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Abstract

Some realists claim that theoretical entities like numbers and electrons are indis-
pensable for describing the empirical world. Motivated by the meta-ontology of
Quine, I take this claim to imply that, for some first-order theory T and formula
δ(x) such that T ` ∃xδ∧∃x¬δ, where δ(x) is intended to apply to all and only em-
pirical entities, there is no first-order theory T ′ such that (a) T and T ′ describe the
δ:s in the same way, (b) T ′ ` ∀xδ, and (c) T ′ is at least as attractive as T in terms
of other theoretical virtues. In an attempt to refute the realist claim, I try to solve
the general problem of nominalizing T (with respect to δ), namely to find a theory
T ′ satisfying conditions (a)–(c) under various precisifications thereof. In particular,
I note that condition (a) can be understood either in terms of syntactic or semantic
equivalence, where the latter is strictly stronger than the former. The results are
somewhat mixed. On the positive side, even under the stronger precisification of
(a), I establish that (1) if the vocabulary of T is finite, a nominalizing theory can
always be found that is recursive if T is, and (2) if T postulates infinitely many
δ:s, a nominalizing theory can always be found that is no more computationally
complex than T . On the negative side, even under the weaker precisification of (a),
I establish that (3) certain finite theories cannot be nominalized by a finite theory.

1 Introduction

Scientific theories describe the behavior of ordinary things like tables, chairs, and mea-
suring devices. They typically do so by postulating (the existence of) more exotic things
like numbers, sets, and elementary particles. Entities of the first kind are usually called
empirical or observable, and entities of the second kind theoretical or non-observable. A
related distinction can be made between concrete and abstract entities, with elementary
particles belonging to the first kind. It can also be made between internal and external
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entities, with experiences and sense data belonging to the first, and tables and chairs
belonging to the second.

On a general empiricist view, entities of the second kind are postulated in order to
explain the behavior of entities of the first kind. More importantly, scientific theories
are empirically testable only insofar as they say something about entities of the first
kind, i.e. only insofar as they have empirical consequences. One of the many virtues of
this view is its ability to provide a rational explanation of the fact that scientists rarely
evaluate a theory by merely looking at some formulation of it, but typically spend of lot
of time deriving consequences thereof. Why do that? According to empiricism, the point
of the exercise is to derive consequences that can be tested directly against empirical
observations.

For the empiricist, belief in theoretical entities can only be justified by some kind
of inference to the best explanation. This raises the question of whether postulating
such entities is necessary for providing a good enough theory about the empirical world.
In other words, are theoretical entities indispensable? In the case of numbers and sets,
Putnam (1979, p. 347) famously argues that they are.

Importantly, however, the indispensability of theoretical entities should not be con-
fused with the indispensability of theoretical terms. Using a theoretical term is arguably
neither necessary nor sufficient for postulating a theoretical entity.1 Obviously, when
people say ‘there are no electrons’, they are using a theoretical term, but they are not
postulating any theoretical entity. If anything, they are denying that some such entity
exists. Not even when people say ‘electrons exist’ are they necessarily postulating any
theoretical entity, as their utterance may be followed by ‘but they are all cats’. Presum-
ably, the hypothesis that all electrons are cats does not sit well with received theories
about electrons, but it is certainly coherent.2 Likewise, when people say ‘numbers exists,
but they are just inscriptions on a piece of paper’, although they may be advocating
an untenable position, they are not postulating any abstract entities (their intention is
not to say that some inscriptions are abstract). Moreover, if we can a find a non-trivial
formula in purely empirical terms satisfied by all empirical entities, we can postulate the
existence of theoretical entities without using any theoretical terms by saying that not
everything satisfies that formula. For instance, if we grant that every concrete objects is
either warmer or colder than some other concrete object, we can postulate the existence
of abstract objects without using any abstract terms by saying ‘not everything is warmer
or colder than something else’. The number zero, on most accounts, is not.

Now, suppose realists argue that we should believe in the existence of electrons because
our best scientific theories say they exist. The relevant question for the anti-realists to

1As was pointed out to me by an anonymous referee, this was noted already by Quine (1951, p. 13):

Anyway it is not evident why there should be a connection between constant predicates
used and entities presupposed. Surely the mere occurrence of a predicate in the formulation
of a theory is not sufficient in order that the theory presuppose a corresponding universal
entity–a corresponding class or property. Nor is it necessary; for we are familiar with
theories which imply that there are indenumerably many classes or properties (even of the
first type), though the available predicates are necessarily denumerable.

2According to the Kripke-Putnam view of natural kind terms, the hypothesis is necessarily false. But
even they would concede that it is not false a priori. I wish to thank an anonymous referee for bringing
this point to my attention.
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ask is therefore not whether it is possible to formulate an equally good theory without
using the term ‘electron’. Rather, the relevant question is whether it is possible to find
an equally good theory that does not say electrons exist. But an equally good theory
about what? Obviously, if electrons exist, it is necessary to postulate electrons in order to
describe them. This seems to be the main message in Putnam (1965). To avoid begging
the question, we can ask whether it is necessary to postulate electrons in order to describe
the behavior of everything that is not an electron. Likewise, we can ask whether it is
necessary to postulate numbers in order to describe the behavior of everything that is not
a number. If the answer is ‘No’, we may at least conclude that numbers are dispensable
for describing the behavior of everything else in the universe.

More generally, we shall therefore be concerned with the following question: For a
given theory and a given kind of entity definable in that theory, is it possible to find at
least as good a theory about entities of that kind without postulating any other entities?
Somewhat more precisely, we shall ask, for a given theory T and a given formula δ(x)
such that T ` ∃xδ ∧ ∃x¬δ, where δ(x) is intended to apply to all and only empirical
entities, whether it is possible find a theory T ′ such that

(1) a. T and T ′ describe the δ:s in the same way,
b. T ′ entails that everything is δ (T ` ∀xδ), or at least does not entail that

something is not (T ′ 6` ∃x¬δ), and
c. T ′ is at least as attractive as T in terms of other theoretical virtues (like

simplicity and elegance).

Re-purposing a piece of terminology used in connection with the abstract/concrete-
distinction, we shall say that T is nominalizable (with respect to δ) just in case there is
such a theory T ′, and that T ′ nominalizes T .

Our first task will be to make this notion more precise. Part (b) is taken care of
once we have chosen a logical framework (spoiler: it will be classical first-order logic with
identity). Part (a) is then a matter of generalizing the notion of logical equivalence for
this framework. This is done in section 2. As a result, we obtain two generalized notions
of equivalence, one syntactic and one semantic, with the latter strictly stronger (more
demanding) than the former. As you might expect, part (c) is subject to a much wider
range of possible precisifications. Minimally, for T ′ to be at least as attractive as T , we
shall require that T ′ is recursive if T is. But recursive theories vary greatly in terms of
their computational complexity, measuring (in a precise sense) how hard it is to decide
whether something is an axiom of the theory. Thus, in addition, one might require T ′ to
be no more computationally complex than T .3

Our next task will be to investigate nominalizability under these precisifications. Sec-
tion 3 recapitulates some classical results and observations concerning the indispensability
of theoretical terms and entities, and expands a bit on the distinction between the two.
A case study of Goodman and Quine (1947) will illustrate the importance of formulating
explicit success criteria for nominalization. Section 4 introduces some model theory for
tackling the question of nominalizability under semantic equivalence, and proves that vir-
tually all theories are nominalizable in a minimal sense. Section 5 proves that all theories

3Comparing the length of the shortest proofs of the empirical consequences of the two theories yields
another interesting measure of attractiveness, but one I will not employ here. See, for instance, Ketland
(2005).
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postulating infinitely many empirical entities are nominalizable in a much stronger sense,
and section 6 compares this result with those of Burgess and Rosen (1999), while section
7 proves that some theories are not so nominalizable. Section 8 summarizes our results
and their philosophical implications.

2 Syntactic and semantic equivalence

We will assume that a theory is a set of sentences in a language of first-order logic with
identity, not necessarily deductively closed. Unless otherwise stated, we will also assume
that the vocabulary of such a language (its non-logical symbols) is a countable set of
predicates not containing any constants or function symbols. The last assumption just
makes it easier to state and prove certain results, but is no limitation in principle. The
first assumption, on the other hand, is substantial. It is largely motivated by Quine’s
so-called meta-ontology, which is the idea that the ontological commitments of a theory
are best revealed by formalizing the theory in a first-order language with identity and
deriving the existentially quantified consequences thereof. For an excellent exposition
and defense of this idea, see Inwagen (1998).

Let L be a vocabulary, and let T1 and T2 be L-theories. Relative to given deductive
system, T1 and T2 are said to be syntactically equivalent just in case the same L-sentences
are deducible from them, and semantically equivalent just in case they are satisfied by
the same L-models. By soundness and completeness, these notions coincide in the case
of classical first-order logic.

Intuitively speaking, syntactically equivalent theories prove the same things, and se-
mantically equivalent theories are true under the same circumstances. In either of those
senses, non-equivalent theories may still be equivalent with respect to a limited range of
objects and their properties. Such theories may agree about the distribution of certain
properties and relations among objects, or about the distribution of properties and rela-
tions among certain objects, or about the distribution of certain properties and relations
among certain objects.

As we shall see, when equivalence is limited to certain objects and properties, the
syntactic and semantic notions come apart. In order to make this claim precise, we need
to introduce some standard definitions, namely those of relativization, reduct, and part :

Definition 1 (Relativization). Let δ(x) be a formula.4 For any formula ϕ, its δ-relativization
(written [ϕ]δ) is defined recursively:

(i) [Px̄]δ = Px̄.

(ii) [¬ϕ]δ = ¬[ϕ]δ.

(iii) [ϕ→ ψ]δ = [ϕ]δ → [ψ]δ.

(iv) [∀xϕ]δ = ∀x(δ(x)→ [ϕ]δ).

4As is customary, when we say ‘let δ(x) be a formula’, we mean ‘let δ be a formula with at most one
free variable x’. To avoid cluttering, we will thenceforth usually refer to the formula simply as ‘δ’.
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Remark 1. We may regard the other standard operators as defined in terms of ¬, →
and ∀. In particular, with ∃xϕ defined as ¬∀x¬ϕ, it follows that [∃xϕ]δ = [¬∀x¬ϕ]δ =
¬[∀x¬ϕ]δ = ¬∀x(δ(x) → [¬ϕ]δ) = ¬∀x(δ(x) → ¬[ϕ]δ), which is equivalent to ∃x(δ(x) ∧
[ϕ]δ).

Intuitively speaking, δ-relativized sentences only talk about objects satisfying δ. This
claim is made precise by Lemma 2 below.

Definition 2 (Reducts and parts). Let L ⊆ L′ be vocabularies, let δ(x) be an L′-formula,
and let M be an L′-model.

(i) The L-reduct ofM (writtenM|L) is the L-model with the same domain asM such
that, for any predicate P ∈ L, PM|L = PM.

(ii) Provided that M � ∃xδ, the δ-part of M (written Mδ) is the L′-model whose
domain D consist of all objects satisfying δ in M and such that, for any n-place
predicate P ∈ L′, PMδ = PM ∩Dn.5

It is easy to establish that the L-reduct of a model satisfies an L-sentence just in case
the model satisfies it, and that the δ-part of a model satisfies a sentence just in case the
model satisfies its δ-relativization:

Lemma 1. Let L ⊆ L′ be vocabularies, let δ(x) be an L′-formula, let M be an L′-model
such that M � ∃xδ, and let ϕ be an L-sentence. Then we have Mδ|L � ϕ iff M � [ϕ]δ.

Proof. Let X be the set of variables, let D be the set of objects satisfying δ in M, and
let ϕ be an L-formula. It is straightforward to show, by induction on the complexity of
ϕ, that for any variable assignment v : X → D, Mδ|L, v � ϕ iff M, v � [ϕ]δ. Hence, for
any L-sentence ϕ, we have Mδ|L � ϕ iff M � [ϕ]δ.

It follows that models with identical L-reducts satisfy the same L-sentences, and that
models with identical δ-parts satisfy the same δ-relativized sentences:

Lemma 2. Let L ⊆ L′ be vocabularies, let δ(x) be an L′-formula, and let M and M′

be L′-models such that M,M′ � ∃xδ and Mδ|L = M′
δ|L. Then, for any L-sentence ϕ,

M � [ϕ]δ iff M′ � [ϕ]δ.

Proof. We have M � [ϕ]δ iff (by Lemma 1) Mδ|L � ϕ iff (by assumption) M′
δ|L � ϕ iff

(by Lemma 1) M′ � [ϕ]δ.

We shall say that two theories are syntactically L-equivalent over δ just in case they
entail the same δ-relativized L-sentences, and semantically L-equivalent over δ just in
case the models satisfying them have the same δ-relativized L-reducts. More precisely:

Definition 3 (Syntactic and semantic equivalence). Let T1 and T2 be theories in L1 and
L2, respectively, and let L ⊆ L1 ∩ L2. Provided that δ(x) is an L-formula such that
T1 ` ∃xδ and T2 ` ∃xδ, we say that

5If L′ should contain constants or function symbols, Mδ is defined provided that M � δ(c) for any
constant c ∈ L′, with cMδ = cM, and M � ∀x1...∀xn(δ(x1) ∧ ...δ(xn) → δ(f(x1, ..., xn))) for any n-
place f ∈ L′, with fMδ = fM ∩ (Dn × D). If L′ but not L ⊆ L′ should contain such symbols, and
M � ∃xδ, we define Mδ|L as the L-model whose domain D consists of all objects satisfying δ in M,
with PMδ|L = PM ∩Dn for any n-place predicate P ∈ L.

5



1. T1 and T2 are syntactically L-equivalent over δ just in case, for any L-sentence ϕ,
T1 ` ϕδ iff T2 ` ϕδ.

2. T1 and T2 are semantically L-equivalent over δ just in case {Mδ|L : M � T1} =
{Mδ|L :M � T2}.

Remark 2. The intended application of this definition is of course when L is the set of
all empirical terms, and δ is satisfied by all and only empirical entities. Then we shall
say that T1 and T2 are syntactically/semantically empirically equivalent just in case T1

and T2 are syntactically/semantically L-equivalent over δ.

Syntactic or semantic equivalence simpliciter can now be seen as a limiting case of
syntactic or semantic L-equivalence over δ, namely when L1 ∪ L2 ⊆ L and δ is trivial
(e.g. x = x). As mentioned earlier, the syntactic and semantic notions coincide in the
limit. In general, they do not. The semantic notion is strictly stronger:

Lemma 3. For any vocabularies L ⊆ L′, L′-theories T1 and T2 and L′-formula δ(x) such
that T1 ` ∃xδ and T2 ` ∃xδ: if T1 and T2 are semantically L-equivalent over δ, then they
are syntactically L-equivalent over δ.

Proof. Assume that T1 ` ∃xδ, T2 ` ∃xδ, and that {Mδ|L : M � T1} = {Mδ|L : M �
T2}. Let ϕ be an L-sentence, and suppose that T1 ` [ϕ]δ. Let M be a model of T2. By
assumption, Mδ|L can be extended to a model M′ of T1 such that M′ � [ϕ]δ. Since
M � ∃xδ, it follows by Lemma 2 thatM � [ϕ]δ. Hence, by completeness, T2 ` [ϕ]δ. The
other direction is symmetrical.

Here is a counterexample, with trivial δ but L ⊂ L1 ∪ L2, showing that the relation
of strength is strict:

Example 1. Let P and Q be unary predicates and R binary, let L1 = {P,Q,R} and
L = L2 = {P,Q}, let T1 be an L1-theory saying that R is a bijective relation between
the P :s and the Q:s, namely

T1 = {∀x(Px→ ∃!y(Qy ∧Rxy)), ∀y(Qy → ∃!x(Px ∧Rxy))}

and let T2 be the set of all L-consequences of T1. By construction, T1 and T2 are syntac-
tically L-equivalent. Let M be an L-model where PM is countably infinite and QM is
uncountable. Let Th(M) be the set of true L-sentences inM. By downward Löwenheim-
Skolem, Th(M) has a countable modelM′, one in which both PM

′
andQM

′
are countably

infinite. Since M′ can be expanded to a model of T1, M′ is a model of T2. And since
T2 ⊆ Th(M), so is M. But M cannot be expanded to a model of T1. Hence, T1 and T2

are syntactically but not semantically L-equivalent.

Here is another counterexample, with L = L1 = L2 but non-trivial δ:

Example 2. Let L = {O,P,Q,R, S}, where O,P,Q are unary and R, S are binary. Let
T1 be an L-theory saying that all P :s andQ:s are O:s, that R is a bijective relation between
the P :s and the non-O:s, and that S is a bijective relation between the Q:s and the non-
O:s. Define T2 = {[ϕ]Ox : T1 ` [ϕ]Ox}. By construction, T1 and T2 are syntactically
L-equivalent over Ox. LetM be an L-model where the P :s are uncountable and the Q:s
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are countably infinite, R and S are empty, and where everything is O. By downward
Löwenheim-Skolem, Th(M) has a countable model M′, one in which both the P :s and
the Q:s are countably infinite, and where R and S are empty. Let M∗ be the reduct of
M′ to {O,P,Q}. ThenM∗ can be extended to a modelM+ of T1. Clearly,M+

Ox =M′.
Since M+ is a model of T2, it follows by Lemma 2 that M′ is a model of T2. But for
any L-sentence ϕ, we have M � ϕ iff ϕ ∈ Th(M) iff M′ � ϕ. Hence, M is a model of
T2, but cannot be extended to a model of T1. Thus, T1 and T2 are syntactically but not
semantically equivalent over Ox.

3 Conceptual and ontological parsimony

As we argued earlier, using theoretical terms is neither necessary nor sufficient for pos-
tulating theoretical entities. It follows that dispensing with theoretical terms is neither
necessary nor sufficient for dispensing with theoretical entities. One might say that the
first is a matter of conceptual parsimony, whereas the latter is a matter of ontological par-
simony. Unfortunately, the distinction between terms and entities is not always respected.
A blatant example is provided by Colyvan (2019):

The first thing to note is that ‘dispensability’ is not the same as ‘eliminability’.
If this were not so, every entity would be dispensable (due to a theorem of
Craig). What we require for an entity to be ‘dispensable’ is for it to be
eliminable and that the theory resulting from the entity’s elimination be an
attractive theory.

Three points are in order. First of all, only terms are eliminable in the sense relevant to
the application of Craig’s theorem in the context of this quote, as it refers to the following
fact:

Theorem 1. For any vocabularies L ⊆ L′, every recursive L′-theory is syntactically
L-equivalent to a recursive L-theory.

The theorem follows from the fact that the L-consequences of a recursive L′-theory
are recursively enumerable, together with the aforementioned theorem of Craig (1953):

Theorem 2 (Craig). Every recursively enumerable theory is equivalent to a recursive
theory.

Craig’s theorem can be established by the following handy argument:6

Proof. Let ϕ0, ϕ1, ϕ2, ... be the recursive enumeration of a theory T , and define the se-
quence ψ0, ψ1, ψ2, ... by recursion:

ψ0 = ϕ0

ψn+1 = ψn ∧ ϕn+1

Let T ′ = {ψ0, ψ1, ψ2, ...} = {ϕ0, ϕ0 ∧ ϕ1, ϕ0 ∧ ϕ1 ∧ ϕ2, ...}. Clearly, T ′ is recursively
enumerable and equivalent to T . Moreover, it is easily shown by induction that the

6A similar argument is found in Putnam (1965, pp. 253-254), but with T ′ = {ϕ0, ϕ1 ∧ ϕ1, ϕ2 ∧ ϕ2 ∧
ϕ2, ...}.
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sentences in the sequence ψ0, ψ1, ψ2, ... are strictly increasing in length, and that any
number n is smaller than the length of ψn. Thus, in order to decide whether a given
sentence σ of length n is a member of T ′, it is enough to go through the enumeration of
T ′ from ψ0 to ψn. Hence, T ′ is recursive.

This brings me to my second point, which is to acknowledge that Colyvan is correct in
denying that recursive axiomatizability is sufficient for attractiveness, and in distinguish-
ing between dispensability and mere eliminability. Although the strategy for eliminating
theoretical terms suggested by Craig’s theorem preserves recursive axiomatizability, it
certainly does not preserve every potentially attractive feature of the original theory. As
Field (1980, p. 8) puts it, the resulting theories “are obviously uninteresting, since they
do nothing whatever toward explaining the phenomena in question in terms of a small
number of basic principles.” In particular, the strategy does not preserve finite axioma-
tizability. There are many cases of finite L′-theories having no syntactically L-equivalent
finite L-theory. To take a simple example: for any finite consistent theory with only infi-
nite models, there is no finite theory in the empty vocabulary entailing the same sentences
in that vocabulary.

But, as for my third and final point, it is not obvious that theoretical terms are
eliminable. That depends on whether the relevant notion of equivalence is syntactic
or semantic. More precisely, Theorem 1 does not hold for semantic equivalence. In
Example 1, it easily follows that no L-theory is semantically L-equivalent to T1, since
such a theory would have to be equivalent to T2 simpliciter. Although T1 and T2 have
the same L-consequences, they are not true under the same L-circumstances. T2, but not
T1, has a model where there are more Q:s than P :s. Other examples to the same effect
have been offered by van Benthem (1978, p. 324), Melia (2000, pp. 459-461), Ketland
(2004, p. 297), and Johannesson (2020, pp. 492-493). From the point of view of semantic
equivalence, this means that theoretical terms are sometimes indispensable. In order to
describe certain properties and relations among objects, it is sometimes necessary to talk
about other properties and relations as well.

At any rate, these results only pertain to the indispensability of theoretical terms.
What about the indispensability of theoretical entities? In order to describe the prop-
erties and relations among certain objects, is it sometimes necessary to talk about other
objects as well? From the point of view of syntactic equivalence, and in spite of my
first point concerning the quote earlier, Craig’s theorem does make theoretical entities
dispensable in the following sense:

Theorem 3. For any vocabulary L, (recursive) L-theory T and L-formula δ(x) such that
T ` ∃xδ, there is a (recursive) L-theory T ′ syntactically L-equivalent to T over δ such
that T ′ ` ∀xδ.

Proof. Let S = {[ϕ]δ : T ` [ϕ]δ}∪{∀xδ}. We need to show that S and T are syntactically
L-equivalent over δ. By construction, we have S ` [ϕ]δ if T ` [ϕ]δ. For the other direction,
assume that T 6` [ϕ]δ. Then there is a modelM � T,¬[ϕ]δ, and thusM � T, [¬ϕ]δ. Since
M � ∃xδ, it follows by Lemma 2 that Mδ � S, [¬ϕ]δ, and thus Mδ � S,¬[ϕ]δ. Hence,
S 6` [ϕ]δ.

Finally, since S is recursively enumerable if T is recursive, S is equivalent to a recursive
L-theory T ′ according to Theorem 2.
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But the corresponding result does not hold for semantic equivalence. In Example 2,
the set of Ox-relativized consequences of T1 is not semantically equivalent to T1 over Ox.
If we are allowed to use additional predicates, however, it is easy to construct a theory T
semantically L-equivalent to T1 over Ox such that T ` ∀xOx. What T1 says about the
O:s is that there are as many P :s as there are Q:s. To achieve the same thing without
postulating any non-O:s, we only need to introduce a new binary predicate U , with T
saying that U is a bijective relation between the P :s and the Q:s, that R and S are empty,
and that everything is O. One might say that the gain in ontological parsimony comes
at the conceptual cost of having to introduce a new predicate U defined on the O:s.

In the next section, we shall indeed prove that this holds more generally. But before
we do that, it is instructive to compare our current predicament with that of Goodman
and Quine (1947). One of their goals is to be able to say that

(2) There are more cats than dogs

without postulating any abstract set-theoretic objects. The standard set-theoretic ren-
dering of (2) is

(3) There is an injective but no bijective function from the set of all dogs to the set
of all cats.

Their strategy is to dispense with set-theory in favor of mereology. Unlike the set-
theoretical notion of membership (expressed by the binary predicate ∈), the mereological
notion of parthood is to be defined exclusively on a domain of concrete objects. This
domain will have to include more than just cats and dogs, however. In addition, it will
at least include the parts of all cats and dogs and the mereological sums thereof. But
unlike the set of all cats and the set of all dogs, these are all supposed to be concrete
objects. On this domain of concrete objects, they also use the binary predicate ‘is bigger
than’, and define the unary predicate ‘is a bit’ in terms of it by declaring that something
is a bit just in case it is as big as the smallest individual among all cats and dogs. Their
mereological rendering of (2) then becomes

(4) Every individual that contains a bit of each cat is bigger than some individual
that contains a bit of each dog.

Do they succeed? Unfortunately, they are not very explicit about their success criteria.
In one sense, (2) cannot be expressed in first-order logic at all, not even using set-theory.
More precisely, with L = {cat, dog},

(5) There is no vocabulary L′ ⊇ L and L′-theory T such that, for any L-model M,
|catM| > |dogM| iff M can be expanded to a model of T .

Assuming T to be such a theory, it is enough to consider a model of T with uncountably
many cats and countably infinitely many dogs. By Löwenheim-Skolem, the theory of that
model has a countable model, which is also a model of T , but one where the number of
cats and dogs are both countably infinite.

Clearly, their goal is not to be able to express (2) in this sense. But in what sense,
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then? Even when restricted to countable models, (5) still holds.7 In order to formulate a
satisfiable success criterion along these lines, we need to restrict it to finite models, or at
least to models with finitely many cats and dogs. If we do that, it is indeed possible to
find a theory satisfying it, even without extending the vocabulary:

(6) There is an L-theory T such that, for any L-modelM with finite catM and dogM,
|catM| > |dogM| iff M � T .

The following theory does the job:

T = {¬(∃≤nxcat(x) ∧ ∃≥nxdog(x)) : n ∈ N}

However, although such a theory requires no mereological notions, it needs to be infinite.8

What they are seeking is a statement. Presumably, statements are finite. Thus, in order
to obtain a finite theory expressing (2), we need to extend the vocabulary:

(7) There is a vocabulary L′ ⊇ L and a finite L′-theory T such that, for any L-model
M with finite catM and dogM, |catM| > |dogM| iffM can be expanded to a model
of T .

For instance, with P a unary and R a binary predicate, and L′ = L ∪ {P,R}, we can
formulate a finite L′-theory T saying that every P is a cat, not all cats are P , and that R
is a bijective relation between the P :s and the dogs. Then T defines P and R exclusively
on concrete objects. Moreover, every L-model with finitely many cats and dogs has more
cats than dogs just in case it can be expanded to a model of T .

Obviously, introducing two new predicates for each case like (2) is not a sustainable
solution. Perhaps the mereological approach is better in that regard. Whether it also
provides a witness to (7) depends on how much mereological background theory it requires
(i.e. whether that theory is finite), but I shall not delve further into it. Either way, the
more interesting question is whether the mereological theory as a whole nominalizes its
set-theoretic counterpart in the sense of (1). In other words, to the extent that concrete
objects can be described in a certain way by a first-order theory also postulating abstract
objects, can they be so described by a first-order theory postulating no abstract objects?
This is the question to which we now turn.

4 Nominalizability under semantic equivalence

Suppose we have an L-theory T and an L-formula δ(x) such that T ` ∃xδ ∧ ∃x¬δ. If
L is finite, and T has a model with finitely many δ:s, it is a trivial matter to find an

7In that case, since T has models where the number of dogs are of any finite cardinality, it follows by
compactness that it has a model with infinitely many dogs. By downward Löwenheim-Skolem, it has a
countable such model.

8Otherwise, we can let ϕ be the conjunction of its axioms, and let ϕ′ be the result of replacing
every occurrence of dog in ϕ with ¬cat. It follows that, for any finite L-model M, M � ϕ′ iff there
are more cats than non-cats in M. Let q ∈ N be the quantifier rank of ϕ′, and let ψ be the sentence
∃≥qxcat(x)∧∃≥qx¬cat(x). Clearly, the quantifier rank of ϕ′ ∧ψ is also q. LetM be a finite model with
q + 1 cats and q non-cats. By assumption, M � ϕ′ ∧ ψ. Hence, ϕ′ ∧ ψ is satisfiable. By the small model
property of monadic logic with identity, it follows that ϕ′ ∧ ψ has a model with at most 2q elements,
contradicting our assumption.
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L-theory T ′ semantically equivalent to T over δ such that T ′ 6` ∃x¬δ. This is due to
the well known fact that every finite L-model can be described up to isomorphism by a
single L-sentence. Thus, let σ be an L-sentence describing the finite δ-part Mδ of some
L-modelM � T , and let T ′ = {ϕ∨σ : ϕ ∈ T}. Since σ ` ∀xδ, any model of σ is a model
of T ′, it follows by soundness that T ′ 6` ∃x¬δ. As for semantic equivalence, every model
satisfying T will obviously satisfy T ′. For the other direction, let M′ be an arbitrary
L-model, and assume thatM′ � T ′. IfM′ � σ, thenM′ =M′

δ andM′
δ
∼=Mδ, in which

case M′
δ can be extended to a model of T . If, on the other hand, M′ 6� σ, then we have

M′ � T .
Thus construed, however, T ′ still carries a conditional commitment to the existence

of non-δ:s in the sense that, for some L-sentence ϕ (namely ¬σ) such that T ′ 6` ¬[ϕ]δ,
we have T ′ ` [ϕ]δ → ∃x¬δ. Presumably, a nominalist will not happily commit to the
claim that, if there are such-and-such concrete objects (which, according to his theory,
there very well may be), then abstract objects exist. In this section, we shall therefore be
occupied with the general problem of finding a nominalizing theory T ′ such that T ′ ` ∀xδ.
To do that, we shall employ certain model-theoretic results formulated in terms of the
following notions:

Definition 4 (Elementary, pseudo-elementary, and relativized pseudo-elementary classes).
Let L be a vocabulary, and let C be a class of L-models. We say that

(i) C is (finitely/recursively) elementary just in case, for some (finite/recursive) L-
theory T , we have C = {M|L :M � T}.

(ii) C is (finitely/recursively) pseudo-elementary just in case, for some vocabulary L′ ⊇
L and (finite/recursive) L′-theory T , we have C = {M|L :M � T}.

(iii) C is (finitely/recursively) relativized pseudo-elementary just in case, for some vocab-
ulary L′ ⊇ L, (finite/recursive) L′-theory T and unary predicate P ∈ L′ − L, we
have C = {MPx|L :M � T,∃xPx}.

Remark 3. In the terminology of Tarski (1954), a class of models is finitely pseudo-
elementary iff it is PC, pseudo-elementary iff it is PC4, finitely relativized pseudo-
elementary iff it is PC′, and relativized pseudo-elementary iff it is PC′4. In the extended
terminology of Makkai (1964), a class of models is recursively pseudo-elementary iff it is
PC4rec. I prefer to use the more descriptive terminology.

The following lemma offers an alternative definition of relativized pseudo-elementary
classes, more suitable for our purposes:

Lemma 4. A class C of L-models is (finitely/recursively) relativized pseudo-elementary
just in case, for some vocabulary L′ ⊇ L, (finite/recursive) L′-theory T and L′-formula
δ(x), we have C = {Mδ|L :M � T,∃xδ}.

Proof. Left to right follows from taking δ(x) to be Px. Right to left follows from extending
L′ with a new unary predicate P , and extending T with ∀x(Px ↔ δ), in which case
{MPx|L :M � T,∀x(Px↔ δ),∃xPx} = {Mδ|L :M � T,∃xδ}.
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Example 1 demonstrates that not all pseudo-elementary classes are elementary. But
certain non-elementary classes are not pseudo-elementary either. For instance, the class
of all finite models of a vocabulary is not pseudo-elementary. Neither, as we saw in the
previous section, is the class of all models with more cats than dogs. This is precisely
what (5) says. In both cases, a slightly modified argument will demonstrate that they are
not relativized pseudo-elementary either. The following remarkable theorem of Makkai
(1964, p. 176, Theorem 2(a)) says that this holds in general:

Theorem 4 (Makkai). Every relativized pseudo-elementary class is pseudo-elementary.

Albeit in a less than minimal sense, Theorem 4 immediately entails that all theoreis
are nominalizable from the point of view of semantic equivalence:

Corollary 1. For any vocabulary L, L-theory T and L-formula δ(x), there is a theory
T ′ semantically L-equivalent to T over δ such that T ′ ` ∀xδ.

Proof. Let L be a vocabulary, T an L-theory and δ(x) and L-formula. By Lemma 4 and
Theorem 4, there is L′ ⊇ L and L′-theory T ′ such that {M|L : M � T ′} = {Mδ|L :
M � T,∃xδ}. Since δ is an L-formula, we get T ′ ` ∀xδ, from which it also follows that
{Mδ|L :M � T ′,∃xδ} = {Mδ|L :M � T,∃xδ}.

But in order to establish general nominalizability in any stronger sense, we also need
to prove that the nominalizing theory can be recursive if the original is. We shall at
least be able to prove that this holds when the original theory is formulated in a finite
vocabulary. Arguably, this is no serious limitation. To do that, we use another theorem
of Makkai (1964, p. 176, Theorem 2(b)):

Theorem 5 (Makkai). Every finitely relativized pseudo-elementary class is recursively
pseudo-elementary.

The reason for the restriction to finite vocabularies is so we can use a result due to
Craig and Vaught (1958, p. 292, Theorem 2.1):

Theorem 6 (Craig and Vaught). Provided that L is finite, every recursively elementary
class of infinite L-models is finitely pseudo-elementary.

Remark 4. In their terminology, this means that every recursive theory9 with only infi-
nite models is finitely axiomatizable (in the semantic sense) using additional predicates.
The result is a generalization of Kleene (1952). Roughly speaking, given a finite vocab-
ulary L and a recursive L-theory T , the proof strategy is to formalize the arithmetized
syntax and semantics of L-formulas as a finite extension of Robinson arithmetic (sufficient
for representing all recursive relations on the natural numbers) added with a statement
to the effect that all axioms of T are true.

Under the assumption that all vocabularies are finite, we use this theorem to show
that every recursively pseudo-elementary class is finitely relativized pseudo-elementary.
Since, as we shall see in section 7, not every recursively pseudo-elementary class is finitely
pseudo-elementary, this result is interesting in its own right. Extending the terminology
of Craig and Vaught (1958), it means that every recursive theory is finitely axiomatizable
(in the semantic sense) using additional predicates and entities:

9Craig and Vaught (1958) assume, by definition, that all theories have finite vocabularies.
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Lemma 5. For any finite vocabulary L and recursive L-theory T , there is finite theory
T ′ in a vocabulary L′ ⊇ L ∪ {P} with a unary predicate P 6∈ L such that {MPx|L :M �
T ′,∃xPx} = {M|L :M � T}.

Proof. Let L be a finite vocabulary and T a recursive L-theory. Let P 6∈ L be a new
unary predicate, let L+ = L ∪ {P}, and let

T+ = {[ϕ]Px : ϕ ∈ T} ∪ {∃≥1x¬Px,∃≥2x¬Px, ∃≥3x¬Px, ...}

We show that {MPx|L :M � T+,∃xPx} = {M|L :M � T}. For left to right, assume
that M � T+,∃xPx. By Lemma 1, MPx|L � T , and obviously (MPx|L)|L = MPx|L.
For the other direction, assume that M � T . Extend M to a model M′ by adding
infinitely many new elements and interpreting P as the elements ofM. SinceM′

Px =M,
it follows by Lemma 1 that M′ � T+,∃xPx, and obviously M′

Px|L =M|L.
Since T+ only has infinite models, it follows by Theorem 6 that there is finite theory

T ′ in a vocabulary L′ ⊇ L+ such that {M|L+ :M � T ′} = {M|L+ :M � T+}. Hence,
{MPx|L :M � T ′,∃xPx} = {MPx|L :M � T+,∃xPx} = {M|L :M � T}.

Still under the assumption that all vocabularies are finite, we then show that every
recursively relativized pseudo-elementary class is finitely relativized pseudo-elementary:

Lemma 6. For any finite vocabulary L, recursive L-theory T and L-formula δ(x), there
is a finite vocabulary L′ ⊇ L, finite L′-theory T ′ and L′-formula δ′(x) such that {Mδ′ |L :
M � T ′, ∃xδ′} = {Mδ|L :M � T,∃xδ}.

Proof. Let L be a finite vocabulary, T a recursive L-theory, and δ(x) an L-formula. By
Lemma 5, there is a vocabulary L′ ⊇ L with a unary predicate P ∈ L′ − L and a finite
L′-theory T ′ such that

(8) {MPx|L :M � T ′,∃xPx} = {M|L :M � T}.

We need to show that {MPx∧δ|L : M � T ′, ∃x(Px ∧ δ)} = {Mδ|L : M � T,∃xδ}. For
left to right, assume that M � T ′, ∃x(Px ∧ δ). Let M′ = MPx|L. It follows by (8)
that M′ � T,∃xδ. And since M′

δ =MPx∧δ|L, we also have M′
δ|L =MPx∧δ|L. For the

other direction, assume that M � T,∃xδ. It follows by (8) that there is M′ � T ′,∃xPx
such thatM′

Px|L =M|L. SinceM|L � T,∃xδ, we getM′
Px|L � ∃xδ, which means that

M′ � T ′, ∃x(Px ∧ δ). Moreover, since M′
Px|L =M|L, we get M′

Px∧δ|L =Mδ|L.

Together with Theorem 5, the desired result follows immediately:

Theorem 7. For any finite vocabulary L, recursive L-theory T and L-formula δ(x) such
that T ` ∃xδ, there is a recursive theory T ′ semantically L-equivalent to T over δ such
that T ′ ` ∀xδ.

Proof. Let L be a finite vocabulary, T a recursive L-theory, and δ(x) an L-formula. By
Lemma 6, there is a finite vocabulary L+ ⊇ L, finite L+-theory T+ and L+-formula δ+(x)
such that {Mδ+|L :M � T+,∃xδ+} = {Mδ|L :M � T,∃xδ}. By Theorem 5, there is a
recursive theory T ′ in a vocabulary L′ ⊇ L+ such that {M|L+ :M � T ′} = {Mδ+|L+ :
M � T+,∃xδ+}, and thus {M|L : M � T ′} = {Mδ+ |L : M � T+, ∃xδ+} = {Mδ|L :
M � T,∃xδ}. Since δ is an L-formula, it follows that T ′ ` ∀xδ.
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At this point, there is good news and bad news for the anti-realist. The good news
is that, by inspecting the proofs of Theorem 5 and 6, one can obtain an algorithm for
nominalizing any recursive theory formulated in a finite vocabulary.10 The bad news is
that, due to its generality, that algorithm does not yield very attractive theories. In
particular, by inspecting the proof of Theorem 5, one can see that, unless the original
theory is equivalent to ∃x̄∀ȳϕ(x̄, ȳ) for some quantifier-free formula ϕ not containing any
function symbols, the vocabulary of the nominalizing theory will be infinite. And, as a
rule of thumb, conceptual parsimony counts towards elegance. At least to me, it is still an
open question whether every recursive theory in a finite vocabulary can be nominalized
by such a theory.

5 Infinite universes

In this section, we show that theories postulating infinitely many empirical entities are
nominalizable in a much stronger sense.

Hodges (1993, p. 208) has a proof of Theorem 4 restricted to classes of infinite models.
By filling in the details of that proof, we obtain the following result:

Theorem 8 (Hodges). Let L be a vocabulary, T an L-theory, and δ(x) an L-formula,
and assume that {Mδ|L :M � T,∃xδ} only contains infinite models. For each predicate
P ∈ L, let P ∗ 6∈ L be a new predicate of the same arity, and define L′ = L ∪ {P ∗ : P ∈
L} ∪ {f}, where f 6∈ L is a new unary function symbol. For each L-formula ϕ, let ϕ∗ be
the result of replacing every predicate P in ϕ with P ∗, and define

T ′ ={ϕ∗ : ϕ ∈ T}∪
{∀x1...∀xn(Px1...xn ↔ P ∗f(x1)...f(xn)) : P ∈ L}∪
{∀xδ∗(f(x)),∀x(δ∗(x)→ ∃yf(y) = x),∀x∀y(x 6= y → f(x) 6= f(y)}

Then T and T ′ are semantically L-equivalent over δ, and T ′ ` ∀xδ.

For theories postulating infinitely many empirical entities, Theorem 8 offers a nom-
inalist paraphrase that is both simple and intuitive. Roughly, the nominalizing theory
T ′ states that the universe contains a map of itself satisfying the translation of T into
“map-language”. Let me explain what I mean by that. Observe that a city on a map is
not strictly speaking a city, and a road on a map is not strictly speaking a road. Rather,
they are a city-on-the-map (city*) and a road-on-the-map (road*), respectively. Likewise,
a road on the map does not connect two cities on the map in the sense that a road in the
terrain connects two cities in the terrain. Rather, it connects-on-the-map (connects*).
The predicates ‘road*’, ‘city*’ and ‘connects*’ belong to the so-called map-language. Ac-
cording to T ′, each city x and each road y in the terrain corresponds to a unique city*
f(x) and a unique road* f(y) on the map. Moreover, a road x connects cities y and z
in the terrain just in case the road* f(x) connects* the city* f(y) with the city* f(z)
on the map. The map itself is described by the theory T ∗ = {ϕ∗ : ϕ ∈ T}, which is

10More precisely, one can obtain an algorithm whose input is a description of an algorithm for deciding
the axioms of the original theory, and whose output is a description of an algorithm for deciding the
axioms of the nominalizing theory.
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the translation of T into map-language. To the extent that T postulates non-empirical
entities, T ∗ only postulates entities outside of the map.

Clearly, T ′ is finite/recursive if T is. More generally, they belong to the same com-
putational complexity class. To see why, observe that a finite set can always be decided
in constant time. That means there is an algorithm and a constant c ∈ N such that the
time it takes for the algorithm to decide whether a string belongs to the set is less than
c. Moreover, it is reasonable clear that the second set of axioms,

{∀x1...∀xn(Px1...xn ↔ P ∗f(x1)...f(xn)) : P ∈ L}

can be decided in linear time. That means there is an algorithm and a linear function
f : N → N such that, for any string of length n, the time it takes for the algorithm to
decide whether the string belongs to the set is less than f(n). Likewise, the translation
from T ∗ to T can also be computed in linear time, bounded by a linear function g : N→ N.
Assuming that the time it takes to decide11 T is bounded by a function h : N → N, it
follows that the time it takes to decide whether a string of length n belongs to T ′ is
less than f(n) + g(n) + h(n) + c, for some constant c. Hence, if T can be decided in
constant/linear/polynomial/exponential/etc. time, so can T ′.

It is interesting to compare this generic nominalization strategy with that of Field
(1980), who uses mereology for nominalizing Newtonian physics – especially since Field
operates under the assumption that there are infinitely many empirical entities, namely
space-time regions. To some extent, Theorem 8 trivializes that project. On the other
hand, as we shall see in the next section, some would argue that the generic strategy does
not yield attractive enough alternatives. I am not convinced by some of those arguments,
and I will try to explain why.

We end this section by noting that, as an immediate consequence of Theorem 6 and
8, if the original theory is recursive and has a finite vocabulary, the nominalizing theory
can also be finite:

Corollary 2. For any finite vocabulary L, recursive L-theory T and L-formula δ(x) such
that T entails that there are infinitely many δ:s, there is a finite theory T ′ semantically
L-equivalent to T over δ such that T ′ ` ∀xδ.

6 A comparison with Burgess and Rosen

Although formulated in the framework of two-sorted first-order logic, Theorem 8 of the
previous section was essentially already noted by Burgess and Rosen (1999) in their
discussion of general strategies for eliminating mathematical entities from the empirical
sciences. The corresponding strategy is there called Skolemite reduction. They argue
that, unless the original theory has what they call the representation property (which
essentially means that f can be defined by the original theory), the strategy does not yield
attractive enough nominalist alternatives. I am not convinced by their line of argument.
In particular, I think their success criteria are far too demanding. Most importantly, as
I will show at the end of this section, they fail for very simple empirical theories that

11Deciding a theory usually means deciding whether something is a theorem of the theory. Here, it
just means deciding whether something is an axiom of the theory.
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do not make any substantial claims about mathematical entities whatsoever. Adopting
these criteria would thus seem to entail the absurd claim that certain nominalist theories
are not nominalizable.

The following is a summary of the central definitions given in Burgess and Rosen
(1999, pp. 83-92):

• A two-sorted first-order language has a set x, y, z, ... of primary variables, and a set
X, Y, Z, ... of secondary variables. Each predicate is assigned a particular number
of argument places for variables of each sort. Predicates only taking primary (sec-
ondary) variables as arguments are called primary (secondary), and predicates
taking both sorts are called mixed. The terminology is extended to formulas and
theories in the obvious way.

• Let T be a theory in a two-sorted vocabulary L. The primary restriction L◦ of
L is the set of primary predicates of L, and the primary restriction T ◦ of T is
the set of primary sentences of T . T is deductively conservative over T ◦ just
in case, for any primary sentence ϕ, if T ` ϕ then T ◦ ` ϕ. T is expressively
conservative over T ◦ just in case, for any L-formula ϕ with only primary free
variables x1, ..., xn, there is an L◦-formula ψ with the same free variables such that
T ` ∀x1...∀xn(ϕ(x1, ..., xn)↔ ψ(x1, ..., xn)).12 T is a fully conservative extension
of T ◦ just in case it is both a deductively and expressively conservative extension
of T ◦.

• An extension T+ of T in a vocabulary L+ ⊇ L is definitionally redundant just
in case L+ is obtained by adding finitely many new predicates, and T+ is obtained
by adding a single axiom for each new predicate that defines it in terms of an
L-formula. A further extension T l of T+ in the same vocabulary Ll = L+ is
implicationally redundant just in case it is obtained by adding the instances
of finitely many axioms schemes, each of which was already deducible from T+.
Such an extension T l is a merely redundant extension of T just in case T+ is a
definitionally redundant extension of T . Finally, T has the elimination property
just in case it has a merely redundant extension T l that is fully conservative over
its primary restriction T l◦.

• T has the representation property just in case there is an L-formula ϕ(x1, ..., xk, X)
such that

T ` ∀X∃x1...∃xkϕ(x1, ..., xk, X)

and
T ` ∀x1...∀xk∀X∀Y (ϕ(x1, ..., xk, X) ∧ ϕ(x1, ..., xk, Y )→ X = Y )

Although never explicitly stated, the suggestion seems to be that the secondary entities
postulated by a theory are dispensable only if the theory has the elimination property.
For the sake of comparison, let us extend our own notions of nominalizability to the
two-sorted case by saying that a two-sorted L-theory T is

12More appropriately, one should instead say that T is expressively conservative over L◦, since L◦

rather than T ◦ occurs in the defining expression.
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1. syntactically nominalizable just in case there is a primary theory T ′ in a vocab-
ulary L′ ⊇ L◦ such that

(a) T and T ′ are syntactically L◦-equivalent13, and

(b) T ′ is no more computationally complex than T .

and

2. semantically nominalizable just in case there is a primary theory T ′ in a vocab-
ulary L′ ⊇ L◦ such that

(a) T and T ′ are semantically L◦-equivalent14, and

(b) T ′ is no more computationally complex than T .

Theorem 9. The representation property implies semantic nominalizability.

Proof. Let T be a two-sorted L-theory, and assume that there is a mixed L-formula
R(x̄, X) such that

T ` ∀X∃x̄R(x̄, X)

and
T ` ∀x̄∀X∀Y (R(x̄, X) ∧R(x̄, Y )→ X = Y )

For each non-primary L-predicate P taking variables x, y, ..., X, Y, ..., introduce a new
primary predicate P ◦ taking variables x, y, ..., x̄, ȳ, ..., yielding the extended primary vo-
cabulary L′ ⊇ L◦. For each L-formula ϕ, define its L′-translation [ϕ]◦ recursively:

1. [Px1...xn]◦ = Px1...xn

2. [Qxy...XY...]◦ = Q◦xy...x̄ȳ...

3. [¬ϕ]◦ = ¬[ϕ]◦

4. [ϕ ∧ ψ]◦ = [ϕ]◦ ∧ [ψ]◦

5. [∀xϕ]◦ = ∀x[ϕ]◦

6. [∀Xϕ]◦ = ∀x̄[ϕ]◦

Finally, define the L′-theory T ′ = {[ϕ]◦ : ϕ ∈ T}.
To show that T and T ′ are semantically L◦-equivalent, assume that M is a model

of T ′ with domain D. We construct a two-sorted L-model M′ by adding the set of
secondary entities Dk. For each non-primary L-predicate P , let PM

′
(a, b, ..., A,B, ...) iff

P ◦M(a, b, ..., A,B, ...). It is straightforward to show by induction on the complexity of
formulas that, for any L-formula ϕ(x, y, ..., X, Y, ...), we have M′ � ϕ[a, b, ..., A,B, ...]

13For any L◦-sentence ϕ, we have T ′ ` ϕ iff T ` ϕ.
14Any model of T ′ can be extended to a model of T by adding a secondary domain, and the primary

part of any model of T can be expanded to a model of T ′.
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iff M � [ϕ]◦[a, b, ..., A,B, ...].15 Hence, M′ is a model of T . For the other direction,
assume that M is a model of T with primary domain D and secondary domain E. Let
f : Dk → E be a total surjection extendingM:s interpretation of R. We construct a one-
sorted L′-model M′ with the single domain D. For each non-primary L-predicate P , let
P ◦M

′
(a, b, ..., ā, b̄, ...) iff PM(a, b, ..., f(ā), f(b̄), ...). As before, it is straightforward to show

by induction that, for any L-formula ϕ(x, y, ..., X, Y, ...), we haveM′ � ϕ◦[a, b, ..., ā, b̄, ...]
iff M � ϕ[a, b, ..., f(ā), (b̄), ...].16 Hence, M′ is a model of T ′.

To get a clearer grasp of what the elimination property is about, we offer the following
characterizing lemma:

Lemma 7. An L-theory T has the elimination property just in case there is a finite
number of L-formulas ϕ1(x̄1), ..., ϕn(x̄n) whose free variables are all primary such that,
with additional primary predicates P1, ..., Pn 6∈ L of corresponding arities,

∆ = {∀x̄1(P1x̄1 ↔ ϕ1(x̄1)), ...,∀x̄n(Pnx̄n ↔ ϕn(x̄n))}

and Ll = L ∪ {P1, ..., Pn}, the following obtains:

1. For any L-formula ϕ(x̄) with only primary free variables, there is an Ll◦-formula
ψ(x̄) with the same free variables such that T ∪∆ ` ∀x̄(ϕ(x̄)↔ ψ(x̄)), and

2. there is an Ll◦-theory Γ such that

(a) T and T ◦ ∪ Γ are syntactically L◦-equivalent, and

(b) Γ is axiomatizable by finitely many axiom schemes.

Proof. Right to left follows by letting T l = T ∪ ∆ ∪ Γ. For left to right, assume that
T l is a merely redundant extension of T that is fully conservative over T l◦ (i.e. deduc-
tively conservative over T l◦ and expressively conservative over Ll◦.) Let ∆ be the set of
definitions extending T . By implicational redundancy of T l over T ∪ ∆, it follows that
T ∪∆ is expressively conservative over Ll◦. Let Σ = T l− T −∆ and Γ = Σ◦. Thus, Γ is
an Ll◦-theory. Again, by implicational redundancy, Σ is axiomatizable by finitely many
axiom schemes, and hence so is Γ. Let ϕ be an L◦-sentence. If T ◦∪Γ ` ϕ, it follows that
T ∪∆ ∪ Σ ` ϕ. Implicational redundancy yields T ∪∆ ` ϕ, and hence T ` ϕ. If T ` ϕ,
it follows that T ∪∆ ∪ Σ ` ϕ. Deductive conservativeness yields (T ∪∆ ∪ Σ)◦ ` ϕ, and
hence T ◦ ∪ Γ ` ϕ.

15In the case of quantifiers, assume as induction hypothesis that the claim holds for ϕ(x, y, ..., X, Y, ...).
In the primary case, we have M′ � ∀xϕ[b, ..., A,B, ...] iff M′ � ϕ[a, b, ..., A,B, ...] for all a ∈ D iff (by
induction hypothesis) M � [ϕ]◦[a, b, ..., A,B, ...] for all a ∈ D iff M � [∀xϕ]◦[b, ..., A,B, ...]. In the
secondary case, we haveM′ � ∀Xϕ[b, ..., B, ...] iffM′ � ϕ[a, b, ..., A,B, ...] for all A ∈ Dk iff (by induction
hypothesis) M � [ϕ]◦[a, b, ..., A,B, ...] for all A ∈ Dk iff M � [∀x̄ϕ]◦[a, b, ..., B, ...].

16In the case of secondary quantifiers, assume as induction hypothesis that the claim holds for
ϕ(x, y, ..., X, Y, ...). We have M′ � [∀Xϕ]◦[a, b, ..., b̄, ...] iff M′ � ∀x̄[ϕ]◦[a, b, ..., b̄, ...] iff M′ �
[ϕ]◦[a, b, ..., ā, b̄, ...] for all ā ∈ Dk iff (by induction hypothesis) M � ϕ[a, b, ..., f(ā), f(b̄), ...] for all
ā ∈ Dk if (by totality of f) and only if (by surjectivity of f) M � ϕ[a, b, ..., A, f(b̄), ...] for all A ∈ E iff
M � ∀Xϕ[a, b, ..., f(b̄), ...].
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Although depending a bit on how fine grained a notion of computational complexity
one employs, it should be reasonably clear from this lemma that the elimination property
entails syntactic nominalizability. I do not know whether it also entails semantic nomi-
nalizability, or whether it implies the representation property. As defined, however, the
elimination property cannot serve as general criteria of dispensability, for the following
simple reason:

Theorem 10. The elimination property is not preserved under logical equivalence.

Proof. Take any primary theory T that is not axiomatizable by a finite number of axiom
schemes, and let T ′ = T ∪ {∀X∀Y (X = Y )}. Since T ′ ` ∀X∀Y (X = Y ↔ ∀x(x = x)),
it easily follows by induction on the complexity of formulas that T ′ has the elimination
property. To each of its primary axioms, add ∀X(X = X) as a conjunct. The resulting
theory is equivalent to T ′ and deductively conservative over the original theory T , but
its primary restriction is empty.17 Hence, by Lemma 7, it does not have the elimination
property.

A similar construction also yields the following result, contradicting the claim made
by Burgess and Rosen (1999, p. 86):

Theorem 11. The representation property does not imply the elimination property.

Proof. Take any primary theory that is not axiomatizable by a finite number of axiom
schemes, and extend it with the representation axioms for a mixed binary predicate
R, yielding a deductively conservative extension (each model of the original theory can
be expanded to a model of the extended theory by adding an equally large domain of
secondary entities and interpreting R as a bijective relation between the two domains).
By definition, the extended theory has the representation property. Construct a new
theory by adding ∀X(X = X) as a conjunct to each primary axiom. The new theory also
has the representation property, but its primary restriction is empty. Hence, by Lemma
7, it does not have the elimination property.

More charitably, we may of course understand their claim as being restricted to the-
ories that are axiomatizable by finitely many axiom schemes. Indeed:

Theorem 12. For theories that are axiomatizable by finitely many axiom schemes, the
representation property does imply the elimination property.

Proof. Importing the assumptions from the proof of Theorem 9 concerning T , L, R(x̄, X),
L′ and T ′, let Ll = L ∪ L′ and let ∆ be the set of definitions

∀x∀y...∀x̄∀ȳ...[P ◦xy...x̄ȳ...↔
∃X∃Y...(R(x̄, X) ∧R(ȳ, Y ) ∧ ... ∧ Pxy...XY...)]

for each non-primary predicate P ∈ L. It can be established that, for any L-formula
ϕ(x, y, ..., X, Y, ...),

∀x∀y...∀X∀Y...∀x̄∀ȳ...[R(x̄, X) ∧R(ȳ, Y ) ∧ ...→
([ϕ]◦(x, y, ..., x̄, ȳ, ...)↔ ϕ(x, y, ..., X, Y, ...))]

17As mentioned earlier, we do not identify theories with their deductive closure, as neither do Burgess
and Rosen.
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is a theorem of T ∪ ∆, by induction on the complexity of ϕ. By considering the case
where ϕ(x̄) contains no free secondary variables, it follows that there is always an Ll◦-
formula ψ(x̄) with the same free primary variables such that T ∪∆ ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).
Moreover, assuming that T is axiomatizable by finitely many axiom schemes, it follows
that its L′-translation T ′ is as well. As we saw in the proof of Theorem 9, T and T ′ are
semantically (and thus syntactically) L◦-equivalent. By Theorem 7, T has the elimination
property.

Even so, as witnessed by T in the proof of the following result, there are simple
theories not making any substantial claims whatsoever about secondary entities that still
lack the elimination property:

Theorem 13. Even for theories that are axiomatizable by finitely many axiom schemes,
semantic nominalizability does not imply the elimination property.

Proof. Let L be a finite two-sorted vocabulary containing no mixed predicates, and con-
sider the simple L-theory

T = {∀x∀y(x = y)} ∪ {∀x̄P x̄ : P ∈ L◦}

We will show that this theory does not have the elimination property.
Consider a finite number of L-formulas ϕ1(x̄1), ..., ϕn(x̄n) whose free variables are all

primary, and new primary predicates P1, ..., Pn 6∈ L of corresponding arities. Let

∆ = {∀x̄1(P1x̄1 ↔ ϕ1(x̄1)), ...,∀x̄n(Pnx̄n ↔ ϕn(x̄n))}

L+ = L ∪ {P1, ..., Pn}

and
T+ = T ∪∆

Assume, towards contradiction, that for any L+-formula ϕ(x̄) with only primary free
variables, there is an L+◦-formula ψ(x̄) with the same free variables such that

T+ ` ∀x̄(ϕ(x̄)↔ ψ(x̄))

In particular, we assume that

(9) For any L+-sentence ϕ, there is an L+◦-sentence ψ such that T+ ` ϕ↔ ψ.

By construction of T , we have for any atomic L◦-formula ϕ(x̄) that T ` ∀x̄ϕ(x̄), and thus

(10) For any atomic L◦-formula ϕ(x̄): T ` ∀x̄(ϕ(x̄)↔ ∀X(X = X)).

Let ϕ′1, ..., ϕ
′
n be the secondary L-sentences gotten by first replacing each atomic L◦-

formula in ϕ1(x̄1), ..., ϕn(x̄n) with ∀X(X = X), and then removing all primary quantifiers
(which are now redundant). It follows that

T ` ∀x̄(ϕ1(x̄)↔ ϕ′1), ..., T ` ∀x̄(ϕn(x̄)↔ ϕ′n)

and thus
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(11) T+ ` ∀x̄(P1x̄↔ ϕ′1), ..., T+ ` ∀x̄(Pnx̄↔ ϕ′n).

By (10) and (11), it now follows that every L+◦-sentence is equivalent (under T+) to a
Boolean combination of ϕ′1, ..., ϕ

′
n,∀X(X = X). Hence, by assumption (9), it follows that

for any secondary L-sentence ϕ, there is a secondary L-sentence ψ that can be written
as a Boolean combination of ϕ′1, ..., ϕ

′
n,∀X(X = X) such that

T+ ` ϕ↔ ψ

But since ϕ↔ ψ contains no primary predicates (not even the primary identity predicate),
its truth depends only on the secondary domain, about which T+ says nothing (since the
latter is merely a definitional extension of T ). Hence, it must be true in all models, and
thus

` ϕ↔ ψ

Let k be a natural number such that ϕ′1, ..., ϕ
′
n,∀X(X = X) all have a lower quantifier

rank than k. It follows that any secondary L-sentence is logically equivalent to a secondary
L-sentence whose quantifier rank is less than k. This, however, is not the case. It is a well
known fact that, since L is finite, there are at most finitely many pairwise non-equivalent
secondary L-sentences of quantifier rank less than k, but infinitely many pairwise non-
equivalent secondary L-sentences, e.g. ∃≥1X(X = X),∃≥2X(X = X),∃≥3X(X = X), ....

7 Finite theories

Suppose we have a finite L-theory T and an L-formula δ(x) such that T ` ∃xδ∧∃x¬δ. It
follows from the argument in the beginning of section 4 that, if T has a model with finitely
many δ:s, it is a trivial matter to find a finite L-theory T ′ semantically L-equivalent to
T over δ such that T ′ 6` ∃x¬δ. It is not, however, a trivial matter to nominalize T with
a theory T ′ such that T ′ ` ∀xδ. In some cases, it is impossible. This is due to the fact,
pointed out by Hodges (1993, p. 211, Exercise 4), that some finitely relativized pseudo-
elementary class is not finitely pseudo-elementary. We offer the following example:

Example 3. Let P be a unary predicate, L = {P}, and let Q be the finite set of axioms of
Robinson arithmetic (sufficient for representing all recursive relations) in the vocabulary
LQ = {0, s,+, ·, <}. Let c be a new constant, let L′ = L ∪ LQ ∪ {c}, and let ϕ(x) be an
LQ-formula representing a recursive but not primitive recursive set A ⊆ N in Q. Finally,
let

T = Q ∪ {ϕ(c),∀x(Px↔ x < c),∃xPx}

and consider the finitely relativized pseudo-elementary class

C = {MPx|L :M � T}

Assume, towards contradiction, that there is a finite theory T ′ in some vocabulary ex-
tending L such that

{M|L :M � T ′} = C
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Observe that T ′ ` ∀xPx. Consider the set of natural numbers

A′ = {|PM| :M � T ′ and PM is finite}

In other words, let A′ be the set of natural numbers n such that T ′ has a model with n
elements. Observe that, since T ′ is finite, A′ is primitive recursive. By assumption, we
get

A′ = {|PM| :M � Q,ϕ(c),∀x(Px↔ x < c),∃xPx and PM is finite}

Now, let A− = A−{0}. Since A− is not primitive recursive, we get A− 6= A′. We will show
that A− = A′, yielding a contradiction. Assume that n ∈ A−. That means Q ` ϕ(n), and
thus N � ϕ(n). LetM be just like N , with cM = n and PM = {m ∈ N : m < n}. Since
n 6= 0, we get n ∈ A′. Next, assume that n 6∈ A−. If n = 0, we get n 6∈ A′. Otherwise,
we get Q ` ¬ϕ(n). Since Q, ∃=nx(x < c) ` c = n, that means n 6∈ A′. Hence, C is not
finitely pseudo-elementary.

Observe that C is still recursively pseudo-elementary (even recursively elementary),
with

T ′ = {¬∃=nxPx : n ∈ N− A−} ∪ {∀xPx}

To verify that C = {M|L : M � T ′}, assume that M is a model of T . If PM is finite,
it has n > 0 elements. Since Q, ∃=nx(x < c) ` c = n, it follows that M � ϕ(n). Hence,
Q 6` ¬ϕ(n), which means that n ∈ A−. Hence,MPx|L is a model of T ′. If PM is infinite,
we only need to observe that T ′ has a model of every infinite cardinality. For the other
direction, assume that M is a model of T ′. If M is finite, it has n ∈ A− elements, in
which case it can be extended to a model of T . IfM is infinite, we only need to observe
that T ∪{∀x∃y(x < y∧ϕ(y))} has a model of every infinite cardinality, with c interpreted
as an arbitrarily large non-standard element.

Moreover, no finite theory T ∗ with T ∗ ` ∀xPx is even syntactically L-equivalent to
T over Px. To see why, assume, towards contradiction, that T ∗ is such a theory. By
Lemma 3, T ∗ is syntactically L-equivalent to T ′ over Px. Moreover, since both entail
∀xPx, it follows that T ∗ and T ′ are syntactically L-equivalent simpliciter. We have
already established that A− = {|PM| :M � T ′ and PM is finite}. Define

A∗ = {|PM| :M � T ∗ and PM is finite}

Since A∗ but not A− is primitive recursive, we get A− 6= A∗. Hence, we get two cases:

1. There is n ∈ A− such that n 6∈ A∗. That means T ∗ ` ¬∃=nxPx but T ′ 6` ¬∃=nxPx,
contradicting our assumption.

2. There is n ∈ A∗ such that n 6∈ A−. That means T ′ ` ¬∃=nxPx but T ∗ 6` ¬∃=nxPx,
also contradicting our assumption.

Hence, there is no such theory T ∗.

The example shows that there are statements that cannot be paraphrased along the
lines of Goodman and Quine (1947). For any recursive but not primitive recursive set A
of natural numbers, the statement

(12) The number of concrete objects is an element of A,
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which, as we just saw, can be expressed by a sentence implying that there are infinitely
many abstract objects, cannot be expressed by a sentence implying that all objects are
concrete.

Since T is finite, it can be decided in constant time. It is clear that any theory
syntactically L-equivalent to T ′ cannot. Intuitively, this is because the algorithm deciding
it would have to be able to discriminate between sentences of arbitrary length. Hence,
any theory nominalizing T would have to be more computationally complex. How much
more is hard to say. Although it is obvious that the computational complexity of T ′

itself will be the same as that of A, it is not clear what this means for the computational
complexity of theories equivalent to T ′.

8 Conclusion

Some realists claim that theoretical entities like numbers and electrons are indispensable
for describing the empirical world. Motivated by the meta-ontology of Quine, I take
this claim to imply that, for some first-order theory T and formula δ(x) such that T `
∃xδ ∧ ∃x¬δ, there is no first-order theory T ′ such that

(a) T and T ′ describe the δ:s in the same way,

(b) T ′ ` ∀xδ, and

(c) T ′ is at least as attractive as T in terms of other theoretical virtues.

In an attempt to refute the realist claim, I try to solve the general problem of nominalizing
T (with respect to δ), namely to find a theory T ′ satisfying conditions (a)–(c) under
various precisifications thereof. In particular, I note that condition (a) can be understood
either in terms of syntactic or semantic equivalence (Definition 3), with the latter strictly
stronger than the former (Lemma 3).

The results are somewhat mixed. On the positive side, even under the stronger pre-
cisification of (a), I use results by Craig and Vaught (1958), Makkai (1964) and Hodges
(1993) to establish that (1) if the vocabulary of T is finite, then a nominalizing theory can
always be found that is recursive if T is (Theorem 7), and (2) if T postulates infinitely
many δ:s, a nominalizing theory can always be found that is no more computationally
complex than T (Theorem 8). On the negative side, even under the weaker precisifica-
tion of (a), I establish that (3) certain finite theories cannot be nominalized by a finite
theory (Example 3). Thus, as far as I can see, the prospects for nominalization look the
same from the point of view of both semantic and syntactic equivalence. In either case,
postulating non-empirical entities is never necessary for obtaining a recursive theory of
the empirical world, but sometimes necessary for obtaining a finite one. Moreover, for
theories postulating infinitely many empirical entities, nominalization is cheap.

Lemma 5 (and its proof) shows that, if the empirical world can be described by a
recursive theory, then it can be described by a finite theory postulating (infinitely many)
non-empirical entities. Insofar as the aim of science is to provide a finite theory of the
empirical world, Example 3 shows that the postulated entities may be indispensable.
Unlike recursive axiomatizability, however, finite axiomatizability is not invariant under
alternative notions of logicality: it depends on where the line is drawn between the
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logical and non-logical parts of a system. In a Hilbert-style system, for instance, there
are infinitely many logical axioms. In a system of natural deduction, on the other hand,
there are no logical axioms, but infinitely many rules (or, if you like, finitely many rules
with infinitely many instances). A classical Hilbert system will typically include every
instance of the scheme (¬ϕ→ ¬ψ)→ (ψ → ϕ), which are not considered logical from an
intuitionistic point of view. A theory that is finitely axiomatizable in a classical system
may therefore not be so in an intuitionistic system. Hence, the value of providing a finite
theory may be contested.
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