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Abstract. In the logical context, ignorance is traditionally de-
fined recurring to epistemic logic S4 [21]. In particular, an agent
ignores a formula ϕ when s/he does not know neither ϕ nor its
negation ¬ϕ: ¬Kϕ ∧ ¬K¬ϕ (where K is the epistemic operator
for knowledge). In other words, ignorance is essentially inter-
preted as “lack of knowledge”. This received view has - as we
point out - some problems, in particular we will highlight how it
does not allow to express a type of content-theoretic ignorance,
i.e. an ignorance of ϕ that stems from an unfamiliarity with its
meaning. Contrarily to this trend, in this paper, we introduce and
investigate a modal logic having a primitive epistemic operator I,
modeling ignorance. Our modal logic is essentially constructed
on the modal logics based on weak Kleene three-valued logic
introduced by Krister Segerberg [34]. Such non-classical propo-
sitional basis allows to define a Kripke-style semantics with the
following, very intuitive, interpretation: a formula ϕ is ignored
by an agent if ϕ is neither true nor false in every world accessible
to the agent. As a consequence of this choice, we obtain a type of
content-theoretic notion of ignorance, which is essentially differ-
ent from the traditional approach based on S4. We dub it severe
ignorance. We axiomatize, prove completeness and decidability
for the logic of reflexive (three-valued) Kripke frames, which we
find the most suitable candidate for our novel proposal and, fi-
nally, compare our approach with the most traditional one.

1. Introduction

The study of ignorance is certainly as old as the study of knowl-
edge; however the formal study of the logic of ignorance is still a

Key words and phrases. Ignorance, three-valued modal logic, Bochvar external
logic, weak Kleene logic.
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young area of research. In the epistemological studies of ignorance
the standard view is to define it as lack of knowledge (see for exam-
ple [27], [24], [26], [25]). We believe that this is the reason why also
the formal study of the logic of ignorance has been developed with
reference to the formal study of the logic of knowledge. This tradi-
tion is mainly due to the work of Hintikka [21], who distinguishes
two notions of lack of knowledge relative to an agent, namely “a
(an agent) does not know that ϕ” (¬Ka ϕ) and “a does not know
whether ϕ” (¬Ka ϕ ∧ ¬Ka¬ϕ). It seems that, according to Hintikka,
only the latter explicates the notion of ignorance; indeed, he [21,
p.12] formalizes ignorance (of an agent a) as ¬Ka ϕ ∧ ¬Ka¬ϕ. Such
regimentation has become standard in the logical literature on igno-
rance. For this reason, by the expression “ignorance as lack/absence
of knowledge”, we will refer to Hintikka’s view throughout this ar-
ticle. From psychology to education studies, passing through phi-
losophy and many other disciplines, a plenitude of deep analyses
of knowledge and ignorance have been put forward ([20], [29], [28],
[13], [1]) and the standard view in the literature describes igno-
rance in terms of lack, or absence, of knowledge.Therefore, it is not
surprising that this is also the standard view in the logical treat-
ment of ignorance. However, in more recent times, van der Hoek
and Lomuscio [39] introduced a modal logic (Ig) where ignorance
is modeled by a primitive modal operator, unrelated to (lack of)
knowledge. The spirit behind Ig is expressing “ignorance as a first
class citizen” [39, p.3]. However, despite their intention, their so-
lution does not seem too far from Hintikka’s lack of knowledge.
Indeed, in their semantics for the operator I – for ignorance – an
agent ignores ϕ if s/he has access to two (different) worlds, where
ϕ is evaluated differently (true in one and false in the other). In their
own words (again): “[the] formula Iϕ is to be read as «the agent is
ignorant about ϕ, i.e. s/he is not aware of whether or not ϕ is
true»”. The semantics of I is then the same as in Hintikka [21, p.12],
with the only difference that Ig “can not speak” about knowledge.

Similarly, the Logic of Unknown Truths (LUT) and the subsequent
logics of ignorance proposed by Steinsvold [35] subordinate the con-
cept of ignorance to that of knowledge. In these logics the black
box (�) in fact stands for ϕ ∧ ¬Kϕ; if the latter formula is true, and
ϕ → ¬K¬ϕ holds, then also ¬Kϕ ∧ ¬K¬ϕ holds, which is again
Hintikka’s definition of ignorance.

Following the research trend opened in Fano and Graziani [11],
this article intends to discuss the fact that lack of knowledge is just
one way to look at ignorance and, taking up van der Hoek and
Lomuscio’s challenge, to introduce a logic which addresses the pur-
pose of defining “ignorance as a first class citizen”. In this paper,
after discussing the consequences of defining ignorance as lack of
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knowledge (in the epistemic logic S4), we introduce and investigate
a modal logic having a primitive epistemic operator I, modeling ig-
norance. In particular, the idea we have in mind is that of modelling
a type of content-theoretic ignorance, so to say an ignorance of some-
thing that stems from an unfamiliarity with its meaning, i.e. a severe
notion of ignorance that implies a lack of awareness with respect
to a subject-matter. In our view, this type of ignorance constantly
affects the practice of science. For instance, consider the follow-
ing situation: Max Planck, in approaching the black body radiation
problem, knew that, in the theoretical predictions of the black body,
there was a divergence for high frequencies, in contrast with ex-
perimental data. However, he did not simply ignore which physical
phenomena constituted the cause, but, more importantly, he did not
have any idea (is ignorant) of what could be a bundle of causes. In
logical terms, it is not merely the case that Planck does not know the
truth value of a physical statement (that could be the cause), but he
does not know which kind of event could be a cause. In other terms,
when thinking about severe ignorance, we have in mind situations
where scientists are ignorant of the bundle of causes that might be
at the root of a phenomenon. Contrarily, Hintikka’s ignorance, in
particular in the variant proposed by Steinsvold, appears related to
the lack of knowledge of single agents, such as, for instance, a phys-
ical statement that is, perhaps, known in the community of trained
physicists but, possibly, ignored by a non-physicist. To achieve
the goal of modeling severe ignorance, we base the semantics of
our (modal) logic on the presence of a third truth-value, whose be-
haviour is infectious, as severe ignorance ultimately is. Returning
to the example about Planck’s ignorance, the infectivity of his igno-
rance depends on the fact that every scientific issue whose content
is theoretically connected to the explanation of the black body is
ignored severely at the same way that the explanation is. The most
natural examples of infectious logics are the so-called weak Kleene
logics, which can be intuitively introduced via a matrix where truth-
values {0, 1} are joined by a third truth-value 1/2 whose behaviour
is infectious in the sense that a complex formula ϕ is evaluated to
the third value 1/2 whenever any of its atomic formulas is evaluated
to 1/2 (independently of the structure of ϕ). Our modal logic will
be essentially constructed following the ideas of the modal logics
based on (one of the) weak Kleene logics introduced by Prior [31]
and Segerberg [34]. Our philosophical approach keeps fixed the
classical account that ignorance, as well as knowledge, is an epis-
temic notion and, for this reason, the logical modeling we primarily
purse is an epistemic (modal) logic, whose privileged semantics is
a relational one (Kripke-style). As a byproduct of our analysis, we
discover that the non-classical propositional basis chosen (Bochvar
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external logic) indeed already incorporates (some) connectives that
can be interpreted as modalities, to be used (also) for the formal rep-
resentation of the severe ignorance. Therefore, we will highlight the
coincidence between the Kripke-style interpretation of the modality
for ignorance and that of one connective in the enriched language
of Bochvar logic.

The paper is organized into four parts: in Section 2 we intro-
duce the standard (logical) approach to ignorance as “lack of knowl-
edge”. In Section 3, we introduce Bochvar external logic which we
will use in order to give a modal approach to severe ignorance. In
Section 4, it is introduced the logic SI of severe ignorance; an axiom-
atization with relative completeness is proved in Subsection 4.2. We
conclude the paper with Section 5 where we make some remarks on
the validity of certain formulas relevant to capture a severe notion of
ignorance, and compare the differences between the standard view
and the proposed logic for severe ignorance.

2. Ignorance as Lack of Knowledge

As mentioned, the traditional logical approach to ignorance is
based on the idea of defining ignorance as “lack of knowledge”.
This is considered the standard view and is mainly due to the work
of Hintikka [21] (see also [13] and [9]), according to whom, an agent
ignores a formula ϕ, when s/he “does not know whether ϕ”. This
translates ignorance into a modal operator in the epistemic logic S4
defined as follows:

(1) Iϕ := ¬Kϕ ∧ ¬K¬ϕ,

where K stands for the knowledge operator. It follows from (1) that,
in the standard Kripke-style semantics for S4, the formula Iϕ is true
in a world w (under a certain evaluation v, in symbols v(w, Iϕ) = 1)
if and only if there exist two worlds w′, w′′, related to w, such that
ϕ is true (false, respectively) in w′ (under v) and ϕ is false (true,
resp.) in w′′ (under v). In words, an agent ignores a formula ϕ,
in a world w, if and only if s/he has access to two worlds each
of which assigns a different truth value to ϕ. Roughly speaking,
“do not knowing whether ϕ” – ignoring ϕ according to Hintikka
– means seeing (at least two different) worlds where ϕ is assigned
with different truth-values. We might say that Hintikka’s approach
models ignorance as a truth-theoretic notion: “ignoring whether ϕ”
is translated as “being unsure” about the truth value of ϕ, due to
the existing conflict of evaluation in the related worlds.

It is useful to underline that the semantics for the ignorance modal-
ity I is the same, as above, also in the logic Ig, introduced by Van der
Hoek and Lomuscio (see [39, Definition 2.1]) with the aim of treat-
ing ignorance as a primitive notion, not subordinated to knowledge.
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Indeed, the main difference, with respect to Hintikka’s approach, is
that, in Ig, ignorance is not defined as “lack of knowledge” as Ig
does not contain any primitive knowledge operator: it is modeled
via the primitive operator I.

We wonder whether modeling ignorance as lack of knowledge
(or via I in Ig) is the only way to logically address the notion of
ignorance. Far from saying that it is not the correct way to analyze
the concept, we simply claim that “lack of knowledge” is only one
way to approach ignorance, whose features are exemplified by the
logical laws in which I actually occurs. We recap the logical laws
and the notable failures involving I in the following remarks.

Remark 1. It is immediate to check that the following formulae are
logical truths in S4 – where I is defined according to (1):

(1) |=S4 Iϕ↔ I¬ϕ;
(2) |=S4 I(ϕ ∧ ψ)→ Iϕ ∧ Iψ;
(3) |=S4 Iϕ ∨ Iψ→ I(ϕ ∨ ψ);
(4) |=S4 I(ϕ→ ψ)→ (Iϕ→ Iψ);
(5) |=S4 I(ϕ ∧ ψ)→ Iϕ ∨ Iψ;
(6) |=S4 IIϕ→ Iϕ.

Remark 2. The following formulae do not hold, in general, in S4 –
where I is defined according to (1):

a) 6|=S4 Iϕ ∧ Iψ→ I(ϕ ∧ ψ);
b) 6|=S4 Iϕ ∨ Iψ→ I(ϕ ∨ ψ);
c) 6|=S4 Iϕ→ IIϕ;
d) 6|=S4 Iϕ→ I(ϕ ∨ ¬ϕ);
e) 6|=S4 Iϕ→ I(ϕ ∧ ¬ϕ);
f) 6|=S4 Iϕ→ ϕ.

We just show a simple counterexample for (a). Consider a Kripke
modelM = 〈W, R, v〉 with W = {w, s}, R = {(w, w), (s, s), (w, s)},

s

w

where evaluation v is defined as follows: p ∈ w, p 6∈ s and q 6∈ w,
q ∈ s. It then follows that v(w, Ip) = 1, v(w, Iq) = 1. On the other
hand, v(w, p ∧ q) = v(s, p ∧ q) = 0, thus v(w, I(p ∧ q)) = 0.

Intuitively, to falsify a) it is sufficient to consider a model with two
different related worlds, each of which makes one formula true and
the other false, respectively. In this way, each formula is ignored but
the conjunction is not, since is false in every world.

We are convinced that the set of formulas listed in Remarks 1

and 2 – although they might not constitute an exhaustive list – tells
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something relevant about the notion of ignorance that Hintikka had
in mind (more detailed comments on this can be found in Section
5). Let us analyze, through some examples, the applicability (as
well as limits of applicability) of Hintikka’s notion of ignorance.

Suppose that Magnus and Jan1 are about to play a single chess
match. It is plausible to think that a rational agent ignores (does not
know) whether Magnus is going to win (although it is very unlikely
to happen, he might lose or the match could end in a draw); simi-
larly, s/he ignores whether Jan is going to win. On the other hand,
our rational agent does not ignore whether Magnus and Jan is going
to win, as s/he knows that the same chess match can not have two
different winners. This shows a case in which the ignorance of two
conjuncts does not translate in the ignorance of their conjunction,
as it happens to be the case in S4 (see Remark 2-a).

Observe, however, that ignorance as lack of knowledge behaves
according to the principle that ignoring a conjunction implies ignor-
ing both the conjuncts and the disjuncts (Remark 1), which shades
some confusion between “and” and “or” when referring to notions
that are ignored.

Nevertheless, we believe that, sometimes, lack of knowledge is
understood in a way which is not exemplified by the behaviour of I
in S4 (and Ig). We try to clarify what we mean, giving some exam-
ples relative to the behaviour of I with respect to the conjunction.

Suppose that one of the authors of this paper has just concluded
to examine a student, who aimed to pass his/her exam in modal
logic. During the exam, she was asked to answer some questions
(obviously, in a finite number), each of which with the precise goal
to verify whether she is ignorant – hopefully, is not ignorant – of the
main topics which, together, form the program of the entire course.
Unfortunately, due to her deficient answers, the examiner has col-
lected enough evidence to conclude that she is ignorant of all the
main topics, say ϕ1, . . . , ϕn, characterizing the course. The rational
examiner is so brought to conclude that the student is ignorant of
the whole subject of the exam, which can be exemplified as the con-
junction ϕ1 ∧ · · · ∧ ϕn, and thus can not pass the exam. In other
words, she is ignorant of the program ϕ1 ∧ · · · ∧ ϕn of the exam.
It seems reasonable to think that the above exemplified notion of
ignorance is indeed lack of knowledge (the examiner is ultimately
testing if the student “knows ϕ1, . . . , ϕn”) and it seems reasonable
also to think that the ignorance of each of the statements ϕ1, . . . , ϕn
implies the ignorance of the conjunction ϕ1 ∧ · · · ∧ ϕn (how could
this not be the case?!). However, ignorance as lack of knowledge,
modeled in S4, and closure with respect to conjunction can not stand

1Names refer to real professional players: the (current) world-number one
Magnus Carlsen and our colleague (and Grandmaster) Jan Michael Sprenger.

https://ratings.fide.com/profile/1503014
https://ratings.fide.com/profile/4646258
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together.
Another weakness regarding the standard view (as discussed in re-
cent literature, see [23], [18]) is that the so called Factivity Principle
(usually intended relative to knowledge as Kφ→ φ), does not work
in the standard view framework, i.e. it does not hold that if an agent
ignores φ then φ is true. This fact is also highlighted in our Remark
2, where we prove that factivity of ignorance does not hold in S4 (in
contrast with the factivity of knowledge which clearly holds).

It is also possible to design other examples allowing us to stress
that there are cases where ignorance is severe and does not coincide
with lack of knowledge. Let us consider the discovery, happened
at the beginning of November 2021, of the new Omicron variant of
Coronavirus. The group of South-African scientists who isolated
the variant communicated immediately their discovery, however it
is reasonable to think that the sentence “Omicron is a variant of con-
cern” was ignored by everyone at the time (and perhaps in the fol-
lowing days). This kind of ignorance is severe (in our sense), since it
is natural that it spreads over sentences containing the previous. For
instance, also any implication of the form “if the Omicron variant is
of concern then there will be more deaths due to it” is genuinely to
be ignored. This example seems to be convincing on the infectious-
ness of severe ignorance. More precisely, the lesson to learn from
the above discussion is that the notion of ignorance is more subtle
and problematic than it might appear at first look. Modeling it as
“lack of knowledge” is surely a possibility, which has both qualities
and flaws, depending on the context of applicability.

The aim of the present work is to propose a logical modeling
of severe ignorance, a notion that differs from Hintikka’s lack of
knowledge. This change of perspective significantly impacts on the
formulas holding/not holding in this new logic with respect to S4
(see Section 5 for a comparison and further discussion). Indeed,
when ignorance is conceived as severe, then the failure of certain
formulas, such as (2) and (4) in Remark 1, comes with no surprise;
similarly, it is not surprising that a formula like a) in Remark 2

holds in this new system. Intuitively, one could think that a way to
address a severe ignorance is possible also in S4, by recurring to the
so-called “second-order ignorance” (also referred to as Rumsfeld
ignorance by Fine [13]), rendered by applying I twice to a formula.
However, applying II does not validate the fact that ignoring two
formulas implies ignoring their conjunction, as witnessed by the
following.

Remark 3. The following formulas are not logical truths of S4:

(1) 6|=S4 IIϕ ∧ IIψ→ II(ϕ ∧ ψ);
(2) 6|=S4 II(ϕ ∧ ψ)→ IIϕ ∧ IIψ.
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The same counterexample introduced in Remark 2 serves also for
(1). Indeed, observe that v(w, Ip) = v(w, Iq) = 1 and v(s, Ip) =
v(s, Iq) = 0, thus v(w, IIp) = v(w, IIq) = 1, hence v(w, IIp ∧ IIq) =
1. However, since v(w, I(p ∧ q)) = v(s, I(p ∧ q)) = 0 and there ex-
ists no world x ∈ W such that wRx and v(x, I(p ∧ q)) = 1, then
v(w, II(p ∧ q)) = 0.
A simple counterexample to (2) is given by the following. Con-
sider a Kripke model M = 〈W, R, v〉 with W = {w, r, s, t}, R =
{(w, w), (r, r), (s, s), (t, t), (w, s), (s, r), (w, r), (w, t)}

r

t s

w

Evaluation is defined as follows: p, q ∈ s, p, q ∈ t, p, q ∈ r and q ∈ s,
p 6∈ s. It follows that v(s, I(p ∧ q)) = 1 and v(t, I(p ∧ q)) = 0, thus
v(w, II(p ∧ q)) = 1. However, v(x, Iq) = 0, for every x ∈ W, thus
v(w, IIq) = 0. �

The possibility of nesting the modality I (i.e. having formulas
such as IIϕ, IIIϕ, etc.), which is allowed in S4, as we just saw,
presents also a remarkable disadvantage. Although Iϕ → IIϕ is
not a theorem of S4, it is not difficult to check that the formula
IIϕ → IIIϕ is a theorem. More in general, abbreviating with In the
n-times application of the modality I, in S4 the formula In ϕ→ In+1ϕ
holds, for n ≥ 2. This quite problematic phenomenon is usually re-
ferred to as the black hole of ignorance (see [13]).

3. Bochvar external logic Be

Given a similarity type ν, the absolutely free algebra Fm of type
ν over a countably infinite set X of generators will be called the
formula algebra of type ν; its members will be called formulas. Mem-
bers of X will be called (propositional) variables and referred to by
the symbols p, q, . . . . We denote algebras by A, B, C . . . and the re-
spective universes by A, B, C . . . We understand a logic (of type ν)
as a pair L = 〈Fm,`L〉, where Fm is the formula algebra (of type
ν), and `L is a substitution-invariant consequence relation over Fm
(` ⊆ P(Fm)× Fm).

Kleene’s three-valued logics – introduced by Kleene in his Intro-
duction to Metamathematics [22] – are traditionally divided into two
families, depending on the meaning given to the connectives: strong
Kleene logics – counting strong Kleene and the logic of paradox [30]
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– and weak Kleene logics, namely Bochvar logic [3] and paraconsis-
tent weak Kleene – PWK in brief (sometimes referred to as Hallden’s
logic [19]).

Kleene logics are traditionally defined over the algebraic language
LK : ¬,∨ of type (1, 2); ϕ ∧ ψ, ϕ → ψ and ϕ ↔ ψ are abbreviations
for ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ and (ϕ → ψ) ∧ (ψ → ϕ), respectively.
The language LK is usually referred to as the internal language (and
¬,∨ as the internal connectives). Enlarging LK with a new unary
connective (and the constants 0, 1), one obtains LKe : ¬,∧, J2 , 0, 1 (of
type (1, 2, 1, 0, 0)). Let us denote, with an abuse of notation (that
hopefully does not create confusion) by Fm the formula algebra
over the algebraic language LKe .

Semantics of the language LKe is given by the three-elements alge-
bra WKe = 〈{0, 1, 1/2},¬,∧, J2 , 0, 1〉 displayed in Figure 1 (semantics
of ∨ and→ is recalled in Figure 2).

¬
1 0

1/2 1/2

0 1

∨ 0 1/2 1

0 0 1/2 1
1/2 1/2 1/2 1/2

1 1 1/2 1

J2

1 1
1/2 0
0 0

Figure 1. The algebra WKe.

∧ 0 1/2 1

0 0 1/2 0
1/2 1/2 1/2 1/2

1 0 1/2 1

→ 0 1/2 1

0 1 1/2 1
1/2 1/2 1/2 1/2

1 0 1/2 1

Figure 2. Semantics of ∨ and→ in the algebra WKe.

Historically, the truth-value 1/2 has been read as “meaningless”
and used for interpreting meaningless sentences in several contexts
(for a discussion on the use of meaningless sentences in logic and
philosophy, see [12] and [37]). Contrarily to the usual trend, in
this paper, we will read the value 1/2 simply as indeterminate or
undefined (similar choices, even though with remarkable differences,
have been advanced for weak Kleene logics, for instance in [2], [36],
[4], [10])

The language LKe is significantly rich and allows to define the so-
called external formulas.2 Intuitively, a formula α is external when it

2The idea of considering the external language is originally due to Bochvar
[3], who wanted to move non-classical to get rid of set-theoretic and semantic
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is evaluated to {0, 1} (which is the universe of a Boolean subalgebra
of WKe) from any homomorphism h : Fm → WKe. In other words,
an external formula is one such that can not be evaluated to 1/2 (see
[14, p. 208]).

Via J2 , it is possible to define more connectives (which will be
very useful for our analysis): J3 ϕ := ¬J2¬ϕ → J2 ϕ, J1 ϕ := ¬J3 ϕ and
J0 ϕ := ¬(J1 ϕ ∨ J2 ϕ) interpreted (in WKe) as follows.

ϕ J3 ϕ

1 1
1/2 0
0 1

ϕ J1 ϕ

1 0
1/2 1
0 0

ϕ J0 ϕ

1 0
1/2 0
0 1

Intuitively, connectives J0 , J1 , J2 , J3 allow to speak not only about a
statement ϕ but also about its truthfulness, falseness and more.

Bochvar (external) logic Be is the logic induced by the matrix
〈WKe, {1}〉, i.e.

Γ |=Be ϕ if and only if, for every homomorphism h : Fm→ WKe,

if h[Γ] ⊆ {1} then h(ϕ) = 1.
In words, Be is the logic preserving only the truth-value 1 (“true”).3

Definition 4. A variable p is open in a formula ϕ when there is
at least one occurrence of it which does not fall under the scope
of Ji , with i ∈ {0, 1, 2, 3}. It is covered if it is not open, namely it
occurs in ϕ and all occurrences fall under the scope of Ji , for some
i ∈ {0, 1, 2, 3}.

The intuition behind external formulas is made precise by the
following.

Definition 5. A formula ϕ ∈ Fm is called external if all the variables
occurring in ϕ are covered or, if a variable is open in ϕ then ϕ falls
under the scope of Ji , for some i ∈ {0, 1, 2, 3}.

Examples of external formulas are: J1 p ∨ J2q, J1(p ∨ q), etc.
A Hilbert-style axiomatization of Be has been introduced by Finn

and Grigolia [14, pp. 236-236]. In order to present it, let

ϕ ≡ ψ :=
2∧

i=0

Ji ϕ↔ Ji ψ,

and α, β, γ denote external formulas.

Axioms
paradoxes (by interpreting them to 1/2) but without losing the expressiveness of
classical logic. Unfortunately, it can be shown that paradoxes resurfaces (see [38]).

3The different choice (on the same formula algebra) of the truth set {1, 1/2}
defines the logic H0 studied by Segerberg [33].
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(A1) (ϕ ∨ ϕ) ≡ ϕ;
(A2) (ϕ ∨ ψ) ≡ (ψ ∨ ϕ);
(A3) ((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ));
(A4) (ϕ ∧ (ψ ∨ χ) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ));
(A5) ¬(¬ϕ) ≡ ϕ;
(A6) ¬1 ≡ 0;
(A7) ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ);
(A8) 0∨ ϕ ≡ ϕ;
(A9) J2α ≡ α;

(A10) J0α ≡ ¬α;
(A11) J1α ≡ 0;
(A12) Ji¬ϕ ≡ J2−i ϕ, for any i ∈ {0, 1, 2};
(A13) Ji ϕ ≡ ¬(Jj ϕ ∨ Jk ϕ), with i 6= j 6= k 6= i;
(A14) (Ji ϕ ∨ ¬Ji ϕ) ≡ 1, with i ∈ {0, 1, 2};
(A15) ((Ji ϕ ∨ Jk ψ) ∧ Ji ϕ) ≡ Ji ϕ, with i, k ∈ {0, 1, 2};
(A16) (ϕ ∨ Ji ϕ) ≡ ϕ, with i ∈ {1, 2};
(A17) J0(ϕ ∨ ψ) ≡ J0 ϕ ∧ J0ψ;
(A18) J2(ϕ ∨ ψ) ≡ (J2 ϕ ∧ J2ψ) ∨ (J2 ϕ ∧ J2¬ψ) ∨ (J2¬ϕ ∧ J2ψ);
(A19) α→ (β→ α);
(A20) (α→ (β→ γ))→ ((α→ β)→ (α→ γ));
(A21) α ∧ β→ α;
(A22) α ∧ β→ β;
(A23) (α→ β)→ ((α→ γ)→ (α→ β ∧ γ));
(A24) α→ α ∨ β;
(A25) β→ α ∨ β;
(A26) (α→ γ)→ ((β→ γ)→ (α ∨ β→ γ));
(A27) (α→ β)→ ((α→ ¬β)→ ¬α);
(A28) α→ (¬α→ β);
(A29) ¬¬α→ α.

Deductive rule
ϕ ϕ→ ψ

[MP]
ψ

Observe that the axiomatization contains a set of axioms (A19-
A29), which, together with the rule of modus ponens, yields a com-
plete axiomatization for classical logic (relative to external formu-
las). Upon defining the notion of derivation (`Be ϕ) in the usual
way, Finn and Grigolia proved weak completeness for Be.

Theorem 6. [14, Theorem 3.4] `Be ϕ if and only if |=Be ϕ.

It is natural to wonder whether Be can be provided with a more
synthetic Hilbert-style axiomatization and/or with a different style
axiomatization (natural deduction, Gentzen-style, etc.). Actually a
stronger version of Theorem 6 can be proved (the details of the
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proof are displayed in the Appendix, where we also show that Be is
algebraizable).

Theorem 7. Γ `Be ϕ if and only if Γ |=Be ϕ.

Theorem 8 (Deduction Theorem). Γ `Be ϕ if and only if there exist
formulas γ1, . . . , γn ∈ Γ such that `Be J2γ1 ∧ · · · ∧ J2γn → J2 ϕ.

Proof. (⇒) By induction on the length of the derivation of ϕ (from
Γ).
(⇐) We reason by contraposition and suppose that Γ 0Be ϕ, thus
Γ 6|=Be ϕ (by Theorem 7), i.e. there is a homomorphism h : Fm →
WKe such that h(γ) = 1, for every γ ∈ Γ and h(ϕ) 6= 1. Then, for
every subset of formulas {γ1, . . . , γn} ⊆ Γ, h(J2γi) = 1, for every
i ∈ {1, . . . , n} and h(J2 ϕ) = 0, hence h(J2γ1 ∧ · · · ∧ J2γn → J2 ϕ) = 0,
i.e. 6|=Be J2γ1 ∧ · · · ∧ J2γn → J2 ϕ, thus 0Be J2γ1 ∧ · · · ∧ J2γn → J2 ϕ
(by Theorem 6). �

4. The logic SI of Severe Ignorance

The logic of (severe) ignorance we are going to introduce consists
of a modal logic, whose propositional basis is Be.

Let FmI be the formula algebra constructed over a numerable infi-
nite set of propositional variables Var in the language LI : ¬,∨, J2 , I, 0, 1
of type 〈1, 2, 1, 1, 0, 0〉.

For the sake of simplicity and convenience of exposition, we will
introduce the logic of ignorance SI via its relational semantics, and
provide only afterwards a Hilbert-style axiomatization for it. We are
indeed convinced that the interpretation of the operator I catches
adequately the intuition behind the notion of severe ignorance that
we are about to introduce: a formula ϕ is ignored (in a world) when
it is indeterminate (i.e. evaluated to 1/2) in all the related worlds.

We will axiomatize, prove completeness and decidability for the
logic SI with respect to all reflexive frames.

4.1. Semantics. The semantics of the logics of ignorance consists of
a relational (Kripke-style) structure where formulas, in each world,
are evaluated into WKe. We introduce these structures according to
the current terminology adopted in many-valued modal logics (see,
for instance, [8, 15, 16]).

Definition 9. A weak three-valued Kripke modelM is a structure 〈W, R, v〉
such that:

(1) W is a non-empty set (of possible worlds);
(2) R is a binary relation over W (R ⊆W ×W);
(3) v is a map, called valuation, assigning to each world and each

variable, an element in WKe (v : W × FmI → WKe).
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Non-modal formulas will be interpreted as in Be, i.e. we assume
that v is a homomorphism, in its second component, with respect
to ¬,∨, J2 , 1, 0. The reduct F = 〈W, R〉 of a modelM is called frame.

Notation: for ordered pairs of related elements, we equivalently
write (w, s) ∈ R or wRs.

The semantical interpretation of the epistemic modality I in a
weak three-valued Kripke model is given in the following.

Definition 10. Let 〈W, R, v〉 be a weak three-valued Kripke model,
and w ∈W. Then

(1) v(w, Iϕ) = 1 iff v(s, ϕ) = 1/2 for every s ∈W such that wRs.
(2) v(w, Iϕ) = 0 iff v(w, ϕ) 6= 1/2 and there exists s ∈ W such

that wRs and v(s, ϕ) 6= 1/2.
(3) v(w, Iϕ) = 1/2 iff v(w, ϕ) = 1/2 and there exists s ∈ W such

that wRs and v(s, ϕ) 6= 1/2.

Observe that there is no special assumption behind the accessibil-
ity relation R in weak three-valued Kripke structures: it is simply in-
terpreted as an epistemic accessibility relation. Accordingly, the ratio-
nale behind the interpretation of I is that a formula is being ignored
in case it is neither true nor false – it is indeterminate – in every
world s an agent has epistemic access to from w. Recall that the no-
tion of ignorance we aim at modeling with this semantics is severe.
To further clarify our goal imagine, for instance, the following situ-
ation. Charles Darwin was aware, in 1859, of the existence of a form
of hereditariness; however he did not know exactly the functioning
mechanism of such process. Moreover, in every scenario accessible
to his mind in that period, the cause of hereditariness was not de-
termined. So, if we think a formula ϕ exemplifying the mechanism
of hereditariness, then, in 1859, it held that Darwin was (severely)
ignorant of ϕ, because ϕ was indeterminated in every possibile sce-
nario. Other mechanisms, although not entirely known, were not
(severely) ignored by Darwin himself at that time. For instance, we
can not say that he was ignorant of the so called “missing links”.
Although he could not find them, he had an idea of how to search
them, thanks to the analysis of fossils.

Accordingly, it is false that a formula ϕ is being ignored (in a
world w) when there is a (related) world where ϕ is either true or
false, and the same happens in the actual world w.

We say that a formula ϕ is valid in a model M = 〈W, R, v〉 – we
will writeM |= ϕ – if, for every w ∈W, v(w, ϕ) = 1.

A comment on this choice is in order. The introduced semantics
of I relies on the presence of the third truth-value 1/2 to be read
as “indeterminate”. In particular, severe ignorance, thought as a
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content-theoretic notion (in contrast with the truth-theoretic notion
modeled by the standard view in S4), is rendered thanks to the
infectious behaviour of 1/2. For this reason, it is natural to take 1/2

as not designated, since the evaluation of a formula to 1/2 (in every
related world) is a good reason for its ignorance.

We say that a formula ϕ is valid in a frame F = 〈W, R〉 (and write
F |= ϕ) if it is valid in every model having F as frame. A frame
will be called reflexive if its accessibility relation is reflexive. From
now on, we will write Kripke model instead of weak three-valued
Kripke model. When a formula is valid in every reflexive model we
will write |=

SI : SI is the global modal logic on the class of all Kripke
frames (see e.g. [8]), i.e.

• Γ |=
SI ϕ iff, for every Kripke modelM,

ifM |= γ, for every γ ∈ Γ, thenM |= ϕ.

Remark 11. Notice that, given a modelM = 〈W, R, v〉 and a world
w ∈ W, the truth of the formula Iϕ at the world w (v(w, Iϕ) = 1) is
equivalent to the fact that, for every world s related to w, there exists
a propositional variable p occurring open in ϕ such that v(s, p) =
1/2. �

The above consideration is due to the peculiar behavior of the
truth-value 1/2 in weak Kleene and gives already a gist of the sever-
ity of ignorance obtained via the introduced semantics of I. Indeed
a (complex) formula ϕ is being ignored when a part of it (occurring
open) is actually being ignored (as evaluated to 1/2 in every related
world), independently of the logical form of ϕ (exceptions hold for
external formulas).

Remark 12. Let F = 〈W, R〉 a reflexive frame. Then, for any valu-
ation v and formula ϕ ∈ FmI , v(w, Iϕ) 6= 1/2, for every w ∈ W. In-
deed, suppose by contradiction that v(w, Iϕ) = 1/2, then v(w, ϕ) =
1/2 which, since (w, w) ∈ R implies that v(w, Iϕ) = 1, a contradic-
tion.

In words, formulas whose main connective is I are external, ac-
cording with the intuition that “the content of ϕ” is being ignored
can not be indeterminate (but only either true or false). A part from
this, the choice of defining the logic SI as that of all reflexive frames
is mainly motivated by the fact that accessibility is interpreted in
epistemic sense, thus is natural to think that every world is (epis-
temically) accessible to itself.

The following provides the behaviour of the epistemic modality I
in SI.

Proposition 13. The following formulas are valid in SI:
(1) |=

SI Iϕ↔ I¬ϕ;
(2) |=

SI Iϕ ∧ Iψ→ I(ϕ ∧ ψ);
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(3) |=
SI I(ϕ ∧ ψ)→ Iϕ ∨ Iψ;

(4) |=
SI Iϕ ∨ Iψ↔ I(ϕ ∨ ψ);

(5) |=
SI Iϕ→ I(ϕ ∨ ¬ϕ);

(6) |=
SI Iϕ→ I(ϕ ∧ ¬ϕ);

(7) |=
SI J1 ϕ→ Iϕ;

(8) |=
SI Iϕ→ J1 ϕ;

(9) |=
SI IIϕ→ Iϕ;

(10) |=
SI IIϕ→ In ϕ, for n ≥ 2.

Proof. We just show the validity of some of the listed formulas.
(1) We verify only one direction (as the other is analog). Let M =
〈W, R, v〉 be a model such that v(w, Iϕ) = 1, for some w ∈ W; then
v(s, ϕ) = 1/2, for every s ∈ W such that wRs, hence v(s,¬ϕ) = 1/2,
i.e. v(s, I¬ϕ) = 1.
(3) Let M = 〈W, R, v〉 be a model such that v(w, I(ϕ ∧ ψ)) = 1, for
some w ∈ W. Then v(s, ϕ ∧ ψ) = 1/2, for every s ∈ W such that
wRs, which implies that v(s, ϕ) = 1/2 or v(s, ψ) = 1/2 (or both),
whence v(w, Iϕ) = 1 or v(w, Iψ) = 1. Since neither v(w, Iϕ) = 1/2

nor v(w, Iψ) = 1/2 (by Remark 12) then v(w, Iϕ ∨ Iψ) = 1.
(9) Observe that, by Remark 12, v(w, IIϕ) 6= 1/2, for every w ∈ W
and every valuation v. In particular, this implies that v(w, IIϕ) = 0,
since v(w, IIϕ) = 1 would imply v(w, Iϕ) = 1/2, in contrast with
Remark 12.
(10) holds for the same reason of (9). �

As noticed in [39], the essential feature of any notion of ignorance
is captured by formulas (1) and (3) in Proposition 13. It is indeed
very reasonable to think that an agent is ignorant about a formula if
and only if is about its negation. Moreover, ignorance transfers from
a conjunction to at least one constitutive part of it. Severe ignorance
meets the minimal desiderata.

As a remarkable difference with S4 (and Ig), in this new seman-
tics for I, being ignorant of two (or more) formulas implies being
ignorant also of their conjunction.

Not surprisingly, the converse (which holds in S4) does not char-
acterize severe ignorance (see Remark 14). It is indeed reasonable
to think that being ignorant of a book (a conjunction of statements),
does not mean to be ignorant of any single statements in the book,
but, perhaps, some relevant parts of it. Moreover, (4) holds in virtue
of the infectivity of the third truth-value.

We will discuss the significance of all the mentioned logical laws
in Section 5.

Some notable failures are collected in the following.

Remark 14. The following formulas are not valid in SI:
(1) 6|=

SI I(ϕ ∧ ψ)→ Iϕ ∧ Iψ;
(2) 6|=

SI I(ϕ→ ψ)→ (Iϕ→ Iψ);
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(3) 6|=
SI (Iϕ→ Iψ)→ I(ϕ→ ψ);

(4) 6|=
SI Iϕ→ IIϕ;

(5) 6|=
SI Iϕ→ ϕ.

In Section 5, we will argue that it is not a problem for the severe
notion of ignorance not to have distribution of I over conjunction
and implication (formulas (2) and (3)). On the other hand, since
severe ignorance is here conceived as a content-theoretic notion, it
is obvious to expect the failure of the factivity (5).

4.2. Axiomatization and Completeness. We introduce a Hilbert-
style axiomatization for SI for which we prove completeness and
decidability.

Axioms
• the axioms of Be;

(I) J1 ϕ→ Iϕ.

Deduction rules
• the rule [MP].

By `
SI we intend the derivability relation of the deductive system

defined by the above axioms and inference rule. When no danger
of confusion is occurring we will drop the subscripts SI and Be to
`.

Remark 15. Since SI is a linguistic and axiomatic extension of Be (no
deduction rule is added), then it holds that Γ ` ϕ if and only if there
exist formulas γ1, . . . , γn ∈ Γ such that ` J2γ1 ∧ · · · ∧ J2γn → J2 ϕ.

Our proof of completeness consists in an adaptation of the strat-
egy, devised by Segerberg in [34], for modal logics based on the
external version of Paraconsistent Weak Kleene (H0).

Definition 16. A set of formulas Σ ⊂ FmI is maximal iff for all for-
mulas ϕ ∈ FmI , either ϕ ∈ Σ, or ¬ϕ ∈ Σ, or J1 ϕ ∈ Σ.

Recall that a set of formulas Σ is inconsistent in case Σ ` ϕ, for
every ϕ ∈ FmI . Σ is consistent if it is not inconsistent.

Remark 17. A useful operative notion of consistency (for sets of
formulas) is given by the following: a set of formulas Σ ⊂ FmI is
consistent iff there is no formula ϕ ∈ FmI such that Σ ` Ji ϕ and
Σ ` ¬Ji ϕ, for any i ∈ {0, 1, 2} (it is immediate to check that this
corresponds to the above notion of consistency).

We denote by X the set of all maximal and consistent sets of
formulas, whose basic properties are recalled in the following.

Lemma 18. For every X ∈ X , the following hold:
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(1) If ϕ→ ψ ∈ X and ϕ ∈ X then ψ ∈ X;
(2) ϕ ∧ ψ ∈ X if and only if ϕ, ψ ∈ X;
(3) ϕ ∈ X if and only if J2 ϕ ∈ X;
(4) J2 ϕ ∈ X if and only if ¬J2 ϕ 6∈ X.

Proof. Straightforward. �

Lemma 19. Let Σ be a consistent set of formulas. Σ∪ {ϕ} is inconsistent
if and only if Σ ` ¬ϕ or Σ ` J1 ϕ.

Proof. (⇒) Let Σ ∪ {ϕ} be inconsistent and that Σ 6` ¬ϕ. Then Σ ∪
{ϕ} ` 0. So, there exist formulas γ1, . . . , γn ∈ Σ such that ` J2γ1 ∧
· · · ∧ J2γn ∧ J2 ϕ → J20, hence ` J2γ1 ∧ · · · ∧ J2γn → ¬J2 ϕ, thus Σ `
¬J2 ϕ. Since `

Be
¬J2 ϕ ↔ J1 ϕ ∨ J0 ϕ, Σ ` J1 ϕ ∨ J0 ϕ. By assumption,

Σ 6` ¬ϕ which implies Σ 6` J0 ϕ, hence Σ ` J1 ϕ.
(⇐) Let Σ ` ¬ϕ or Σ ` J1 ϕ. Suppose Σ ` ¬ϕ is the case, hence
Σ ` J0 ϕ (since ¬ϕ `

Be
J0 ϕ). On the other hand, Σ∪ {ϕ} ` J2 ϕ, hence

Σ∪ {ϕ} ` J0 ϕ∧ J2 ϕ, and it is immediate to check that ` J0 ϕ∧ J2 ϕ→
0, thus it is inconsistent. The proof is analog in case Σ ` J1 ϕ. �

Lemma 20. Let Σ be a consistent set of formulas. The following are equiv-
alent:

(1) Σ ` ϕ;
(2) for every X ∈ X , if Σ ⊆ X then ¬ϕ 6∈ X and J1 ϕ 6∈ X.

Proof. (1) ⇒ (2). Suppose Σ ` ϕ. Let X ∈ X such that Σ ⊆ X and,
by contradiction, that ¬ϕ ∈ X or J1 ϕ ∈ X. Observe that X ` ϕ,
so X ` J2 ϕ (since ϕ `

Be
J2 ϕ). Suppose ¬ϕ ∈ X is the case. Then

X ` ¬J2 ϕ (since ¬ϕ `
Be
¬J2 ϕ), in contradiction with the fact that

X is consistent (see Remark 17). Differently, J1 ϕ ∈ X is the case.
Thus X ` J1 ϕ ∧ J2 ϕ, again in contradiction with the consistency of
X (since ` J2 ϕ ∧ J1 ϕ→ 0).
(2) ⇒ (1). We reason by contraposition and suppose that Σ 6` ϕ.
Consider an enumeration ψ1, ψ2, ψ3, . . . of the formulas in FmI . De-
fine:

Σ0 =

{
Σ ∪ {¬ϕ} if consistent,
Σ ∪ {J1 ϕ} otherwise.

Σi+1 =


Σi ∪ {ψi} if consistent, else
Σi ∪ {¬ψi} if consistent, else
Σi ∪ {J1ψi}.

Σ∗ =
⋃

i∈N

Σi.

Observe that Σ∗ is maximal, by construction. We want to show
that Σ∗ is also consistent. We first claim that Σ0 is consistent. If
Σ0 = Σ ∪ {¬ϕ} then it is consistent by construction. Differently,
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Σ0 = Σ ∪ {J1 ϕ}, which means that Σ ∪ {¬ϕ} is inconsistent. Hence,
by Lemma 19, Σ ` ¬¬ϕ or Σ ` J1¬ϕ. However, Σ 6` ¬¬ϕ (since,
by assumption, Σ 6` ϕ), so Σ ` J1¬ϕ, which implies Σ ` J1 ϕ. By
Lemma 19, Σ0 = Σ∪ {J1 ϕ} is consistent if and only if Σ 6` ¬J1 ϕ and
Σ 6` J1 J1 ϕ. Now, since Σ is consistent and Σ ` J1 ϕ, then Σ 6` ¬J1 ϕ.
Moreover, since Σ is consistent Σ 6` J1 J1 ϕ (as ` J1 J1 ϕ ↔ 0). This
shows that Σ0 is consistent.
We claim that Σi+1 is consistent, given that Σi is. So, suppose that
Σi ∪ {ϕ} and Σi ∪ {¬ϕ} are inconsistent. Then, by Lemma 19, Σi `
¬ϕ or Σi ` J1 ϕ, and, Σi ` ¬¬ϕ or Σi ` J1¬ϕ. By consistency of Σi,
the only possible case is that Σi ` J1 ϕ and Σi ` J1¬ϕ, from which
follows the consistency of Σ ∪ {J1 ϕ} (indeed, if it is not consistent
then, by Lemma 19, Σi ` ¬J1 ϕ, in contradiction with the consistency
of Σi). This shows that Σ∗ is maximal and consistent (Σ∗ ∈ X ) and,
by construction, ¬ϕ ∈ Σ∗ or J1 ϕ ∈ Σ∗. �

We now define the accessibility relation between elements in X .

Definition 21. Let X, Y ∈ X . We define a relation R as follows:
• XRY if and only if for every formula ϕ ∈ FmI , if Iϕ ∈ X

then J1 ϕ ∈ Y.

Lemma 22. Let X ∈ X . For every formula ϕ ∈ FmI , Iϕ ∈ X if and only
if J1 ϕ ∈ Y, for every Y ∈ X such that XRY.

Proof. The left to right direction is obvious. For the other, assume
that J1 ϕ ∈ Y, for every Y ∈ X such that XRY. Consider the set
Σ = {J1ψ | Iψ ∈ X}. We claim that Σ ` J1 ϕ. To this end, let Σ ⊆ Z,
for some Z ∈ X and observe that this implies that J1 ϕ ∈ Z. Indeed,
for Iψ ∈ X then J1ψ ∈ Σ, thus J1ψ ∈ Z; so XRZ (by Definition 21),
whence, by hypothesis, J1 ϕ ∈ Z. Now, since Z is consistent, J3 ϕ 6∈ Z
and J1 J1 ϕ 6∈ Z then, by Lemma 20, we have Σ ` J1 ϕ.
Via axiom (I) we have that Σ ` Iϕ. Therefore, by Remark 15, there
exist formulas J1ψ1, . . . , J1ψn ∈ Σ such that ` J2 J1ψ1 ∧ · · · ∧ J2 J1ψn →
J2Iϕ, i.e. ` J1ψ1 ∧ · · · ∧ J1ψn → J2Iϕ, hence ` Iψ1 ∧ · · · ∧ Iψn → J2Iϕ.
Observe that Iψ1, . . . , Iψn ∈ X, hence by Lemma 18, J2Iϕ ∈ X, thus
Iϕ ∈ X, as desired. �

We are ready to define the concept of canonical model (keeping the
usual nomenclature in modal logic).

Definition 23. A canonical model is a weak three-valued Kripke model
M = 〈X ,R, v〉 such that R is as in Definition 21, and v is defined
as follows:

• v(X, p) = 1 if and only if p ∈ X;
• v(X, p) = 0 if and only if ¬p ∈ X;
• v(X, p) = 1/2 if and only if J1 p ∈ X,

for every X ∈ X .
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The following result extends the construction of the universal
model to all reflexive frames.

Lemma 24. LetM = 〈X ,R, v〉 be the universal model with R reflexive.
Then, for every formula ϕ ∈ FmI and every X ∈ X , the following hold:

(1) v(X, ϕ) = 1 if and only if ϕ ∈ X;
(2) v(X, ϕ) = 0 if and only if ¬ϕ ∈ X;
(3) v(X, ϕ) = 1/2 if and only if J1 ϕ ∈ X.

Proof. The claim is proved by induction on the length of ϕ. The ba-
sis follows from Definition 23. As for the inductive step, we show
only the cases of ϕ = J2ψ and ϕ = Iψ, for some ψ ∈ FmI (the others
are routine). As regards the former, suppose that ϕ = J2ψ, for some
ψ ∈ FmI . For any valuation v (and any X ∈ X ), v(X, J2ψ) 6= 1/2

(in accordance with the fact that J1 J2 ϕ 6∈ X), thus we only have to
consider two cases:
(a) v(X, J2ψ) = 1 iff v(X, ψ) = 1, thus, by induction hypothesis,
ψ ∈ X and, by Lemma 18, J2ψ ∈ X.
(b) v(X, J2ψ) = 0 iff either v(X, ψ) = 0 or v(X, ψ) = 1/2.
Consider, first, the case v(X, ψ) = 0; by induction hypothesis, ¬ψ ∈
X and, since X is consistent, J2ψ 6∈ X, thus by Lemma 18, ¬J2ψ ∈ X.
In the second (sub)case, v(X, ψ) = 1/2, thus, by induction hypothe-
sis, J1ψ ∈ X. Since X is maximal (and consistent) then ψ 6∈ X, thus,
by Lemma 18, J2ψ 6∈ X, whence ¬J2ψ ∈ X.
Consider now the case of ϕ = Iψ, for some ψ ∈ FmI . Prelimi-
narly, observe that there is no valuation v such that v(X, ϕ) = 1/2

Indeed, suppose, by contradiction, that there is a valuation v such
that v(X, Iψ) = 1/2. This implies that v(X, ψ) = 1/2, moreover there
exists Y ∈ X such that XRY and v(Y, ψ) 6= 1/2. By induction hy-
pothesis, J1ψ ∈ X and since XRX, by Lemma 22, Iψ ∈ X. This
implies (since XRY) that J1ψ ∈ Y (again, by Lemma 22) and, by the
previous case (recalling that J1 is defined via J2), that v(Y, ψ) = 1/2,
a contradiction. Observe, moreover, that this is in accordance with
the fact that J1Iψ 6∈ X (for any X ∈ X ). Indeed, if J1Iψ ∈ X then
J1 J1 ϕ ∈ X, against the fact that X is consistent. Therefore, we only
have to consider the two cases below.
(i) v(X, Iψ) = 1 if and only if v(Y, ψ) = 1/2, for every Y ∈ X such
that XRY. By induction hypothesis, J1ψ ∈ Y, thus by Lemma 22

Iψ ∈ X.
(ii) v(X, Iψ) = 0 if and only if v(X, ψ) 6= 1/2 and v(Y, ψ) 6= 1/2, for
some Y ∈ X such that XRY. By induction hypothesis, J1ψ 6∈ Y,
thus by Lemma 22 , Iψ 6∈ X, hence ¬Iψ ∈ X or J1Iψ ∈ X. But the
latter is never the case, since X is consistent, whence ¬Iψ ∈ X. �

We are now ready to prove (strong) completeness for the logic `
SI

with respect to the class of all reflexive models.
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Theorem 25 (Completeness). Γ `
SI ϕ if and only if Γ |=

SI ϕ.

Proof. (⇒) It is immediate to check that all axioms are sound and
that the rule (MP) preserves validity.
(⇐) We reason by contraposition and suppose that Γ 6`

SI ϕ. This
implies that Γ is consistent; by Lemma 20 Γ ⊆ X, for some X ∈ X
such that ¬ϕ ∈ X or J1 ϕ ∈ X. Let M = 〈X ,R, v〉 be the canonical
model with R reflexive. Since Γ `

SI γ, for each γ ∈ Γ, then, by
Lemma 20, ¬γ 6∈ X and J1γ 6∈ X, therefore γ ∈ X, which implies
v(X, γ) = 1, by Lemma 24. On the other hand, since ¬ϕ ∈ X or
J1 ϕ ∈ X, then v(X, ϕ) 6= 1, i.e. Γ 6|=

SI ϕ. �

The completeness strategy applied insofar allows to prove decid-
ability for the logic SI (Theorem 28).

Definition 26. Let ϕ ∈ FmI . The set Sub(ϕ) of subformulas of ϕ is
the smallest set of formulas such that:

(1) ϕ ∈ Sub(ϕ);
(2) if ϕ = ¬ψ, or ϕ = J2ψ, or ϕ = Iψ (for some ψ ∈ FmI) then

ψ ∈ Sub(ϕ);
(3) if ϕ = ψ ∨ χ ∈ Sub(ϕ), then ψ, χ ∈ Sub(ϕ).

LetM = 〈W, R, v〉 be a model. We say that a model has cardinal-
ity n (with n ∈N), if W has cardinality n (|W |= n).

Lemma 27. Let ϕ a formula such that | Sub(ϕ) |= n. The following are
equivalent:

(1) `
SI ϕ;

(2) M |=
SI ϕ for all models with cardinality 2n.

Proof. (i)⇒ (ii) is obvious.
(ii) ⇒ (i). We reason by contraposition and suppose that 6`

SI ϕ.
Define the following relation on the set X : X ≡ Y if and only if,
for all ψ ∈ Sub(ϕ), ψ ∈ X iff ψ ∈ Y. It is immediate to check that
≡ is an equivalence relation on X . Since ϕ ∈ Sub(ϕ), then clearly
| X/≡ |≤ 2n. Define the binary relation ρ on the set X/≡ (whose
elements are denoted by [X], [Y], [Z], . . . ) as follows:

[X]ρ[Y] if and only if, for all ψ such that Iψ ∈ Sub(ϕ), if Iψ ∈ X, then J1ψ ∈ Y.

Consider the structure N = 〈X/≡, ρ, w〉, where w is defined as fol-
lows:

• w([X], p) = 1 if and only if p ∈ Sub(ϕ) and p ∈ [X];
• w([X], p) = 0 if and only if p ∈ Sub(ϕ) and ¬p ∈ [X];
• w([X], p) = 1/2 if and only if p ∈ Sub(ϕ) and J1 p ∈ [X],

for every [X] ∈ X/≡. It is immediate to check that N is a model of
SI. Moreover, let M be the canonical model defined in Definition
23: it is not difficult to prove that v(X, ψ) = w([X], ψ), for every
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formula ψ ∈ Sub(ϕ) (the proof of this claim runs by induction on
the length of the formula ψ). Since 6`

SI ϕ, then there exists X ∈ X
and some v (in the canonical model) such that v(X, ϕ) 6= 1 (this
follows from the proof of Theorem 25). Then, by the previous claim,
w([X], ϕ) 6= 1 and the cardinality of the model N is at most 2n. �

As a direct consequence of Lemma 27 one gets

Theorem 28. The logic SI is decidable.

5. Conclusion and Comparison with other approaches

We have introduced severe ignorance as a content-theoretic notion.
In particular, we have focused on the logical modeling of such no-
tion, assumed as primitive (“as a first class citizen”), i.e. discon-
nected from knowledge, via a modal logic based on a three-valued
propositional logic. The intuition behind our proposal is that being
ignorant of ϕ means that ϕ is indeterminate (is assigned with the
third value 1/2) in all the worlds accessible to an agent. To the best
of our knowledge, the unique existing system considering I as a
primitive modality is the logic Ig, by Van der Hoek and Lomuscio
[39]. However, as discussed in Section 2, in Ig the semantics of I co-
incides with the interpretation of ignorance as “lack of knowledge”
in S4, although no (term-definable) modality expressing knowledge
can be defined in Ig. Being conscious of this relevant difference be-
tween Ig and the standard view in S4, we will identify them with
respect to the behaviour of the modality for ignorance I in the fol-
lowing discussion.

We make a comparison, in Figure 3, between SI and S4 (and thus
also Ig) in terms of logical truths explicitly involving I (all the listed
formulas have been mentioned in the previous sections). The aim is
to show the existing difference between approaching ignorance as
lack of knowledge (standard view in S4) and the type of content-
theoretic ignorance analyzed here, according to the three-valued
modal logic SI.

As already discussed in Section 2, SI and S4 present remarkable
differences, with respect to the behaviour of the modality I. Regard-
ing, for instance, conjunctive statements, in our proposal, an agent
who is ignorant of all the chapters of a book then is ignorant of the
whole book (formula 2), which does not happen to be the case in S4.
In the latter, perhaps, it does not make sense to express sentences
like “ignoring a book”. Indeed, one could say that “an agent does
not know the content of a book”, and not that “an agent does not
know whether the content of a book”. The converse implication (3)
holds in S4, while does not in SI.

A remarkable difference distinguishes S4 and SI relatively to the
behaviour of I with respect to disjunctive statements, too. Severe
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Formulae SI S4
1 Iϕ↔ I¬ϕ 3 3

2 Iϕ ∧ Iψ→ I(ϕ ∧ ψ) 3 7

3 I(ϕ ∧ ψ)→ Iϕ ∧ Iψ 7 3

4 Iϕ ∨ Iψ→ I(ϕ ∨ ψ) 3 7

5 I(ϕ ∨ ψ)→ Iϕ ∨ Iψ 3 3

6 I(ϕ→ ψ)→ (Iϕ→ Iψ) 7 3

7 Iϕ→ IIϕ 7 7

8 IIϕ→ Iϕ 3 3

9 I(ϕ ∧ ψ)→ Iϕ ∨ Iψ 3 3

10 Iϕ→ I(ϕ ∨ ¬ϕ) 3 7

11 Iϕ→ I(ϕ ∧ ¬ϕ) 3 7

12 Iϕ→ J1 ϕ 3 n.d.

13 J1 ϕ→ Iϕ 3 n.d.

14 Iϕ→ ϕ 7 7

15 IIϕ→ In ϕ (n ≥ 2) 3 3

Figure 3. A comparison of the logical truths in the
logics SI and the standard view of I S4 (see Definition
(1)).

ignorance is characterized by the principle that a disjunction is ig-
nored if and only if one of the two disjuncts are ignored. This shall
not appear strange in scientific contexts that inspire our notion of
severe ignorance. Indeed, to make an example, Kepler, before in-
vestigating the astronomical data collected by Tycho Brahe, was ig-
norant of (as anyone else) the laws that today go under his name.
After he discovers the first law, we might think that he still was ig-
norant of the others, and we might say that he also was ignorant
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of the disjunction (of the three laws), because such disjunction con-
tains scientific terms (the second and third law) which Kepler could
not imagine nor understand.

This does not happen to be the case in S4, because lack of knowl-
edge is different from severe ignorance. In a toy example: suppose
that I do not know whether my aunt yesterday went to the cin-
ema but I know that she went out for dinner. Thus, I do not know
whether she went our for dinner (only) or also to the cinema (maybe
before or after cinema), but surely I do not ignore that she went out
to dinner or to the cinema.

The distribution of I over implication (6), which does not hold
in SI while it does S4, also differentiates enough the two systems
under analysis. This gives the occasion, once more, to illustrate
the sense of severe ignorance (in the scientific context). To exem-
plify the failure of (6), we might reasonably think that in 1914, Ein-
stein was ignorant of the fact that the curvature of space-time is the
cause of the anomaly affecting the perihelion shift of Mercury. At
the time, the implication is scientifically ignored, however scientists
were conscious of the anomaly in Mercury’s perihelion. This is a
good reason why I should not distribute over implication, in case it
models severe ignorance.

Formulas 7 and 8 witness that the two logics have the same be-
haviour with respect to the relationship between first-order (Iϕ) and
second-order ignorance (IIϕ). Not surprisingly, the latter implies
the former but not the other way round.

Formula 9 is also in common between S4 and SI. As we already
commented in Section 4, it expresses the very intuitive principle that
being ignorant of a conjunction implies being ignorant of at least
one of the conjuncts, a principle that must be common (together
with 1) to any possible notion of ignorance.

Formulas 10-13 witness the main difference due to the choice of
different propositional basis. Indeed ϕ ∨ ¬ϕ (ϕ ∧ ¬ϕ, respectively)
is true in every world, of every model of S4 (false, respectively),
hence can not be ignored. On the contrary, in a three-valued set-
ting, those formulas can be indeterminate (when ϕ is indetermi-
nate) and, consequently ignored. The validity of this formula tells
us that the agent who is ignorant of ϕ is ignorant also that ϕ ∨ ¬ϕ
coincides with the truth (something that is possible only in non-
classical cases). This confirms that the notion of severe ignorance in
SI stands quite far from lack of knowledge.

Formulas 12 and 13 are worthy of receiving comments. Due to
the choices of the semantics where ϕ is ignored when ϕ is unde-
fined in all related worlds and that of focusing on reflexive models,
the formula Iϕ turns out to be logically equivalent to J1 ϕ. This
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seems to suggest that the severe ignorance could be perhaps mod-
eled just recurring to the propositional level. In particular, this could
possibly be achieved via the linguistic fragment ¬,∧, J1 of Bochvar
external logic (it is not difficult to check that, in this fragment, J0
and J2 are not definable). It is worth to remind that the choice to
model (severe) ignorance as a modality via a Kripke-style semantics
is primarily due to a philosophical stance (not a logical one), which
traditionally frames ignorance (and knowledge) as an epistemic no-
tion. What we ultimately get by our analysis is the coincidence
between the modality I (with the intended semantics) and J1 , high-
lighting the modal behavior of the external connectives in Bochvar
logic, which, to best of our knowledge, has not been observed in-
sofar.4 We believe that the reason of such coincidence relies on the
choice of defining SI as the logic of all reflexive models, which is
again founded on the philosophical assumption of interpreting I
as en epistemic modality. Indeed, it is not difficult to check that
the equivalence between I and J1 does not hold in all models (see
Remark 12).

Formula 14 expresses the “factivity of ignorance” (the analog of
the usual notion of factivity for the modality K for knowledge). The
importance of this property for the notion of ignorance has been
recently discussed in literature, where some authors look for logics
of ignorance where it holds (see [23] and [18]). In the context of
severe ignorance, as a content-theoretic notion, we are not surprised
that the formula does not hold. However, we highlight that a modal
approach, based on a three-valued logic, can be adopted also for
logics of ignorance admitting the factivity, by choosing a different
set of designated values ({1, 1/2}).

Finally, both logics suffer the phenomenon that Fine [13] calls the
“black hole of ignorance”. In his paper, Fine shows that second-
order ignorance and higher-orders of ignorance are tightly tied to-
gether: once second-order ignorance is present, an agent is doomed
to the black hole of higher-order levels of ignorance. This is cap-
tured by formula 15.

We are conscious that much logical and epistemological work re-
mains to be done and that also the choice of SI to model severe
ignorance presents some difficulties. For instance, it could be ar-
gued that it is quite odd that being ignorant of a formula ϕ implies
being ignorant of also ϕ ∧ ψ, when ϕ and ψ are totally unrelated
formulas (this happens to be the case in SI). Nevertheless, the
present exploration highlights that interesting aspects of ignoring
are not successfully captured by the standard logical approach to
ignorance, based on lack of knowledge. Interestingly, disconnecting

4We thank an anonymous reviewer for suggesting further clarification on this
aspect, on which we will focus in future works.
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ignorance from knowledge allows for the logical modelling of se-
vere ignorance, a notion which is common in the everyday practice
of science. We have decided to introduce a modal logic grounded
on a peculiar non-classical propositional basis. A choice essentially
motivated by the willingness of modeling a severe notion of igno-
rance. Clearly, many other options are available, in the realm of
non-classical logics: a possibility that we leave for further research.

Appendix

In this Appendix we provide the details of the proof of strong
completeness for Bochvar (external) logic Be (Theorem 7). Moreover,
we also show that Be is algebraizable. We start with a preliminary
lemma.

Lemma 29. The following elementary facts holds in Be:
(1) `Be J0(ϕ ∨ ψ)↔ J0 ϕ ∧ J0ψ;
(2) `Be J1(ϕ ∨ ψ)↔ J1 ϕ ∨ J1ψ;
(3) `Be J2(ϕ ∨ ψ)↔ (J2 ϕ ∧ J2ψ) ∨ (J2 ϕ ∧ J2¬ψ) ∨ (J2¬ϕ ∧ J2ψ);
(4) if α is an external formula, then `Be α↔ J2α;
(5) `Be ¬J2ψ↔ (J0ψ ∨ J1ψ).

Proof. Immediate by using Theorem 6. �

Lemma 30. Let Γ ∪ {ϕ} `Be ψ. Then Γ `Be J2 ϕ→ J2ψ.

Proof. By induction on the length of the derivation of ψ (from Γ). �

The class of Bochvar algebras is introduced by Finn and Grigolia
[14, pp. 233-234] as algebraic semantics for Be.

Definition 31. A Bochvar algebra A = 〈A,∨,∧,¬, J0 , J1 , J2 , 0, 1〉 is an
algebra of type 〈2, 2, 1, 1, 1, 1, 0, 0〉 satisfying the following identities
and quasi-identities:

(1) x ∨ x ≈ x;
(2) x ∨ y ≈ y ∨ x;
(3) (x ∨ y) ∨ z ≈ x ∨ (y ∨ z);
(4) (x ∧ (y ∨ z) ≈ ((x ∧ y) ∨ (x ∧ z));
(5) ¬(¬x) ≈ x;
(6) ¬1 ≈ 0;
(7) ¬(x ∨ y) ≈ ¬x ∧ ¬y;
(8) 0∨ x ≈ x;
(9) J2 Ji x ≈ Ji x, for every i ∈ {0, 1, 2};

(10) J0 Ji x ≈ ¬Ji x, for every i ∈ {0, 1, 2};
(11) J1 Ji x ≈ 0, for every i ∈ {0, 1, 2};
(12) Ji(¬x) ≈ J2−ix, for every i ∈ {0, 1, 2};
(13) Ji x ≈ ¬(Jj x ∨ Jk x), for i 6= j 6= k 6= i;
(14) Ji x ∨ ¬Ji x ≈ 1, for every i ∈ {0, 1, 2};
(15) ((Ji x ∨ Jk x) ∧ Ji x) ≈ Ji x, for i, k ∈ {0, 1, 2};
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(16) x ∨ Ji x ≈ x, for i ∈ {1, 2};
(17) J0(x ∨ y) ≈ J0 x ∧ J0y;
(18) J2(x ∨ y) ≈ (J2 x ∧ J2y) ∨ (J2 x ∧ J2¬y) ∨ (J2¬x ∧ J2y);
(19) Ji x ≈ Ji y ⇒ x ≈ y, where 0 ≤ i ≤ 2.

We denote by BA3 the class of Bochvar algebras. BA3 forms
a quasi-variety which is not a variety [14]. Recall that a class K
of algebras is an algebraic semantics for a logic L provided that:
Γ `L ϕ iff {τ(γ) : γ ∈ Γ} |=Eq(K) τ(ϕ), where τ = {ϕi(p) ≈
ψi(p)} is a formula-equation transformer and Eq(K) denotes the
usual equational consequence relation relative to the class K.

Theorem 32. BA3 is an algebraic semantics for Be. In particular, Γ `Be ϕ
iff {γ ≈ 1 : γ ∈ Γ} |=Eq(BA3) ϕ ≈ 1.

Proof. (⇒) By induction on the length of the derivation of ϕ (from
Γ), by checking that axioms (A1)-(A29) are evaluated to 1 in every
Bochvar algebra A and that the rule (MP) preserves this property.
(⇐) We reason by contraposition. Suppose Γ 0Be ϕ and provide a
counterexample to such inference by constructing the Lindenbaum-
Tarski algebra. Let ∆ be the smallest set of formulas including Γ
and closed under `Be (from now on we will simply write ` instead
of `Be). For any pair of formulas, define

ϕ ∼ ψ if and only if ϕ ≡ ψ ∈ ∆.

We claim that:
(1) ∼ is a congruence on Fm;
(2) [1]∼ = ∆;
(3) The quotient algebra Fm/∼ is a Bochvar algebra.

(1) It is easy to check that ∼ is an equivalence relation. To show
that it is a congruence, we check the compatibility of ∼ with the
operations in the type of LKe .

[¬] Suppose ϕ ∼ ψ, then ϕ ≡ ψ ∈ ∆, i.e.
2∧

i=0

Ji ϕ ↔ Ji ψ ∈ ∆,

which is equivalent to
2∧

i=0

J2−i ϕ ↔ J2−i ψ ∈ ∆. Hence, in virtue of

(A12),
2∧

i=0

Ji(¬ϕ) ↔ Ji(¬ψ) ∈ ∆, i.e. ¬ϕ ≡ ¬ψ ∈ ∆, showing that

¬ϕ ∼ ¬ψ.

[J2] Suppose ϕ ∼ ψ, thus ϕ ≡ ψ ∈ ∆, i.e.
2∧

i=0

Ji ϕ ↔ Ji ψ ∈ ∆. In

particular ∆ ` J2 ϕ ↔ J2ψ. In virtue of (A9), we have ` J2 ϕ ↔ J2 J2 ϕ
and ` J2ψ ↔ J2 J2ψ, from which ∆ ` J2 J2 ϕ ↔ J2 J2ψ, i.e. J2 J2 ϕ ↔
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J2 J2ψ ∈ ∆ (as ∆ is closed under consequences of `). Analog rea-
soning, using (A10) and (A11), shows that J0 J2 ϕ ↔ J0 J2ψ ∈ ∆ and
J1 J2 ϕ↔ J1 J2ψ ∈ ∆, from which J2 ϕ ∼ J2ψ.

[∨] Suppose ϕ1 ∼ ψ1 and ϕ2 ∼ ψ2. Then ∆ ` J0 ϕ1 ↔ J0ψ1 and
∆ ` J0 ϕ2 ↔ J0ψ2, hence ∆ ` (J0 ϕ1 ∧ J0 ϕ2) ↔ (J0ψ1 ∧ J0ψ2). Ap-
plying Lemma 29-(1), we have ∆ ` J0(ϕ1 ∨ ϕ2) ↔ J0(ψ1 ∨ ψ2), from
which J0(ϕ1 ∨ ϕ2) ↔ J0(ψ1 ∨ ψ2) ∈ ∆. Analog reasoning (using
Lemma 29-(2,3)) allows to conclude ϕ1 ∨ ϕ2 ∼ ψ1 ∨ ψ2.

(2) [⊆] Let ψ ∈ [1]∼. Then ψ ≡ 1 ∈ ∆, i.e.
2∧

i=0

Ji ψ ↔ Ji1 ∈ ∆. In

particular, J2ψ ∈ ∆ (since ` J21) and J1ψ ↔ 0 ∈ ∆ (as ` J11 ↔ 0),
from which we deduce that ψ is an external formula, so, by Lemma
29-(4), ψ ∈ ∆.

[⊇] Let ψ ∈ ∆. Observe that 1 ∈ ∆ (since ` 1), hence, by Lemma
30, ∆ ` J2ψ ↔ J21, thus J2ψ ↔ J21 ∈ ∆. Moreover, ∆ ` ¬J2ψ ↔ 0
and, by Lemma 29, ` ¬J2ψ ↔ (J0ψ ∨ J1ψ), so ∆ ` (J0ψ ∨ J1ψ) ↔ 0,
from which ∆ ` J0ψ ↔ 0 and ∆ ` J1ψ ↔ 0; therefore ∆ ` J0ψ ↔ J01
and ∆ ` J1ψ ↔ J11 (as ` J01 ↔ 0 and ` J11 ↔ 0). This shows that
ψ ≡ 1 ∈ ∆, i.e. ψ ∈ [1]∼.

(3) It is routine to check that Fm/∼ is indeed a Bochvar algebra.
To provide a counterexample to the inference Γ 0Be ϕ, consider the
Bochvar algebra A = Fm/∼ and the homomorphism h : Fm → A,
h(ϕ) = [ϕ]∼. Since Γ ⊆ ∆ and ∆ = [1]∼, then h(γ) = 1A, for each
γ ∈ Γ, but h(ϕ) 6= 1A (since ϕ 6∈ ∆). �

Theorem 7 follows from Theorem 32 by observing that BA3 is the
quasi-variety generated by WKe ([14, Theorem 3.3]).
It is natural to wonder whether the quasi-variety of Bochvar alge-
bras is simply an algebraic semantics for Be. Actually the relation-
ship between Be and the class BA3 is tighter. Recall that a logic ` is
algebraizable with K as equivalent algebraic semantics (where K is
a class of algebras of the same language as the logic `) if there exists
a map τ from formulas to sets of equations, and a map ρ from equa-
tions to sets of formulas such that the following conditions hold, for
any pair of formulas ϕ, ψ and set of equations E.

(ALG1) Γ ` ϕ iff τ[Γ] |=Eq(K) τ(ϕ);
(ALG2) E |=Eq(K) ϕ ≈ ψ iff ρ(E) |=Eq(K) ρ(ϕ, ψ);
(ALG3) ϕ a` ρ(τ(ϕ));
(ALG4) ϕ ≈ ψ =||=Eq(K) τ(ρ(ϕ, ψ)).
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Examples of algebraizable logics include, among many others,
classical, intuitionistic logic, all substructural logics and global modal
logics. Not all logics though are algebraizable: examples of non-
algebraizable logics can be found in the realm of Kleene logics, such
as the Logic of Paradox (see [32]), Paraconsistent weak Kleene (see
[5]) and Bochvar internal logic (see [6, 7]).
The above definition of algebraizable logic can be drastically sim-
plified: ` is algebraizable with equivalent algebraic semantics K if
and only if it satisfies either ALG1 and ALG4 (or, else ALG2 and
ALG3).5

Theorem 33. The logic Be is algebraizable with BA3 as equivalent alge-
braic semantics.

Proof. Consider τ = {ϕ ≈ 1} and ρ = {ϕ ≡ ψ}. �
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