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Abstract

I respond to a recent argument by David Schroeren (Phil.Sci., forth-
coming; philsci-archive.pitt.edu/20419/) that — contrary to a very
wide consensus — global phase in quantum mechanics is real. I argue
that Schroeren’s argument rests on a mistaken assumption about projec-
tive representation theory and that, when this is corrected, the argument
no longer follows. In doing so I give a brief introduction to projective
representation theory.

1 Introduction

In a recent paper, David Schroeren (2022) (henceforth DS) has argued against a
standard assumption in quantum mechanics which he calls RAYS: that Hilbert-
space vectors that differ by a phase factor represent the same physical state.
(“I will argue that the global phase is not a representational redundancy or a
mere mathematical degree of freedom without a physical counterpart, but that
it corresponds to a real physical parameter” — DS p.21)

This would have radical consequences if true: Schroeren rightly describes
RAYS as an orthodoxy common to physics and philosophy of physics; it has
been central in mathematically-precise statements of quantum mechanics since
at least von Neumann; it underpins the general theory of mixed states (where
the projector |ψ〉 〈ψ| is taken to be equivalent to the state |ψ〉), the algebraic
approach to quantum mechanics, the Bloch sphere approach to qubits, and more
besides.

However, I don’t think it is true: Schroeren’s argument relies on certain
technical claims about projective representation theory (the theory of group ac-
tions on projective Hilbert space) that I believe are incorrect. In this short note
I first briefly review projective representation theory, then present Schroeren’s
argument and point out what I take to be its flaw.

(The mathematics here is standard and I do not give original references; for
a more detailed account see, e. g. , Weinberg (1995, ch.2.7), whose terminology
I largely follow. I take ~ = 1.)
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2 A brief review of projective representation the-
ory

2.1 Definitions

Given a Lie group G, a (unitary) vector representation of that group on a Hilbert
space H is a homomorphism of G into the unitary transformations of H: that
is, a representation V assigns to any group element g ∈ G a unitary operator
V (g) on H, such that V (g)V (g′) = V (gg′).

Motivated perhaps by the view that quantum states are defined only up
to phase, or perhaps by simple mathematical curiosity, we could weaken the
homomorphism requirement so that it applies only up to phase: that is, so that
it becomes

V (g)V (g′) = eiφV (g,g′)V (gg′) (1)

where φV (g, g′) : G×G → R is some smooth function, the phase function for the
representation. A map V satisfying this weaker condition defines a projective
representation of G.

Given one projective representation, we can obtain many: if we let f : G → R
be any smooth function and define Vf (g) = eif(g)V (g), then Vf is a projective
representation with φVf

(g, g′) = φV (g, g′) + f(g) + f(g′)− f(gg′).
The relation

f2 ∼ f1 iff f2(g, g′) = f1(g, g′) + f(g) + f(g′)− f(gg′) (2)

defines an equivalence relation on phase functions; equivalence classes under
this relation are called cocycles, and the trivial cocycle is the cocycle containing
f(g, g′) = 0. Any two projective representations whose phase functions lie in
the same cocycle are called phase-equivalent. A representation of G is intrinsi-
cally projective if it is not phase-equivalent to any vector (i. e. non-projective)
representation of G; equivalently, a representation is intrinsically projective iff
its phase function is not in the trivial cocycle.

A projective representation of G on H determines a well-defined representa-
tion of G by isometries on the projective Hilbert space PH (the space of rays in
H), since V (g)V (g′) |ψ〉 equals V (gg′) |ψ〉 up to phase; phase-equivalent projec-
tive representations define the same action. By Wigner’s theorem, any isometric
representation of a connected2 Lie group on PH may be so represented; hence,
there is a one-to-one correspondence between isometric representations of G on
PH and phase-equivalence classes of projective representations of G on H.

Projective representations can be classified as reducible or irreducible just as
for vector representations: a projective representation on H is irreducible iff H
cannot be written as the direct sum of Hilbert spaces each separately invariant
under the group action.

2This restriction serves to rule out antiunitary representations.
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2.2 Physical examples

Non-relativistic quantum physics gives us two important classes of inherently
projective representations. The subgroup of the Galilei group defined by (mutually-
commuting) spatial translation operators Tx and velocity boosts Bv has a family
of phase-inequivalent projective representations labelled by a real parameter m:

V (Tx)V (Bv) = eimx·v/2V (TxBv) (3)

which leads (once momentum is identified as the generator of spatial translation,
and position as m times the generator of boosts) to the familiar commutation
relation [Xi, Pj ] = iδij .

More important for our present purposes is that the group SO(3) of rota-
tions in three dimensions has two classes of projective representation, one of
which is inherently projective. The different irreducible representations can be
identified by an integer or half-integer J ; following DS I write SJ for the ir-
reducible representation associated to J (while noting that strictly SJ is only
defined up to projective equivalence). The integer-spin representations are de-
fined by ordinary vector representations of SO(3); the half-integer-spin (strictly:
half-odd-integer-spin) representations are irreducibly projective, with each be-
ing phase-equivalent to a common phase factor φJ(g, g′), the explicit form of
which we will not need.3 There are thus two cocycles for SO(3): the trivial
cocycle for integer-spin representations, and the ‘spinor’ cocycle for half-integer
spin.

The projective representations can be (and, in physics, usually are) specified
in terms of the vector representations of SU(2). As is well-known, there is a 2:1
homomorphism π of SU(2) onto SO(3) which associates each rotation with a
pair of elements of SU(2): if π(g) = π(g′) then g = ±g′. It can be shown that
(i) if S′ is an irreducible vector representation of SU(2), then we can find an
irreducible representation S of SO(3) satisfying

S(π(g)) = ±S′(g). (4)

and (ii) all the irreducible projective representations of SO(3) can be obtained
this way, with each projective representation SJ of SO(3) associated with a
unique irreducible vector representation S′J of SU(2). (This is actually a special
case of a fairly general recipe relating the projective representations of a group
to the vector representations of its topological covering group.)

2.3 Combining projective representations

Suppose H1 and H2 are distinct Hilbert spaces with respective vector repre-
sentations V1, V2 of G. V1 and V2 can always be combined to give a reducible

3We can state it as follows: for each g ∈ SO(3), fix some path l(g) in SO(3) that connects
the identity id to g, and define l(g′) ∗ l(g) as the path obtained by first going along l(g) from
id to g, and then going from g to gg′ along the path obtained by applying g to l(g′). φJ (g, g′)
equals π if l(g′) ∗ l(g) is homotopic to l(g′g), and equals zero otherwise. (This is a slightly
cleaned-up version of Schroeren’s own definition, which omits a rule to associate paths to
group elements)
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representation V1 ⊕ V2 of G on H1 ⊕ H2: if |ψ1〉 , |ψ2〉 are vectors in H1, H2

respectively then

(V1 ⊕ V2)(g)(|ψ1〉+ |ψ2〉) = V1(g) |ψ1〉+ V2(g) |ψ2〉 . (5)

If instead V1, V2 are projective representations, this becomes

(V1 ⊕ V2)(g)(|ψ1〉+ |ψ2〉) = eiφV1
(g,g′)V1(g) |ψ1〉+ eiφV2

(g,g′)V2(g) |ψ2〉 . (6)

Unless φV1
= φV2

, this does not satisfy the requirement (1) for a projective
representation.

If φV1 and φV2 lie in the same cocycle, then we could replace V1 with a
phase-equivalent projective representation with the same phase factor as V2, so
that their sum would be well defined. But if there is no such function, there
is no way to define a direct sum of the two projective representations. So the
rules for combining projective representations are more restrictive than those for
combining vector representations: only representations with the same cocycle
can be combined.

This is the origin of the well-known superselection rules in non-relativistic
quantum mechanics. Representations of the Galilei group with different masses
have different cocycles; hence, no quantum state can be in a superposition of
different masses (mass superselection). Representations of SO(3) have the same
cocyle only if they all have integer or half-odd-integer spin; hence, no quantum
state can be in a superposition of spins differing by a half-odd-integer value (uni-
valence superselection). It is the latter principle that is central to Schroeren’s
argument, to which I now turn.

3 Schroeren’s argument

In outline, Schroeren’s argument against RAYS (the assumption that phase-
related Hilbert-space vectors are physically equivalent) is as follows (he works in
a system consisting of some number of subsystems each transforming irreducibly
under rotations, though this detail will not be significant):

1. There are two distinct candidates for representing rotations on a quantum
system (DS p.6): via projective representations of SO(3) (‘PROJECTIVE-
SO(3)’ in Schroeren’s terminology) and via vector representations of SU(2)
(‘LINEAR-SU(2)’).

2. If we accept RAYS, we are obliged to regard PROJECTIVE-SO(3) and
LINEAR-SU(2) as equivalent (DS pp.6-7).

3. But they’re not equivalent: PROJECTIVE-SO(3) implies univalence su-
perselection (‘UNIVALENCE’ – DS p.7) and LINEAR-SU(2) does not.

4. So we have to reject RAYS and recognize that phase-related quantum
states are physically distinct.
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It is worth pausing to note that if RAYS is abandoned, it’s not at all clear
how we should understand either PROJECTIVE-SO(3), or LINEAR-SU(2), as
representations of spatial rotation. The rationale for representing rotation via
a projective representation of SO(3) is precisely that phase-related states are
equivalent: if they are not, shouldn’t we be insisting on a vector representation of
SO(3)? If our system has half-odd-order spin, then successively applying twice
the operator corresponding to rotation by 180◦ about some axis will change the
phase of the quantum state by a factor of −1. But group-theoretically, two
such rotations compose to the identity; how is this consistent? Similarly, we use
SU(2) to represent rotations via the double-cover map — but to every element
of SO(3) there corresponds two elements of SU(2), and on half-odd-integer spin
systems their actions differ by a factor of −1. If phase is physical, there ought to
be a fact of the matter as to which of these transformations actually represents
a given rotation — how is it to be decided.

However, this is moot, because Schroeren’s argument for (2) above — that
RAYS obliges us to treat PROJECTIVE-SO(3) and LINEAR-SU(2) as equiva-
lent — is flawed.

The argument is presented on p.6 of DS. First, Schroeren correctly notes
(his equation (7)) that any irreducible vector representation of SU(2) induces a
projective representation of SO(3). He writes γ̂ for the map from Hilbert-space
vectors into Hilbert-space rays, Hs for the Hilbert space of his system, T for
the representation of SO(3) on PHs, and SJ for the ‘family of linear [vector]
and projective representations of SO(3)’, i. e. the possibly-reducible projective
representation of SO(3) on Hs that is determined by T . He then writes:

Since γ̂ maps any two unitary operators on Hs that differ merely by
an overall phase to the same projective automorphism on PHs, the
linear [vector] representation S′ of SU(2) and the family SJ of linear
and projective representations of SO(3) agree about which unitary
projective automorphisms count as rotations: exactly those in the
codomain of T . [Emphasis mine.]

It is true that γ̂ maps any two unitary operators on Hs that differ merely
by an overall phase to the same projective automorphism on PHs. And so if
π(g) = π(g′) and S′(g) and S′(g′) differ merely by an overall phase, Schroeren’s
argument would go through. But this need not be the case. Writing elements
of SU(2) as 2x2 matrices, define

e =

(
−1 0
0 −1

)
= −id (7)

and note that π(e) = π(id). On an irreducible spin-J representation, we have

S′(e) = (−1)2J × S′(id). (8)

So S′(e) and S′(id) differ merely by an overall phase if S′ is irreducible; indeed,
they do so if S′ is a reducible sum of representations all of which have integer or
half-odd-integer J . But they do not differ merely by an overall phase in general.
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If S′ is a sum of representations differing in spin by n + 1/2, then S′(e) acts
trivially on the subspaces of integer spin and acts by multiplication by -1 on the
subspaces of half-odd-integer spin. So S′(e) determines a different projective
automorphism from S′(id), even though π(e) = π(id).

So it is not true that a generic vector representation of SU(2) determines
a projective representation of SO(3). The condition for a reducible represen-
tation of SU(2) to determine a projective representation of SO(3) is precisely
univalence superselection.

This should not be surprising given our earlier discussion: irreducible vec-
tor representations of SU(2) determine irreducible projective representations of
SO(3), but the latter cannot be combined to form reducible projective represen-
tations unless they have the same cocycle, i. e. unless univalence superselection
holds. So we should expect sums of vector representations of SU(2) to deter-
mine sums of projective representations of SO(3) exactly when the latter are
defined.

Schroeren goes on to re-present his argument in a different way (DS p.6):

Suppose someone were to insist that, instead of T , rotational symme-
try should be implemented as the homomorphism γ̂ · S′. . . Whereas
T is faithful, γ̂ · S′ is not: if for any ϕ ∈ R we denote by gϕ the ele-
ment of SU(2) that corresponds to rotation about some axis,4 then
although g2π 6= g4π, γ̂ ·S′(g2π) = γ̂ ·S′(g4π). Implementing rotations
in terms of γ̂ · S′ therefore results in exactly the same projective
automorphisms as does implementing rotations in terms of T .

Again, this holds only for representations of S′ satisfying univalence superse-
lection. As a concrete illustration, suppose that Hs is the direct sum of H0

and H1/2, the spin-zero and spin-half representations of SU(2); let |0〉 and |1/2〉
denote, respectively, arbitrary states in each subspace. Then

S′(g2π)(α |0〉+ β |1/2〉) = α |0〉 − β |1/2〉 (9)

but
S′(g4π)(α |0〉+ β |1/2〉) = α |0〉+ β |1/2〉 (10)

and these states are not phase-related: γ̂ · S′(g2π) 6= γ̂ · S′(g4π).
Allowing for the subtleties of combining irreducible projective represen-

tations requires us to replace LINEAR-SU(2) in Schroeren’s argument with
‘UNIVALENT-LINEAR-SU(2)’, the assumption that rotations are represented
by representations of SU(2) satisfying univalence superselection. But thus mod-
ified, the argument no longer implies a physical difference between the two can-
didates for representing rotations: both candidates equally require univalence
superselection. I conclude that Schroeren’s argument fails to establish the real-
ity of spin.

4Taken literally this doesn’t quite make sense: SU(2) is not a rotation group and none
of its elements can be identified uniquely as ‘the element that corresponds to rotation about
some axis’. But the intended meaning is clear enough: picking the z axis for definiteness,
gϕ = eiϕσz/2.

6



References

Schroeren, D. (2022). The global phase is real. Forthcoming in Philosophy of
Science; preprint available online at philsci-archive.pitt.edu/20419.

Weinberg, S. (1995). The Quantum Theory of Fields, Volume I: Foundations.
Cambridge: Cambridge University Press.

7


