably with ‘history of philosophy’ and ‘historians of philosophy’ respectively.

3 The below paragraph essentially follows the clean presentation in (Portoraro 2019, §1),
though I replace Portoraro’s talk of problems and solutions with talk of premises and con-
clusions.

4 By focusing on arguments here, it is not implied that historians of philosophy are either
primarily or only concerned with arguments in this sense. See §3 for discussion.

5 In contrast, non-deductive arguments are those wherein, probably, if the premises hold,
then the conclusion holds. There is significant controversy over how to understand an ar-
gument’s premises making probable its conclusion, and in particular whether this should
be couched in terms of an agent’s subjective probabilities (the Bayesian view) or instead,
taking the states of affairs wherein the premises hold, in a measurement of how many such
scenarios are such that the conclusion holds. See (Hawthorne 2021, §2).

Computer Verification for Historians of Philosophy 5

only on axioms and primitive rules for making inferences from these.6 Third,
formal arguments are those couched within a formal language, that is, “a re-
cursively defined set of strings on a fixed alphabet.” (Shapiro and Kissel 2018,
§2) Putting all three subclasses together, interactive theorem provers are soft-
ware applications whose inputs are attempts at deductive, axiomatic, formal
arguments, and whose outputs are verifications of an argument’s correctness.

In what sense are these applications interactive? Theorem provers can be
automated in that these applications prove theorems automatically, that is,
without user input or suggestions regarding the proof itself, when a theorem
is input, automated theorem provers produce either some proof of it or some
indication of a failure to produce one; in contrast, interactive theorem provers
involve user interaction to construct the proof, so that the user and applica-
tion collaborate on creating a proof for a given theorem.7 In fact, interactive
theorem provers can (and quite a few do) include automated theorem proving
components and tactics for proving theorems; the motivation for this is partly
to spare a human reasoner the tedium of checking small or obvious steps that
might involve, say, term rewriting or checking that something is a tautology.8

Looking underneath the hood, how does an interactive theorem prover ver-
ify an argument? Regardless of whether a step is suggested by a user or the
application, how does it verify the correctness of the steps? These applications
check arguments against their kernel, or their core system.9 Once an argument
is formalized within an interactive theorem prover, the application takes that
input and creates a corresponding proof object, which is then passed along
to the kernel. An interactive theorem prover then verifies whether this proof
object can be generated using the core system’s rewriting, reduction, and in-
ference rules. To put it in terms more familiar to philosophers, the kernel is
analogous to the meta-logic for an interactive theorem prover, and questions of
verification are always ultimately passed back to that meta-logic. Of course,
this would be no advance at all—it would not boost our confidence in the
correctness of the argument with which we started—if the interactive theo-
rem prover had a large or complicated kernel. Hence, best practices require a
kernel to be very small so that it can be checked by humans (Geuvers 2009,

6 Here I am leaving room for axiomatic arguments that do not quite fill in every step.
Although it is often controversial whether an argument in a text really does contain gaps—
see the criticisms of Reed (2005) towards Hilbert (1899) for instance—examples of such
arguments arguably are found in Euclid’s Elements, Spinoza’s Ethics, Newton’s Principia
Mathematica, or Whitehead and Russell’s Principia Mathematica. If the varying sorts of
argument found in these texts are all to fall under the phrase ‘axiomatic arguments’, then it
would be overly restrictive to confine the phrase to derivations or proofs in the logical sense.

7 See (Geuvers 2009, 3) and (Harrison et al. 2014, 1).
8 The interactive theorem prover Coq for example has the CoqHammer automated rea-

soning tool that searches for a proof of some goal using previously proven (user-provided)
lemmas and rewriting available from databases. See https://coqhammer.github.io/ for fur-
ther details.

9 The kernel is the trusted core of an interactive theorem prover; it passes user commands
inputted on the application program interface through the type checker. The kernel type-
checks user declarations and rejects inappropriate ones. Much like the kernel of an operating
system, the interactive theorem prover’s kernel controls the entire program application.

https://coqhammer.github.io/

6 Landon D. C. Elkind

6).10 ‘Small’ in this context means a few thousand lines of code; for example,
HOL Light’s kernel is about 700 lines of code; Coq’s kernel is about 14,000
lines.11 Some interactive theorem provers also have active communities, so that
some dozens of people, if not hundreds, have reviewed an interactive theorem
prover’s small kernel and found it manifestly correct.12

Further, interactive theorem provers are modular in the sense that users
can build theories that are checked by the interactive theorem prover and then
can be used to further develop mathematics. For example, one could build a
classical propositional logic, check its correctness using an interactive theo-
rem prover, and save this formalization as a standalone module. In building a
modal logic, one can then import that classical propositional logic module and
extend it with modal operators, new axioms, and a different semantics instead
of having to redevelop propositional logic. And users can share their modules
with others. The results are that, firstly, any user can develop results and con-
tribute their module—both its code and a summary of what is proven—and,
secondly, most interactive theorem provers now have large standard libraries
of modules that have been checked by many of the same developers who coded
and checked the interactive theorem prover’s kernel.13 The modularity of inter-
active theorem provers combined with the free availability of many standard
libraries make it easy to skip formalizations of base theories by importing
standard libraries (though one always can develop base theories from scratch).

These two traits of interactive theorem provers—a small, trustworthy ker-
nel and the advanced libraries that can be imported as standalone modules—
are a potent combination. The small kernel through which all advanced de-
velopment in libraries is automatically passed enables users to be as confident
in complex developments as they are in the much smaller kernel. Ill-formed
strings, inconsistencies, typing errors, and other mistakes in the development
of some more advanced theory return an error message when passed back to
the kernel. This allows that mistakes can be corrected as one proceeds. If an
inconsistency is derived without an error message, this can be traced back to
10 Some interactive theorem provers take the further step of creating a proof object that

can be verified by type-checking application files apart from the interactive theorem prover’s
logical system. Those that have this feature satisfy what has become known as the de Bruijn
criterion following (Barendregt and Barendsen 2002, 323). Although de Bruijn did not
coin that term for this property, de Bruijn initiated the Automath project, and one design
principle for this project was that the software satisfy the de Bruijn criterion.
11 For comparison, a typical iPhone application has 50,000 lines of code; a Boeing 787 has

6.5 million; a Chevy Volt has 10 million; and an Android OS has 12-15 million (McCandless
2015).
12 As of April 2021, 3,253 users have starred Coq’s Github repository and 194 people have

contributed to it. And 376 authors have contributed to Isabelle’s Archive of Formal Proofs.
The examples throughout this paper usually involve Coq or HOL descendants like HOL Light
and Isabelle/HOL. These are some of the most popular interactive theorem provers and have
been used in the significant applications to higher mathematics discussed below. It should
be noted, however, that there are many different interactive theorem provers available and
they are widely used in a variety of mathematical applications. A recent and comprehensive
critical survey of 41 such applications is given by Saqib Nawaz et al. (2019).
13 Coq’s index of libraries has 579 entries. Isabelle/HOL’s Supplemental Library has 147

sections.

Computer Verification for Historians of Philosophy 7

some flaw in the kernel. Any bugs can then be removed from that small bit of
code in the kernel, and whatever the needed modifications can then be made
to save the substantial edifice built upon the kernel.14

These combinations have led to recent successes in higher mathematics
that leveraged interactive theorem provers.15 Some much-discussed examples
include the proof of the Four-Color Theorem formalized in Coq by Gonthier
(2008, 1382), the proof of Kepler’s Conjecture formalized in HOL Light and
Isabelle by Hales et al. (2015, 1), and the proof of the Odd Order Theorem
formalized in Coq by Gonthier et al. (2013, 1).16 To focus on the last example,
the formalized proof of the Odd Order Theorem takes “150,000 lines of proof
scripts, including roughly 4,000 definitions and 13,000 theorems,” plus “40,000
lines of formal proof.” (Gonthier et al. 2013, §6) This formal computer-checked
proof is known to be correct on the assumption that Coq’s kernel of 14,000
lines does not allow the derivation of an inconsistency.

Naturally, this sort of boost to our confidence in the correctness of a proof
is a significant epistemic benefit of working with interactive theorem provers.
Using such applications practically brings about a greater degree of exact-
ness and rigor in argumentation, given the error-checking procedures and the
smallness of the kernel.17 Indeed, some involved in successful applications of
interactive theorem provers have claimed that such formalized proofs are much
more reliable than those checked in the traditional way by humans in the peer-
review process. Hales et al. (2015) wrote, “A formal proof in the HOL Light
system is more reliable by orders of magnitude than proofs published through
the traditional process of peer review.”18

Despite the boost to one’s epistemic confidence that a computer-checked
proof can bring, interactive theorem provers are not used by the majority
of mathematicians, at least not yet. The reason for this, as Geuvers (2009,
3-4) notes, is that the formalization process involved in applying interactive
theorem provers is laborious; if one already believes a pen-and-paper proof—or

14 The 49 Coq modules distributed with the usual opam package manager have 383,500
declarations (Müller et al. 2019, 172).
15 This is not to imply that interactive theorem provers are new. They have been around

since the 1960s. A history of such applications is given by Harrison et al. (2014). See also
(Geuvers 2009, §2) and (Maric 2015, §2).
16 See (Maric 2015, §5) for other notable examples.
17 Indeed, the late Vladimir Voevodsky’s work on Univalent Foundations brought fresh

focus, energy, and publicity to the case for use interactive theorem provers (Voevodsky
2015, 1278). A concise overview is given in (Awodey et al. 2013, 1165-1166).
18 “...we have written a formal proof script that covers both the mathematical and compu-

tational parts of the proof. We have run this script through the Coq proof checking system,
which mechanically verified its correctness in all respects. Hence, even though the correct-
ness of our proof still depends on the correct operation of several computer hardware and
software components (the processor, its operating system, the Coq proof checker, and the
Ocaml compiler that compiled it)...All of them...can be (and are) tested extensively on other
jobs, probably much more than the mind of an individual mathematician reviewing a proof
manuscript could ever be.” (Gonthier 2005, 2)

8 Landon D. C. Elkind

LATEX-and-screen proof—is correct, then formalization may seem like a waste
of time and energy.19

Further, while interactive theorem provers are superb tools for recording
proofs and checking them, they are, at least given present technology, less use-
ful for explaining why a theorem holds and for disseminating that result to
the broader scientific and public community (Geuvers 2009, 7). This is because
mathematicians often draft proofs at a high level, and in a natural language,
so that formalizing all of one’s scratch work would be cumbrous. And since a
majority of mathematicians do not at present use interactive theorem provers,
most mathematicians are not prepared to read the application’s code.20 As a
result, dissemination of new proofs in interactive theorem provers often pro-
ceeds by informal summaries in various publications.

So interactive theorem provers have their limits. Most scientific and public
readers do not have facility reading files written within interactive theorem
provers. This raises the question, ‘Why should the effort be made to formalize
an argument in an interactive proof assistant if few colleagues will understand
the formal parts and will only read an informal summary?’ Furthermore, the
work of formalizing arguments raises methodological concerns for historians of
philosophy. One could hold, as I do, that interactive proof assistants are not a
neutral tool for understanding an argument; rather, formalization using these
computational tools presupposes a specific interpretation of the argument, and
possibly limits the range of permissible ones to those that can be parsed in
the interactive proof assistant’s language.

Both the general concern about interactive proof assistants in any field,
that the effort may not be worth the gain, and the methodological concerns
specific to history of philosophy, that interactive proof assistants are at best
not neutral and at worst problematic, may raise for the reader some reasonable
doubts against my claim that interactive proof assistants can be useful tools in
doing history of philosophy. In §3 I address the methodological concerns that
historians of philosophy may have about utilizing interactive proof assistants.
In §4 I show that utilizing interactive proof assistants has already been useful
to historians of philosophy by discussing examples. Further, in the course of
considering these applications, I also argue that formalizing arguments using
interactive proof assistants is worthwhile for historians of philosophy for at

19 However, there are efforts to make using interactive theorem provers less laborious. For
an example of some current work in this direction, see the Matryoshka Project website:
https://matryoshka-project.github.io/.
20 As Harrison (1996, §7) notes, there are two styles of input language for interactive the-

orem provers. The procedural style involves giving the application fully explicit instructions
regarding what to do next. The declarative style involves giving the application a more
general direction for what result to establish and perhaps an indication of a strategy for
establishing it, but lets the application make explicit the needed steps. One might think
of interactive theorem provers in the procedural style as sitting on an opposite pole from
the automated theorem provers, whereas those in the declarative style are somewhere in
between. Note that one can produce a proof in either the procedural or declarative style
in some interactive theorem provers (Harrison 1996, §4). (Harrison et al. 2014, 39) rightly
note that most users are better prepared to read the declarative style, particularly those
unfamiliar with using interactive theorem provers.

https://matryoshka-project.github.io/

Computer Verification for Historians of Philosophy 9

least two reasons. Firstly, if the code utilized in formalizing arguments using
interactive proof assistants is open source—freely available and editable—then
one’s work can be further manipulated to create new readings of arguments.
Secondly, that concerns about inexplicit assumptions are removed once the
argument is computer verified in an interactive theorem prover. One may of
course dispute the assumptions as false or distorting to the original argument
or text; still, they will be made explicit, and that is a definite advance.

3 Formalization as done by historians of philosophy

In the previous section I explained at some length what an interactive theorem
prover is and how they operate. This explanation makes clear some of the
following features of formalization using interactive theorem provers:
– There is a learning curve with interactive theorem provers; one must learn

how to translate natural language arguments into the interactive theorem
prover’s system.

– There is a kernel in the interactive theorem prover through which argu-
ments are verified; this kernel is small so as to boost our epistemic confi-
dence in the argument’s validity, potentially to a great degree, particularly
if the argument is quite complex or, as when one checks a whole theory,
many arguments are involved.

However, philosophical historians could fairly raise deep methodological con-
cerns here about the practice of using interactive theorem provers. Indeed, in
the title of this article I suggest that computer verification is ‘for’ historians of
philosophy, but one might worry that historians of philosophy do not want it
or have good reason to reject it: using interactive theorem provers, it might be
thought, are inapplicable to most work done by historians of philosophy, could
substantially distort our understanding of an argument, and would be more
work than is necessary or helpful, especially as compared with formalization
without interactive theorem provers.

To address such concerns, I split them into three grades of involvement:
(1) worries about the varieties of work done in history of philosophy that com-
puter verification leaves out, (2) worries about formalization generally and its
capacity to distort the arguments of past philosophers, and (3) worries about
formalization using interactive theorem provers as compared with formaliza-
tion without them. These three sorts of concern might be put as follows:
1. There is a great deal of the philosophical historian’s work besides formal-

izing arguments; this work cannot practicably be done with interactive
theorem provers.

2. Formalization is not neutral, but partly interpretative; so, formalization in
an interactive theorem prover is a potentially distorting influence on philo-
sophical historians seeking to understand the arguments of past figures.

3. Formalization in interactive theorem provers, especially as compared with
the work already involved in formalization without using theorem provers,
demands much more work than its philosophical payoffs warrant.

10 Landon D. C. Elkind

Below I address these concerns in numerical order. Beginning with concern
(1), there is a rich collection of activities that fall under the umbrella phrase
‘history of philosophy.’ In a rich essay, Lapointe and Pincock (2017, 13-15) list
no less than six “central” activities undertaken by historians of philosophy,
and caution that this list is “presumably not exhaustive”:

– Rational reconstruction
– Contextualization
– Doctrinal history
– Disciplinary history
– Thematic investigation
– Genealogical narrative

As an example, consider this question: to what extent did Bertrand Russell,
as a result of his experiences during World War I, think that his logical orien-
tation in philosophy had ethical implications or think that it was important to
develop such ethical upshots of his logical point of view?21 This question def-
initely falls within the scope of contextualization, though it could fall within
multiple categories depending on the context.22 How would the use of in-
teractive theorem provers help with contextualization and other activities on
the above list? If interactive theorem provers are impractical for these activi-
ties, then how can I credibly speak of computer verifications for historians of
philosophy—taking historians of philosophy as a group to be engaged in at
least all of the activities on the above list?

The answer to concern (1) is of course that interactive theorem provers
are not designed to help with understanding the context surrounding the
production of texts. Interactive theorem provers are designed to help prove
theorems. Accordingly, they can help directly with activities falling under ra-
tional reconstruction—specifically, with the interpretation and formalization
of arguments—but at most indirectly with other tasks. To fully contextual-
ize Russell’s ethical views and writings against the background of his logical
philosophy and the events of his lifetime, a historian of philosophy may need
to consider Russell’s letters, pocket diaries, corpus, personal life, and social
connections over the relevant period. Formalizing a specific argument helps
with these tasks at best indirectly, through formalizing an argument for or
against a particular answer to the contextualization question in the preceding
paragraph, although cases where interactive theorem provers actually help in
this way are likely to be rare: so far as I know, there is not one such case. And
even so-using interactive theorem provers does not show that the premises in
one’s argument for an answer to this question are supported by the evidence.

21 For discussion, see (Russell 1914/1986, 55-56), (Klein 2020), and (Elkind 2021).
22 “The aim of historical contextualization consists in providing an interpretation of philo-

sophical theories and the questions that they are supposed to answer that allows the reader
to track the author’s philosophical intentions, taking into consideration the relevant aspects
of their social, cultural and intellectual environment. In particular, it seeks to determine the
role played by previous writings, events or situations in the production of the texts under
consideration.” (Lapointe and Pincock 2017, 14)

Computer Verification for Historians of Philosophy 11

However, none of this weighs against the potential and usefulness of de-
ploying interactive theorem provers in other activities undertaken by historians
of philosophy. And none of these activities has to be undertaken in isolation
from the rest. Indeed, one’s contextualization of a philosopher’s views—say, of
Russell’s views of belief as reacting to William James’ view—could lead one
to a particular rational reconstruction of Russell’s argument against James’
position in the 1918 logical atomism lectures. Upon formalizing this argu-
ment in an interactive theorem prover, one might discover that it leads to an
inconsistency, perhaps with other claims that Russell makes elsewhere. This
would suggest indirectly that the contextualization had perhaps missed some-
thing relevant to the production of the logical atomism lectures. In this sort
of way and in many others, the six activities undertaken by historians of phi-
losophy can and probably should be mutually supporting.23 So the fact that
interactive theorem provers are probably not directly useful in most activi-
ties undertaken by historians of philosophy does not lead to the consequence
outlined in concern (1) that the usefulness of interactive theorem provers is
thereby undermined; rather, because interactive theorem provers are directly
useful in rational reconstruction, they can be indirectly helpful in the other
areas of concern to historians of philosophy.

Concern (2) amounts to the worry that interactive theorem provers, and
even formalization of arguments more generally, might lead to distortions of
what past philosophers thought. It is easy to see how this might actually
transpire. For example, consider a view of those called “Late-Learners” in
Plato’s Sophist.24 In that dialogue the Visitor from Elea describes them as
holding that no two beings with properties, can ever be mixed together, so
that uttering statements which apparently to mix two beings, like ‘Socrates is
snub-nosed,’ is forbidden; one may only say of a good thing g that g is good,
or of a human h that h is human.25 The argument for this prohibition on
mixing beings in predication seems to be that “it’s impossible for that which
is many to be one and for that which is one to be many.” Suppose now that
we attempted to formalize an argument for their view involving quantifiers
over predicates (indicated by capitalized letters) and individuals (indicated
by lowercase letters), Quine’s device of corner brackets ‘⌜’ and ‘⌝’ to indicate
quasi-quotation, ‘ϕ’ for an arbitrary well-formed formula, and deontic logic’s

23 As Michael Beaney (2013, 253) puts a similar point in terms of his notion of dialectical
reconstruction, which phrase helpfully “suggests the interplay between rational and historical
reconstruction that must continually go on in doing good history of philosophy.” Michael
Kremer (2013, 311) also puts a similar point in terms of his notion of philosophical history,
whose goal of “the present philosophical understanding of its practitioners” is achieved
“through understanding the philosophical past...”
24 Since this example is for purposes of illustration, I will not venture into scholarly con-

troversies over what the view actually is or who, if anyone, may have held it.
25 “They evidently enjoy forbidding us to say that a man is good, and only letting us say

that that which is good is good, or that the man is a man.” (Plato 1997, 251b; see also the
following passages)

12 Landon D. C. Elkind

impermissibility operator ‘IM’ (without taking a firm stance on what kind of
impermissibility the Late-Learners meant):26

1. ¬∃F∃G∃x[(Fx∧Gx)∧F ̸= G].
It is impossible for that which is one thing to be many in its characteristics.

2. ¬ϕ =⇒ IM[speak(s,⌜ϕ⌝)]
It is impermissible to speak falsely.

3. IM[speak(s,⌜∃F∃G∃x[(Fx∧Gx)∧F ̸= G]⌝)]
So, it is impermissible to speak so as to attribute distinct properties to a
thing. (By (1) and (2), substituting (1) for ϕ.)

The Late-Learners would object to this way of formalizing their argument be-
cause it already mixes different beings together in premise (1).27 This example
illustrates the general point in concern (2) that formalization, whether in in-
teractive proof assistants or not, could distort our understanding of a past
philosopher’s argument or view.

Concern (2) can be answered by pointing out that formalization in general
is not better or worse off than other modes of interpretation. The example
above gives an argument for the Late-Leaner’s view formally and informally.
Both are interpretations of their position in the sense that each provides rea-
soning for their conclusions. Both can be criticized as being dissonant with
the Late-Learner’s other views or methods, being historically inaccurate or
ill-fitting the dialectical or historical contexts, or as being directly inconsistent
with their thesis that beings with different characteristics cannot be mixed.
Indeed, as Castagnoli (2010, Chapter 13) reads Plato, this is just the criticism
of the Late-Learners that Plato develops: no argument is consistent with their
thesis because, if true, their view forbids any making predications at all. If
that is right, then any rational reconstruction or interpretation of their view
that provides an argument for it violates the constraints that accepting their
view imposes.

So concern (2) only arises through a misunderstanding: nobody should
maintain that formalization is not interpretative. But like any (even non-
formalized) interpretation, formalized arguments found in past philosophers’
works will need correction and refinement. This can come from alternative
formalizations, informal presentations, providing more context, and all the
other sources upon which historians of philosophers draw to correct and refine
informal rational reconstructions of arguments.

Indeed, Fuenmayor and Benzmüller (2018a, 2019a, 2020) have already de-
veloped a pioneering framework for conducting interpretations using interac-
26 The logic of development here is assumed to be a classical logic extended by the modal

operator ‘impermissible’ and with the quantifiers ranging over (at least) everything in the
spatial-temporal universe (and their properties). It is worth bearing in mind that formal-
ization is always formalization in some logical system, but as we will see, the Late-Learners
would seemingly be opposed to formalization within any system (unless one could be devised
that is free of predication period).
27 Indeed, the Late-Learners arguably would reject any formalization, or even natural

language formulation, of an argument for their view. The Visitor argues in fact that the
Late-Learner’s view cannot be stated because any predication is impossible on their view,
at least according to Castagnoli (2010, Chapter 13).

Computer Verification for Historians of Philosophy 13

tive theorem provers to formalize natural language arguments generally. Fuen-
mayor and Benzmüller (2018a, 2) call their approach computational hermeneu-
tics and describe their framework as “a novel approach to the logical analysis
(aka. formalization) of arguments” while criticizing the perhaps common view
that formalizing natural language arguments is “a kind of artistic skill that
cannot be standardized or taught methodically”.28 Part of the reason they use
the word ‘hermeneutics’ is that they adopt, for methodological reasons, the
notion of a radical interpretation from Donald Davidson (1973, 1994).29 Set-
ting aside issues of interpreting Davidson’s views, Fuenmayor and Benzmüller
(2018a, 3) read Davidson as holding that any interpretation another person’s
argument must indicate the “compositional structure” of their language and
be capable of being “assessed using the evidence available to the interpreter.”30

Fuenmayor and Benzmüller (2018a, 3) meet these requirements by indicating
that a Tarski-style characterization of truth in a language would indicate a
language’s compositional structure and by noting that intersubjectively ob-
servable events in the world, including further speech acts, would allow for
assessing interpretations. Then (Fuenmayor and Benzmüller 2018a, 4) say fur-
ther that an interpretation of a sentence or argument should also be assessed
within the whole network of the argument or arguments studied. As Fuenmayor
and Benzmüller (2020, 196) hold that such assessment and reinterpretation
proceeds through “an iterative process of ‘trial-and-error’” wherein interpre-
tive formalization and checking is done and redone “at least several hundreds
of times” to reach a satisfactory interpretation of given argument. Hence the
appropriateness of their calling it ‘hermeneutics.’ The ‘computational’ part of
course comes from their use of interactive theorem provers in this process, and
they describe in helpful detail how the interactive theorem provers assist in do-
ing interesting interpretative work; see especially (Fuenmayor and Benzmüller
2019a, Figures 4 and 9).

We need not adopt this computational hermeneutics framework, or, say,
Davidson-inspired views on radical interpretation and meaning for example,
to appreciate the following upshot of Fuenmayor and Benzmüller’s pioneer-
ing work: formalization with or without interactive theorem provers can be
a useful mode of interpreting a philosophical text, just as informal argument

28 This name is slightly unfortunate because ‘computational hermeneutics’ had some years
earlier been used to describe hermeneutic practices involving very different computational
tools (Harnad 1990). Since this alternative usage seems to be well-established among dig-
ital humanists (Mohr et al. 2015; Rockwell and Sinclair 2016; Piotrowski and Neuwirth
2020), and it predates the newer usage by over twenty years, I will only use ‘computational
hermeneutics’ in describing Fuenmayor and Benzmüller’s methodology.
29 As Michael Beaney (2013, 247) has noted, Richard Rorty (1984, 52-53, footnote 1)

talks of a hermeneutic circle with respect to the relationship between rational and historical
reconstruction. This additional layer of nuance seems consistent with the computational
hermeneutics framework.
30 Note that by “compositional structure,” they mean this primarily in the Tarskian sense

that a recursive specification of the truth evaluation of formulas should be available. They
do not mean “compositional structure” in the Fregean sense that the meaning of a formula
is built up from the meanings of its parts, that is, they do not endorse what Szabó (2020,
§1.6.5) calls “the building principle.”

14 Landon D. C. Elkind

reconstructions can be. Computational hermeneutics is simply a thoroughly
worked out model of how interactive theorem provers can be used in interpret-
ing texts, and one which shows an impressive amount of sensitivity to issues of
methodology. It is in short a framework that addresses concern (2) in showing
by example that formalization is a rich, not limiting, mode of interpretation.

As an aside, it should be further noted that formalization in a specific
theorem prover, using its particular formal system, does not constrain the
field of possible interpretations to only its specific system. This is because
some theorem provers allow for what is called an embedding of various logical
theories, including their axioms and semantics, using the theorem-prover’s
language and logic: just as interactive theorem provers can prove theorems
about geometric objects like triangles and squares, it can prove theorems about
logics like a free logic, a modal one, or a set theory like Zermelo-Fraenkel
(Harrison et al. 2014, 20-21). Logics themselves can be taken as objects of
study and facts can be proven about or within them. All of this still would
be passed back through the kernel, so that the interactive theorem prover still
verifies the argument, but the effect of passing the embedded logic and proof
within it back through the kernel would be to verify the argument from within
the object logic. The situation here is rather like ours when we study Mars
from the Earth: we do not need to abandon our planet in studying the Red
Planet from afar, and unless something ruined the security of Earth, there
is no reason why we cannot verify features of Mars, or establish what living
there would be like, from our Blue Planet. The interactive theorem prover is
like the Earth in this analogy: from its secure place, we can study or model
the internal or external features of practically any object logic as we please.

Finally, we reach concern (3). Why should we use interactive theorem
provers when formalizations in other media—pen and paper, marker and
whiteboard, or software applications like Word or TEX—would serve many
of these same purposes? Is it not a great deal of extra work to learn how in-
teractive theorem provers work, how to use them, and how to share results in
these applications, without much added payoff?

The answer to concern (3) is similar to what I said in response to concern
(2). No one must use interactive theorem provers against their wishes. Indeed,
no one must use applications like Word or TEX: a rich or privileged person
could handwrite or dictate their thoughts and pay someone else to digitally
transcribe and format them for journals or publishers. Interactive theorem
provers stand to other modes of formalization as applications like Word and
TEX stand to pen and paper.31 In particular, using interactive theorem provers,
like using typesetting applications like Word or TEX, is not required to do
history of philosophy, but these tools can be very useful and are found to be
so by many of those who use them: the examples cited in §1 above and those

31 This is not to say the programs are exactly analogous; Word and TEXdo not solve logic
problems or engage in heuristic search as interactive theorem provers do. But both sorts of
software applications are alike in this respect: they are both technologies that greatly assist
with specific tasks (though not without certain costs), and history of philosophy was done
(and still could be done in principle) without them.

Computer Verification for Historians of Philosophy 15

discussed in §4 below show this incontrovertibly. We can and should admit
this without, as a discipline, making mastering interactive theorem provers—
or typesetting programs—a prerequisite to doing history of philosophy.

Further, using interactive theorem provers in formalizing arguments brings
some benefits not brought by formalization in other media. For example:

– Once an argument is formalized in an interactive theorem prover, anyone
with the formalization sources can automatically check its validity on their
own computer by running its formalization sources through the application
(though one cannot automatically check that it is a faithful reconstruc-
tion). In contrast, checking an argument’s validity in other media requires
a human-reader’s time and attention.

– Libraries of theories with definitions, theorems, and proofs have been devel-
oped by user communities for interactive theorem provers. These libraries
can be imported into one’s own file with relative ease so that one does not
have to redo their work. In contrast, to import another person’s proofs, def-
initions, or theorems in other media, one has to laboriously and tediously
recopy their work (assuming one has permission to do so), or be content
with just citing their developments.

– The formalization sources of an argument in an interactive theorem prover
can be freely and widely shared (indeed, there is a norm of sharing such
code among programmers and in the open science movement more broadly).
This allows others to freely modify one’s formalization to create a new
interpretation that builds on what someone else has done before. In con-
trast, publishers using many other modes of publication and dissemination,
for good reason, lock their disseminations of works containing formaliza-
tions in non-editable formats (though sharing the Word or TEX source file
bears some benefits similar those that come from sharing the formalization
sources for interactive theorem provers).

So in response to concern (3), nobody has to use interactive theorem provers
against their wishes, but those who have used them report finding them ben-
eficial and useful for some purposes. Further, using them brings some benefits
that formalization in other media does not bring, and some other benefits
brought by any media such that source files are sharable but not other me-
dia. So concerns (1), (2), and (3) do not weigh against deploying interactive
theorem provers in doing philosophical history.

On the other hand, the best response to skepticism about the value of
something is often an example, or many examples, that show its value. In
this case, skepticism about the value of interactive theorem provers in doing
philosophical history can be best addressed by giving examples of them being
used in interesting philosophical histories: the best answer to the question
‘Can computer proof-assistants serve as a tool for philosophizing?’ is ‘Yes,
they already do.’ In §4 I describe multiple examples to show that this is so.

16 Landon D. C. Elkind

4 Examples of computer verification in history of philosophy

In §3 I discussed and addressed the reasonable methodological concerns that
historians of philosophy may have about using interactive theorem provers.
But the most effective way to settle doubts about the usefulness of new tech-
nologies in an old endeavor is to give an example. Incidentally, many examples
of philosophical history produced with interactive theorem provers were given
in §1: these samples span from Aristotle’s syllogistic to Leibniz’s account of
concepts to Newton’s Principia to twentieth-century ontological arguments
and deontic logics. Though space precludes a comprehensive discussion of all
these examples, below I give a representative sample that shows the many
ways that interactive theorem provers have shown themselves to be useful in
doing history of philosophy.

The first example discussed will be the recent application of Coq in recon-
structing complete proofs from the demonstrations in Whitehead and Russell’s
Principia Mathematica. This will serve as a helpful illustration of how inter-
active theorem provers can be (and now are) used to reconstruct arguments
from a text. A reader may of course worry that applying interactive theorem
provers to formalized (or even quasi-formalized) texts does little to show that
such applications can be (and now are) useful in reconstructing arguments
made in some informal language. The other two examples discussed below
involve reconstructing and formalizing arguments from non-formalized texts
that nonetheless show some benefit to applying interactive theorem provers
in doing history of philosophy. The second example (in ancient philosophy)
is a formalization of Aristotle’s syllogistic; the third example (in ethics) is a
formalization of Gewirth’s argument for the principle of generic consistency.
These other two examples thus address the concern that interactive theorem
provers would only be useful with formalized or quasi-formalized texts.

4.1 Applying interactive theorem-provers to Principia Mathematica

First I will discuss in detail a recent application of interactive theorem provers
to the propositional logic of Whitehead and Russell’s Principia.32 Discussion
of this example will indicate the usefulness, though not indispensability, of
interactive theorem provers in history of philosophy. First, I describe what
was done in this application. Then I discuss what was learned from it.

In a sentence, the entirety of Principia’s propositional logic (❋1− ❋5) was
computer verified in the interactive theorem prover Coq. Principia’s propo-
32 One might be worried about the paradox reported in (Kirchner et al. 2020, §5). The

paradox arose there within the context of a shallow embedding of abstract object theory,
a hyperintensional second-order modal logic founded upon the logic of relations, within an
extensional higher order logic founded upon the logic of functions. The paradox that arises,
however, is due to the formation of complex terms using λ-expressions and definite descrip-
tions; Principia’s simply-typed grammar does not permit the comprehension of universal
properties, but only allows the formation of terms that are properties of all members of
some universal class through its comprehension schema ❋12.

Computer Verification for Historians of Philosophy 17

sitional logic has 206 starred numbers all-told: 10 are primitive propositions,
7 are definitions, and 189 are theorems. This takes just 36 pages in its first
edition As O’Leary (1988, 108) says, “The work done in the propositional logic
section of Principia Mathematica is a model of succinct expression.” In a model
of succinct computational expression, coding all of Principia’s propositional
logic in Coq takes just 4,360 lines of code.

It is important to note that Principia’s ‘proofs’, for the most part, are actu-
ally demonstrations, meaning they are incomplete sketches of proofs intended
to be sufficient for the reader to reconstruct complete proofs.33 A comparison
to a cookbook is helpful here: Principia gives readers demonstrations, which
are like recipes for cooking up the complete step-by-step proof, but the cooking
is left to the reader. So what it means for a formalization to successfully re-
construct the reasoning in Principia is that it reconstructs a proof that follows
the demonstration’s recipe: one has to produce a complete step-by-step proof
that (a) cites every theorem mentioned in the demonstration and (b) only uses
axioms, rules of inference, or theorems previously laid down or proved in Prin-
cipia. This is precisely what was achieved: in every case we gave a complete
step-by-step proof that cited every theorem mentioned in the proof-sketch,
and we never departed from the logic of Principia.

In short, the encoding of Principia’s propositional logic in Coq verified not
just that its theses are theorems, but that each one can be proved accord-
ing to the proof recipe given in the text. A result of doing this was a freely
available source file that is now posted in a Github repository.34 So anyone
who wishes to verify the propositional logic demonstrations of Principia needs
only to download Coq and run the source file in the interactive theorem prover.
They can even modify that formalization sources as they like to investigate
redundancies, alternative proofs, and so on.

Another result of this encoding was the discovery of some statistically in-
teresting information about the omissions of steps in Principia’s proof recipes.
Recall that the proof recipes omit steps. But what has never been explicitly
shown, or discussed in more than passing mention, is that Whitehead and
Russell omitted steps systematically: they omitted ‘easy’ steps involving ap-
plications of definitions, commutations, associations, and double negations.
Some summary data is given in Table 1.35

As this data shows, most often Principia’s demonstrations omit mention
of inference rules like ❋1·1·11 and ❋3·03, or applications of definitions like
❋1·01 and ❋4·01, that were omitted from demonstrations. Such substantive
omissions were very rare. The general pattern was to omit principles of infer-
33 One reason given for this in Principia is to abbreviate tedium (Whitehead and

Russell 1910, 93, 96). Another plausible reason, not mentioned explicitly in the work,
is mitigating the cost of printing, which was substantial to the authors—each au-
thor paid £50 in 1910, which is about £6,022.92 in 2020 terms (¤7090.77, or
US$8,086.50, or C$10,506.17), according to the Bank of England’s inflation calculator:
https://www.bankofengland.co.uk/monetary-policy/inflation/inflation-calculator.
34 Link omitted for purposes of blind review.
35 Substitutions were the most common omissions because substitutions into axioms or

theorems used as lemmas occur in practically every proof.

https://www.bankofengland.co.uk/monetary-policy/inflation/inflation-calculator

18 Landon D. C. Elkind

Principles Kind of principle Omissions
Substitution of formulas into theorems Specialization 184
❋1·1/❋1·11 modus ponens 101
❋1·01/❋·3·01/❋4·01 Definition 78
Substitution of material equivalents Replacement 59
❋2·05/❋2·06 Syllogism 46
❋3·22/❋4·21/❋4·3/❋4·31 Commutation 28
❋2·31/❋2·32/❋2·33/❋4·32/❋4·33 Association 12
❋2·12/❋2·14/❋4·13 Double negation 11
❋2·02/❋3·26/❋3·27 Simplification 8
❋3·3/❋3·31/❋4·87 Exp/Importation 6
❋2·03/❋2·15/❋2·16/❋2·17/❋3·37/❋4·1/❋4·11 Transposition 4
❋1·2/❋1·3/❋1·4/❋1·5/❋1·6 Axiom 1

Table 1 The (systematic) omissions in Principia’s propositional logic proof recipes

ence or leave unspecified the needed substitution into a cited theorem. Most
omitted theorems were replacements involving double negation, commutation,
or association—the ‘easy’ steps.

Besides this data, another result was that, for the first time, we have for
every theorem a full step-by-step proof that (a) follows Principia’s proof recipe
and (b) only uses principles previously given as axioms or theorems in Prin-
cipia. This encoding in Coq, in contrast with earlier applications of computers
to Principia’s logic, thus allows us to reconstruct the complete reasoning in-
dicated in the text.

Of course, the first few proofs in Principia are short and Principia gives
them in full detail (Whitehead and Russell 1910, 102). But because Principia
mostly gives demonstrations, many proofs in the Coq encoding do not corre-
spond one-to-one with what Principia describes. Take, for example, Principia’s
brief proof-recipe for ❋2·37:

❋2·37. ⊢ q ⊃⊃⊃ r ⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r [Syll Perm Sum]

There is no indication of what uniform substitution is required (if one is
needed) in the three starred numbers are cited as lemmas. Further, ‘Syll’
is polysemous in Principia: four different theorems are called ‘Syll’ and the
demonstration does not indicate which of them are used. As we found in re-
constructing the full proof in Coq, the proof recipe calls for one substitution
into Syll(❋2·05) and another into Syll(❋2·06) plus two different substitutions
into Perm(❋1·4):

Theorem n2_38 : ∀ P Q R : Prop, (Q → R) → ((Q ∨ P) → (R ∨ P))
Proof. intros P Q R.

specialize Perm1_4 with P R.
intros Perm1_4a.
specialize Syll2_05 with (Q∨P) (P∨R) (R∨P).
intros Syll2_05a.
MP Syll2_05a Perm1_4a.
specialize Perm1_4 with Q P.

Computer Verification for Historians of Philosophy 19

intros Perm1_4b.
specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R).
intros Syll2_06a.
MP Syll2_06a Perm1_4b.
Specialize Sum1_6 with P Q R.
intros Sum1_6a.
Syll Sum1_6a Ha Sb.
exact Sb.

Qed.

This proof is faithful to the demonstration in this precise sense: it cites
every theorem mentioned in the recipe and nothing beyond the development
given earlier in Principia.36 Why should a historian of philosophy bother re-
constructing the full proof? Because doing so allows one to understand the
reasoning indicated in the text. A reconstructing of the full proof in Coq can
be used to reconstruct the full proof in Principia’s system. For ❋2·37, the full
proof is as follows:

❋2·37. ⊢ q ⊃⊃⊃ r ⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r

Dem.[
Perm(❋1·4) q, p

p, q

]
⊢ q ∨p ⊃⊃⊃ p∨ q (1)[

Syll(❋2·06) q ∨ p, p ∨ q, p ∨ r
p, q, r

]
⊢ q ∨p ⊃⊃⊃ p∨ q ⊃⊃⊃

p∨ q ⊃⊃⊃ p∨ r ⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r (2)
[MP(❋1·1): (1)∧ (2)] ⊢ p∨ q ⊃⊃⊃ p∨ r ⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r (3)
[Sum(❋1·6)] ⊢ q ⊃⊃⊃ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r (4)[
Syll(❋2·06) q ⊃⊃⊃ r, p ∨ q ⊃⊃⊃ p ∨ r, q ∨ p ⊃⊃⊃ p ∨ r

p, q, r

]
⊢ q ⊃⊃⊃ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r

⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r ⊃⊃⊃ q ⊃⊃⊃ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r (5)
[MP(❋1·1): (4)∧ (5)] ⊢ p∨ q ⊃⊃⊃ p∨ r ⊃⊃⊃ q ∨p ⊃⊃⊃ p∨ r ⊃⊃⊃

q ⊃⊃⊃ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r (6)
[MP(❋1·1): (3)∧ (6)] ⊢ q ⊃⊃⊃ r ⊃⊃⊃ p∨ q ⊃⊃⊃ p∨ r QED

For readability, I will use ‘∧’ for conjunction in place of Principia’s dots for
conjunction, adjusting scope dots as needed. Principia abbreviates the last
three lines of this proof with the derived rule ‘Syll’ as was done in the Coq
encoding. Notice how Principia’s full proof correlates one-to-one with the step-
by-step proof encoded in Coq. This marks a faithful reconstruction.
36 There are many full proofs that are faithful in this sense, and sometimes the shortest

proof faithful to the recipe will not be unique. Further, some proof recipes contain steps
that are unnecessary.

20 Landon D. C. Elkind

Another illustrative example is the demonstration of Exportation or ‘Exp’
(❋3·3). This demonstration cites Syll just once. It turns out that the complete
proof involves two theorems named ‘Syll’—❋2·05 (Syll2_05 in Coq) and ❋2·06
(Syll in Coq)—are used:

❋3·3. ⊢ p∧ q ⊃⊃⊃ r ⊃⊃⊃ p ⊃⊃⊃ q ⊃⊃⊃ r

Dem.

[Id∧ (❋3·01)] ⊢ p∧ q ⊃⊃⊃ r ⊃⊃⊃ ∼∼∼(∼∼∼p∨∼∼∼q) ⊃⊃⊃ r

[Transp] ⊃⊃⊃ ∼∼∼r ⊃⊃⊃ ∼∼∼p∨∼∼∼q

[Id∧ (❋1·01)] ⊃⊃⊃ ∼∼∼r ⊃⊃⊃ p⊃⊃⊃∼∼∼q

[Comm] ⊃⊃⊃ p ⊃⊃⊃ ∼∼∼r ⊃⊃⊃∼∼∼q

[Transp∧Syll] ⊃⊃⊃ p ⊃⊃⊃ q ⊃⊃⊃ r ⊃⊃⊃ ⊢ Prop

Principia frequently omits one or more theorems needed for a demonstra-
tion to omit in the corresponding complete proof, as above. For example, in
the demonstration of ❋2·74, three theorems are cited, but the demonstration
omits two theorems—❋2·31 and ❋2·32—are needed in the full proof. So some
demonstrations omit a theorem found to be necessary in our Coq formaliza-
tion. This is one way that applying interactive theorem provers can facilitate
our understanding, as historians of philosophy, of an argument in a text.

Another way that interactive theorem provers can help is by forcing us to
follow each step carefully. By computer verifying our inputs for correctness,
misprints in demonstrations can be found. Consider the proof of ❋5·23:

❋5·23. ⊢ p≡≡≡ q ≡≡≡ p q ∨∨∨ ∼∼∼p ∼∼∼q

[
❋5·18 ❋5·22 ∼∼∼q

q
❋4·13·36

]
In what appears to be a misprint, Principia’s demonstration here cites ❋4·36,
which is P ≡≡≡ Q ⊃⊃⊃ P ≡≡≡ R ≡≡≡ Q ≡≡≡ R. But at this point in the proof, having
used all the other cited starred numbers, we already have P ≡≡≡ Q ≡≡≡ P ∧ Q
∨ ∼∼∼Q ∧ ∼∼∼P . The Coq proof instead used ❋4·3 to commute ∼∼∼Q ∧ ∼∼∼P into
∼∼∼P ∧ ∼∼∼Q as needed.

Notice also that constructing the complete proof of ❋5·23 shows three theo-
rems are required that the demonstration omits—❋1·1 (modus ponens), ❋3·03
(conjunction), and ❋4·22—and that non-obvious substitutions are required for
the four theorems that the proof recipe does mention. We thus understand the
text better with the assistance of interactive theorem provers like Coq.

Recall the three benefits of utilizing interactive theorem provers in doing
philosophical history that were suggested at the end of §3. As mentioned be-
fore, the formalization sources are now freely available to anyone who wishes
to computer verify the proofs in minutes or to modify the reconstructed proofs
according to some preferred interpretation. Recall that the second benefit of
utilizing interactive theorem provers was that there are advantages to import-
ing logical developments made in standard libraries rather than needing to
copy such work manually or to review it oneself: the computer verification of

Computer Verification for Historians of Philosophy 21

Coq can be trusted about as much, if not more so, than any human-checked
base logic, and computer checking the library of developments building on that
base spares the human reader much time reviewing standard developments.

This application of the interactive theorem prover Coq to Principia’s proof
recipes also shows the advantages of interactive theorem provers’ standard li-
braries. Classical logic libraries were imported so that Coq could validate Prin-
cipia’s inference rules, axiom schemata, and definitions (well-formedness rules
were not checked because ill-formed strings simply are not processed in Coq).
All the primitives of Principia were thus validated by Coq’s (non-classical)
logic and its standard libraries for classical logic. Checking these primitives in
Coq provided extra epistemic support that the system of Principia is consis-
tent provided Coq’s kernel and standard libraries are so. Also, Coq checked
that each step and substitution in the full proofs based on Principia’s demon-
strations are valid steps within Principia’s own system.

The upshot of all this is that the axioms of Principia, having been proved
in Coq, do not introduce any inconsistencies unless Coq’s kernel and standard
libraries allow the derivation of one. The result of this combined with produc-
ing complete step-by-step reconstructions of Principia’s proofs, which steps
were also computer checked, is to boost our epistemic confidence in the full
proofs and theorems in Principia as reconstructed in Coq: their correctness
depends only upon our epistemic confidence in Coq’s kernel and standard li-
braries, which is certainly less likely to contain an error than a lengthy and
difficult development given in a work like Principia. It takes little imagination
to consider the extent of the advance that would be achieved by undertaking a
similarly complete and computer verified reconstruction of Volumes I, II, and
III of Principia in their entirety. Likewise for other works: Frege could perhaps
have been spared some post-publication logical heartbreak.37

This encoding in Coq also provides a sharable, editable, and computer
verified reconstruction of the reasoning in the text, with the additional upshot
of boosting to our epistemic confidence in Principia’s demonstrations. This
definite advance is made using interactive theorem provers to do interesting
work in philosophical history.

4.2 Applying interactive theorem provers to Aristotle’s syllogistic

Next I will discuss in detail an application of the interactive theorem prover
Isabelle in checking a reconstruction of Aristotle’s syllogistic.38 In formaliz-

37 Curiously, this seems to be an empirical claim. Is there a general-use interactive theorem
prover that can detect the inconsistency in Frege’s Grundgesetze without direct instructions
from a human user? Not many attempts to formalize Frege’s systems in interactive theorem
provers have been made, but this would be a worthwhile test case for an interactive theorem
prover’s inferential engine.
38 Isabelle is a generic proof assistant. Isabelle comes in different instances, that is, the

base logic for the theorem-proving environment can differ; the usual instance of Isabelle used
is Isabelle/HOL, which is a higher-order logic theorem-proving environment. Here I will use

22 Landon D. C. Elkind

ing Aristotle’s syllogistic in Isabelle, Angeliki Koutsoukou-Argyraki (2019) is
verifying the account of Aristotle’s syllogistic given by Robin Smith (2020).

Koutsoukou-Argyraki (2019, §1.1) first expresses Aristotle’s syllogistic us-
ing set-theoretic machinery; Koutsoukou-Argyraki notes that ‘Socrates is an
animal’ and ‘humans are animals’ both get “the same logical analysis”—‘all
things identical with Socrates are animals’ and ‘all humans are animals’—so
that each one can be couched in set-theoretic relations. Thus A, E, I, and O
propositions are analyzed as follows:

definition universal_affirmation :: "'a set → 'a set → bool"
where "A Q B ≡ ∀ b ∈ B . b ∈ A "

Any element of B is in A.

definition universal_denial :: "'a set →'a set → bool"
where "A E B ≡ ∀ b ∈ B. (b /∈ A) "

Any element of B is not in A.

definition particular_affirmation :: " 'a set →'a set → bool"
where "A I B ≡ ∃ b ∈ B. (b ∈ A) "

Some element of B is in A.

definition particular_denial :: "'a set →'a set → bool"
where "A Z B ≡ ∃ b ∈ B. (b /∈ A) "

Some element of B is not in A.
Koutsoukou-Argyraki then gives and computer-checks the conversion rules:

lemma aristo_conversion1 :
assumes "A E B" shows "B E A"
using assms universal_denial_def by blast

An E proposition ‘No A is B’ can be validly converted into ‘No B is A.’

lemma aristo_conversion2 :
assumes "A I B" shows "B I A"
using assms unfolding particular_affirmation_def
by blast

An I proposition ‘Some A is B’ can be validly converted into ‘Some B is A.’

lemma aristo_conversion3 :
assumes "A Q B" and "B ̸= {}" shows "B I A"
using assms
unfolding universal_affirmation_def

particular_affirmation_def by blast

‘Isabelle’ generically without specifying the instance. More information about Isabelle is
available at https://isabelle.in.tum.de/overview.html.

https://isabelle.in.tum.de/overview.html

Computer Verification for Historians of Philosophy 23

An A proposition ‘All As are Bs,’ where B is non-empty, can be validly con-
verted into ‘Some B is A.’ These proofs are of interest partly because they
computationally verify the Aristotle’s natural language deductions in the text.

The last conversion rule is particularly interesting because Isabelle’s au-
tomated proof checking detects counterexamples without the assumption that
B is non-empty (Koutsoukou-Argyraki 2019, 2). There has been a long con-
troversy over whether this was an appropriate assumption in logic and how
to treat converting A propositions into I propositions along Aristotelian lines;
see discussion and references in (Parsons 2021, §1.2). Formalization in Isabelle
brings out explicitly the existence assumption implicit in arguing, as Aristotle
does, for the soundness of this conversion (Smith 2020, §5.2). Indeed, Isabelle
would flag the fact that this conversion fails if B is empty even if a human had
missed it. Here is a case where formalization of natural language arguments
using interactive proof assistants serves to make explicit tacit assumptions
that were the subject of centuries-long controversy.

Koutsoukou-Argyraki (2019, §1.2) then computer-checks Aristotle’s 14 ar-
guments in Prior Analytics I.4-6 for (as Smith (2020, §5.4) puts it) the premise
combinations yielding deductions. These proofs largely follow from the defi-
nitions above and applications of Isabelle’s theorem-proving tactics auto and
blast. The blast tactic applies classical reasoning (much as one might apply nat-
ural deduction techniques) to secure the desired goal; the auto tactic applies
classical reasoning and also attempts simplifies the formula by rewriting.39 To
get a general sense of how these proofs go, here is the AAA syllogism ‘All
Greeks are humans; all humans are Greeks; so, all Greeks are humans’ verified
in Isabelle Koutsoukou-Argyraki (2019, §1.2.4):

lemma GreekMortal :
assumes "Mortal Q Human" and "Human Q Greek "
shows " Mortal Q Greek "
using assms Barbara by auto

Finally, there are meta-theoretic results about Aristotle’s syllogistic. As
Smith (2020, §5.5) has it, Aristotle shows certain meta-theoretical results in
Prior Analytics I.4-6, including this:

– All syllogisms reduce to the two universal syllogisms in the first figure.

The two universal deductions of the first figure are AAA-1 (a.k.a. Barbara)
and EAE-1 (a.k.a. Celarent). Following Smith’s reading, Aristotle argues in
two steps: (1) it is shown by reductio that the particular deductions of the first
figure (AII-1 and EIO-1, a.k.a. Darii and Ferio) reduce to universal deductions
of the second figure (EAE-2 and AEE-2, a.k.a. Cesare and Camestres); (2) all
particular deductions of whatever figure reduce to particular deductions of
the first figure. And Aristotle has previously argued for the soundness of the
universal deductions using Barbara and Celarent. Consequently, all deductions
reduce to Barbara and Celarent.
39 For more information, see the Isabelle reference manual (Wenzel 2021, §9.3-§9.4).

24 Landon D. C. Elkind

These steps of the argument, and each needed reduction, are computer-
checked in Isabelle by Koutsoukou-Argyraki (2019, §1.3). This example shows
that interactive theorem-provers can be leveraged to (1) verify meta-theoretical
results, (2) reconstruct natural language arguments for them, and (3) study
logical systems, once suitably embedded, other than the base logic that pro-
vides the interactive theorem-prover’s theorem-proving environment.

4.3 Meta-ethics in Interactive Theorem Provers

You might worry that the above examples are formalized or quasi-formalized
already: Principia and Prior Analytics are both works in logic, which might
lead you to wonder if I have cherry-picked examples that help my case but are
not representative.

To answer this objection, and to further address skepticism about the value
of applying interactive theorem provers in doing history of philosophy, I next
discuss a non-logic example of applying interactive theorem provers to areas
outside logic in doing history of philosophy. In this sub-section I discuss an
example in ethics due to David Fuenmayor and Christoph Benzmüller. (There
are also examples in metaphysics, including formalizing axioms for mereology,
ontological arguments, and abstract object theory; see §1 for references.)

The ethical example is Fuenmayor and Benzmüller’s formalizing an argu-
ment of Alan Gewirth (1981).40 Fuenmayor and Benzmüller (2018b, 2019b),
following the interpretation of Beyleveld (1991), reconstruct Gewirth’s argu-
ment for the principle of generic consistency according to which “agents cat-
egorically ought to act out of respect for the rights of all agents.” (Beyleveld
2012, 2, note 1) More precisely:

In a nutshell, according to this principle [the principle of generic con-
sistency], any intelligent agent (by virtue of its self-understanding as
an agent) is rationally committed to asserting that (i) it has rights to
freedom and well-being, and (ii) all other agents have those same rights.
(Fuenmayor and Benzmüller 2019b, 423-424)41

To formalize Gewirth’s (lengthy) argument for this view, Fuenmayor and
Benzmüller (2019b, §3) first encode the broader ethical framework, formaliz-
ing the notions of purpose, acting on a purpose, (subjective) goodness, freedom,
well-being, obligation, interference, and rights. For example, a prospective pur-
posive agent is an individual who can act on some purpose. Fuenmayor and
Benzmüller formalize this as
40 Although this might not be an example of doing history of philosophy, Gert-Jan C.

Lokhorst (2010, 2011) has leveraged interactive theorem provers (specifically, Prover9) in
doing meta-ethics; Lokhorst has applied Prover9 to repairing apparent defects in Mally’s
formulation of deontic logic and to modeling a robot capable of ethical reasoning. Additional
examples are cited in (Fuenmayor and Benzmüller 2019b).
41 As glossed by Beyleveld (1991, 1), “purposive agents and prospective purposive agents

(PPAs) are rationally committed, by virtue of conceiving of themselves as PPAs, to assenting
to a moral principle, “the principle of generic consistency” (PGC), which states that all PPAs
have claim (or “strong”) rights to their freedom and well-being.”

Computer Verification for Historians of Philosophy 25

definition PPA:: "p" where "PPA a ≡ ∃E. ActsOnPurpose a E"

where purpose has an antecedent definition e =⇒ m =⇒ m, which in-
dicates something like the desire of e that m obtain. Goodness in Gewirth’s
view is tied to subjective value and an agent’s purpose. So Fuenmayor and
Benzmüller (2018b, §3.3) formalize this as

axiomatization where explicationGoodness1:
'' ⌊∀ P. ActsOnPurpose a P → Good a P⌋^D ''

which is to say that a thing is (subjectively) good (for an agent) means
(by these postulates) that (1) any prospectively purposive agent a acting on
a purpose P is such that P is good for a; (2) for any prospective purposive
agent a acting on a purpose P and for any M, if M is needed for a to achieve
purpose P and P is good for a, then M is good for a; (3) for any state of
affairs ϕ and any prospective purposive agent a, if ϕ is possible given purpose
P, then any ϕ that is necessarily good for a is also obligatory for a.

Notably, this explanation of goodness in Gewirth’s argument is that the
third condition—that “from an agent’s perspective, necessarily good purposes
are not only action motivating, but also entail an instrumental obligation
to their realization (but only where possible)”—is required to validate the
argument (Fuenmayor and Benzmüller 2019b, §3.3). This assumption about
goodness, however, seems to have been tacit in Gewirth. This is one way in
which the use of interactive proof assistants makes explicit as an assumption
what may seem to us unnecessary in an argument (whether because it is not
noticed at all or because it seems entirely obvious).

Fuenmayor and Benzmüller (2019b, §4) give a full computationally-verified
proof of Gewirth’s principle that follows Gewirth’s original reasoning; it takes
45 lines from ‘proof’ to ‘QED’. This computer-checked formalization is evidence
for the interpretation of Beyleveld (2012): Fuenmayor and Benzmüller have
effectively shown that Beyleveld’s reading of Gewirth’s meta-ethical argument
is valid, which is usually taken as supporting a textual reconstruction.

Fuenmayor and Benzmüller’s reconstruction is also uploaded in the Archive
of Formal Proofs—a repository for proofs encoded in Isabelle—just as the
reconstruction of Aristotle’s syllogistic by Koutsoukou-Argyraki is. Anyone
doubtful about the steps in the proof can run the code on their own desktop
version of Isabelle. However, as Fuenmayor and Benzmüller (2019b, §4) note
(and as inspection of their proof shows), their proof in Isabelle is partly inter-
active and partly automated: some of the work is done by Isabelle under the
hood, as it were. In some steps of this formalization, the user sets a goal for
Isabelle and the theorem prover seeks a solution through, for instance, simpli-
fication (term rewriting). These steps are recoverable for human review, but
they also spare us the human effort of discovering (often simple) steps. This
is yet another benefit of leveraging interactive theorem provers (in particular,
those with some automated theorem proving capabilities).

26 Landon D. C. Elkind

5 The future of interactive theorem provers in history of
philosophy

The example of applying an interactive proof assistant to a text shows that
interactive theorem provers can benefit those who deploy them in doing philo-
sophical history. In the example of Principia, a complete reconstruction of the
entire propositional logic was computer checked. It is not claimed that this
is the only possible interpretation of the reasoning given in the text or that
interactive theorem provers were indispensable for this task, but others who
wish to criticize, or improve on, or just verify the reconstruction given are eas-
ily able to do so by downloading and editing the source files. Then the various
reconstructions can be considered and evaluated on their merits and demerits
much like interpretations made without interactive theorem provers are.

It is worth noting also that Principia is not exceptional in providing mere
recipes rather than full step-by-step arguments. In many past philosophical
works—say, Foot’s “The Problem of Abortion” or Maimonides’ Guide for the
Perplexed—arguments are rarely given with the step-by-step completeness and
rigor demanded by interactive theorem provers.42 This is not to say that such
works do (or do not) fall short of some high standard of rigor familiar to
modern logicians. It is to say that, like Principia, many works mostly contain
argument sketches: some steps are missing. Accordingly, formalization in in-
teractive theorem provers can deepen our understanding the reasoning given
in a text, especially by automating more tedious validity checking and copying
tasks usually done manually.43

Precisely these benefits were enjoyed in formalizing Principia’s proposi-
tional logic proof recipes as full step-by-step proofs in the interactive theorem
prover Coq. Further, although constructing full proofs in Coq often revealed
omissions in the demonstration, there were often patterns to the omissions.
The Coq formalization has induced a clearer picture of Whitehead and Rus-
sell’s system for omitting theorems and of the complete step-by-step proofs
indicated by Principia’s demonstrations.

This novel application of Coq to Principia shows the applicability of inter-
active proof assistants in textual reconstruction, which is of course interesting
to anyone in one field (or more than one field) such that a crucial feature

42 This is also true of much modern mathematical writing at the research level. Without
going so far as (Gonthier 2005, 2) and (Hales et al. 2015, 3) do and claiming that superior
logical safety belongs to Coq-checked proofs over the human-reviewed ones, we can nonethe-
less say that the formalization requirements for mathematical research today fall far short
of the standards laid out in the QED Project (Boyer 1994, 238). Indeed, the late Vladimir
Voevodsky’s work on Univalent Foundations brought new focus and energy into the QED
Project (Voevodsky 2015, 1278). So long as mathematicians today are publishing proof
recipes (if they are), then there is room for such formalization work as Gonthier, Hales, and
others have carried out on modern texts—work no different in kind than what we carried
out on Principia.
43 “It is suggested that the time is ripe for a new branch of applied logic which may be

called “inferential” analysis, treating proofs as numerical analysis does calculations. This
discipline, it is believed, will in the not too remote future lead to proofs of difficult theorems
by machine.” (Wang 1963, 224)

Computer Verification for Historians of Philosophy 27

of texts to be reconstructed (perhaps the crucial feature) is the arguments it
contains, and not only to researchers in computer science, philosophy, history
of science, or mathematics.

Finally, although I focused on reconstructing a single text, there is no rea-
son in principle why interactive theorem provers could not be applied to a
corpus more broadly—the Aristotelian corpus comes to mind—in a way that
allows for cross-textual comparison and computer verification that one’s re-
construction of, say, De Anima does not conflict with one’s reconstruction of
Physica. Similarly, one could compare a stretch of Bradley’s Appearance and
Reality with a passage in Russell’s Principles of Mathematics to computer
check that one’s reconstruction of what Russell’s passage contends really does
conflict with or contradict what is defended in Bradley’s work. So one could
leverage interactive theorem provers in dialectical studies, too. These are per-
haps ambitious suggestions about the potential uses for interactive theorem
provers, but there is no principled reason why such applications are impossi-
ble: rational reconstruction using interactive proof assistants might be applied
in the future to a whole corpus or between philosophers or traditions, mirror-
ing the broad scope of past rational reconstructions done without interactive
theorem provers.

Setting aside speculation about the future developments in applying inter-
active theorem provers, I conclude by summarizing what has been shown. The
example discussed above, of applying an interactive theorem prover in recon-
structing the reasoning in Principia’s text, shows in detail the sort of benefits
that result from applying interactive theorem provers in doing philosophical
history and precisely how they can arise from being fruitfully constrained by
computer verification.

The many examples cited in §1 show further that the benefits of computer
verification for historians of philosophy are not either an isolated incident or an
idle fancy: they have been and are actively being realized by those using them.
This is not to say that they are indispensable—just that they are useful, in the
same way that other applications like text editing ones are. The abundance
of examples shows that computer verification can be good for historians of
philosophy, at least for those who want it.

Acknowledgements I thank participants of the 2021 meeting of the Society for the Study
of the History of Analytical Philosophy for their helpful comments. I also thank Katalin
Bimbó, Bernard Linsky, and four anonymous reviewers with Synthese for their excellent
feedback and criticisms. I am grateful to Samuel C. Fletcher for organizing this special issue
of Synthese and for his patience with my revisions. Some of the research on this paper
was done while I was an Izaak Walton Killam Postdoctoral Fellow in Philosophy at the
University of Alberta.

Conflict of interest

The authors declare that they have no conflict of interest.

28 Landon D. C. Elkind

References

Alama J, Oppenheimer PE, Zalta EN (2015) Automating Leibniz’s theory of concepts. In:
International Conference on Automated Deduction, Springer, pp 73–97

Awodey S, Pelayo A, Warren MA (2013) Voevedsky’s Univalence Axiom in Homotopy Type
Theory. Notices of the American Mathematical Society 60(9):1164

Barendregt H, Barendsen E (2002) Autarkic computations in formal proofs. Journal of
Automated Reasoning 28(3):321–336

Beaney M (2013) Analytic Philosophy and History of Philosophy: The Development of the
Idea of Rational Reconstruction. In: Reck EH (ed) The Historical Turn in Analytic
Philosophy, chap 9, pp 231–260, DOI 10.1007/978-1-137-30487-2

Benzmüller C, Paleo BW (2015) Interacting with Modal Logics in the Coq Proof Assistant.
In: Beklemishev LD, Musatov DV (eds) Computer Science – Theory and Applications,
Springer, Switzerland, Lecture Notes in Computer Science, Vol. 9139, vol CSR 2015, pp
398–411, DOI 10.1007/978-3-319-20297-6

Benzmüller C, Claus M, Sultana N (2015) Systematic verification of the modal logic cube
in Isabelle/HOL. arXiv preprint arXiv:150708717

Beyleveld D (1991) The dialectical necessity of morality. University of Chicago Press
Beyleveld D (2012) The Principle of Generic Consistency as the Supreme Principle of Human

Rights 13:1–18, DOI 10.1007/s12142-011-0210-2
Blumson B (2021) Mereology. Archive of Formal Proofs https://isa-afp.org/entries/

Mereology.html, Formal proof development
Boyer R (1994) The QED Manifesto. In: Bundy A (ed) Automated Deduction — Cade-12:

12th International Conference on Automated Deduction, Proceedings, Berlin Heidelberg,
Lecture Notes in Artifical Intelligence, vol 12, pp 237–251, in the panel discussion “A
Mechanically Proof-Checked Encyclopedia of Mathematics: Should We Build One? Can
We?”

Castagnoli L (2010) Ancient Self-Refutation. Cambridge University Press
Davidson D (1973) Radical Interpretation Interpreted 8(3/4):313–328, URL https://www.

jstor.org/stable/42968535
Davidson D (1994) Radical Interpretation Interpreted 8:121–128, URL https://www.jstor.

org/stable/2214166
Elkind LDC (2021) Russell on the Ethical Value of Logic. In: Madigan TJ, Stone P (eds)

Bertrand Russell: Public Intellectual, 2nd edn, Tiger Bark Press, chap 15, pp 251–267
Fitelson B, Zalta EN (2007) Steps toward a computational metaphysics. Journal of Philo-

sophical Logic 36(2):227–247
Fleuriot J (2001) A Combination of Geometry Theorem Proving and Nonstandard Analysis

with Application to Newton’s Principia. Distinguished Dissertations, Springer-Verlag,
DOI 10.1007/978-0-85729-329-9

Fuenmayor D, Benzmüller C (2017) Automating emendations of the ontological argument in
intensional higher-order modal logic. In: Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), Springer, pp 114–127

Fuenmayor D, Benzmüller C (2018a) Computational hermeneutics: An integrated approach
for the logical analysis of natural-language arguments. In: International Conference on
Logic and Argumentation, Springer, pp 187–207

Fuenmayor D, Benzmüller C (2018b) Formalisation and evaluation of Alan Gewirth’s proof
for the principle of generic consistency in Isabelle/HOL URL https://www.isa-afp.
org/entries/GewirthPGCProof.html

Fuenmayor D, Benzmüller C (2019a) A computational-hermeneutic approach for conceptual
explicitation. In: Nepomuceno-Fernández Á, Magnani L, Salguero-Lamillar FJ, Barés-
Gómez C, Fontaine M (eds) Model-Based Reasoning in Science and Technology, Springer
International Publishing, pp 441–469

Fuenmayor D, Benzmüller C (2019b) Harnessing Higher-Order (Meta-)Logic to Represent
and Reason with Complex Ethical Theories. In: Nayak A, Sharma A (eds) PRICAI
2019: Trends in Artificial Intelligence, Lecture Notes in Computer Science, vol 11670,
Springer, pp 418–432, URL https://doi.org/10.1007/978-3-030-29908-8_34

https://isa-afp.org/entries/Mereology.html
https://isa-afp.org/entries/Mereology.html
https://www.jstor.org/stable/42968535
https://www.jstor.org/stable/42968535
https://www.jstor.org/stable/2214166
https://www.jstor.org/stable/2214166
https://www.isa-afp.org/entries/GewirthPGCProof.html
https://www.isa-afp.org/entries/GewirthPGCProof.html
https://doi.org/10.1007/978-3-030-29908-8_34

Computer Verification for Historians of Philosophy 29

Fuenmayor D, Benzmüller C (2020) A Case Study on Computational Hermeneu-
tics: E. J. Lowe’s Modal Ontological Argument, Springer International Publishing,
pp 195–228. DOI 10.1007/978-3-030-43535-6_12, URL https://doi.org/10.1007/
978-3-030-43535-6_12

Geuvers H (2009) Proof assistants: History, ideas and future 34:3–25, DOI
10.1007/s12046-009-0001-5, URL https://link.springer.com/article/10.1007/
s12046-009-0001-5

Gewirth A (1981) Reason and Morality. University of Chicago Press
Gonthier G (2005) A computer-checked proof of the Four Colour Theorem. URL https:

//www.cl.cam.ac.uk/~lp15/Pages/4colproof.pdf
Gonthier G (2008) A Computer-Checked Proof of the Four Colour Theorem. Notices of the

American Mathematical Society 55(11):1382–1393, URL http://www.ams.org/notices/
200811/tx081101382p.pdf

Gonthier G, Asperti A, Avigad J, Bertot Y, Cohen C, Garillot F, Roux SL, Mahboubi
A, O’Connor R, Ould SB, Pasca I, Rideau L, Solovyev A, Tassi E, Théry L (2013)
A Machine-Checked Proof of the Odd Order Theorem. In: Blazy S, Paulin-Mohring
C, Pichardie D (eds) Interactive Theorem Proving, Springer Berlin Heidelberg, Berlin,
Heidelberg, Lecture Notes in Computer Science, pp 163–179, URL https://hal.inria.
fr/hal-00816699

Hales T, Adams M, Bauer G, Dang DT, Harrison J, Hoang TL, Kaliszyk C, Magron V,
McLaughlin S, Nguyen TT, Nguyen TQ, Nipkow T, Obua S, Pleso J, Rute J, Solovyev
A, Ta AHT, Tran TN, Trieu DT, Urban J, Vu KK, Zumkeller R (2015) A Formal Proof of
the Kepler Conjecture. ArXiv e-prints URL https://arxiv.org/abs/1501.02155, eprint
arXiv:1501.02155

Harnad S (1990) Against computational hermeneutics 4:167–172, URL http://cogprints.
org/1576/

Harrison J (1996) Proof style. In: International Workshop on Types for Proofs and Programs,
Springer, pp 154–172

Harrison J, Urban J, Wiedijk F (2014) History of interactive theorem proving. In: Compu-
tational Logic, vol 9, pp 135–214

Hawthorne J (2021) Inductive Logic. In: Zalta EN (ed) The Stanford Encyclopedia of Phi-
losophy, spring 2021 edn, Metaphysics Research Lab, Stanford University

Hilbert D (1899) Grundlagen der Geometrie. Verlag von B. G. Teubner
Kirchner D, Benzmüller C, Zalta EN (2019) Computer science and metaphysics: A cross-

fertilization. Open Philosophy 2(1):230–251
Kirchner D, Benzmüller C, Zalta EN (2020) Mechanizing Principia Logico-Metaphysica in

Functional Type-Theory. The Review of Symbolic Logic 13(1):206-218, DOI 10.1017/
S1755020319000297

Klein A (2020) Philosophy at War: Nationalism and Logical Analysis. URL https://aeon.
co/essays/philosophy-at-war-nationalism-and-logical-analysis

Koutsoukou-Argyraki A (2019) Aristotle’s assertoric syllogistic. Archive of Formal Proofs
https://isa-afp.org/entries/Aristotles_Assertoric_Syllogistic.html, Formal
proof development

Kremer M (2013) What Is the Good of Philosophical History? In: Reck EH (ed) The Histor-
ical Turn in Analytic Philosophy, chap 11, pp 294–325, DOI 10.1007/978-1-137-30487-2

Lapointe S, Pincock C (2017) Introduction. In: Lapointe S, Pincock C (eds) Innovations in
the History of Analytical Philosophy, Palgrave Macmillan, pp 1–23

Lokhorst GJC (2010) Where Did Mally Go Wrong? In: Deontic Logic in Computer Science,
Springer, vol 6181, URL https://doi.org/10.1007/978-3-642-14183-6_18

Lokhorst GJC (2011) Computational meta-ethics. Minds and machines 21(2):261–274
Maric F (2015) A survey of interactive theorem proving. Zbornik radova 18(26):173–223
McCandless D (2015) Codebases. URL https://www.informationisbeautiful.net/

visualizations/million-lines-of-code/, research by Pearl Doughty-White and
Miriam Quick

Mohr JW, Wagner-Pacifici R, Breiger RL (2015) Toward a computational hermeneutics
2(2):2053951715613809, DOI 10.1177/2053951715613809, URL https://doi.org/10.
1177/2053951715613809, https://doi.org/10.1177/2053951715613809

https://doi.org/10.1007/978-3-030-43535-6_12
https://doi.org/10.1007/978-3-030-43535-6_12
https://link.springer.com/article/10.1007/s12046-009-0001-5
https://link.springer.com/article/10.1007/s12046-009-0001-5
https://www.cl.cam.ac.uk/~lp15/Pages/4colproof.pdf
https://www.cl.cam.ac.uk/~lp15/Pages/4colproof.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
https://hal.inria.fr/hal-00816699
https://hal.inria.fr/hal-00816699
https://arxiv.org/abs/1501.02155
http://cogprints.org/1576/
http://cogprints.org/1576/
https://aeon.co/essays/philosophy-at-war-nationalism-and-logical-analysis
https://aeon.co/essays/philosophy-at-war-nationalism-and-logical-analysis
https://isa-afp.org/entries/Aristotles_Assertoric_Syllogistic.html
https://doi.org/10.1007/978-3-642-14183-6_18
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://doi.org/10.1177/2053951715613809
https://doi.org/10.1177/2053951715613809
https://doi.org/10.1177/2053951715613809

30 Landon D. C. Elkind

Müller D, Rabe F, Sacerdoti Coen C (2019) The Coq library as a theory graph. In: Kaliszyk
C, Brady E, Kohlhase A, Sacerdoti Coen C (eds) Intelligent Computer Mathematics,
Springer International Publishing, Cham, pp 171–186

Novak N (2015) Practical Extraction of Evidence Terms from Common-Knowledge Rea-
soning. Electronic Notes in Theoretical Computer Science 312(24):143–160, DOI
https://doi.org/10.1016/j.entcs.2015.04.009

O’Leary DJ (1988) The Propositional Logic of Principia Mathematica and Some of Its
Forerunners. Russell: The Journal of Bertrand Russell Studies 8(1-2):92–115

Parsons T (2021) The Traditional Square of Opposition. In: Zalta EN (ed) The Stanford
Encyclopedia of Philosophy, Fall 2021 edn, Metaphysics Research Lab, Stanford Uni-
versity

Piotrowski M, Neuwirth M (2020) Prospects for Computational Hermeneutics. In: Atti del
IX Convegno Annuale AIUCD, DOI 10.6092/UNIBO/AMSACTA/6316

Plato (1997) Sophist. In: Cooper JM (ed) Plato: Complete Works, Hackett Publishing Com-
pany, pp 235–293

Portoraro F (2019) Automated Reasoning. In: Zalta EN (ed) The Stanford Encyclopedia of
Philosophy, spring 2019 edn, Metaphysics Research Lab, Stanford University

Reed D (2005) Figures of Thought: Mathematics and Mathematical Texts. Routledge
Rockwell G, Sinclair S (2016) Hermeneutica: Computer-assisted interpretation in the hu-

manities. MIT Press
Rorty R (1984) The Historiography of Philosophy: Four Genres. In: Rorty R, Schneewind

JB, Skinner Q (eds) Philosophy in History, Cambridge University Press, chap 3, pp
49–76

Russell B (1914/1986) On Scientific Method in Philosophy. In: Slater JG (ed) The Philoso-
phy of Logical Atomism and Other Essays, 1914-19, The Collected Papers of Bertrand
Russell, vol 8, George Allen & Unwin LTD., New York, chap 5, pp 55–73

Saqib Nawaz M, Malik M, Li Y, Sun M, Ikram Ullah Lali M (2019) A Survey on Theorem
Provers in Formal Methods. arXiv e-prints arXiv:1912.03028, 1912.03028

Shapiro S, Kissel TK (2018) Classical Logic. Stanford Encyclopedia of Philosophy URL
http://plato.stanford.edu/archives/spr2018/entries/logic-classical/

Smith R (2020) Aristotle’s Logic. In: Zalta EN (ed) The Stanford Encyclopedia of Philoso-
phy, fall 2020 edn, Metaphysics Research Lab, Stanford University

Szabó ZG (2020) Compositionality. In: Zalta EN (ed) The Stanford Encyclopedia of Philos-
ophy, Fall 2020 edn, Metaphysics Research Lab, Stanford University

Voevodsky V (2015) An Experimental Library of Formal Mathematics Based on the Univa-
lent Foundations. Mathematical Structures in Computer Science 25(5):1278–1294, DOI
10.1017/S0960129514000577

Wang H (1963) Toward Mechanical Mathematics. In: A Survey of Mathematical Logic, 1,
Science Press and North-Holland Publishing Company, chap IX, pp 224–268, reprinted
from 1960

Wenzel M (2021) The Isabelle/Isar Reference Manual. URL https://isabelle.in.tum.de/
documentation.html

Whitehead AN, Russell B (1910) Principia Mathematica, vol I, 1st edn. Cambridge Univer-
sity Press

Williams B (1994) Descartes and the Historiography of Philosophy. In: Cottingham J (ed)
Reason, Will, and Sensation: Studies in Descartes’s Metaphysics, Clarendon Press

1912.03028
http://plato.stanford.edu/archives/spr2018/entries/logic-classical/
https://isabelle.in.tum.de/documentation.html
https://isabelle.in.tum.de/documentation.html

	Introduction
	Interactive theorem provers
	Formalization as done by historians of philosophy
	Examples of computer verification in history of philosophy
	The future of interactive theorem provers in history of philosophy

