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Abstract		Cognitive	scientists	and	neuroscientists	typically	understand	the	brain	
as	 a	 complex	 information-processing	 system.	 A	 limitation	 of	 this	 information-
processing	metaphor	is	that	it	requires	that	the	brain	has	access	to	a	finite	set	of	
possible	informational	messages—a	neural	code—and	it	is	unclear	how	this	can	
be	 accounted	 for	 without	 appealing	 to	 a	 priori	 knowledge.	 For	 this	 reason,	
Dennett	 once	 argued	 that	 the	 information-processing	 metaphor	 requires	
cognitive	neuroscience	to	take	out	a	non-repayable	loan	of	intelligence.	However,	
recent	 advances	 in	 machine	 learning	 have	 resulted	 in	 the	 development	 of	 a	
family	of	algorithms,	 including	the	class	of	algorithms	known	as	autoencoders,	
that	seem	capable	of	evading	the	problem	of	non-repayable	loans	of	intelligence.	
We	 evaluate	 whether	 autoencoders	 are	 indeed	 resilient	 against	 the	 loans	 of	
intelligence	 problem.	 We	 agree	 that	 they	 can	 be	 so	 characterized.	 We	 argue,	
however,	 that	 autoencoders	 can	more	 usefully	 be	 understood	 not	 in	 terms	 of	
Shannon	information	but	instead	as	a	proof	of	concept	of	how	neural	networks	
can	 attune	 to	 ecological	 or	 Gibsonian	 information.	 We	 thus	 propose	 that	
autoencoders	belong	 to	 a	 class	of	 algorithms	 for	modeling	 the	brain	 that	have	
recently	been	dubbed	direct	fit	algorithms.	

Keywords	 	Cognitive	neuroscience	·	Information	theory	·	Ecological	psychology	
·	Autoencoders	·	Machine	learning		

1		Introduction	
Cognitive	 scientists	 and	 neuroscientists	 have	 traditionally	 thought	 of	 the	 brain	 as	 an	
extremely	 complex	 communication	 system.	 This	 way	 of	 thinking	 about	 the	 brain	 can	 be	
traced	 back	 to	 Helmholtz’s	 telegraph	metaphor	 in	 1863.	 According	 to	 the	metaphor,	 the	
brain—and	 the	 nervous	 system	 as	 a	 whole—can	 be	 thought	 of	 as	 being	 composed	 of	
different	 structures	 or	 communication	 centers	 that	 send	 coded	messages	 to	 one	 another.	
For	 example,	 the	 human	 retina	 is	 said	 to	 encode	 a	 visual	 input	 signal	 that	 is	 sent	 to	 the	
visual	processing	areas	of	the	cortex,	where	it	is	then	decoded	or	processed.	An	advantage	
of	 thinking	 of	 the	 brain	 as	 a	 communication	 system	 is	 that	 it	 enables	 cognitive	
neuroscientists	 to	 describe	 the	 brain	 in	 terms	 of	 information	 theory,	 the	 formal	
mathematical	framework	developed	by	Claude	Shannon	(1948).	Shannon's	theory	provides	
a	 formal	 definition	 of	 information,	 understood	 in	 the	 form	 of	messages	 that	 can	 be	 sent	
using	 a	 finite	 pre-existing	 code,	 or	 alphabet.	 This	 alphabet	 is	 often	 referred	 to	 as	 the	
communication	system's	lookup	table.	

Describing	 the	 brain	 in	 terms	 of	 information	 theory	 has	 historically	 proved	
extremely	 fruitful.	However,	many	have	 argued	 that	 there	 are	 also	 substantial	 limitations	
that	come	along	with	the	decision	to	describe	the	brain	as	a	communication	system.	In	this	
paper	we	focus	on	an	objection	raised	by	Dennett	(1981)	known	as	the	loans	of	intelligence	
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problem.	The	problem	is	as	follows.	A	communication	system	can	only	operate	if	it	already	
has	 access	 to	 a	 pre-existing	 finite	 code,	 or	 alphabet,	 of	 possible	messages.	 If	 the	 brain	 is	
literally	 a	 communication	 system,	 then	at	 least	 two	questions	 immediately	 arise:	What	 is	
the	 brain's	 alphabet?	 And	 where	 does	 the	 brain	 acquire	 this	 alphabet	 from?	 Cognitive	
neuroscientists	 began	 to	 think	 of	 the	 brain	 as	 a	 communication	 system	 long	 before	 they	
were	 able	 to	 answer	 these	 two	 crucial	 questions.	 Dennett's	 accusation	 was	 that	 these	
neuroscientists	were	thereby	taking	out	a	loan	of	intelligence.	

One	 strategy	 that	 cognitive	 neuroscientists	 can	 use	 to	 try	 to	 evade	 the	 loans	 of	
intelligence	problem	is	 the	appeal	 to	 learning.	Perhaps	 the	brain	 fills	 in	 the	content	of	 its	
lookup	table	purely	 through	 learning,	 for	example	by	applying	some	appropriate	 learning	
algorithm	 to	 the	 input	 that	 it	 receives.	 We	 examine	 one	 class	 of	 unsupervised	 learning	
algorithms,	known	as	autoencoders,	that	may	be	able	to	learn	in	this	way.	Autoencoders	are	
a	fairly	simple	form	of	neural	network	designed	to	take	some	input	signal	and	copy	it	into	
an	 identical	or	near-identical	output.	What	 is	 interesting	about	autoencoders	 is	 that	 they	
are	able	to	achieve	this	despite	the	fact	that	the	hidden	layers	of	the	network	are	of	lower	
dimensionality	 than	 either	 the	 input	 or	 the	 output	 layer.	 In	 order	 to	 copy	 the	 input,	
autoencoders	cannot	transmit	the	entire	structure	of	the	input	in	uncompressed	form,	but	
must	extract	hidden	regularities	of	the	input	that	it	can	use	to	compress	the	message.	This	
extraction	of	 regularities	 could	perhaps	be	 thought	of	 as	 a	process	whereby	 the	network	
constructs	 its	 own	 lookup	 table.	 If	 this	 is	 correct,	 then	 autoencoders	would	 constitute	 a	
proof,	 in	 principle,	 that	 it	 is	 possible	 to	 evade	 the	 loans	 of	 intelligence	 problem	 while	
maintaining	that	the	brain	is	a	communication	system	based	on	Shannon	information.	

However,	 there	 are	 ways	 of	 thinking	 about	 information	 different	 from	 Shannon’s.	
One	alternative	is	Gibsonian	information	(Gibson	1950,	1966,	1979).	Shannon	conceived	of	
information	as	a	finite	set	of	messages	that	are	transmitted	in	the	form	of	a	code.	Gibson,	by	
contrast,	thought	of	information	as	the	structure	that	is	available	in	the	ambient	energy	that	
surrounds	an	observer.	For	Gibson,	 information	consists	in	patterns	that	exist	 in	the	light,	
sound,	chemical	distributions,	and	so	on,	all	of	which—in	the	case	of	terrestrial	animals—
can	be	detected	in	the	air.	

We	will	 suggest	 that	 autoencoders	 are	better	understood	not	 in	 the	 framework	of	
Shannon	information,	but	in	the	framework	of	Gibsonian	information.	Autoencoders	indeed	
constitute	 a	 proof	 of	 concept	 for	 a	 solution	 to	 the	 loans	 of	 intelligence	 problem.	 But	 the	
solution	 is	 not	 that	 the	 brain	 fills	 in	 a	 lookup	 table	 by	 making	 use	 of	 an	 unsupervised	
learning	algorithm.	The	solution	is	to	reject	the	idea	that	the	brain	requires	a	lookup	table	
in	 the	 first	 place.	We	 suggest	 that	 the	 brain	does	not	 require	 a	 lookup	 table	 because	 the	
brain	 is	 not	 a	 communication	 system.	 Towards	 the	 end	 of	 the	 paper	 we	 claim	 that	
autoencoders	 are	 best	 thought	 of	 as	 belonging	 to	 a	 family	 of	 modeling	 algorithms	 that	
Hasson	 et	 al.	 (2020)	 recently	 dubbed	 direct	 fit	 models.	 In	 our	 opinion,	 such	 direct	 fit	
models	provide	a	promising	direction	for	future	brain	modeling	research.	
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2		Information	theory	and	the	problem	of	non-repayable	loans	of	
intelligence	
Information	theory	(Shannon	1948)	is	the	framework	for	how	information	is	understood	in	
mainstream	cognitive	neuroscience	 (Gallistel	&	King	2010;	Marr	1982;	Rieke	et	 al.	 1997;	
Stone	2012).	Regarding	perception,	the	story	goes	as	follows:	sensory	inputs	(e.g.,	aspects	
of	 the	 retinal	 image)	 are	 conceptualized	 as	 messages	 containing	 information	 about	
properties	of	the	environment	(e.g.,	surface	properties	of	objects)	in	that	the	former	encode	
the	latter.	Neurological	processes	also	encode	or	reencode	sensory	input	in	accordance	with	
a	neural	code, 	and	pass	the	messages	along,	until	eventually	a	part	of	the	brain	decodes	the	1

messages	resulting	 in	a	perceptual	representation	of	 the	objective	world	(Gallistel	&	King	
2010;	 Stone	 2012).	 According	 to	 standard	 Shannon	 information	 theory,	 such	 a	
communication	system	only	works	 if	 there	 is	a	 limited	and	already	known	set	of	possible	
messages	that	could	be	communicated,	as	is	the	case	for	instance	with	Morse	Code.	One	of	
the	most	significant	objections	to	this	information-theoretic	framework	for	perception	is	its	
inability	to	explain	how	the	brain	acquires	or	already	possesses	the	knowledge	of	the	range	
of	 possible	 environmental	messages	 (i.e.,	 its	 lookup	 table)	 (Dennett	 1978;	 Turvey	 2019;	
Turvey	et	al.	1981).	Following	Dennett	 (1981),	we	call	 this	 the	problem	of	non-repayable	
loans	 of	 intelligence.	 In	 this	 section,	we	 outline	 the	 information-theoretic	 framework	 for	
perception,	and	explain	why	all	models	based	on	it	are	limited	due	to	this	problem	of	non-
repayable	loans.			

2.1		The	brain	as	a	communication	system	

For	 decades,	 mainstream	 cognitive	 neuroscience	 has	 used	 information	 theory	 as	 its	
organizing	framework ,	explicitly	treating	the	brain	as	a	communication	system	(Gallistel	&	2

King	2010;	Marr	1982;	Rieke	et	al.	1997;	Stone	2012).	For	 instance,	 in	an	early	review	of	
the	 field,	 Perkel	 and	 Bullock	 (1968)	 portray	 “the	 nervous	 system	 [as]	 a	 communication	
machine,”	while	in	a	recent	commentary,	Gallistel	(2019)	claims	that	information	theory	is	
vital	for	understanding	“world-brain	communication”	(p.	26).		

While	 this	model	 is	 applied	 to	 the	brain	at	numerous	 levels	of	 analysis, 	 the	 central	3

hypothesis	 for	 perception	 is	 that	 sensory	 stimulations	 and	 neural	 activities	 function	 as	

	The	exact	 form	of	 such	neural	 codes	 is	 a	debated	 topic.	Main	proposals	 include	variations	of	 rate	 coding,	1

wherein	 information	 is	 transmitted	 via	 firing	 rates	 (e.g.,	 Rieke	 et	 al.	 1997),	 and	 temporal	 coding,	wherein	
information	is	transmitted	via	the	timings	of	action	potentials,	(e.g.,	Foffani	et	al.	2009).

	For	some	of	the	first	applications	of	information	theory	in	cognitive	science	and	neuroscience,	see	Attneave	2

(1954),	MacKay	&	McCulloch	(1952),	and	Rapoport	&	Horvath	(1960).	

	 In	 a	 recent	 survey	 of	 information	 theory’s	 applications	 in	 cognitive	 neuroscience,	 Nizami	 (2019)	3

demonstrates	that	 there	are	at	 least	hundreds	of	different	ways	 in	which	the	model	has	been	applied	to	the	
brain,	and	that	there	is	no	consensus	on	which	level	of	analysis	is	the	most	valid.	
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information	 about	 environmental	 properties	 insofar	 as	 the	 brain	 can	 decode	 them	 to	
produce	 perceptual	 representations	 of	 the	 world,	 and	 appropriate	 motor	 responses	
(Gallistel	&	King	2010;	Stone	2012).	For	instance,	regarding	sensory	stimulations,	Gallistel	
and	 King	 (2010)	 claim	 that	 “the	 physical	 processes	 in	 the	 world	 that	 convert	 source	
information	(for	example,	the	reflectance	of	a	surface)	to	proximal	stimuli	(the	amount	of	
light	from	that	surface	impinging	on	the	retina)	encode	the	source	information”	(p.	23).	And	
regarding	neural	activities,	Brette	(2019)	describes	the	received	view	as	follows:		

In	what	sense	is	the	neural	code	‘information’	about	objective	properties	of	the	
world?	According	to	the	technical	sense	of	coding,	it	is	information	in	the	sense	
that	these	properties	can	be	inferred	from	neural	activity.	(2019,	p.	6)	

This	information-theoretic	understanding	of	neural	activity	is	expressed	in	common	claims	
such	as	that	a	“fly’s	visual	system	carries	information	about	motion	in	the	timing	of	spikes	
down	to	sub-millisecond	resolution”	(Nemenman	et	al.	2008,	p.	4),	or	 that	“many	cortical	
neurons	encode	variables	in	the	external	world	via	bell-shaped	tuning	curves”	(Series	et	al.	
2004,	p.	1129).	

The	choice	 to	use	 information	 theory	 to	describe	brain	processes	places	 constraints	
on	the	kinds	of	representations	that	neuroscientists	say	they	are	investigating.	For	instance,		
Kravitz	et	al.	(2011)	claim	that	activity	in	the	parahippocampal	place	area	(PPA)	functions	
as	information	for	the	spatial,	but	not	the	semantic	properties	of	a	visual	scene	because,	as	
they	 write,	 “the	 response	 of	 PPA	 could	 not	 be	 used	 to	 decode	 the	 high-level	 semantic	
category	 of	 scenes	 even	when	 spatial	 factors	 were	 held	 constant,	 nor	 could	 category	 be	
decoded	across	different	distances,”	while	 spatial	properties	 could	be	decoded	 from	such	
activity	(p.	7322).		

These	constraints	arise	from	the	way	that	Shannon	information	is	defined.	According	
to	Shannon	(1948),	a	communication	system	is	composed	of	five	parts:	first,	an	information	
source	(which	produces	the	message);	second,	a	 transmitter	(which	encodes	the	message	
and	 transmits	 the	 encoded	 message	 as	 a	 signal);	 third,	 a	 channel	 (the	 medium	 through	
which	 the	 signal	 is	 transmitted);	 fourth,	 a	 receiver	 (which	 decodes	 the	 signal	 so	 as	 to	
retrieve	 the	 original	 message);	 and	 fifth,	 a	 destination	 (the	 individual	 for	 whom	 the	
message	is	intended).	Such	systems	function	in	accordance	with	a	set	of	rules	by	which	the	
messages	are	encoded	and	decoded	 that	 thereby	specifies	which	signals	correspond	with	
which	possible	messages.	Obviously,	both	the	sender	and	the	receiver	must	agree	upon	the	
distribution	of	possible	messages	and	the	encoding	algorithm	for	the	former	to	be	able	to	
successfully	communicate	to	the	latter.		

Shannon	information	is	a	measurement	of	successful	communication—of	the	amount	
of	 information	 that	 is	 transmitted	 from	 a	 communication	 system’s	 source	 to	 its	 receiver.	
More	 formally,	 it	 is	 a	 measurement	 of	 how	 much	 the	 receiver’s	 uncertainty	 about	 the	
probability	distribution	of	the	set	of	possible	messages	coming	from	a	particular	source	is	
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reduced	when	the	receiver	decodes	either	a	single	message	or	a	sequence	of	messages	from	
that	 distribution	 (Shannon	 1948).	 For	 our	 purposes,	 the	 key	 point	 here	 is	 that	 Shannon	
information	 is	 neither	 an	 objective	 property	 of	 the	message	 nor	 the	 signal	 but	 is	 rather	
relative	to	the	communication	system.	As	Gallistel	and	King	(2010)	put	it,	“the	information	
communicated	 from	 a	 source	 to	 a	 receiver	 by	 a	 signal	 is	 an	 inherently	 subjective	
concept”	(p.	10).	

Shannon	information	is	subjective	for	two	reasons.	First,	whether	something	qualifies	
as	information	depends	on	whether	it	can	be	obtained	by	a	receiver	via	a	decoding	process.	
As	de-Wit	et	al.	(2016)	explain:		

Good	encryption	algorithms	will	make	the	target	information	appear	as	noise	to	
an	observer	or	receiver	who	does	not	have	the	correct	decryption	key.	When	the	
observer	 has	 the	 correct	 decryption	 key,	 the	 information	 in	 the	 message	 is	
interpretable.	(p.	1417)	

For	instance,	a	single	dot	(a	signal)	can	be	considered	information	rather	than	noise	for	a	
receiver	 that	 knows	 Morse	 code	 (i.e.,	 the	 look-up	 table	 in	 this	 case),	 and	 can	 thereby	
retrieve	the	letter	‘E’	(the	message)	by	decoding	the	single	dot.		

Second,	Shannon	information	is	receiver-dependent	because,	as	mentioned	earlier,	it	
is	measured	in	terms	of	the	amount	of	uncertainty	that	it	reduces	in	a	receiver.	As	such,	it	is	
calculated	with	reference	to	the	receiver’s	beliefs	about	the	relevant	probability	distribution,	
which	can	be	divided	 into	two	categories:	 first,	beliefs	about	the	values	 in	the	probability	
distribution	(the	messages	that	could	be	sent);	and	second,	beliefs	about	the	probability	of	
each	value’s	occurrence	(the	likelihood	of	each	particular	message	being	sent)	(Gallistel	&	
King	2010).	

To	illustrate,	consider	the	following:	“two	messages,	one	of	which	is	heavily	loaded	
with	meaning	and	the	other	of	which	is	pure	nonsense,	can	be	exactly	equivalent,	from	the	
present	 viewpoint,	 as	 regards	 information”	 (Weaver	 1953,	 p.	 265).	 Specifically,	 if	 the	
receiver	believes	that	the	two	messages	come	from	the	same	amount	of	possible	messages,	
and	have	 the	 same	 likelihood	of	 occurring,	 then	 the	 two	messages	will	 contain	 the	 same	
amount	 of	 information,	 regardless	 of	 their	 meanings.	 This	 is	 formally	 illustrated	 by	
Shannon’s	equation	for	calculating	the	amount	of	information	conveyed	in	a	single	message:		

	

In	this	equation,	h	 is	the	standard	notation	for	Shannon	information,	 i	 is	a	single	message	
from	the	probability	distribution,	and	P(i)	 is	 the	probability	of	 that	message’s	occurrence	
according	to	 the	receiver.	Evidently,	 in	order	 to	have	a	belief	concerning	P(i),	 the	receiver	
must	 also	 have	 beliefs	 concerning	 the	 other	 messages	 it	 could	 receive	 as	 well	 as	 their	

h(i ) =  log2
1

P(i )
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probabilities	 of	 occurrence.	 For	 another	 example,	 consider	 Shannon’s	 equation	 for	
calculating	 the	 average	 Shannon	 information	 (also	 known	 as	 entropy)	 of	 the	 value	 of	 a	
random	discrete	variable	from	a	probability	distribution:		

	

In	 this	equation,	H(X)	 is	 the	average	Shannon	 information	 (the	entropy)	of	 the	value	of	a	
random	discrete	variable	X	 from	 the	probability	distribution,	n	 is	 the	number	of	possible	
messages	in	the	probability	distribution,	and	P(xi)	is	the	probability	of	a	random	message	
in	the	probability	distribution.	Clearly,	in	order	to	calculate	H(X),	beliefs	concerning	n	and	
P(xi)	must	be	supplied	by	the	receiver.	
	 	
2.2		The	problem	of	non-repayable	loans	of	intelligence	

Many	have	expressed	caution	about	using	Shannon’s	information	theory	as	a	framework	for	
studying	 human	 beings,	 including	 Shannon	 himself	 (Shannon	 1956).	 One	 of	 the	 most	
significant	objections	is	that	applying	information	theory	to	the	brain	involves	taking	out	a	
non-repayable	loan	of	intelligence	(Dennett	1981).	As	Dennett	(1981)	explains:		

Any	time	a	theory	builder	proposes	to	call	any	event,	state,	structure,	etc.,	in	any	
system	 (say	 the	 brain	 of	 an	 organism)	 a	 signal	 or	 message	 or	 command	 or	
otherwise	 endows	 it	 with	 content,	 he	 takes	 out	 a	 loan	 of	 intelligence.	 He	
implicitly	posits	along	with	his	signals,	messages,	or	commands,	something	that	
can	 serve	 as	 a	 signal-reader,	 message-understander,	 or	 commander,	 else	 his	
‘signals’	will	be	for	naught,	will	decay	unreceived,	uncomprehended.	(p.	12)	

The	 problem	 is	 that	 information-theoretic	 models	 of	 perception	 take	 out	 loans	 of	
intelligence	that	cannot	be	repaid	within	this	framework.		

Let	 us	 illustrate	 this	 problem	 by	 looking	 at	 the	 efficient	 coding	 hypothesis	 (Stone	
2012).	This	 theory	posits	 that	 the	brain	retrieves	properties	of	distal	objects	by	decoding	
proximal	stimuli	 in	accordance	with	coding	algorithms.	By	viewing	 the	brain’s	perceptual	
access	to	the	external	world	as	a	process	of	“world-brain	communication”	(Gallistel	2019,	p.	
26),	the	efficient	coding	hypothesis	takes	out	no	less	than	four	loans	of	intelligence.	First,	it	
endows	 the	 brain	 with	 innate	 knowledge	 of	 the	 set	 of	 distal	 properties	 that	 proximal	
stimuli	 and	 neural	 codes	 allegedly	 represent	 (i.e.,	 the	 set	 of	 possible	 messages	 that	 the	
brain	 can	 receive).	 As	 Brette	 (2019)	 notes,	 “neural	 codes	 carry	 information	 only	 by	
reference	 to	 things	with	known	meaning”	 (p.	2).	 Second,	 it	 endows	 the	brain	with	 innate	
beliefs	about	 the	 likelihood	of	each	distal	property	being	 transmitted	by	proximal	stimuli	
(i.e.,	 the	 probability	 of	 each	 message	 being	 sent).	 Gallistel	 and	 King	 (2010)	 explicitly	

H(X ) =  
n

∑
i=1

P(xi)log2
1

P(xi)
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acknowledge	 these	 two	 loans	 of	 intelligence	 when	 claiming	 that	 “the	 information	
communicated	by	a	signal	depends	on	the	receiver’s	(the	subject’s)	prior	knowledge	of	the	
possibilities	 and	 their	 probabilities”	 (p.	 9).	 Third,	 it	 endows	 the	 brain	 with	 innate	
knowledge	 of	 the	 correspondences	 that	 allegedly	 exist	 between	 distal	 properties	 and	
proximal	stimuli,	since	such	knowledge	is	necessary	for	the	brain’s	decoding	process.	And	
fourth,	 it	endows	the	brain	with	 innate	knowledge	of	 the	code	by	which	distal	properties	
are	encoded	by	proximal	stimuli.	Again,	as	Gallistel	and	King	(2010)	affirm,	“no	agreement	
about	 code	 between	 sender	 and	 receiver,	 no	 communication”	 (p.	 7).	 To	 decode	 proximal	
stimuli,	the	brain	must	know,	for	instance,	the	physical	laws	by	which	the	reflectance	levels	
of	objects	are	encoded	into	luminance	levels	in	the	retinal	image	(Gallistel	&	King	2010,	p.	
23).	 As	 Warren	 (2005)	 explains,	 such	 decoding	 requires	 that	 the	 brain	 innately	 knows,	
among	 other	 things,	 “that	 natural	 surfaces	 are	 regularly	 textured,	 that	 terrestrial	 objects	
obey	the	law	of	gravitation,”	and	“that	light	comes	from	above”	(p.	357-358).		

These	 four	 loans	of	 intelligence,	however,	are	ultimately	non-repayable	within	 this	
form	of	explanation.	In	order	for	an	organism	to	acquire	knowledge	about	its	environment
—concerning,	 for	 instance,	 distal	 properties,	 the	 laws	 of	 gravitation,	 or	 the	 common	
direction	 of	 light—it	 must	 already	 be	 epistemically	 open	 to	 its	 environment.	 Therefore,	
such	 knowledge	 cannot	 be	 used	 to	 explain	 how	 organisms	 gain	 this	 epistemic	 access	
without	vicious	circularity.	In	other	words,	if	prior	knowledge	about	the	environment	in	the	
form	of	a	lookup	table	is	necessary	for	perception,	then	such	knowledge	cannot	be	acquired	
through	 perception.	But	 this	 framework	cannot	explain	 the	 source	of	 this	non-perceptual	
knowledge	(Dennett	1981;	Chemero	2009;	Turvey	et	al.	1981;	Turvey	2019). 	As	Dennett	4

(1981)	summarizes,	such	a	form	of	explanation	“will	have	among	its	elements	unanalyzed	
man-analogues	 endowed	with	 enough	 intelligence	 to	 read	 the	 signals,	 etc.,	 and	 thus	 the	
theory	will	postpone	answering	the	major	question:	what	makes	for	intelligence?”	(p.	12).	
But	more	importantly	for	our	purposes,	such	forms	of	explanation	will	postpone	answering	
how	organisms	perceive	their	environments.	

3		Autoencoders	as	loan-free	communication	systems?	
We	 take	 the	 argument	 concerning	 non-repayable	 loans	 of	 intelligence	 to	 apply	 to	 all	
proposals	 that	 characterize	 cognitive	 systems	 as	 engaging	 in	 some	 form	 of	 coding-and-
decoding	 or	 inference	 to	 gather	 epistemological	 contact	 with	 their	 environments.	 This	
includes	 all	 proposals	 that	 make	 use	 of	 information	 theory	 as	 a	 metaphor	 for	 cognitive	
systems.	 If	 this	 is	 correct,	 then	 it	 would	 seem	 to	 warrant	 the	 strong	 conclusion	 that	
information	theory	as	developed	by	Shannon	and	others	is	a	non-starter	for	understanding	
cognitive	systems	(see	Warren	2021).	

	Notably,	the	problem	of	non-repayable	loans	of	intelligence	is	not	unique	to	contemporary	explanations	of	4

perception;	 it	 has	 been	 a	 longstanding	 issue	 for	 all	 accounts	 that	 treat	 perception	 as	 a	 process	 involving	
coding	and	decoding	or	inferences	(Turvey	2019).	
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However,	 recent	 advances	 in	 machine	 learning,	 and	 more	 concretely	 in	
representational	 learning,	 have	 generated	 systems	 that	 appear	 to	 be	 engaging	 in	 such	
coding-and-decoding	 or	 inferential	 activity,	 yet	without	 requiring	 non-repayable	 loans	 of	
intelligence.	These	systems	are	autoencoders	 (Baldi	2012).	The	workings	of	autoencoders	
are	often	illustrated	in	terms	of	communication	systems	(e.g.,	Hinton	&	Zemel	1993;	Hinton	
&	van	Camp	1993)	and,	more	generally,	the	tools	of	information	theory	are	used	to	describe	
them	(see	Goodfellow	et	al.	2017).	In	this	sense,	autoencoders	can	be	seen	as	instances	of	
communication	 systems,	 i.e.,	 systems	 that	 engage	 in	 effective	 coding-and-decoding	
information	in	an	input-output	fashion.	And	their	robustness	against	the	argument	of	non-
repayable	 loans	 of	 intelligence	 may	 be	 seen	 as	 a	 vindication	 of	 the	 application	 of	
information	 theory	 to	 the	 brain.	 So	 the	 story	 goes:	 if	 autoencoders	 can	 be	 taken	 to	 be	 a	
model	 of	 the	 brain	 and	 they	 need	 no	 loans	 of	 intelligence	 to	 represent	 their	 input,	
information	theory	may	be	adequate	for	cognitive	science	and	neuroscience.	In	this	section,	
we	critically	engage	with	this	way	of	understanding	autoencoders,	their	status	as	a	model	of	
the	brain,	and	their	relationship	to	information	theory.	

3.1		What	is	an	autoencoder?	

Autoencoders	 are	 the	 archetypical	 example	 of	 an	 unsupervised	 representation	 learning	
algorithm	 (Goodfellow	 et	 al.	 2017). 	 Usually	 built	 up	 as	 feed-forward	 neural	 networks,	5

autoencoders	are	trained	to	instantiate	a	function	that	copies	their	input	to	their	output.	In	
the	 process	 of	 doing	 so,	 autoencoders	 first	 encode	 the	 input	 in	 the	 form	 of	 a	 low-
dimensional	 representation	 of	 its	 relevant	 features	 and	 then	 decode	 this	 representation	
back	to	the	original	form	of	the	input.	Importantly,	autoencoders	seem	to	be	able	to	do	so	
without	 supervision	and,	 therefore,	without	 requiring	non-repayable	 loans	of	 intelligence	
to	guide	their	learning.	

As	 just	 noted,	 an	 autoencoder	 is	 usually	 a	 kind	 of	 feed-forward	 neural	 network.	
Feed-forward	neural	networks	are	mathematical	objects	that	can	be	represented	as	having	
components	 (nodes)	 and	 connections	 (edges)	 and	 that	 may	 be	 used	 to	 approximate	
mathematical	 functions.	 In	 this	 sense,	 feed-forward	 neural	 networks	 are	 able	 to	 provide	
outputs	 y	 for	 inputs	 x,	 such	 that	 y	 =	 f(x)	 being	 f	 the	 function	 we	 want	 to	 approximate.	
Autoencoders	are	specific	kinds	of	feed-forward	neural	networks	that	aim	to	approximate	a	
function	that	provides	an	output	x̂	for	an	input	x	such	that	x̂	=	x	or,	at	least,	x̂	≈	x.	In	simpler	
terms,	 autoencoders	 aim	 to	 copy	 their	 input	 to	 their	 output.	 Of	 course,	 a	 trivial	 and	

	We	provide	a	high-level,	conceptual	understanding	of	autoencoders.	To	do	so,	first,	we	avoid	most	technical	5

details.	For	 those	details,	we	refer	 the	reader	 to	 the	abundant	 literature	on	the	 topic	(e.g.,	Goodfellow	et	al.	
2017;	 Baldi	 2012).	 And	 second,	 we	 accept	 the	 linguistic	 conventions	 in	 the	 machine	 learning	 literature	
without	 further	argument—e.g.,	we	will	use	 “representation	 learning”	 as	 it	 is	 commonly	understood	 in	 the	
field	although,	for	instance,	there	might	be	tensions	between	this	notion	of	representation	and	the	one	used	in	
the	cognitive	sciences	(see	Anderson	&	Champion,	in	press).	We	will	only	qualify	these	linguistic	conventions	
if	it	is	strictly	necessary	for	our	own	argument.
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uninteresting	 way	 to	 do	 so	 is	 learning	 the	 identity	 function.	 However,	 autoencoders	 are	
interesting	 because	 by	 adding	 some	 constraints	 to	 the	 system,	 they	 encode	 a	 lower-
dimensional	representation	ĥ	of	the	relevant	factors	h	that	account	for	the	variability	in	the	
input	x	 (see	 Figure	1). 	 And	 they	do	 so	without	 the	need	 for	 explicit	 guidance	 about	 the	6

correct	 values	 of	 the	 output	 x̂,	 but	 just	 by	 minimizing	 a	 loss	 function	 that	 captures	 the	
difference	between	 x̂	and	x. 	 In	this	sense,	autoencoders	are	able	to	learn	ĥ	without	using	7

labeled	training	sets	and,	therefore,	autoencoders	are	an	instance	of	unsupervised	learning.	

	

Fig.	 1	 General	 schema	 of	 an	 autoencoder.	 A	 feed	 forward	 neural	 network	
composed	 of	 nodes	 (circles)	 and	 edges	 (arrows).	 It	 has	 an	 input	 layer	 (left	
brown)	and	an	output	layer	(right	brown).	The	flow	of	information	goes	from	
the	 input	 layer	 to	 the	 output	 layer	 through	 the	 hidden	 layers	 (green	 and	
blue).	The	input	of	the	autoencoder	is	x,	which	is	generated	by	h	such	that	x	=	
f(h).	 The	 aim	of	 the	 autoencoder	 is	 to	 give	 an	 output	 such	 that	 x̂	 =	x	 or,	 at	
least,	x̂	≈	x.	To	do	so,	the	autoencoder	learns	a	representation	ĥ	such	that	ĥ	=	
f(x)	and,	then,	generates	x̂	from	ĥ	mimicking	the	generative	process	form	h	to	
x.	The	autoencoder	can	be	further	distinguished	as	an	encoder,	that	provides	
as	an	outcome	ĥ	from	the	x	input	(from	left	brown	to	green	in	the	figure),	and	

	These	constraints	may	be	of	very	different	kinds:	forcing	ĥ	to	be	lower-dimensional	than	x	(undercomplete	6

autoencoders),	or	 forcing	 the	network	 to	have	 less	edges	between	nodes	 (sparse	autoencoders),	or	using	a	
corrupted	input	(denoising	autoencoders),	among	others	(for	a	review,	see	Goodfellow	et	al.	2017).

	There	are	many	different	loss	functions,	from	mean	squared	error	to	evidence	lower	bound	(ELBO)/negative	7

free	energy,	for	instance.	The	fundamental	idea	is	that,	by	minimizing	the	loss	function,	the	autoencoder	ends	
up	instantianting	a	good	ĥ	≈	h	given	the	training	data.
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a	 decoder,	 that	 provides	 as	 an	 outcome	 x̂	 from	 the	ĥ	 input	 (from	 green	 to	
right	brown	in	the	figure).	The	autoencoder	learns	the	representation	ĥ	in	an	
unsupervised	fashion—i.e.,	without	the	need	for	labeled	data.	

3.2		Autoencoders	and	the	loans	of	intelligence	problem	

Autoencoders	are	regarded	as	archetypal	examples	of	representational	learning	insofar	as	
ĥ	is	understood	as	a	representation	of	x	and,	more	concretely,	as	a	representation	of	the	set	
of	factors	h	 that	give	rise	to	the	data	x.	The	concrete	relationship	between	h	and	x	can	be	
described	 in	different	ways,	but	h	 is	usually	 taken	to	be	the	set	of	causal	 factors	 that	give	
rise	to	the	whole	probability	distribution	of	data	from	where	x	is	selected.	In	other	words,	h	
are	the	causal	factors	of	the	generative	process	that	gives	rise	to	x.	For	instance,	h	would	be	
the	 set	 of	 environmental	 factors	 that	 cause	 the	 set	 of	 retinal	 inputs	 x;	 and	 ĥ	 could	 be	
understood	as	 a	model	 of	 the	 environmental	 factors	 that	 cause	 those	 retinal	 inputs.	This	
fact	has	two	consequences.	

First,	 the	 general	 consequence	 is	 that	 autoencoders	 may	 be	 understood	 as	 two	
connected	feed-forward	networks:	the	encoder	and	the	decoder.	In	Figure	1	(above),	we	can	
split	the	whole	network	by	the	middle	green	layer.	If	we	do	so,	the	left	half	of	the	network	
would	be	the	encoder	and	would	have	x	as	input	and	ĥ	as	output.	Conversely,	the	right	half	
of	the	network	would	be	the	decoder	and	would	have	ĥ	as	input	and	x̂	as	output.	There	are	
two	compatible	ways	to	characterize	the	relationship	between	encoder	and	decoder.	First,	
the	decoder	is	just	an	inversion	of	the	encoder.	In	order	to	achieve	x̂,	the	decoder	only	has	to	
implement	 the	 inversion	 of	 the	 coding	 function	 implemented	 by	 the	 encoder.	 More	
concretely,	if	the	encoder	implements	ĥ	=	f(x),	the	decoder	has	to	implement	 x̂	=	f(ĥ).	But	
notice	that	the	function	implemented	by	the	decoder,	x̂	=	f(ĥ),	is	analogous	to	the	function	
of	 the	generative	process,	x	=	 f(h).	This	 leads	 to	 the	second	way	to	characterize	encoders	
and	decoders	in	which	the	decoder	is	also	referred	to	as	a	generative	model:	ĥ	is	a	model	of	
the	causal	factors	of	the	probability	distribution	from	where	x	is	selected	and,	therefore,	it	
allows	for	the	decoder	to	generate	more	(and	new)	instances	of	x.	An	important	part	of	the	
contemporary	 efforts	 in	 machine	 learning	 is	 based	 on	 different	 uses	 of	 this	 notion	 of	
generative	model	(Hasson	et	al.	2020;	Jaakkola	&	Haussler	1999;	Salakhutdinov	2015).	

The	other	consequence	of	understanding	ĥ	as	a	representation	of	the	causal	factors	
that	 generate	 x	 is	 that,	 in	 terms	 of	 communication	 systems,	 ĥ	 can	 be	 straightforwardly	
interpreted	 as	 the	 lookup	 table	 of	 the	 system.	 As	 we	 have	 noted,	 one	 main	 feature	 of	
autoencoders	is	that	the	function	they	implement	is	one	that	copies	the	input	in	the	output.	
In	this	sense,	they	resemble	communication	systems	in	the	sense	that	the	latter	aim	for	the	
receiver	 to	 get	 something	 like	 a	 copy	 of	 the	 message	 encoded	 by	 the	 sender,	 with	
compression,	or	noise,	or	sparse	communication	channels,	which	is	why	these	systems	are	
useful.	To	do	so,	communication	systems	need	a	lookup	table	that	both	sender	and	receiver	
know	in	advance.	However,	autoencoders	learn	that	lookup	table	from	the	input!	If	we	take	
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x	 to	be	what	 the	sender	puts	 in	 the	communication	system	and	 x̂	 to	be	what	 the	receiver	
gets,	the	only	thing	needed	for	x̂	=	x	or,	at	least,	x̂	≈	x	is	a	proper	ĥ.	Thus,	ĥ	is	effectively	the	
lookup	table	of	the	communication	system.	But,	as	autoencoders	learn	ĥ	in	an	unsupervised	
fashion,	it	seems	fair	to	say	that	they	avoid	Dennett’s	problem	of	the	non-repayable	loans	of	
intelligence:	autoencoders	learn	the	lookup	table	(ĥ)	directly	from	the	data	(x),	so	they	do	
not	need	to	ask	for	any	loan	of	intelligence.	

But	do	autoencoders	truly	avoid	the	problem	of	non-repayable	loans	of	intelligence?	
Recall	that	the	problem	was	taken	to	apply	to	all	attempts	to	use	Shannon’s	communication	
framework	 for	 understanding	 brains	 and	 neural	 networks.	 The	 loans	 of	 intelligence	
problem	asks:	where	does	the	lookup	table	come	from,	in	such	systems,	such	that	it	is	able	
to	 decode	messages?	 For	 living	 systems,	 a	 popular	 suggestion	 is	 that	 the	 lookup	 table	 is	
provided	by	natural	selection.	On	this	view	brains	come	pre-assembled	with	the	necessary	
look-up	tables:	 “The	genetic	program	underlying	brain	development	does	the	stipulations	
necessary	to	get	the	brain’s	many	representational	systems	up	and	running”	(Gallistel	2020,	
p.	 393).	Whatever	 the	merits	of	 such	a	 view	 (and	we	 suspect	 there	 aren’t	many;	 see,	 e.g.	
Anderson	&	Finlay	2014) ,	what	we	have	just	reviewed	would	appear	to	be	an	example	of	a	8

system	 that	 can	 successfully	 capture	 and	 communicate	 arbitrary	messages,	while	 utterly	
lacking	any	evolutionary	history.	

This	presents	us	with	 something	of	 a	 trilemma:	we	can	 take	autoencoders	 to	be	a	
counter-example	to	the	loans	of	intelligence	argument,	paving	the	way	toward	a	vindication	
of	the	Shannon	framework	for	understanding	the	brain	as	well.	Alternatively,	if	we	wish	to	
explain	the	success	of	autoencoders	within	the	Shannon	framework,	but	accept	the	validity	
of	 the	 loans	 of	 intelligence	 objection,	 we	 would	 need	 to	 identify	 what	 the	 loans	 of	
intelligence	are,	and	how	they	are	repaid.	Finally,	we	can	explore	other	frameworks	to	help	
us	understand	the	success	of	autoencoders.		

We	will	not	pursue	the	first	option	here.	We	take	the	argument	to	be	sound,	and	as	
we	 have	 seen	 above,	 even	 proponents	 of	 the	 Shannon	 framework	 for	 understanding	 the	
brain	seem	to	accept	their	obligation	to	say	whence	comes	the	prior	knowledge	required	to	
operate	a	neural	communications	system	(Gallistel	2020;	Gallistel	&	King	2010).		

The	 second	 option	 is	 worth	 some	 attention,	 however,	 which	 we	 will	 provide	
immediately	below.	It	is	well-known	that	in	many	forms	of	machine	learning	the	decisions	
and	actions	of	the	system	designer	can	be	vital	to	the	success	or	failure	of	the	system;	data	
labeling,	 feature	 selection,	 restricting	 the	 solution	 space,	 hand-coding	 priors,	 etc.,	 are	 all	
explicit	 loans	of	 the	designer’s	 intelligence	 to	 the	system.	Perhaps	 there	are	some	hidden	
loans	in	the	case	of	autoencoders,	as	well.		

	In	fact,	this	is	essentially	a	transcendental	argument.	Brains	are	communication	systems.	Communications	8

systems	need	a	 lookup	 table	 to	work.	Brains	work.	Therefore	 they	by	necessity	have	a	 lookup	 table.	 It	 is	 a	
condition	 of	 the	 possibility	 of	 working	 brains.	 QED.	 The	 only	 respectably	 naturalized	 Deus	 ex	 Machina	
available	to	provide	this	lookup	table	is	natural	selection.	
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As	we	will	 shortly	 see,	 although	 any	 system	 designer	 inevitably	 encodes	 some	 of	
their	 intelligence	 in	 the	 system,	 the	 simplicity	 and	 generality	 of	 autoencoders	 make	 it	
unlikely	that	those	loans	are	sufficient	to	explain	their	success.	This	leaves	us	with	the	third	
option,	exploring	alternate	frameworks.	We	will	discuss	the	third	option	in	the	next	section.		

3.3		Autoencoders:	Debt-free	communication	systems?	

Autoencoders	are	unsupervised	learning	systems.	The	notion	of	unsupervised	learning	has	a	
very	specific	meaning	in	machine	learning.	Put	simply,	it	means	that	the	process	of	learning	
does	not	require	specific	examples	of	correct	outputs	to	scaffold	learning.	A	system	is	said	
to	engage	in	unsupervised	learning	when	it	requires	no	labeled	examples	in	the	training	set.	
Imagine	a	situation	in	which	we	train	a	feed-forward	neural	network	with	a	training	set	of	
pictures	and	we	expect	 the	network	 to	classify	 those	pictures	 in	 two	different	categories:	
“cat”	 and	 “dog”.	 In	 this	 context,	 when	we	 provide	 an	 input	 x	 to	 the	 feed-forward	 neural	
network,	we	expect	an	output	y	that	is	either	“cat”	or	“dog”.	A	supervised	learning	strategy	
in	this	situation	would	be	one	in	which,	for	(at	least)	some	of	the	inputs	x,	the	trainer	of	the	
feed-forward	neural	networks	provides	explicit	 feedback	on	what	 the	output	y	 should	be.	
Thus,	for	at	least	some	inputs,	the	feed-forward	neural	network	would	get	not	just	an	input	
picture,	but	also	explicit	guidance	on	whether	the	picture	falls	into	the	category	“cat”	or	the	
category	“dog”.	In	this	sense,	the	picture	is	labeled	with	the	right	category.	

In	the	context	of	machine	learning,	unsupervised	learning	strategies	are	those	that	
do	not	follow	the	described	supervised	strategy.	Therefore,	unsupervised	learning	does	not	
entail	that	a	given	feed-forward	network	engages	in	fully	autonomous	learning,	but	just	that	
the	learning	strategy	does	not	make	use	of	labeled	examples	in	the	training	set.	Labels	are	
indeed	good	examples	of	a	 form	of	agreed	prior	knowledge	between	sender	and	receiver	
for	 the	 receiver	 to	 know	 that	 it	 is	 getting	 the	 right	 message.	 The	 labels	 constitute	 the	
intelligence	 loaned	 to	 the	 system	 that	 would	 allow	 it	 to	 to	 learn	 its	 own	 lookup	 table,	
because	 the	 labels	 provide	 the	 otherwise	 inaccessible	 knowledge	 of	 the	 correspondence	
between	signal	and	message.	In	a	supervised	learning	system,	we	could	identify	the	input	
as	a	form	of	sender,	the	feed-forward	neural	network	as	a	form	of	channel,	and	the	output	
as	 a	 form	 of	 receiver.	 It	 is	 clear	 that	 labeled	 examples	 would	 play	 the	 role	 of	 prior	
knowledge	used	by	the	receiver	(output)	to	learn	the	right	mapping	between	the	signal	sent	
by	the	sender	(input)	and	the	message.	In	this	sense,	an	unsupervised	learning	system	as	an	
autoencoder	 that	 does	 not	 use	 labeled	 examples	 might	 be	 thought	 of	 as	 a	 successful	
communication	system	without	a	lookup	table.	But	does	having	no	need	for	a	pre-specified	
lookup	 table	mean	having	no	need	 to	 take	out	 loans	of	 intelligence?	To	what	extent	does	
this	consequence	follow	from	unsupervised	learning?	Is	it	true	that	autoencoders	need	no	
prior	knowledge	to	learn?	

As	we	have	noted	 in	 the	 previous	 section,	 the	 unsupervised	 learning	 algorithm	of	
autoencoders	rests	on	 the	minimization	of	a	 loss	 function.	Namely,	autoencoders	 learn	 to	
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copy	the	input	x	into	the	output	x̂	by	minimizing	the	difference	between	them	(i.e.,	by	losing	
as	 little	as	possible	of	x	 in	 x̂).	 In	 its	 common	 interpretation,	 this	minimization	of	 the	 loss	
function	 ensures	 autoencoders	 encode	 a	 representation	ĥ	 that	 captures	 the	 set	 of	 causal	
factors	 h	 that	 generate	 x. 	 And	 with	 this	 representation	 ĥ	 the	 autoencoder	 is	 able	 to	9

generate	 x̂	such	 that	 x̂	=	x	or,	at	 least,	 x̂	≈	x.	The	question,	 then,	 is	whether	autoencoders	
need	prior	knowledge	in	order	to	perform	this	minimization	of	the	 loss	function.	And	the	
answer	seems	to	be	affirmative:	although	not	requiring	explicit	knowledge	in	the	sense	of	
labeled	 examples	 in	 the	 training	 set,	 many	 autoencoders	 need	 some	 amount	 of	 prior	
knowledge	and	all	autoencoders	rest	on	some	assumptions	that	can	be	understood	as	prior	
knowledge	about	the	real	distribution	of	the	data. 		10

An	 example	 of	 autoencoders	 that	 require	 some	 amount	 of	 prior	 knowledge	 to	
minimize	their	loss	function	are	variational	autoencoders	(VAEs;	Kingma	&	Welling	2019).	
VAEs	are	autoencoders	that	engage	in	a	form	of	approximate	Bayesian	inference	to	make	ĥ	
similar	 to	 h. 	 To	 do	 so,	 VAEs	 minimize	 a	 loss	 function	 based	 on	 a	 quantity	 known	 as	11

evidence	 lower	 bound	 (ELBO)	 or	 negative	 variational	 free	 energy.	 To	 harness	 the	
minimization	of	this	loss	function,	however,	VAEs	are	required	to	rely	on	prior	knowledge;	
concretely,	in	knowledge	about	the	joint	probability	between	h	and	x.	This	joint	probability	
can	 be	 learnt	 by	 VAEs	 and,	 actually,	 VAEs	 may	 be	 thought	 as	 devoted	 to	 learning	 it. 	12

However,	 the	 joint	probability	 is	needed	 from	 the	very	beginning	of	 the	 learning	process	
and,	 therefore,	 even	 in	 some	 random	 fashion	 (i.e.,	 even	making	 it	 as	 assumption-less	 as	
possible),	 some	 assumptions	 must	 be	 made	 regarding	 its	 metrics,	 its	 structure,	 and	 its	
relevant	 variables.	 These	 assumptions	 effectively	work	 as	 prior	 knowledge	 regarding	 the	
kind	 of	 input	 x	 and	 generative	 process,	 x	 =	 f(h),	 the	 autoencoder	must	 discover.	 In	 this	
sense,	although	not	in	the	fully	explicit	fashion	of	labeled	data,	the	assumptions	VAEs	make	
about	the	joint	probability	of	h	and	x	work	as	some	form	of	prior	knowledge.		

These	assumptions	 in	 the	case	of	VAEs	are	on	 top	of	general	assumptions	 that	are	
made	in	the	case	of	all	autoencoders	and,	in	wider	terms,	in	the	case	of	all	representational	

	We	do	not	need	too	many	details	on	this	process	but,	conceptually	speaking,	by	minimizing	the	loss	function,	9

autoencoders	find	the	set	of	parameters	𝞱	that	make	ĥ	most	similar	to	h,	such	that	ĥ(x;	𝞱)	≈	h.

	 In	 this	 argument	 we	 are	 ignoring	 the	 obvious	 fact	 that	 these	 systems	 do	 not	 learn	 their	 own	 learning	10

algorithm.	 The	 loans	 of	 intelligence	 objection	 deals	 with	 need	 for	 pre-existing	 knowledge,	 not	 preexisting	
functional	structure.

	As	Bayesian	system,	ĥ	in	VAEs	stands	for	a	probability	distribution	known	as	the	recognition	density	and	h	11

stands	for	the	true	posterior	of	the	Bayes	theorem	that	relates	h	and	x.	We	do	not	need	these	details	for	our	
current	purposes;	for	the	sake	of	consistency	we	have	stuck	with	the	notation	that	we	have	used	above.	Also,	
VAEs	are	not	the	only	Bayesian	autoencoders	but	serve	as	an	illustration	of	all	of	them.

	Statistically	 speaking,	 the	 joint	probability	 p(h,	x)	 is	 known	as	 a	generative	model	 insofar	 as	 all	possible	12

factors	 of	 variance	h	 of	 all	 possible	 x	 are	 included	 in	 them.	 In	 a	 sense,	when	 a	 VAE	 learns	 a	 proper	ĥ,	 its	
decoder	 effectively	 encodes	 a	 joint	 probability	 p(ĥ,	 x̂)	 and,	 therefore,	 the	 decoder	 of	 the	 VAE	 becomes	 a	
generative	model	in	the	sense	advanced	in	section	3.1.
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learning	 systems.	 Bengio	 et	 al.	 (2013)	 provide	 a	 non-exhaustive	 list	 of	 these	 general	
assumptions.	 Some	 of	 them	 are,	 for	 instance,	 that	 the	 changes	 in	 the	 function	 learnt	 by	
these	systems	are	smooth,	that	the	relationship	between	(at	least	some	of	these)	variables	is	
linear,	 that	 these	 variables	 are	 independent,	 that	 the	 causal	 factors	 explaining	 data	 are	
sparse,	or	that	most	relevant	causal	factors	exhibit	a	slow	temporal	change.	As	Goodfellow	et	
al.	(2017)	claim,	these	assumptions	are	hints	about	the	underlying	factors	of	the	unlabeled	
data	 and	 “take	 the	 form	 of	 implicit	 prior	 beliefs	 that	 we,	 the	 designers	 of	 the	 learning	
algorithm,	impose	in	order	to	guide	the	learner.”	(p.	544-545—emphasis	added). 		13

Clearly,	autoencoders	are	not	truly	blank	slates	with	no	debts	owed.	But	could	any	
learning	system	be	like	that?	We	doubt	it.	The	question	here	is	whether	the	kinds	of	prior	
knowledge	 identified	 above	 are	 of	 the	 sort	 to	 which	 the	 loans	 of	 intelligence	 objection	
applies.	 If	 so,	 then	 far	 from	being	a	counterexample	 to	 the	 loans	of	 intelligence	objection,	
autoencoders	 would	 be	 a	 working	 system	 in	 which	 the	 loans	 have	 been	 identified	 and	
repaid,	 and	 this	 objection	 to	 treating	 them	 (and	 by	 extension,	 cognitive	 systems	 more	
generally)	within	the	Shannon	framework	would	have	been	cleared.	But	if	not,	we	still	have	
to	choose	between	denying	the	validity	of	the	loans	of	intelligence	objection,	and	finding	an	
alternate	way	of	understanding	these	systems.		

A	 first	 clue	 about	 the	 right	 path	 to	 choose	 comes	 from	 considering	 the	 persisting	
disanalogy	between	lookup	tables	and	the	sorts	of	assumptions	identified	above.	A	lookup	
table	is	an	explicit,	stored,	data	structure	representing	the	range	of	options	(message)	in	a	
given	context.	If	anything	qualifies	as	domain	knowledge,	a	lookup	table	would.	Now,	turn	
to	 the	 sorts	of	 assumptions	 listed	above.	 Some	 seem	 to	be	more	naturally	understood	as	
parameter	 settings	 that	adjust	 the	operation	of	 the	 learning	processes	 to	best	handle	 the	
data	it	 is	exposed	to.	Although	that	setting	is	knowledge	for	the	system	designer,	 it	 is	 less	
clear	that	it	is	knowledge	for	the	system.	It’s	just	part	of	its	operation,	never	becoming	part	
of	the	content	of	any	message	that	the	system	might	be	passing	around.	Similarly,	although	
it	 is	common	to	call	the	assumptions	underlying	particular	 learning	mechanisms	“implicit	
beliefs”,	 there	 is	 an	 important	 disanalogy	 to	 be	 noted:	 beliefs	 are	 representations	 for	 the	
system,	 used	 directly	 by	 the	 system,	 and	 operated	 on	 by	 the	 system.	 In	 contrast,	
assumptions	of	the	sort	noted	are	simply	characteristics	of	the	(data)	environment	within	
which	 the	 system	operates	optimally,	 and	outside	of	which	 it	will	 start	 to	 fail.	As	Warren	
(2005)	notes	in	a	related	context:	

Perceptual	 systems	 become	 attuned	 to	 informational	 regularities	 in	 the	 same	
manner	 that	 other	 systems	 adapt	 to	 other	 sorts	 of	 environmental	 regularities	
(such	 as	 a	 food	 source):	 possessing	 the	 relevant	 bit	 of	 physiological	 plumbing	
(whether	 an	 enzyme	 or	 a	 neural	 circuit)	 to	 exploit	 a	 regularity	 confers	 a	

	The	importance	of	these	hints	cannot	be	overstated.	For	instance,	these	hints	define	a	model	family	for	ĥ.	If	13

the	distribution	of	xs	from	where	the	training	set	is	selected	does	not	lie	in	the	same	model	family,	it	cannot	be	
properly	estimated	(see	Goodfellow	et	al.	2017,	p.	131).
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selective	advantage	upon	the	organism.	Since	the	water	beetle	larva’s	prey	floats	
on	 the	 surface	 of	 the	 pond	 and	 illumination	 regularly	 comes	 from	 above,	
possession	 of	 an	 eye	 spot	 and	 a	 phototropic	 circuit	 can	 enhance	 survival	 and	
reproductive	success.	But	if	 illumination	were	ambiguous	and	prior	knowledge	
were	required	to	infer	the	direction	of	the	prey,	it	is	not	clear	how	such	a	visual	
mechanism	would	 get	 off	 the	 ground.	 Natural	 selection	 converges	 on	 specific	
information	that	supports	efficacious	action.	

What	the	[traditional]	view	treats	as	assumptions	imputed	to	the	perceiver	can	
thus	be	understood	as	ecological	constraints	under	which	the	perceptual	system	
evolved.	 The	 perceptual	 system	 need	 not	 internally	 represent	 an	 assumption	
that	natural	surfaces	are	regularly	textured,	that	terrestrial	objects	obey	the	law	
of	gravitation,	or	 that	 light	comes	from	above.	Rather,	 these	are	 facts	of	nature	
that	 are	 responsible	 for	 the	 informational	 regularities	 to	 which	 perceptual	
systems	 adapt,	 such	 as	 texture	 gradients,	 declination	 angles,	 and	 illumination	
gradients.	They	need	not	be	internally	represented	as	assumptions	because	the	
perceptual	system	need	not	perform	the	inverse	inferences	that	require	them	as	
premises.	 	The	perceptual	system	simply	becomes	attuned	to	information	that,	
within	 its	niche,	 reliably	specifies	 the	environmental	 situation	and	enables	 the	
organism	to	act	effectively.	(p.	357-8)	

What	this	suggests	is	that	autoencoders	are	in	fact	not	taking	out	loans	of	intelligence,	or	at	
least	it	is	not	clear	whether	that’s	the	right	way	to	describe	the	situation.	But	if	they	are	not,	
then	 what	 explains	 their	 success?	 We	 think	 they	 do	 not	 require	 loans	 of	 intelligence	
because	 they	 are	 not	 in	 fact	 communication	 systems	 of	 the	 sort	 Shannon	 describes	
(although	 they	could	of	 course	be	deployed	 in	a	 communication	system	setting)	and	 that	
Gallistel	&	King	(2010),	among	many	others,	extend	to	 the	brain.	 Instead,	we	believe	 that	
they	may	belong	to	a	family	of	“direct	fit”	algorithms	that	can	capture	regularities	in	input	
and	that	we	do	not	need	to	describe	them	as	building	generative	models	of	those	data,	nor	
as	having	pre-specified	knowledge	about	what	messages	those	data	might	contain.	If	that’s	
right,	 it	 would	 align	 autoencoders	 more	 closely	 with	 the	 ecological	 understanding	 of	
information	detailed	by	J.	J.	Gibson	(1979,	1966)	than	with	Shannon’s	notion	of	information	
outlined	above.	

4		An	ecological	take	on	autoencoders	
Cognitive	 neuroscientists	 have	 assumed	 that	 the	 information	 available	 to	 animals,	 their	
senses,	 and	 their	 brains	 is	 best	 analyzed	 in	 the	 terms	 Shannon	 (1948)	 developed	 for	
understanding	 (and	 building)	 communication	 systems.	 There	 is,	 however,	 an	 alternative	
tradition	that	 is	nearly	as	old,	originating	 in	Gibson	(1950)	and	revised	and	elaborated	in	
later	 work.	 Gibson	 rejected	 the	 signal	 processing	 view	 of	 perception	 (and	 with	 it	 the	
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analogy	between	brains	and	computers)	 in	 favor	of	a	 theory	of	direct	perception;	 that	 is,	
perception	unmediated	by	sensations	and	sense	data,	and	not	requiring	the	construction	of	
world	models.	Instead,	Gibson	postulated	that	animals	could	directly	detect	and	adaptively	
respond	 to	 information	 available	 in	 what	 he	 called	 the	 ambient	 optic	 array.	 That	
information	wasn’t	to	be	understood	as	signals	needing	to	be	decoded,	as	messages	for	the	
brain	 to	 decipher,	 but	 rather	 as	 structure	 in	 light	 that	 specifies	 the	 properties	 of	 the	
environment.	He	writes:		

There	are	currently	two	radically	different	usages	of	the	word	“information”	 in	
psychology.	One	I	will	call	afferent	 input	 information	and	the	other	optic-array	
information.	The	 former	 is	 familiar;	 it	 is	 information	 conceived	as	 impulses	 in	
the	fibers	of	the	optic	nerve.	Information	is	assumed	to	consist	of	signals,	and	to	
be	 transmitted	 from	 receptors	 to	 the	 brain.	 Perception	 is	 a	 process	 that	 is	
supposed	 to	 occur	 in	 the	 brain,	 and	 the	 only	 information	 for	 perception	must	
therefore	consist	of	neural	inputs	to	the	brain.		

Optic-array	information	is	something	entirely	different.	It	is	information	in	light,	
not	 in	 nervous	 impulses.	 It	 involves	 geometrical	 projection	 to	 a	 point	 of	
observation,	not	transmission	between	a	sender	and	a	receiver.	It	is	outside	the	
observer	and	available	 to	him,	not	 inside	his	head.	 In	my	 theory,	perception	 is	
not	 supposed	 to	 occur	 in	 the	 brain	 but	 to	 arise	 in	 the	 retino-neuro-muscular	
system	as	an	activity	of	 the	whole	system.	The	 information	does	not	consist	of	
signals	 to	 be	 interpreted	 but	 of	 structural	 invariants	 which	 need	 only	 be	
attended	to.	(Gibson	1972,	p.	79)	

Gibson	refers	to	structures	in	energy	arrays	which	he	called	invariants,	i.e.,	patterns	in	light,	
sound,	etc.	 that	an	organism	can,	 in	principle,	detect,	and	 that	are	potentially	 informative	
for	 the	 organism	 about	 some	 structure	 in	 the	 world.	 An	 example	 of	 an	 invariant	 is	 tau,	
which	is	related	to	the	perceptible	rate	of	optical	expansion	of	an	approaching	object,	and	
directly	specifies	time-to-contact.	Another	example	is	the	horizon-ratio	relation:	the	ratio	of	
the	amount	of	 an	object	 that	 appears	 to	be	above	 the	 cut	of	 the	horizon	 to	 that	which	 is	
below	 the	 horizon.	 Because	 the	 horizon	 is	 always	 exactly	 at	 the	 observer’s	 eye-level,	 the	
horizon-ratio	 relation	 specifies	 the	 height	 of	 the	 object	 in	 terms	 of	 the	 height	 of	 the	
observer’s	 eyeballs	 above	 the	 ground	 (Bootsma	&	Oudejans	1993;	 Sedgewick	1973).	The	
notion	is	that	there	exist	many	such	regularities	in	the	ambient	array,	and	animals	learn	to	
use	 them	 to	 perceive.	 Animals’	 attunement	 to	 such	 invariant	 regularities	 enables	 or	
constitutes	 veridical	 perception	 of	 the	 world	 (Segdwick	 2021;	 Turvey	 2019).	 This	 is	 an	
important	contrast	with	the	traditional	view.	As	Gibson	(1972)	notes:	

It	has	long	been	assumed	by	empiricists	that	the	only	information	for	perception	
was	“sensory”	 information.	But	this	assumption	can	mean	different	things.	 If	 it	
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means	 that	 the	 information	 for	perception	must	 come	 through	 the	 senses	and	
not	through	extrasensory	intuition,	this	is	the	doctrine	of	John	Locke,	and	I	agree	
with	it,	as	most	of	us	would	agree	with	it.	But	the	assumption	might	mean	(and	
has	been	taken	to	mean)	that	the	information	for	perception	must	come	over	the	
sensory	 nerves.	 This	 is	 a	 different	 doctrine,	 that	 of	 Johannes	Müller,	 and	with	
this	we	need	not	 agree.	 To	 assume	 that	 visual	 information	 comes	 through	 the	
visual	sense	is	not	to	assume	that	it	comes	over	the	optic	nerve,	for	a	sense	may	
be	 considered	as	 an	active	 system	with	a	 capacity	 to	 extract	 information	 from	
obtained	stimulation.	The	visual	system	in	fact	does	this.	Retinal	inputs	lead	to	
ocular	 adjustments,	 and	 then	 to	 altered	 retinal	 inputs,	 and	 so	 on.	 It	 is	 an	
exploratory,	 circular	process,	not	 a	one	way	delivery	of	messages	 to	 the	brain.		
(p.	80)	

One	 important	 aspect	 of	 Gibson’s	 position	 that	 is	 worth	 bringing	 to	 the	 fore	 is	 its	
endorsement	of	the	claim	that	there	are	no	epistemic	mediators	in	perception,	no	content-
carrying	 packets	 in	 need	 of	 decoding,	 interpretation,	 or	 association,	 be	 they	 sensations,	
sense	 impressions,	 sense	 data,	 or	 any	 of	 the	 panoply	 of	 ontological	 posits	 that	Merleau-
Ponty	collectively	dismissed	as	the	imaginary	“pointillistic	impacts”	of	the	world.	There	are,	
of	course,	myriad	causal	mediators	 for	perception;	 it	 is	only	our	 immersion	 in	a	world	of	
causes	 that	 makes	 perception	 possible.	 But	 the	 causal	 process	 of	 perception	 does	 not	
involve	reconstructing	the	outside	world	from	its	momentary	impacts	on	the	sense	organs,	
but	the	active	sampling	of	and	adjusting	to	or	coupling	with	the	structure	in	energy	arrays
—light,	 sound,	 chemical	 gradients,	 and	 the	 like.	 It	 is	 this	 causal	 coupling,	 which	 Gibson	
called	“resonance”,	that	underlies	our	direct	perception	of	the	world.	He	writes:	

Instead	 of	 supposing	 that	 the	 brain	 constructs	 or	 computes	 the	 objective	
information	 from	 a	 kaleidoscopic	 inflow	 of	 sensations,	 we	 may	 suppose	 the	
orienting	of	the	organs	of	perception	is	governed	by	the	brain	so	that	the	whole	
system	of	input	and	output	resonates	to	the	external	information.	(Gibson	1966,	
p.	5)	

What	is	 it	to	resonate	to	information?	Raja	(2019,	2021)	analyzes	the	concept	in	terms	of	
the	lawful	fit	between	neural	activity	and	the	information	contained	in	the	optic	(or	other)	
array.	More	 specifically,	Raja	 posits	 that	 there	 is	 a	 dynamic	 coupling	between	 the	 central	
nervous	 system	 and	 the	 environment	 such	 that	 properties	 of	 the	 neural	 activity	 reflect	
properties	of	the	environment,	allowing	for	adaptive	behavior.	This	coupling	constitutes	the	
“fit”	 between	 the	brain	 and	 the	world.	 Put	differently,	what	perceptual	 systems	do	 is	 not	
reconstruct	the	world	from	irritations	at	the	exteroceptive	surfaces,	but	seek	out	and	adjust	
to	structure	in	energy	arrays.	This	structure	is	the	ecological	information	to	which	animals	
attune.	
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This	conception	of	ecological	information	as	environmentally	accessible	structure	to	
which	an	organism	can	adjust	or	attune	is	an	important	alternative	to	Shannon	information,	
and	potentially	opens	up	new	ways	of	understanding	not	just	brains	(Anderson	2014;	Raja	
&	 Anderson	 2019)	 but	 also	 autoencoders	 and	 other	 artificial	 neural	 networks.	 Such	
alternate	approaches	 to	understanding	 these	systems	 is	especially	 important	 if	you	agree	
with	 such	 authors	 as	 Brette	 (2019)	 and	 Nizami	 (2019)	 that	 the	 coding	 metaphor	 faces	
significant	 conceptual	 difficulties	 in	 the	 neurosciences	 (and	 the	 cognitive	 sciences	 more	
broadly).	Stated	up	front,	the	idea	is	this:	what	autoencoders	are	able	to	do	so	well	is	adapt	
to	real	structure	 in	the	 input	data.	Autoencoders	achieve	this	by	adjusting	the	connection	
weights	in	their	network	so	as	to	capture	the	structure	in	the	input.	

Importantly,	capturing	real	structure	does	not	need	to	mean	extracting	a	function	or	
building	 a	 generative	 model	 (much	 less	 recovering	 a	 lookup	 table).	 Instead,	 all	 that	 is	
required	is	a	brute-force	“direct	fit”	to	the	high-dimensional	structure	in	the	inputs.	Hasson	
et	 al.	 (2020)	 develop	 this	 thought	 in	 great	 detail.	 Classically,	 neural	 networks	 are	
understood	 as	 universal	 function	 approximators,	 able	 to	 learn	 any	 arbitrary	 mapping	
between	input	and	output	with	enough	time,	data	and	connections	(e.g.,	Hornik	et	al.	1989;	
Zhou	 2020).	 While	 not	 questioning	 the	 truth	 of	 the	 universal	 approximation	 theorem,	
Hasson	et	al.	(2020)	question	whether	function	learning	is	the	most	productive	analogy	for	
understanding	these	systems:	

We	 argue	 that	 neural	 computation	 is	 grounded	 in	 brute-force	 direct	 fitting,	
which	 relies	 on	 over-parameterized	 optimization	 algorithms	 to	 increase	
predictive	 power	 (generalization)	 without	 explicitly	 modeling	 the	 underlying	
generative	structure	of	the	world.	(p.	418)		

The	key	word	in	the	quote	is	“explicitly”.	They	do	not	deny	that	one	can	model	the	action	of	
the	 network	 as	 implementing	 a	 generative	 function;	 they	 deny	 this	 is	 the	 only	 way	 to	
understand	what	it	is	doing.	What	makes	the	function	learning	perspective	attractive,	they	
argue,	 is	 the	 textbook	 view	 of	machine	 learning	 in	which	 overparameterized	models	 are	
associated	with	 overfitting,	 and	 thus	 poor	 generalization.	 This	 can	 be	 true	 in	 contexts	 in	
which	 training	 data	 offers	 only	 narrow	 coverage	 of	 the	 domain	 space	 (say,	 faces);	 there	
successful	 generalization	 to	 novel	 faces	 depends	 on	 successful	 extrapolation,	 and	 overfit	
models	 do	 not	 extrapolate	 well.	 However,	 if	 there	 is	 sufficient	 coverage	 of	 the	 domain,	
interpolation—which	 over-parameterized	 models	 do	 perfectly	 well—can	 render	
extrapolation	unnecessary	for	generalization.	They	write:	

We	contend	 that	 [the]	 textbook	view	should	be	 revised	 to	account	 for	 the	 fact	
that	 in	 a	 data-rich	 setting,	 over-parameterized	models	 can	provide	 a	mindless	
yet	powerful	form	of	generalization.	Any	model	is	designed	to	solve	a	particular	
type	of	problem,	and	the	problem	to	be	solved	changes	drastically	when	we	shift	
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from	 preferentially	 sampling	 a	 limited	 parameter	 space	 in	 a	 controlled	
experimental	setting	to	densely	sampling	a	wide	parameter	space	using	big	data	
in	a	performance-oriented	real-life	setting.	(Hasson	et	al.	2020,	p.	418)	

It	 has	 long	 been	 a	 tenet	 of	 the	 ecological	 framework	 that	 organisms	 richly	 sample	 their	
environments,	 wherein	 they	 encounter	 sufficient	 information	 to	 specify	 the	 objects	 and	
properties	 of	 the	 world	 without	 the	 need	 for	 building	 complex	 inner	 models	 (Blau	 &	
Wagman	 2022;	 Lobo	 et	 al.	 2018;	 Warren	 2021).	 This	 is	 in	 stark	 contrast	 to	 the	 view	
commonly	pushed	in	more	conventional	cognitive	science	that	the	information	available	to	
the	 organism	 is	 sparse	 and	 impoverished.	Where	 the	 available	 data	are	 sparse,	 as	 in	 the	
early	days	of	machine	learning,	it	is	natural	to	explain	successful	generalization	in	terms	of	
generative	models.	In	rich	environments,	however,	this	explanation	is	unnecessary.		

Dense	sampling	of	 the	problem	space	can	 flip	 the	problem	of	prediction	on	 its	
head,	 turning	 an	 extrapolation-based	 problem	 into	 an	 interpolation-based	
problem…	 interpolation	 uses	 local	 computations	 to	 situate	 novel	 observations	
within	the	context	of	past	observations;	it	does	not	rely	on	explicit	modeling	of	
the	 over-arching	 generative	 principles.	 Unlike	 extrapolation,	 interpolation	was	
thought	 to	 provide	 a	weak	 form	 of	 generalization	 because	 it	 can	 only	 predict	
new	data	points	within	the	context	of	past	observations…	But	this	problem	only	
arises	if	the	scope	of	the	training	space	is	small	or	impoverished.	(Hasson	et	al.	
2020,	p.	418-19)	

Insofar	as	this	is	true,	it	seems	most	natural	to	understand	the	capacities	of	both	real	brains	
and	autoencoders	 in	terms	of	their	 iterative	adjustment	to	the	available	structure	 in	their	
environments.	Neither	 real	brains	nor	autoencoders	 require	 loans	of	 intelligence	because	
they	are	not	dealing	with	Shannon	 information,	but	are	 instead	 tracking	and	adjusting	 to	
ecological	information.	In	a	word,	they	resonate	to	it.	

It	 would	 take	 much	 more	 work	 than	 we	 can	 put	 in	 here	 to	 establish	 that	 the	
ecological	framework	offers	a	better	way	to	understand	real	brains	and	artificial	ones,	but	
that	 effort	 is	 well	 underway	 (Anderson	 2014;	 Bruineberg	 &	 Rietveld	 2019;	 deWit	 &	
Withagen	 2019;	 Fultolt	 et	 al.	 2019;	 Raja	 2018,	 2019,	 2021;	 Raja	 &	 Anderson	 2019;	
Segundo-Ortin	&	Hutto	2021;	van	Dijk	&	Myin	2019).	Here	we	will	 instead	point	 to	some	
future	directions	for	this	overarching	project.		

5		Open	questions	and	future	directions	
Testing	the	ecological	hypothesis	 for	autoencoders—and	for	real	and	artificial	brains	more	
generally—involves	 at	 least	 two	 different	 challenges.	 The	 first	 challenge	 concerns	 the	
notion	of	ecological	information	itself.	If	both	brains	and	artificial	neural	networks	adjust	or	
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resonate	to	this	information,	a	first	level	of	analysis	must	necessarily	address	the	adequate	
description	of	the	information	in	the	structure	of	the	ambient	energy	arrays	surrounding	an	
organism	or	 in	the	structure	of	 the	data	used	to	train	an	artificial	neural	network.	This	 is	
part	of	the	work	on	perception	and	behavior	developed	by	ecological	psychologists	during	
the	last	decades.	Variables	of	ecological	information	(i.e.,	 invariants	of	the	ambient	energy	
arrays)	have	been	described	in	different	behavioral	situations.	Famous	illustrations	of	this	
are	 the	study	of	 the	already	mentioned	ecological	variable	 tau	 in	 looming	situations	 (Lee	
2009),	 the	 investigation	 of	 different	 invariants	 of	 the	 optic	 flow	 to	 perceptually	 guide	
navigation	both	in	sparse	and	crowded	environments	(Warren	et	al.	2001;	Warren	2018),	
or	the	description	of	many	other	informative	aspects	of	different	ambient	energy	fields	in	
general	(Turvey	2019;	Warren	2021).	Advances	regarding	our	understanding	of	ecological	
information	provide	the	necessary	background	to	fully	capture	the	processes	of	resonance	
both	in	real	and	in	artificial	brains.	

More	 concretely,	 a	 proper	 understanding	 of	 the	 ecological	 information	 in	 the	
training	datasets	 is	 crucial	 to	 gather	 evidence	 regarding	 the	possible	 resonant	 activity	 of	
autoencoders.	Such	an	understanding	will	minimally	involve	a	mathematical	description	of	
the	ecological	information	in	the	dataset	and	a	way	to	relate	the	activity	of	the	autoencoder	
to	 it.	 Detailed	 mathematical	 descriptions	 of	 ecological	 information	 are	 usual	 in	 the	
ecological	literature.	Beyond	the	informational	invariants	just	mentioned,	for	instance,	Tsao	
&	Tsao	(2021)	have	used	differential	 topology	 to	offer	a	general	mathematical	account	of	
ecological	optics—i.e.,	 the	description	of	 the	ambient	optic	array	 in	terms	of	 its	ecological	
structure—and	the	invariants	of	object	segmentation	and	ocludding	edges.	They	have	also	
provided	an	algorithm	to	detect	these	invariants.	The	mathematical	description	offered	by	
Tsao	&	Tsao	(2021)	might	be	used	to	characterize	different	objects	and	object-relations	of	
different	training	datasets	used	on	autoencoders	aimed	at	object	identification,	for	example.	
This	 way	 researchers	 would	 know	 which	 invariants	 are	 in	 each	 dataset	 and,	 therefore,	
which	invariants	a	given	autoencoder	should	be	adjusting	to.	Interestingly,	this	logic	could	
be	 reverted	 and	 autoencoders	might	 be	 used	 to	 explore	 the	 space	 of	 possibilities	 in	 the	
structure	 of	 training	 datasets.	 If	 the	 datasets	 are	 naturalistic	 enough,	 the	 results	may	 be	
used	to	identify	possible	variables	of	ecological	information	that	could	potentially	be	tested	
in	behavioral	studies	at	a	later	stage	of	research.	

Once	 the	 ecological	 information	 is	 well	 described,	 the	 second	 challenge	 for	 the	
development	 of	 the	 ecological	 hypothesis	 is	 the	 accurate	 characterization	 of	 the	 very	
activity	of	autoencoders.	If	we	follow	Hasson	et	al.	(2020),	above,	we	will	be	in	a	direct	fit	
environment	with	a	rich	dataset.	In	this	context,	the	activity	of	the	autoencoder	is	described	
in	 terms	 of	 interpolation	 by	 local	 adjustments	 and	 not	 extrapolation	 by	 learning	 a	
generative	model	of	the	dataset.	In	other	words,	the	autoencoder	would	not	be	(described	
as)	learning	a	function	of	the	data	but	resonating	to	the	structure	available	in	the	dataset.	A	
further	step	would	be	to	pursue	the	concrete	characterization	of	this	 framework	in	terms	
compatible	with	ecological	information.	Many	of	the	invariants	described	in	the	ecological	
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literature	 entail	 some	 form	 of	 transformation—i.e.,	 they	 literally	 are	 invariant	 in	 the	
mathematical	 sense	 of	 being	 “invariant	 under	 a	 transformation”.	 In	 this	 sense,	 detecting	
invariants	 involves	 the	 training	 dataset	must	 be	 dynamic:	 each	 data	 sample	must	 have	 a	
temporal	 dimension	 (e.g.,	 a	 video	 instead	 of	 a	 snapshot).	 This	 kind	 of	 temporal-input	
approach	 is	 already	 being	 developed	 in	 the	 machine	 learning	 literature	 (e.g.,	 Zhu	 et	 al.	
2017)	 and	 it	 is	 for	 sure	 what	 is	 needed	 to	 detect	 invariants	 like	 tau,	 for	 instance.	 The	
question	now	would	be	how	to	relate	an	 informational	 invariant	 like	 tau	with	 the	 idea	of	
interpolation.	 The	 relationship	 between	 interpolation	 and	 categorization,	 for	 example,	
seems	to	be	very	straightforward,	but	in	the	case	of	informational	invariants	it	is	potentially	
more	 obscure—e.g.,	 what	 are	 we	 interpolating	 in	 a	 looming	 situation?	 Variables	 of	
ecological	 information?	 Maybe	 appropriate	 actions?	 Perhaps	 both?	 These	 are	 open	
questions	that	require	further	work	under	the	ecological	hypothesis	for	autoencoders.	We	
are	not	in	the	position	to	answer	them	right	now,	but	only	to	raise	them.	However,	they	are	
concrete	enough	to	allow	for	relatively	straightforward	implementation	given	the	state-of-
the-art	in	machine	learning	and,	therefore,	to	allow	for	future	directions	of	research.	
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