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Abstract

It is often claimed that one cannot locate a notion of causation in fundamental physical

theories. The reason most commonly given is that the dynamics of those theories do not

support any distinction between the past and the future, and this vitiates any attempt

to locate a notion of causal asymmetry — and thus of causation – in fundamental phys-

ical theories. I argue that this is incorrect: the ubiquitous generation of entanglement

between quantum systems grounds a relevant asymmetry in the dynamical evolution

of quantum systems. I show that by exploiting a connection between the amount of

entanglement in a quantum state and the algorithmic complexity of that state, one can

use recently developed tools for causal inference to identify a causal asymmetry – and

a notion of causation – in the dynamical evolution of quantum systems.

1 Introduction

Consider the plight of Emma Flake. Dr. Flake runs a lab that works on applications of

quantum state tomography, but she has kind of checked out lately. Her grad students, Alice

and Bob, have conducted the following experiment in her absence: a source prepares an

ensemble of bipartite quantum systems in identical pure states |α〉. Alice knows the state

|α〉, but Bob does not. Each system then passes through a region of spacetime governed by a

Hamiltonian H, ending up in some pure state |β〉. Bob’s task is to reconstruct the pure state

|β〉 by performing a large number of measurements on different observables of the system.

Dr. Flake, feeling guilty about her absenteeism, offers to write up the paper on her own

and tells Alice and Bob to take some time off. When she looks at Alice and Bob’s notes,

she discovers that there is no record of which state was prepared by Alice and which was

reconstructed by Bob; all she knows is the two pure states |α〉 and |β〉. Is there any way for
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Dr. Flake to determine which was the initial state and which was the final? In other words,

can Dr. Flake determine whether |α〉 was caused by time-evolving |β〉 or vice versa?1

Dr. Flake is confronted with a special case of the general problem I will take up in this

paper: if one knows (i) the identity of two quantum states and (ii) that they are related by

unitary time evolution, does quantum theory provide resources to determine which state was

caused by time-evolving the other? It is commonly said that the answer is “no”: the failure

of the dynamical equations describing microscopic physical systems to distinguish between

past and future leaves Dr. Flake with insufficient resources to solve her problem. This failure

is commonly presented as an obstacle to identifying any notion at all of causal direction –

and thus of causation – using the resources of microscopic physics (see, for example, (Russell,

1912; Albert, 2000; Field, 2003; Woodward, 2007; Loewer, 2012)).

One consequence has been the widespread belief that any notion of causal direction, and

thus causation, must be located elsewhere. For many, like (Albert, 2000; Woodward, 2007),

that has been in macroscopic systems. For some, it has been in our psychological experience

as deliberators (Ismael, 2016; Fernandes, 2017). And for a few, it has been nowhere: causal

direction is illusory, tantamount to a preferred choice of coordinates (Price, 2007).

The notion of causation I employ in this paper is a minimal interventionist one: X is a

cause of Y if and only if there is an intervention that can be performed on the value of X,

while holding all other variables fixed, that produces a change in the value of Y.2 In this

paper I will restrict to the case of two variables and presuming the absence of confounders,

so any causal relation will be a direct causal relation.

It is well known that without additional conditions, this minimal interventionist notion of

causation cannot use observational statistical data alone to identify a direction of causation

between two variables X and Y, even when they are related by a known invertible function

(see, e.g., (Pearl, 2009, chapter 2)). Unitary time evolution between two quantum states is

deterministic and invertible; without information about the actual time ordering of two states

|α〉 and |β〉, familiar causal inference methods are unable to distinguish between |α〉 −→ |β〉
and |β〉 −→ |α〉.

In this paper, I argue that a generic physical fact about the time evolution of quantum

systems identifies a causally relevant asymmetry: interaction between quantum systems al-

most always entangles those systems but almost never disentangles them. This fact enables

1One might wonder why I describe this as a problem of inferring causal direction rather than temporal
direction. I will return to this question in section 6.

2This generalizes straightforwardly to probabilistic settings: X causes Y if and only if there is an inter-
vention that can be performed on pX(x), the probability distribution over the values of X, while holding all
other variables fixed, that produces a change in pY (y). See Woodward (2005) for a much richer philosophical
development of the interventionist account of causation than I will need here.

2



one to identify a causally relevant asymmetry between quantum states related by unitary

time evolution. To connect this physical fact to formal methods of causal inference, I em-

ploy recently developed tools whose applications include the ability to identify the causal

direction of deterministic, noiseless processes solely from observational data (Janzing and

Schölkopf, 2010; Daniušis et al., 2010; Janzing et al., 2012; Peters et al., 2017), (Mooij et al.,

2016, sections 3 and 5.2) to argue that the generic entanglement of quantum systems by uni-

tary time evolution allows one to identify criteria for inferring causal direction even between

states related by time-symmetric dynamical laws. The majority of my discussion focuses on

paradigmatically microscopic physical systems: bipartite quantum systems undergoing uni-

tary time evolution. That one can identify causally relevant asymmetries in such evolutions

is indication that one can locate a notion of causation in microscopic physics after all.

The structure of the paper is as follows. In Section 2, I review the sense(s) in which

quantum theories fail to distinguish between past and future and the challenge this poses to

any attempt to locate a notion of causation in microscopic physics. In Section 3, I review

relevant properties of entanglement in quantum theories: the ubiquity of entangled states, the

generic creation of entanglement by interactions between systems, and quantitative measures

of how entangled a quantum state is. I argue that already, on physical grounds, these

features ground a (fairly weak) causal asymmetry between quantum states related by unitary

evolution. Section 4 reviews the causal inference methods I later use to argue that one can

identify a direction of causation even between states related by time-symmetric dynamical

laws, along with some necessary concepts from algorithmic information theory. Section 5

introduces a generalization of algorithmic information to quantum theories and demonstrates

that in the restricted but important setting of a system of N qubits, one can derive a stronger

version of the asymmetry from section 3 as a theorem of the causal inference methods

introduced in section 4. In section 6 I conclude with some remarks about the relationship

between more familiar temporal asymmetries in physics and the causal asymmetry argued

for here, and situate my discussion within a more general understanding of the relationship

between the epistemology of causation and its metaphysics.

I want to emphasize three things before proceeding.3 The first thing is that my primary

interest here is the epistemology of causal direction.4 One can view sections 4 and 5 in partic-

ular as an exercise in causal epistemology: taking a procedure for inferring causal direction

based on observational data that has proved successful in other domains and applying it to

quantum theories. I think of this as akin to expanding an experimental technique that has

3Well, four things. The fourth thing is that throughout the paper log = log2 and I adopt units where
~ = c = 1.

4See (Eberhardt, 2009) for an overview. For a clarifying sketch of several types of projects one might
pursue when thinking about causation, see (Woodward, 2014).
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proved successful at detecting a certain object or property in one department of nature to a

novel domain, where the presence of that object or property is not settled, and seeing what

the experiment turns up. In section 6 I return to a discussion of how this primarily episte-

mological exercise bears on questions about the physical ground of the causal asymmetry I

identify.

The second thing is that unless otherwise stated, I will be considering only unitary time

evolution. Once departures from unitary evolution are allowed, either through the tracing

out of the environment associated with decoherence (Wallace, 2012, chapter 9), spontaneous

collapse of GRW or CSL type (Albert, 2000, chapter 7), or old-fashioned measurement-

induced collapse, then the time evolution distinguishes between past and future and an

asymmetry between cause and effect is introduced.5

The third thing concerns the discussion of entanglement. Entanglement of quantum sys-

tems by interaction is a generic physical fact. In this paper I employ a particular measure of

entanglement, the Schmidt measure, for reasons discussed in section 3. The reader should

bear in mind that this is only one of multiple ways to quantify entanglement and the physical

fact that interactions generically entangle but almost never disentangle – the physical foun-

dation for the causal inference strategy developed in this paper – does not depend on this

particular choice of entanglement measure nor the particular causal inference methods used.

Indeed, the idea that the generation of entanglement by dynamical evolution is connected

to a closely related asymmetry, the asymmetry of time, has been explored by a number of

authors (Popescu et al., 2006; Reimann, 2008; Linden et al., 2009; Jennings and Rudolph,

2010; Short and Farrelly, 2012; Goldstein et al., 2013; Malabarba et al., 2014; Goldstein

et al., 2015a).

Finally, this paper contributes to a large and rapidly growing literature on causal struc-

ture and causal inference in quantum theories (Leifer and Spekkens, 2013; Barrett et al.,

2019; Chiribella et al., 2009; Oreshkov et al., 2012; Rubino et al., 2017; Costa and Shrapnel,

2016; Ried et al., 2015; Allen et al., 2017; Wood and Spekkens, 2015; Chaves et al., 2015,

2014). A number of mathematical and conceptual frameworks for analyzing causal structure

have been developed in this literature. For example, (Leifer and Spekkens, 2013) develop

a generalization of Bayesian inference and an associated concept of a conditional quantum

state, while the process matrix formalism (Oreshkov et al., 2012; Barrett et al., 2019) in-

troduces the “process matrix” which generalizes the standard notions of a quantum state

and a quantum channel and has proven especially valuable for analyzing quantum processes

5This doesn’t mean that all causal inference puzzles are solved once one allows departures from unitary
evolution. Far from it: it is only after considering such departures that one encounters the most vexing
causal inference problem posed by quantum theories: the explanation of EPR-type correlations.
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with indeterminate causal order. And some of this work has taken up a similar project as I

undertake here: locating causal or temporal asymmetries in the structure of quantum theory

(Thompson et al., 2018; Schmid et al., 2020; Hardy, 2021; Di Biagio et al., 2021). In the

course of this paper, I introduce an additional set of tools into this literature by taking the

initial steps toward generalizing the algorithmic-information-theoretic framework for causal

inference developed by (Janzing and Schölkopf, 2010) to quantum theories.

2 Time Evolution in Quantum Theories

The time evolution of a quantum system over an interval of duration t is described by the

unitary operator U(t) = e−iHt where H is the Hamiltonian governing the system.6 These

unitary operators form a group: Stone’s theorem ensures that as long as the Hamiltonian H

is self-adjoint then it defines a strongly continous one-parameter group of unitary operators

U(t) (see, e.g. (Hall, 2013, chapter 10.2)). These unitary operators describe time evolution.

Quantum theories can fail to distinguish between past and future in each of the following

two senses:7

1. Given a state |ψ(t)〉, the unitary dynamics determine both the earlier state |ψ(t− τ)〉
and the later state |ψ(t+ τ)〉 for arbitary τ .

Quantum theories always fail to distinguish between past and future in this sense. It is

true whether or not the theory is time-reversal invariant. It is a consequence of the fun-

damental fact secured by Stone’s theorem: the time evolution operators U(t) form a one-

parameter group, which ensures that every U(t) has an inverse U(t)−1. Given a quantum

state |ψ(t = 0)〉, the operator U(t)= e−iHt uniquely determines the future state |ψ(t)〉 and its

inverse U(t)−1 = eiHt uniquely determines the past state |ψ(−t)〉. A consequence of this is

that given any two quantum states related by unitary time evolution, we have |α〉 = U(t) |β〉
and |β〉 = U(t)−1 |α〉. If one does not have any additional information about their temporal

ordering then one cannot determine whether |α〉 causes |β〉 or vice-versa.8

It is worth pausing here to address a natural question: isn’t it obvious that whichever

evolution is generated by U(t) is the true one, with U(t)−1 generating the backward-in-time,

6This presumes time-translation invariance. Time-translation invariance will always be assumed in this
paper, a reflection of the fact that I am considering closed quantum systems.

7See (Earman, 2002, section 4) or (Farr and Reutlinger, 2013) for a discussion of the importance of
distinguishing between the two when considering how the time-symmetry of a theory bears on our ability to
distinguish cause and effect in microphysics.

8The distinct but related question of whether the two unitaries U(t)and U(t)−1 are equally implementable
in practice is complicated (Janzing et al., 2002; Janzing, 2019; Janzing and Wocjan, 2018).
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or acausal, evolution? The reason this does not work is that without antecedent information

about the direction of time, one is really considering two candidate time variables: t and T,

related by T = −t. Whether one considers U(t) as generating forward-in-time evolution or

backward-in-time evolution depends on the time variable one chooses. The notation U(t)−1

is thus a bit misleading; writing the same unitary operator as U(T) makes the symmetry

between t and T manifest.

To illustrate this by the example above, if one chooses t as the time variable then given

an initial state |ψ(t = 0)〉, the operator U(t)= e−iHt uniquely determines the future state

|ψ(t)〉 and its inverse U(t)−1 = eiHt uniquely determines the past state |ψ(−t)〉. Using T,

the temporal ordering is inverted: e−iHT uniquely determines the past state |ψ(−T )〉 and

its inverse U(T)−1 = eiHT uniquely determines the future state |ψ(T )〉. Any attempt to

determine the causal direction that requires first choosing between t or T would beg the

question. (See (Donoghue and Menezes, 2019, 2020) for a pedagogical presentation and

additional discussion of the facts above. In particular, see their interesting discussion of the

fact that a choice of the time variable is fixed by the choice of a sign convention for the

canonical commutation relations [x, p] = ±i~.)

In addition to the invertibility of the dynamics, a quantum theory may also be time-

reversal invariant:9

2. There exists a time-reversal operator T such that

(a) T commutes with the Hamiltonian of the theory, [T , H] = 0, and

(b) If the state |ψ0(t = 0)〉 evolves under H as |ψ0(t = 0)〉, |ψ1(t1)〉, . . ., |ψn(tn)〉, then

the state T |ψn(−tn)〉 evolves under T HT −1 = H as T |ψn(−tn)〉, T |ψn−1(−tn−1)〉
. . ., T |ψ1(−t1)〉, T |ψ0(t = 0)〉.

It is important to note that the state |ψ0(t = 0)〉 and the time-reversed state T |ψ0(t = 0)〉
will not, in general, be the same state. Momentum eigenstates (with p 6= 0) provide a

simple example: the time-reverse of the state |p〉 is T |p〉 = |−p〉 (up to a phase), so the

state and its time-reverse are orthogonal: 〈p|T |p〉 = 0. Eigenstates of angular momentum

observables for systems with non-integer spin exhibit the same behavior – both the spin

observables σx, σy, σz and orbital angular momentum observables Lx, Ly, Lz.
10 One can

9The appropriate understanding of time-reversal in quantum mechanics has received a fair amount of
philosophical attention in recent years (Albert, 2000; Callender, 2000; Earman, 2002; Roberts, 2017; Allori,
2019; Farr, 2020; Donoghue and Menezes, 2019, 2020; Callender, 2020; Struyve, 2020). The initial stimulation
for much of this work were the arguments for a non-standard definition of time reversal by (Albert, 2000) and
(Callender, 2000). For reasons compactly summarized in (Roberts, 2019), I remain partial to the traditional
account and will adopt it throughout this paper.

10This is a special case of the fact that the state of any degree of freedom that is odd under time-reversal
– i.e. T 2 |ψ〉 = − |ψ〉 – is orthogonal to its time-reversed state (Sachs, 1987, section 3.2).

6



specify conditions that ensure that a quantum state and its time-reverse are the same state

(for example (Earman, 2002, section 4) or (Sakurai and Napolitano, 2011, theorem 4.12)),

but such cases are the exception, not the rule.

Time-reversal invariance of the laws of microphysics is often identified as an obstacle to

interpreting microphysics causally, but I think it is a red herring.11 Time-reversal invariance

secures the following: if a sequence of states |ψa〉 , |ψb〉 , . . . , |ψz〉 is dynamically allowed

by unitary evolution under a Hamiltonian H, then a sequence of generally distinct states

T |ψz〉, . . ., T |ψb〉, T |ψa〉 is also allowed by unitary evolution governed by the time-reversed

Hamiltonian T HT −1 = H.

For this to be an obstacle to interpreting microphysics causally it would have to be

the case that given two states |ψa〉 and |ψz〉 related by some unitary evolution U(t), the

time-reversal invariance makes it impossible to determine whether |ψa〉 is the cause of |ψz〉
or vice-versa. Time-reversal invariance is unecessary for this; as I discussed above, this

obstacle arises from the invertibility of the time-evolution operators U(t) and that follows

from Stone’s theorem, whether the theory is time-reversal invariant or not. Time-reversal

invariance is also in general insufficient for this, except in the trivial sense that if quantum

theory is time-reversal invariant, that entails that one was able to define a Hamiltonian for

the system and that, in turn, gets us back to the real obstacle to determining whether |ψa〉
is the cause of |ψz〉 or vice-versa: the invertibility of U(t) ensured by Stone’s theorem.12 If,

on whatever basis, I were to claim to have good reason to believe that |ψa〉 is the cause of

|ψz〉, it would do nothing to undermine my belief to tell me that the theory also allows for

a physically distinct state T |ψz〉 to be the cause of another physically distinct state T |ψa〉.
This is especially true for the situation I am considering in this paper: I am imagining

that one knows the two states |ψa〉 and |ψz〉. It is difficult to understand the belief that

the difficulty with identifying whether |ψa〉 causes |ψz〉 or vice-versa stems from a fact about

dynamically allowed sequences of states that are, in general, physically distinct and obser-

vationally distinguishable from |ψa〉 and |ψz〉. The real difficulty with identifying cause and

effect in quantum theories stems from the invertibility of the dynamics: one cannot distin-

guish between the two possibilities |ψa〉 = U(t) |ψz〉 and |ψz〉 = U(t)−1 |ψa〉 in the absence of

information about the temporal ordering of |ψa〉 and |ψz〉.
11For two arguments for the same conclusion in classical and quantum statistical mechanics that have

points of contact with the argument I offer here, but which are ultimately distinct, see (Maudlin, 2007,
chapter 4) or (Myrvold, 2020).

12For a related point about the relationship between time-reversal invariance and determinism to the past
and future and additional discussion, see (Earman, 2002, section 4).
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3 Interactions Generate Entanglement

Use of the Schmidt decomposition of quantum states is ubiquitous and useful when discussing

entanglement. I will rely on it throughout the paper so what follows is a brief reminder about

some of its relevant properties.13

Any pure state |Ψ〉 of a bipartite quantum system can be written as its Schmidt decom-

position

|Ψ〉 =
∑
i

λi |ai〉A ⊗ |bi〉B

where {|ai〉A} and {|bi〉B} form orthonormal bases for the Hilbert spaces HA and HB, respec-

tively. The coefficients λi are called Schmidt coefficients and are non-negative real numbers

that satisfy
∑
λ2
i = 1. The Schmidt rank of |Ψ〉 is the number of non-zero Schmidt coef-

ficients λi; a state is entangled iff it has a Schmidt rank greater than 1 and it is “fully”

entangled – in a sense I will elaborate on in a moment – if its Schmidt rank is equal to

min{dim(HA), dim(HB)}. For simplicity I will consider systems where dim(HA) = dim(HB),

but nothing in the paper depends on this.

If the Schmidt coefficients are non-degenerate, then the basis vectors |ai〉A and |bi〉B are

unique (up to a phase) so the Schmidt decomposition of a state |Ψ〉 is itself unique (up to a

phase). If any of the Schmidt coefficients are degenerate then there is more freedom in the

choice of basis vectors, but both the Schmidt rank and the values of the Schmidt coefficients

are the same for any allowed choice of basis. A familiar example of this latter case is the

EPR state. It can be Schmidt decomposed as

|EPR〉 =
1√
2
|0〉A |0〉B +

1√
2
|1〉A |1〉B

where the Schmidt coefficients are λ1 = λ2 = 1√
2
. One could equally well have written the

state in the Schmidt decomposition

|EPR〉 =
1√
2
|+〉A |+〉B +

1√
2
|−〉A |−〉B

where |±〉 = 1√
2
|0〉± 1√

2
|1〉. The values of the Schmidt coefficients are unchanged, while the

non-uniqueness of the basis reflects the degeneracy of those coefficients.

This highlights a useful feature of the Schmidt decomposition: the Schmidt coefficients

are invariant under unitary operations UA⊗UB that act on Alice and Bob’s subsystems alone

and, as an obvious corollary, the Schmidt rank is invariant too. This reflects the physical

13See (Nielsen and Chuang, 2010, section 2.5) for a pedagogical presentation.
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fact that entanglement between separated systems cannot be created by unitary operations

performed locally on each system.14 As a result, the set of Schmidt coefficients λi completely

characterizes the entanglement of a bipartite system in a pure state and is sometimes referred

to as the entanglement spectrum.

This brings me to the sense in which a bipartite pure state with full Schmidt rank can

be considered “fully” entangled. Consider an entangled bipartite system |Ψ〉 ∈ HAB with

dim(HA) = dim(HB) = N . If |Ψ〉 has Schmidt rank 1 then it is separable and Alice and Bob’s

measurement results will be uncorrelated for any measurements they perform. If |Ψ〉 has

Schmidt rank N, however, Alice and Bob’s results will be correlated for every measurement

they perform in the same Schmidt basis on |Ψ〉: if Alice finds her system in state |ak〉 then

Bob will find his in state |bk〉, and so on. This is the sense in which the two subystems are

as entangled as they could be.

The Schmidt rank may seem like a rather coarse entanglement measure. It does not

distinguish states that an apparently more fine-grained measure of entanglement, like the

commonly adopted entanglement entropy, would distinguish. Consider the density operators

ρ1 and ρ2 corresponding to the entangled states

|Ψ1〉 =
1√
2
|11〉+

1√
2
|00〉

and

|Ψ2〉 =
√

1− ε |11〉+
√
ε |00〉

defined on HAB with dim(HA) = dim(HB) = 2. Both ρ1 and ρ2 have the full Schmidt rank

2. However, the entanglement entropy of a density operator

EE(σ) = −Tr(σ log σ) = −
∑
i

λ2
i log λ2

i

distinguishes the two: EE(ρ1) = 1 while EE(ρ2) is O(ε).15 Why not use the apparently

more fine-grained measure of entanglement?

14It also reflects the mathematical fact that the amount of entanglement between two systems is indepen-
dent of a unitary change of basis.

15The squares of the Schmidt coefficients λ2i in the Schmidt decomposition of a bipartite pure state |Ψ〉 are
the eigenvalues of the density operator σ = |Ψ〉〈Ψ|. A convenient fact about the Schmidt decomposition is that
the λ2i are also the eigenvalues of each of the reduced density operators ρA and ρB representing each entangled
subystem. Since these eigenvalues fully determine the entanglement entropy, the Schmidt decomposition
reveals that one can calculate the entanglement entropy of the bipartite system in two equivalent ways: by
computing the Shannon entropy of the probability distribution generated by the square of the coefficients of
σ for the full bipartite system or, as is more common, computing the von Neumann entropy of the reduced
density operators ρA or ρB .
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My reasons are partially pragmatic. The first such reason is that such a measure is

more fine-grained than I need for present purposes since the topological, measure-theoretic,

and dynamical facts about quantum states that I invoke in the remainder of this section

can be proved using only information about the Schmidt rank. The second is that there

is virtue in adopting a measure of entanglement can be extended to multipartite systems

and to mixed states. As a measure of entanglement, the Schmidt rank generalizes naturally

to such cases: the Schmidt measure (Eisert and Briegel, 2001), (Hein et al., 2004, section

II.c) or the Schmidt number (Terhal and Horodecki, 2000; Bruß, 2002; Sperling and Vogel,

2011) are generalizations of the Schmidt rank to multipartite pure and mixed states. In fact,

the availability of the Schmidt measure will be important in section 5 when I consider a

multipartite system of N qubits. A third reason, closely related to the second, is that the

Schmidt measure has been used to give a definition of the algorithmic information content

(also called the algorithmic complexity or the Kolmogorov complexity) of quantum states

(Mora and Briegel, 2005, 2006). I will make use of this connection when I turn to causal

inference in section 5.

My reasons are not entirely pragmatic, however, and there are two conceptual issues

worth highlighting before moving on. There is a sense in which the Schmidt rank and its

generalizations are not measures of precisely the same property as the entanglement entropy.

Consider the following remarks from (Preskill, 1998) and (Bruß, 2002):

So a number used to quantify entanglement ought to have the property that local

operations do not increase it. An obvious candidate is the Schmidt [rank], but

on reflection it does not seem very satisfactory. Consider

|Ψε〉 =
√

1− 2 |ε2| |00〉+ ε |11〉+ ε |22〉

which has Schmidt [rank] 3 for any |ε| > 0. Should we really say that |Ψε〉 is

“more entangled” than |φ+〉 = 1√
2
(|11〉 + |00〉)? Entanglement, after all, can be

regarded as a resource – we might plan to use it for teleportation, for example. It

seems clear that |Ψε〉 (for |ε| � 1) is a less valuable resource than |φ+〉 (Preskill,

1998, chapter 5.5).16

Bruß draws a similar distinction as Preskill while introducing a method for determining the

Schmidt number of an arbitrary mixed state:

16The Schmidt rank of a bipartite pure state is sometimes referred to interchangeably as its Schmidt
number. This is unfortunate since I will occasionally mention a quantity introduced by (Terhal and Horodecki,
2000) that they call the Schmidt number, which is an extension of the Schmidt rank to mixed states. I’ve
altered Preskill’s terminology to cohere with mine in this paper.
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A slightly different question from “how much entangled is a state ρ?” can be

addressed via the generalization of entanglement witnesses to so-called Schmidt

witnesses. They give an answer to the question “how many degrees of freedom

are entangled in ρ?” This corresponds to a finer classification of entangled states

(Bruß, 2002, section V.C).

It is not hard to find similar remarks in the literature on entanglement which suggest that

rather than the entanglement entropy being a finer measure than the Schmidt rank or vice

versa, the two instead capture subtly different aspects of entanglement.17 Heuristically, the

entanglement entropy quantifies how strongly subsystems are entangled while the Schmidt

rank captures how broadly the subsystems are entangled. This distinction can track impor-

tant practical differences in certain contexts: for example, it was proved in (Van den Nest,

2013) that the Schmidt rank is an informative measure of entanglement for determining the

potential speedup of a quantum computation over a classical one, but any entanglement

measure that is continuous and vanishes on product states – like the entanglement entropy

– is not.

The second conceptual issue concerns a connection between measures of entanglement

and measures of information that I will exploit when discussing causal inference.18 The von

Neumann entropy – what I have thus far been calling the entanglement entropy – can also

be given an information-theoretic interpretation as a quantum analogue of Shannon informa-

tion. The Shannon information does not quantify the information content of an individual

message, but rather characterizes an ensemble of messages produced by a specified source

that produces each bit xi with some probability pi. The Shannon information quantifies the

minimum number of bits required to encode an arbitrary message selected from an ensemble

of typical messages produced by the source. This is also true of the von Neumann entropy;

a quantum source prepares qubits in pure states |xi〉 with probabilities pi and the entan-

glement entropy quantifies the minimum number of qubits required to transmit a typical

message selected from the ensemble of messages produced by the specified quantum source.

The causal inference methods I will use in the subsequent sections rely on the notion of

algorithmic information.19 This is not a measure of the amount of information required to

describe a typical object in a specified ensemble but of the “intrinsic” amount of information

17For example, see the remarks in (Sanpera et al., 2001) or, more substantively, the proof in (Van den Nest,
2013) mentioned below. This is not to say that there is never any relationship between the entanglement
entropy and the Schmidt rank; for example, see (Sperling and Vogel, 2011, section III). For philosophical
discussion of some of the multiple notions of entanglement see (Earman, 2015).

18See (Timpson, 2013, chapters 2.2 & 3.6) for a clear presentation and philosophical discussion of the
interpretation of the Shannon and von Neumann entropies as measures of information.

19See (Grunwald and Vitányi, 2010) for a helpful comparison of Shannon information and algorithmic
information.
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contained in the object considered on its own. I will have more to say about algorithmic

information in section 4 but what matters presently is that the algorithmic information

content of an object is not a statistical property of an ensemble containing that object.

This suggests that the entanglement entropy cannot provide a satisfactory measure of the

algorithmic information content of an individual pure quantum state. The Schmidt rank of

a quantum state is a property of that state alone and is thus a more appropriate measure

for drawing a connection between entanglement and the algorithmic information content of

a quantum state. (They do not motivate their choice in this way but this does make the use

of the Schmidt measure by (Mora and Briegel, 2005, 2006) a conceptually natural choice for

explicitly connecting entanglement and the algorithmic information content of a quantum

state.)

With those justifications provided, I will now make use of the Schmidt rank to introduce

some topological, measure-theoretic, and dynamical facts about the ubiquity of entangled

pure states in the state space HAB of a bipartite quantum system. All of these facts are well-

known; my aim in rehearsing them is to lay out the physical grounds of the causal asymmetry

for which I argue at the end of this section, as well as to make maximally plausible the similar

conclusions I draw using causal inference methods in section 5. If this discussion results in

those conclusions seeming inevitable then it will have been successful.

First consider the case where HAB is finite-dimensional. Recall that the rank of a matrix

is the number of linearly independent rows (or columns) it contains and that a matrix M of

less-than-full rank has det(M) = 0. This means that the density matrix corresponding to

any bipartite pure state of less-than-full Schmidt rank has determinant equal to zero. One

can use this fact to show that the set of pure states in HAB with less-than-full Schmidt rank

is nowhere-dense in the set of all pure states in the topology induced by any norm on the

space.20 This means that each pure state in HAB of less-than-full Schmidt rank is enveloped

by a ball of fully entangled pure states; equivalently, each pure state of less-than-full Schmidt

rank is a limit point of a sequence of fully entangled pure states.

The set of pure states of less-than-full Schmidt rank is also sparse measure-theoretically:

it has measure zero in the set of all pure states in HAB.21 This is well-known but I

couldn’t find a proof to cite, so here is a proof sketch. Since HAB
∼= CN×N, the deter-

minant det : CN×N → C is a polynomial in the complex entries of an N × N matrix and

20See (Brock, 2005) for an elementary proof. The fact that all norms on a finite-dimensional vector space
are equivalent justifies the statement that this is true for “any norm” on HAB .

21In the finite-dimensional case, the restriction to pure states is important: for mixed states of a bipartite
system, the separable states are no longer as sparse, and the set of separable mixed states always contains an
open ball around the maximally mixed state (Życzkowski et al., 1998). For an infinite-dimensional Hilbert
space, this is no longer true: as (Clifton and Halvorson, 1999) showed, the set of mixed states is nowhere
dense in the set of all states, in the topology induced by the trace-norm.
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any complex polynomial is a holomorphic function. The zero set Z(f) of any holomorphic

function – the set of points in the domain of f on which that function equals zero – is at

most countable (Rudin, 1987, theorem 10.18) and so the determinant equals zero on at most

countably many points in CN×N. The determinant of a density matrix vanishes if and only

if it has less-than-full Schmidt rank so there can be at most countably many such density

matrices. Using CN×N ∼= R2N×2N we can conclude that the set of density matrices with

less-than-full Schmidt rank has Borel measure zero.

In light of the sparseness of separable pure states it may seem obvious that non-trivial

time evolution on HAB – any time evolution that includes interactions between Alice and

Bob’s subsystems – has to take any pure state |ψ〉AB that is not fully entangled into a fully

entangled state, and that the curve traced out by U(t)|ψ〉AB will consist almost entirely

of fully entangled states.22 This is true.23 In fact, the previous discussion ensures that

any initial bipartite state with less-than-full Schmidt rank will, after an infinitesimal time

interval, develop into a state with full Schmidt rank and will then remain in a state of full

Schmidt rank for all subsequent times except for a set of measure zero.

This should not be surprising at this point. The topological sparseness of pure states

of less-than-full Schmidt rank means that there is nowhere else for those states to evolve

except into states with full Schmidt rank, at least for infinitesimal time evolution, and their

measure-theoretic sparseness means that any curve throughHAB generated by time evolution

for any finite time interval will pass through a state of less-than-full Schmidt rank in at most

countably many instants. The upshot of this is that if one chooses an arbitrary state |k〉 of

less-than-full Schmidt rank k and evolves it for any finite time t, except for set of isntants

of measure zero the state U(t)|k〉 will be a state of full Schmidt rank.

Now suppose instead that one is interested in the time evolution of an arbitrary state |N〉
of full Schmidt rank N. Are there any time evolution operators U(t) such that U(t)|N〉 has

less-than-full Schmidt rank? Since specifying a Hilbert space representation for a quantum

system requires fixing a Hamiltonian H, the only freedom in choosing U(t) comes from

fixing t.24. Thus this question is equivalent to asking how many instants ti there are such

22I will drop the “non-trivial” qualifier for the remainder of the paper. Considering time evolutions that
are non-trivial in this sense is equivalent to requiring that the time evolution operator U(t) does not factorize
into a product U(t)A⊗U(t)B of operators evolving Alice and Bob’s subsystems independently. Any unitary
operator that factorizes in this way cannot change the Schmidt coefficients of a quantum state, as I mentioned
previously, and so cannot create entanglement between subsystems.

23A general argument is sketched in (Binney and Skinner, 2013, section 6.1). There are an immense number
of concrete examples of dynamically generated entanglement; see, for instance, the discussions in many-body
physics (Calabrese and Cardy, 2006; Eisert and Osborne, 2006; Amico et al., 2008), quantum field theory
(Peschanski and Seki, 2016; Cervera-Lierta et al., 2017; Kharzeev and Levin, 2017), and non-relativistic
quantum mechanics (Mishima et al., 2004; Schroeder, 2017).

24This is clearest in the algebraic approach to quantum theories, where a quantum system is defined by
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that U(ti)|N〉 has less-than-full Schmidt rank.

One such operator can obviously be reverse-engineered. Find a state of less-than-full

Schmidt rank |k〉 such that U(t)|k〉 = |N〉. Applying U(t)−1 to |N〉 will then produce |k〉, a

state of less-than-full Schmidt rank. Are there more such operators?

There can be at most countably many. Let τR be the recurrence time for the system

and consider the operator U(τR).25 Suppose that one starts with the state |N〉 and that the

dynamics are such that |N〉 visits every state of less-than-full Schmidt rank in HAB between

t = 0 and t = τR. Then the curve U(τR) |N〉 will visit countably many states of less-than-full

Schmidt rank on its tour through HAB. Any finite time interval t can be split up into at

most n intervals of length τR (plus some remainder q) so we can write U(t) = U(nτR + q)

and, since a finite union of countable sets is itself countable, the state |N〉 evolves into a

state of less-than-full Schmidt rank for at most countably many instants. This means that

the set of times ti for which U(ti)|N〉 has less-than-full Schmidt rank has measure zero.

Recall that I began with a simple problem: if one is given two bipartite pure states

|α〉 and |β〉 and knows that they are related by unitary time evolution, can they determine

whether |α〉 was the cause of |β〉 or vice versa? My discussion of the sparseness of pure

states of less-than-full Schmidt rank in HAB lays the groundwork for an answer. Suppose

that either of the following is true:26

1. The state |α〉 is separable (has Schmidt rank 1) and |β〉 is entangled (has Schmidt rank

>1);

or

2. Both of the states |α〉 and |β〉 are entangled but |α〉 has less-than-full Schmidt rank and

|β〉 has full Schmidt rank.

It is then overwhelmingly likely that |β〉 was caused by time-evolving |α〉 rather than vice

versa.

The intuitive reason for this is that it is overwhelmingly likely that a state of low Schmidt

rank will evolve into a state of higher Schmidt rank but the converse is extremely unlikely. If

a C∗ algebra. The GNS reconstruction theorem enables one to move from the abstract C∗ algebra to a
Hilbert space representation for the system, but this requires data about the full C∗ algebra, including the
Hamiltonian.

25See (Wallace, 2015) for proofs that in any finite-dimensional quantum system, and any infinite-
dimensional quantum system that satisfies modest constraints on the Hamiltonian, there exists a single
time τR such that after τR every state in HAB will have returned to a state arbitrarily close to itself.

26Note that this excludes the case where both |α〉 and |β〉 are entangled but neither has full Schmidt rank.
I’m not aware of any demonstration that within the set of bipartite pure states of less-than-full Schmidt
rank, the states of lower rank are less prevalent than those of higher rank. The causal inference methods
used in section 5 will do better for this case.
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the state |α〉 is the cause then it is almost certain that the state U(t) |α〉 would have higher

Schmidt rank, for an arbitrarily chosen t. One does not have to know anything about the

dynamics – about how |α〉 would evolve over different intervals t – to be essentially certain

that the resultant state will have full Schmidt rank. If one evolved the state |α〉 for t+ dt or

t+1023, or t+πt, or . . . the resultant state would not be |β〉, but one can be essentially certain

that it would be a fully entangled state. That it happens to be |β〉 in particular reflects the

unmysterious fact that one evolved the state |α〉 for t rather than some other interval of

time. In short, identifying |α〉 as the cause renders the effect |β〉 utterly unsurprising.

If instead one adopts |β〉 as the cause, then the effect |α〉 is rendered fantastically sur-

prising. It is impossibly unlikely that |β〉 just happened to evolve for precisely an interval

t lying in the measure-zero set of times that would result in U(t) |β〉 having less-than-full

Schmidt rank. It suggests an incredible degree of fine-tuning; indeed, it is nearly impossible

to imagine a human experimenter who was trying to accomplish such a precise fine-tuning

doing so successfully. Even with complete knowledge of both the state |β〉 and its behavior

under the dynamics – how it would evolve under U(t) for different t – and the explicit goal

of producing a state of lower-Schmidt rank, they would have to control the experiment with

a level of precision typically reserved for deities.27 In fact, insofar as one thinks that a cause

ought to explain its effects then identifying |β〉 as the cause is unacceptable: it not only fails

to explain |α〉 in any meaningful sense but also raises additional explanatory concerns more

urgent than those with which one began.

Some readers may have noticed a parallel with classical statistical mechanics: precisely

this form of reasoning has been used in that context to argue that there is an identifiable

explanatory asymmetry between two microstates despite the time-symmetry of the dynam-

ical laws describing their time evolution. For example, (Maudlin, 2007, p. 132) introduces

the problem as follows:

. . . postulate a macroscopically atypical [low entropy] but microscopically typical

[chosen at random from microstates compatible with the atypical macrostate]

state, plus the laws, and one can explain the macroscopically typical [high en-

tropy] but microscopically atypical [evolves to a lower entropy macrostate in one

27An observation about the impracticality of arranging a similar evolution was made in a different context
by (Englert et al., 1988). They consider sending a spin-1/2 particle in a σx eigenstate through a Stern-Gerlach
device set to measure σz, which will split the incoming beam into a superposition of the two eigenstates of
σz. They investigate the degree of precision with which an experimenter would need to control the magnetic
field in the Stern-Gerlach device to ensure that the spin-1/2 particle returns to its original σx eigenstate
after passing through the Stern-Gerlach device. They show that an exact return to the original σx eigenstate
is unattainable in practice and that even to reproduce the original state with 99% accuracy would require
the ability to control the gradient of the macroscopic magnetic field in the Stern-Gerlach device to at least
5 decimal places.
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temporal direction] state from them: the latter was generated from the former

by means of the operation of the laws. But equally: postulate a macroscopically

typical but microscopically atypical state at one end, plus the laws, and one can

‘generate’ a macroscopically atypical but microscopically typical state from them.

Pick one end, add the laws, and you can explain the other end: which end you

pick as explanans and which as explanandum is up to you.

Maudlin argues that this apparent explanatory symmetry is illusory, invoking a principle

that lies at the foundation of the causal inference methods I discuss in section 4. He points

out that the asymmetry is hiding in the way that one specifies the explanans microstate

and the explanandum microstate in the two candidate explanations. Consider explaining

an atypical microstate in a high-entropy macrostate by demonstrating that it resulted from

the time evolution of a typical microstate in a low-entropy macrostate. The meaning of

“typical” used to describe the explanans is measure-theoretic: the low-entropy macrostate is

atypical because it occupies a small volume of the system’s phase space and the microstate is

typical because it was chosen at random from that low-entropy macrostate. Importantly, one

can entirely specify an explanans that will produce the desired explanandum while knowing

basically nothing about the dynamics governing the system.

This is no longer true if one tries to invert the order of explanation. If one chooses as the

explanans an atypical microstate in a high-entropy macrostate, the meaning of “atypical”

becomes crucially different. “Atypical” now means dynamically atypical: the microstate is

atypical in the new sense if its time evolution takes it into a low-entropy macrostate. Such

atypical microstates are scattered throughout the volume of the high-entropy macrostate

and share no common property that could be used to identify them except their dynamical

behavior. Specifying an atypical microstate in this sense requires thorough knowledge of

the dynamics governing its evolution. Not only can such microstates only be specified by

describing their dynamical behavior, but their identity as atypical microstates depends very

sensitively on the specific form of the dynamics governing the system. As Maudlin points

out,

. . . a slight modification of the dynamical laws would lead to essentially no change

in which initial states are macroscopically atypical, in that they have low en-

tropy, but would completely alter the set of atypical high-entropy states whose

time evolution in either direction leads to low entropy (Maudlin, 2007, p. 133)

[my emphasis].

The explanatory asymmetry comes from this asymmetry in how we have to specify the

explanans and the explanandum in the two cases. In one direction, one can randomly
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pick a microstate from a low-entropy macrostate, knowing essentially nothing about the

specific dynamics governing the system, and then show that those dynamics will evolve

that explanans microstate into a microstate lying in a high-entropy macrostate. In the

other direction, one needs detailed knowledge about the specific form of the dynamics to

even know what counts as an atypical microstate, let alone to select as their explanans an

atypical microstate that the dynamics will evolve into a low-entropy macrostate. Maudlin

argues that this is no explanation at all: it amounts to explaining the system’s evolution into

a low-entropy macrostate by saying that the initial conditions were such that they would

evolve into a low-entropy macrostate, given the dynamics governing the system. One might

as well ascribe such microstates a virtus entropia.28

The parallel strategy for using entanglement to identify explanatory asymmetries between

quantum states is clear. The set of all states in HAB can be partitioned into disjoint subsets

containing states with Schmidt rank 1, 2, . . ., dim(HAB). We know from the above discussion

that almost all states in HAB will be in the subset of states with full Schmidt rank; call a

quantum state in HAB “macroscopically atypical” if it lies in any set of states with less-than-

full Schmidt rank. A state within that set is “microscopically typical” if it is chosen from

that set at random. A state is “macroscopically typical” in HAB if it is in the set of states

with full Schmidt rank; a state within that set is “microscopically atypical”, given a specific

time-evolution operator U(ti), if it evolves into a state of less-than-full Schmidt rank.

The discussion above establishes that time evolution from full Schmidt rank to less-than-

full Schmidt rank is highly non-generic; the only way to specify an explanans state |φ〉 that

would do so under U(ti) requires extremely detailed knowledge of both the details of the

Hamiltonian H appearing in U(ti) and the duration of time evolution ti. Just like in the

classical statistical mechanical case, “explaining” a state |φ1〉 of less-than-full Schmidt rank

as resulting from the time evolution of a state |N〉 of full Schmidt rank amounts to saying

that |φ1〉 occurred because the initial condition |N〉 was such that it would evolve to a state

of lower Schmidt rank, given the dynamics U(ti).

Maudlin extracts from his discussion a principle for evaluating explanations, though he

doesn’t dwell on it:29

28Sklar expresses a similar dissatisfaction with such candidate explanations of why subsystems of a larger
system obey the second law: “. . . we would simply posit an initial state that gives rise to parallel entropic
increase in branch systems with each other and with the main system. But to characterise the state in that
way would, of course, not be offering us an explanation of the sort we expected. It would be one thing to be
able to characterize the initial state in some simple way. . . and be able to derive the Second Law from that.
But to derive the Second Law from a bald assertion that “initial conditions were such that they would lead
to Second Law behavior” hardly seems of much interest” (Sklar, 1993, p. 330).

29Although Maudlin doesn’t dwell on it, (Woodward, 2020) has given an extended and enlightening ex-
amination of the very similar principle that forms the foundation of the causal inference methods I describe
in section 4.
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The problem is this: in order to account for the universe as we see it, we need more

than the laws: we need a constraint on one of the boundaries. That constraint,

together with the operations of the laws, then suffices to account for the nature of

the other boundary. But in order for this to work [be explanatory] the constraint

must itself be specifiable independently of what will result from the operation of

the laws (Maudlin, 2007, p. 132).

I think there is an argument to be made at this point that as long as two quantum states

satisfy one of the two conditions outlined above, my initial goal of identifying a causal asym-

metry between quantum states related by time-symmetric dynamics has been accomplished.

Recall that I have adopted a minimal interventionist notion of causation in this paper: X

is a cause of Y iff there is an intervention that can be performed on the value of X, while

holding all other variables fixed, that produces a change in the value of Y. Two quantum

states |α〉 and |β〉 related by a unitary time evolution U(t) satisfy this condition, but they

satisfy it for both candidate causal orderings: intervening to set |α〉 to |α′〉 will produce a

change in |β〉, since U(t)|α′〉 6= |β〉. But this is also true if the candidate causal order is

inverted: intervening to set |β〉 to |β′〉 will produce a change in |α〉 since U(t)−1|β′〉 6= |α〉.
Some additional information is required to break the symmetry. The above discussion

suggests that, under conditions widely satisfied in quantum theories, one has such informa-

tion: one should identify the “cause” state as the state that can produce the effect state and

can be specified without any reference to its behavior under the dynamics U(t). In the case

under consideration, this amounts to identifying the “cause” state as either (1) the state with

Schmidt rank 1, if the other state has Schmidt rank > 1 or (2) the state with less-than-full

Schmidt rank, if the other state has full Schmidt rank. Many people have claimed that the

time-symmetry of the dynamics governing microscopic systems makes any such asymmetry

impossible; I have argued that this is not correct.

That said, I want to emphasize some limitations of my discussion thus far. First, I have

discussed only microscopic systems par excellence: pure states of bipartite systems related by

unitary evolution. Second, conditions (1) or (2) are satisfied for a pair of states only when one

of those states comes from a set of measure zero: the set of states of less-than-full Schmidt

rank. It is true that such states, particularly product states, play a more significant role in

foundational and mathematical discussions of quantum mechanics than their sparseness in

HAB alone might suggest, but they are sparse nonetheless. I invoked an analogy with the case

of classical statistical mechanics above, but this is an important disanalogy: the measure of

the set of low-entropy microstates is exponentially small and vanishes as the size of the system

N → 0, but it is non-zero for any finite system; for estimates and discussion of classical and

quantum multipartite systems (including exceptions to this estimate), see (Goldstein et al.,
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2015b) and (Goldstein et al., 2017, section 7). I will return to this disanalogy in section 5.

The final limitation is that while conditions (1) and (2) show that one can, in principle,

identify a causal asymmetry in quantum theories, they are of little practical value for the

real-world epistemology of causation. The argument presented in this section does identify

an asymmetry present in the mathematical foundations of quantum theories, but it relies on

a standard of precision that unsatisfiable in practice. I have been considering states that are

exactly product states or, more generally, states whose Schmidt decomposition has exactly

k non-zero coefficients. This presumption of precision is often made without comment in

foundational discussions but is never achievable – or at least never verifiably achievable – in

any real world situation. At best, one can verify that a state is approximately a product state

or that a state has k Schmidt coefficients larger than some ε > 0. However, the topological

sparseness of the states of less-than-full Schmidt rank means that if |ψ〉 has less-than-full

Schmidt rank, any state |φ〉 that is within ε of |ψ〉 in the Hilbert space norm will have full

Schmidt rank. Conditions (1) and (2) no longer identify a causal asymmetry if modified to

1ε: The state |α〉 is within ε of a state that is separable (has Schmidt rank 1) and |β〉
is within ε of a state that is entangled (has Schmidt rank >1), or;

2ε: Both of the states |α〉 and |β〉 are entangled but |α〉 is within ε of a state that has

less-than-full Schmidt rank and |β〉 is within ε of a state that has full Schmidt rank.

In section 5 I will show that one can do better than this while still making use of a principle

much like the one Maudlin employed to identify an explanatory asymmetry in classical

statistical mechanics and which I have used in quantum theories. Such a principle provides

part of the foundation of a set of mathematical and conceptual methods for causal inference

that have proven empirically reliable in a number of disparate domains. My aim is to make

use of those methods to give a formal demonstration that the presence of entanglement can

be used to infer causal direction in quantum theories under conditions that are less restrictive

than those invoked in this section.

4 Causal Inference Methods

I began with the problem of determining whether, and under what conditions, one could

identify a causally relevant asymmetry between quantum states related by unitary evolu-

tion. Faced with such a problem, it would be natural to turn to the tools of causal inference.

Unfortunately, if one takes up commonly used tools to infer causal relationships from obser-

vational data that rely solely on conditional statistical independence, such as those in (Pearl,
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2009, chapter 2), they will find those tools inadequate for the problem at hand. The reason

for this is fairly straightfoward.

Any causal graph relating classical statistical variables V1, V2, . . ., VN defines a joint

probability distribution P(V1, V2, . . ., VN) over those variables.30 Consider a simple graph

relating V1, V2, and V3:

V3

V2V1

This graph defines a set of possible joint probability distributions P(V1, V2, V3). Suppose

that all causal relations are deterministic; then possible joint distributions could be P(V1=1,

V2=0, V3=1)=1, P(V1=0, V2=0, V3=1)=0, and so on. Causal inference problems begin with

a joint probability distribution over variables V1, V2, . . ., VN and attempt to reconstruct

the causal graph representing the true causal structure that generates the given probability

distribution.

For each candidate causal graph, one typically requires that a probability distribution

satisfies two conditions relative to that graph: the Causal Markov Condition and a faithful-

ness condition.31 The Causal Markov Condition is a constraint on how the joint probability

distribution P(V1, V2, . . ., VN) factorizes into a product of conditional dependence relations

according to a candidate causal graph. Speaking loosely, one requires that if all of the direct

causes of a variable O in the causal graph are specified, then one cannot learn any additional

information about the value of O from any variable that is not itself a descendent of O.

Formally, one requires that any candidate causal graph satisfy:

P (V1, . . . , VN) =
n∏
k=1

P (Vk | PA(Vk))

where PA(Vk) represents the direct causes (or “parents”) of the variable Vk. This captures

the requirement that all of the conditional dependence relations in the joint distribution

P(V1, V2, . . ., VN) be accounted for by causal relations between V1, V2, . . ., VN in the

causal graph.

30The restriction to classical statistical variables is important because a joint probability distribution for
non-commuting variables, like conjugate observables in quantum mechanics, is generally not well-defined. If
one restricts to quantum observables that commute then one can define a joint probability distribution over
their possible values. See (Fine, 1982) for a review and connection to hidden variable theories.

31See, for example, (Peters et al., 2017, chapter 6.5), (Spirtes et al., 2000, chapter 3), or (Pearl, 2009,
chapter 2.4), where the faithfulness condition is called “stability”.
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Faithfulness requires that only the conditional dependence relations in the joint proba-

bility distribution are reflected in the causal relations between V1, V2, . . ., VN in the causal

graph. The idea is easiest to illustrate with an example. Suppose one knows the joint distri-

bution P(V1, V2, V3) and suppose that V1 ⊥⊥ V2, but V1 /⊥⊥V2 | V3. (Notation: ⊥⊥ indicates

statistical independence and /⊥⊥ indicates statistical dependence.) This is consistent with

both of the following causal graphs:

V3

V2V1

V3

V2V1

Further suppose that, in the graph on the right, the causal influence of V1 on V2 is

precisely canceled by the causal influence of V3 on V2. Then both of these graphs entail

V1 ⊥⊥ V2 and V1 /⊥⊥V2 | V3, but there is something unsatisfying about the graph on the

right: the required conditional dependence relations have been recovered only by fine-tuning

causal influences to cancel precisely. This is why (Pearl, 2009, chapter 2.4) calls this a

stability condition: holding fixed the strength of the causal influence V1 on V2 while per-

turbing the strength of the causal influence of V3 on V2 by any δ > 0 will destroy the

conditional independence relations. It is these kind of finely-tuned graphs that are ruled out

by faithfulness.32

In short, if a probability distribution satisfies the Causal Markov and Faithfulness con-

ditions relative to a candidate causal graph that entails all, and only, the conditional de-

pendence relations present in the joint distribution P(V1, V2, . . ., VN) are reflected in the

causal structure of the graph. If a joint probability distribution satisfies these two properties

relative to multiple graphs, those graphs are said to form a Markov equivalent set.

One can now see why these conditions are insufficient for causal inference with two

variables V1 and V2. Suppose one already knows that any statistical dependence between

the two variables is due to a direct causal relationship between them, allowing them to rule

out confounders. Even then, the above conditions are insufficient to identify whether V1

causes V2 or vice versa. One is stuck with the following Markov equivalence class of graphs:

32Faithfulness is often motivated by the fact that the set of parameter values quantifying causal influence
that produce this type of cancellation are measure zero in the set of all parameter values Meek (1995), (Spirtes
et al., 2000, theorem 3.2). For a clarifying discussion of alternative justifications for imposing faithfulness,
see (Weinberger, 2018).
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V1 V2 V2V1

The reason is simple: any causal graph relating the two variables V1 and V2 will be fully

connected, and fully connected graphs do not predict any conditional independence relations.

This is why causal inference from conditional independences in observational statistical data,

using only the Causal Markov Property and Faithfulness, can successfully identify the causal

relationship between two variables only if they are embedded in a larger set of at least three

variables.

Happily, it turns out that one can do better than this if they are willing to introduce

additional conditions on a satisfactory causal graph. A set of causal inference strategies

has recently been developed that aims to address the problem of causal inference from

observational data for only two variables (Janzing and Schölkopf, 2010; Daniušis et al., 2010;

Janzing et al., 2012; Peters et al., 2017). The central condition they introduce is simple:

given two candidate causal graphs that generate the joint distribution P(V1, V2), the true

causal graph is the one that entails that the distribution for the “cause” variable P(V1) does

not contain any information about the conditional distribution P(V2 | V1) for the “effect”

variable, and vice versa. A perhaps more intuitive way to describe this condition is as follows:

the mechanism that determines the probability distribution over the cause variable operates

independently of the mechanism that determines the conditional distribution over the effect

variable, given the distribution over the cause; (Peters et al., 2017, chapter 2) label this “The

Principle of Independent Mechanisms”.

Figure 1: A jagged potential.

The range of contexts in which such a principle is

justified has been given an enlightening examination

in (Woodward, 2020), but is quite reasonable in the

particular context of physical theory: one can specify

an initial “cause” state – or a probability distribu-

tion over initial “cause” states – without any detailed

knowledge of the dynamical mechanism that will take

that initial state as input and output a conditional

distribution over final, or “effect”, states. If that is

possible according to the way P(V1, V2) factorizes ac-

cording to one candidate causal graph but impossible according to the second, then it seems

quite reasonable that the first causal graph is the correct one.

One can illustrate the principle with a simple example. Suppose one prepares a beam
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of N classical particles and scatters them off a jagged potential like the one in Figure 1.33

Draw a line that all N particles will cross, both before they encounter the potential and

after they are scattered back off it, some distance away from the region where the potential

is non-zero. Repeat the experiment many times and record the position of the particles each

time they cross the line on their way in and again on their way out. This will produce a joint

probability distribution over the positions of the N particles P(Xin, Xout), and the scattering

potential is the mechanism that determines the conditional distributions P(Xin | Xout) and

P(Xout | Xin). The causal inference problem is whether one could infer that one distribution

is the cause and the other the effect in the absence of any temporal information.

The Causal Markov and Faithfulness conditions are insufficient, as discussed above, but

it is easy to see how the Principle of Independent Mechanisms can make this possible. The

distribution P(Xout) will be highly disordered, with the positions of the N particles dis-

tributed roughly randomly across the line. However P(Xin) will be quite uniform: the beam

of N particles will cross the line at roughly the same positions on each run of the experi-

ment. For P(Xout) to be the cause distribution, it would have to be such that the potential

would funnel the random distribution into a highly ordered one. This would be impossibly

unlikely given the geometry of the scattering potential unless each state of the incoming

beams of N particles had been extremely carefully fine-tuned to be funnelled into a more

ordered state by that particular scattering potential. Any such preparation procedure would

require extremely detailed information about the geometry of the mechanism determining

P(Xin | Xout) – the scattering potential – and so identifying P(Xout) as the cause would

violate the Principle of Independent Mechanisms.

A natural precisification of this principle uses algorithmic information theory: the true

causal graph should render the mutual information I(Pcause : Peffect|cause) between the prob-

ability distribution over the cause and the conditional distribution over the effect equal to

zero. This can be stated in an equivalent form that is more transparent in the context of

physical theory: the true causal graph should render equal to zero the mutual information

I(s : M) between the “cause” state s and the dynamical mechanism M that determines the

conditional distribution over the effect, given s. In fact, Janzing, Schölkopf, and collabo-

rators have constructed a framework for causal inference that is founded on the use of the

tools of algorithmic information theory in which The Principle of Indepenent Mechanisms

plays a foundational role.

A valuable feature of this framework is that it is non-probabilistic: its foundational

concepts are those of algorithmic information theory, not statistics (Janzing and Schölkopf,

33This is roughly a combination of two different examples from (Peters et al., 2017, chapter 2) and (Janzing
et al., 2016).
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2010; Peters et al., 2017). This is not to say that it somehow doesn’t work for the more

familiar cases of causal inference from statistical data; in fact, the examination of algorithmic

informational dependencies can reveal novel statistical dependencies entailed by a causal

graph (Janzing and Schölkopf, 2010, section 3). The point is that it also applies more

generally, enabling causal inference between objects even when one does not have statistical

data about those objects, like a joint probability distribution over their values. Although I

do not rely on it here, this may prove valuable for doing causal inference in quantum theory

where joint probability distributions are not guaranteed to be well-defined (see fn. 30).

I will begin with a brief introduction to some relevant concepts of algorithmic information

theory.34 Suppose one has a countable set of objects {O1, O2, . . . , On, . . .} and a system

for identifying each object Oi by a binary description si. Note that “objects” here is quite

broad: it can include things like probability distributions, states of a physical system, PDF

files, Blood Meridian, Gila monsters, surfboards, etc. The algorithmic information content

of an object Oi is meant to quantify the amount of information required by the shortest

complete description of the object Oi.
There will always be some shortest binary string that uniquely identifies an object O,

denoted s∗. The algorithmic information of O (also called the algorithmic complexity or

Kolmogorov complexity) is the length `(p) of the shortest program p that, if run on a

(prefix-free) universal Turing machine U, would output the string s∗ and halt. Formally:35

K(s) = min
p
{`(p) | U(p) = s}

Note that the upper bound on K(s) for an n-bit string is n since one can always write a

program of the form “Print s1, . . . , sn” that reproduces the string K(s) bit-by-bit. This

illustrates one sense in which K(s) is a measure of the information contained in the object

O: it captures how much information is required to algorithmically reconstruct its complete

binary description.36

One can similarly define the conditional algorithmic information of one object, given a

second. Let t and s be the shortest binary descriptions of objects Ot and Os. Then the

34I very loosely follow (Janzing and Schölkopf, 2010, section 2.1) here. See (Li and Vitányi, 2019) for a
textbook introduction.

35In algorithmic information theory, equalities are generally only equalities up to a constant that is in-
dependent of the object itself, but may depend on the alphabet or programming language chosen for the
encoding or the particular universal Turing machine being considered. For example, a program to output
Hamlet may be shorter when written in Python than in FORTRAN. This tells us something about Python
and FORTRAN, but nothing about the algorithmic information content of Hamlet itself. This “equality up

to a constant” is denoted by
+
=

36Note that this has the somewhat counterintuitive consequence that a binary sequence that is completely
random has maximal algorithmic information.
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conditional algorithmic information of Os given Ot, denoted K(s | t), is defined as as the

length of the shortest program that takes as input t then generates s as output and halts.

This measures how much information about Os one obtains if given Ot, and thus how much

computational work is saved by knowing t when computing s. If t contains no information

about s then K(s | t) = K(s).

The conditional algorithmic information allows a precise definition of the natural intuition

that a cause does not contain information about the mechanism that maps it to the effect.

The mutual algorithmic information between two objects Ot and Os is:

I(s : t) = K(t)−K(t | s∗)

One can also use the joint algorithmic information K(s, t)
+
= K(s) + K(t | s∗) to give a

symmetric formulation of the mutual algorithmic information:

I(s : t)
+
= K(s) +K(t)−K(s, t)

This gives the intuitive result that if knowing s∗ does not enable a shorter computation of t

(or vice-versa) then s and t do not share any mutual information.

In (Janzing and Schölkopf, 2010, section 2) they used a related concept, the conditional

mutual information

I(s : t | r) +
= K(s | r) +K(t | r)−K(s, t | r)

to define an algorithmic information theoretic formulation of the Causal Markov Property. If

x1, x2, . . . , xn are binary strings describing observations related by a graph, then each string

xj shares no mutual information with the strings ndj associated with its non-descendents in

the graph, conditional on the shortest binary string associated with the parents pa∗j of xj in

the graph:

I(xj : ndj | pa∗j)
+
= 0

In general, Janzing, Schölkopf, and collaborators have made use of algorithmic information

theory for a multitude of causal inference tasks; see (Mooij et al., 2016) for a review of how

some of these methods perform on a variety of empirical data sets.

My interest is in the application of some of these tools to inferring causal direction in

physical theory. In particular, I will focus on a connection drawn in (Janzing et al., 2016)

between dynamical evolution and the increase of algorithmic complexity in a toy model of

statistical mechanics, with the aim of extending it to quantum theories.
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They begin by assuming the Principle of Independent Mechanisms: if s is the initial state

of an N -particle system and the operator Dt represents applying the dynamics governing

the system for some time interval t, then I(s : Dt)
+
= 0. (More precisely, s and Dt are

the shortest binary encodings of the initial state and the dynamics.) This asserts that not

only does s contain no information about the dynamics D (the geometry and strength of

a potential, for example), s also contains no information about how much time it will be

subjected to those dynamics (i.e. it contains no information about the interval t).

Although it seems so weak as to be nearly tautological, Janzing, Chaves, and Schölkopf

immediately derive from it that the algorithmic entropy K(s) of a toy N -particle system must

increase under dynamical evolution.37 The proof is sufficiently simple that I will include it

here before flagging its main limitation:

No entropy decrease: If the dynamics of a system is an invertible mapping Dt of a finite

set S of states then I(s : Dt)
+
= 0 implies that the algorithmic information can never decrease

when applying Dt to the initial state, i.e.

K(D(s))
+

≥ K(s)

for all s ∈ S.

Proof: Imposing I(s : Dt)
+
= 0 entails that K(s)

+
= K(s | Dt). Since Dt is invertible, s can

be computed from Dt(s) and vice versa, which implies K(s | Dt)
+
= K(Dt(s) | Dt). From

this one has K(s)
+
= K(s | Dt)

+
= K(Dt(s) | Dt)

+

≤ K(Dt(s)). �

The intuitive idea is simple: if Dt(s) had a shorter description than s one could obtain a

shorter binary description of the initial state by encoding Dt(s) and adding “then apply

D−1
t ”. But that is impossible since we’ve assumed s is the shortest binary description of the

initial state. Upon establishing this theorem they illustrate that it holds for a toy system of

N particles modeled as a cellular automaton (Janzing et al., 2016, section 2).

The theorem is suggestive but, as it stands, ultimately insufficient for inferring causal

direction for time evolution in quantum systems. The reason for this is simple: the set of

possible states of any quantum system is infinite. That said, I showed by construction at the

end of section 3 that something much like No entropy decrease should be true for quantum

37The equation of algorithmic entropy with K(s) by (Janzing et al., 2016) assumes that the microstate s
is perfectly known to the observer. More generally, one defines the algorithmic entropy of a microstate s as
the sum of the algorithmic information and the thermodynamic entropy S(s) = K(s) + H(s); see (Zurek,
1989) or (Li and Vitányi, 2019, chapter 8).
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systems: the Schmidt rank of a bipartite quantum system in a pure state is guaranteed to not

decrease under time evolution, except for a set of time intervals ti of measure zero, because

time evolution generically creates entanglement.

To connect my discussion at the end of section 3 to the methods of causal inference

using algorithmic information theory, I need a measure of the algorithmic information of a

quantum state. In the next section, I will show that one can use such a measure and the

causal inference methods described above to derive a more general, and more useful, version

of the conclusion I reached at the end of section 3.

5 Entanglement, Algorithmic Information, and Causal

Direction

To embed the inference of causal direction made on physical grounds in section 3 into the

framework of causal inference using algorithmic information theory, one needs a measure of

the algorithmic information of a quantum state. It would be preferable for the measure to

be natural, either in the sense that it shares many or all of the conceptual virtues of classical

algorithmic complexity or because it seems to appropriately generalize those properties to

the novel physical and mathematical setting of quantum theories. Ideally, there would be a

unique such measure.

There are multiple proposals for quantitative meaures of quantum algorithmic informa-

tion, each with some legitimate claim to being a natural generalization of classical algorithmic

information to quantum states (see (Vitányi, 2001) for an early overview and (Mora et al.,

2007) for a more recent one). We do not live in the best of all possible worlds, however: the

measures are demonstrably inequivalent and one thus has to make a choice. I will focus on a

measure of algorithmic information that tracks the Schmidt rank of a quantum state (or the

Schmidt measure, for multipartite systems). Ultimately I will show that one can reproduce

a less restrictive version of the criteria for identifying causal direction offered at the end of

section 3 as a theorem that follows from imposing the Principle of Independent Mechanisms.

I will first say a bit about the problems faced by any extension of algorithmic information

to quantum states.

The question of how much a measure of quantum algorithmic information needs to have

in common with its classical precursor to deserve the name is somewhat subjective, but one

can identify at least three properties that seem non-negotiable. First, it should be definable

from the quantum state alone rather than, say, only for a member of a specified ensemble of

quantum states. This was why I deemed the von Neumann entropy unsatisfactory in section
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3. Second, there should be some recognizable sense in which it measures the amount of

information required to compute, or reconstruct, the state in question using some algorithmic

procedure. Finally, just as there is an upper bound on the algorithmic information required

to specify any classical bit string of specified length n, there should be some analogous upper

bound on the algorithmic information of a quantum state that scales with the size of the

system.

A number of other seemingly essential properties of classical algorithmic information are

up for grabs, however. Must quantum algorithmic information be defined in terms of a

computation carried out by a quantum generalization of a Turing machine or is a differ-

ent notion of “algorithmic procedure” appropriate? Should the algorithmic information be

measured in classical bits or qubits? Does quantum algorithmic information need to reduce

smoothly to classical information in some context? How should the upper bound on the

algorithmic information of a quantum system scale with the size of the system? Almost all

classical bit strings of length n maximize the classical algorithmic information; should the

same be true of the quantum algorithmic information content of quantum states in, say, an

N -dimensional Hilbert space? Different proposals for measures of quantum algorithmic com-

plexity have adopted different answers to these questions (Berthiaume et al., 2001; Vitányi,

2001; Mueller, 2007).

The measure I will focus on defines the amount of algorithmic information in a quantum

state |φ〉 as the classical algorithmic information required by the shortest description of an

algorithmic procedure for preparing it from some reference state |0〉 (Mora and Briegel, 2005,

2006). One models the algorithmic preparation procedure as a quantum circut Cφ: a finite

sequence of unitary operations – quantum gates – chosen from a finite set G = {G1, . . . , Gn}
that, when performed on the reference state |0〉, produce the desired state Cφ |0〉 = |φ〉 up

to some fidelity ε.38 The set G is finite, so each unitary operation – and thus each circuit Cφ
– can be given a finite binary encoding which has a finite quantity of classical algorithmic

information. The algorithmic information of a quantum state |φ〉 is identified with the

classical algorithmic information of the binary encoding of the simplest circuit Cφ:

Kε
Q(|φ〉) = min

Cφ
K(Cφ)

where the notation Cφ is doing double-duty as the quantum circuit or the binary encoding

of that circuit, depending on context.

The value of Kε
Q appears to depend on four quantities not obviously related to the state

itself: (i) the choice of the set G of quantum gates, (ii) the alphabet Ω used to encode the

38This means that | 〈φ|C|0〉|2 ≥ 1− ε.
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circuit, (iii) the degree of fidelity ε, and (iv) the particular circuit Cφ. As (Mora and Briegel,

2005, 2006) show, (ii) and (iv) are unproblematic: the values of Kε
Q(|φ〉) for two different

alphabets Ω1 and Ω2 differ by at most a constant, and minimizing over all circuits Cφ that

prepare the state |φ〉 removes any dependence on an arbitrary choice of circuit. On reflection,

it is physically quite reasonable that Kε
Q depend on the degree of fidelity ε: changing the

precision with which an algorithm has to prepare a state will, and should, change the amount

of information the algorithm requires. The arbitrariness in Kε
Q associated with (i), the chosen

set of quantum gates G, is genuine, although (Mora and Briegel, 2005, 2006) offer several

palliative remarks on that front.

To see the connection between this notion of algorithmic information and entanglement,

consider a quantum system consisting of N qubits with Hilbert space HN . In this case, one

can derive the specific dependence of Kε
Q on the fidelity ε by invoking the fact that beginning

with the reference state |0〉 = |0〉1 · · · |0〉N ∈ HN , one can prepare any state |φ〉 ∈ HN with at

most O
(
2N
)

quantum gates Gi. Taking into account the dependence on the fidelity ε, (Mora

and Briegel, 2006, section 5) show that the number of quantum gates required to compose

a circuit Cφ that prepares an arbitrary state |φ〉 from the reference state |0〉 is O(2N log 1
ε
).

This is an intuitive result: the bigger the system or the greater fidelity demanded, the more

unitary operations required.

Figure 2: An ε-radius patch around
|ψ〉.

Note that by specifying a degree of fidelity ε one

identifies a patch around |φ〉. More precisely, it speci-

fies a patch of radius ε on the unit sphere correspond-

ing to all pure states in HN ; see Figure 2. The quan-

tity Kε
Q(|φ〉) captures the amount of information re-

quired to specify a circuit Cφ that will put |0〉 in that

patch.39 Choosing a degree of fidelity ε thus defines

an equivalence class of states close to |φ〉 by assign-

ing each of them the same algorithmic information

content Kε
Q(|φ〉). For ε > 0 such “patches” of states

have small but finite measure in the set of pure states

in HN ; indeed, one can cover the unit sphere of pure

39The two limiting cases may be clarifying. Let ε→ 1; then the “patch” is the entire sphere of pure states
and Kε=1

Q (|φ〉) quantifies the information required to construct a circuit C that will act on |0〉 to put it into

any pure state inside HN . In this limit Kε=1
Q is zero for all states, as it obviously should be: |0〉 is already

such a state, so just leave it alone. Now let ε → 0; then the “patch” approaches the single state |φ〉 and
Kε=0

Q (|φ〉) quantifies the information required to prepare exactly |φ〉 from |0〉. This obviously diverges at the

limit; for example, it would require preparing an amplitude to be exactly 1√
2

rather than the closest rational

approximation to 1√
2
.
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states with finitely many of them40 Topologically, this

means that every state |φ〉 is surrounded by a ball of radius ε of states of equivalent algo-

rithmic information.

The information required to describe the circuit Cφ is just the information required to

describe the quantum gates that compose it. From the fact that Cφ consists of, at most, a

sequence of ∼ 2N log 1
ε

unitary operations, (Mora and Briegel, 2006) conclude that its binary

encoding – and thus the quantum algorithmic information of the state |φ〉 – has the upper

bound

Kε
Q(|φ〉) = min

Cφ
K(Cφ) . 2N log

1

ε

It is significant that while the classical algorithmic information of an n-bit string grows at

most linearly with n, the algorithmic information of a quantum state can grow exponentially

with the size of the system N. Given that the dimension of the space of states of a composite

classical system in physics generally grows linearly in the dimension of the subsystems, while

the dimension of the space of states of a composite quantum system grows exponentially due

to the possibility of entanglement, one might think that the upper bound of Kε
Q(|φ〉) reflects

the presence of entangled states in HN . As (Mora and Briegel, 2005, 2006) show, that is

correct.

At this point the Schmidt rank of a quantum state once again becomes relevant. They

adopt as their measure of entanglement the Schmidt measure (Eisert and Briegel, 2001),

a generalization of the Schmidt rank to multipartite quantum systems. For an N -particle

system with Hilbert space H = H1 ⊗ · · · ⊗ HN , any state |Ψ〉 in H can be written as41

|Ψ〉 =
R∑
i

ai

∣∣∣ψ(1)
i

〉
⊗ · · · ⊗

∣∣∣ψ(N)
i

〉
Let r be the minimum number of product states

∣∣ψ(1)
〉
⊗ · · · ⊗

∣∣ψ(N)
〉

needed to write |Ψ〉
in the above form. The Schmidt measure of the state |Ψ〉 is defined as S(|Ψ〉) = log r. A

separable state will have Schmidt measure log 1 = 0 and a fully entangled state will have

Schmidt measure log dim(H), which will be log 2N = N log 2 = N for the system of N qubits.

40See (Nielsen and Chuang, 2010, section 4.5.4) for how the number of patches required scales with the
fidelity ε and system size N.

41I am presuming a preferred factorization of the big Hilbert space H into tensor factors. In general,
entanglement measures for multipartite systems are sensitive to different choices of partition; this is part
of the difficulty of extending such measures beyond bipartite systems. Where a preferred partition isn’t
available, one could more generally define the Schmidt measure as the minimum value of r over all possible
partitions. See (Zanardi et al., 2004), (Cotler et al., 2019), or (Carroll and Singh, 2020) for different proposals
for identifying preferred factorizations in certain contexts.
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The connection between algorithmic information and entanglement follows from the fact

one can use the Schmidt measure to bound the algorithmic information Kε
Q of a quantum

state. As (Mora and Briegel, 2006) show, knowing the Schmidt measure of a quantum state

makes possible a more informative bound on its complexity Kε
Q:

Kε
Q(|φ〉) = min

Cφ
K(Cφ) . 3N2S(|φ〉) log

1

ε

The algorithmic complexity of a separable state |1〉 can grow at most linearly with N , while

the upper bound for all states in HN is saturated by a state |N〉 only if it has full Schmidt

measure. Given a state |k〉 that is neither separable nor fully entangled – i.e. a state which

has Schmidt measure 0 < k < N – the upper bound on the algorithmic complexity of |k〉
will thus satisfy Kε

Q(|SEP〉) < Kε
Q(|k〉) < Kε

Q(|N〉).
There are several comforting features of this definition of quantum algorithmic informa-

tion. The first is that it lays the groundwork for addressing two major limitations of the

causal inference criteria of section 3: that they applied only if one state from the pair comes

from a set of states that has measure zero in the set of all pure states in HAB, and that they

no longer held if one replaced states |α〉 that were exactly of less-than-full Schmidt rank with

states that were within ε of a state of less-than-full Schmidt rank. In algorithmic informa-

tion theoretic terms, states |k〉 of less-than-full Schmidt rank now correspond to ε-patches

of non-maximal algorithmic information Kε
Q(|k〉). As mentioned above, those patches have

non-zero measure on the sphere of pure states in HN . Furthermore, these patches include all

states that approximate |k〉 with fidelity ε. According to Schmidt rank alone, the two states

|Ψ〉 = |00〉 |Ψε〉 =
√

1− ε |00〉+ ε |11〉

are no less different than are

|Ψ〉 = |00〉 |ΨEPR〉 =
1√
2
|00〉+

1√
2
|11〉

The algorithmic information Kε
Q is less sensitive: it treats |Ψ〉 and |Ψε〉 as equivalent, but

distinguishes |Ψ〉 from |ΨEPR〉. It represents an improvement over the Schmidt rank in this

regard.

Nevertheless it can still reproduce an algorithmic information-theoretic version of the

topological and measure-theoretic facts relied upon in section 3. In (Mora and Briegel,

2006) they show that for a system of N qubits, the relative frequency of pure states in HN

with non-maximal algorithmic information is exponentially small: it scales as ∼ 22N log ε.42

42Since the algorithmic information of a quantum state is the classical algorithmic information of the circuit
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Recall that (i) a state inHN is maximally complex only if it has full Schmidt measure and (ii)

the Schmidt measure reduces to the Schmidt rank for pure states of a bipartite system. With

that in mind, consideration of the (divergent) limit ε→ 0 shows that the relative frequency

of pure states of non-maximal algorithmic information goes to zero in the set of all pure

states as one demands perfect fidelity. One can thus reproduce in algorithmic information-

theoretic terms the measure-theoretic sparseness of states that are not fully entangled, not

only for bipartite pure states but also for pure states of multipartite systems of N qubits.

With all this machinery in place, an analogue of the result of (Janzing et al., 2016) for

quantum algorithmic information now follows by essentially identical reasoning.

No entanglement decrease: If the dynamics of a quantum system are given by a unitary

operator Ut on a finite-dimensional Hilbert space H of states |φ〉, then I(|φ〉 : Ut)
+
= 0 implies

that the quantum algorithmic information can never decrease when applying Ut to the initial

state, i.e.

Kε
Q(Ut |φ〉)

+

≥ Kε
Q(|φ〉)

for all |φ〉 ∈ H.

Proof: The assumption that I(|φ〉 : Ut)
+
= 0 entails that Kε

Q(|φ〉) +
= Kε

Q(|φ〉 | Ut). Unitary

time evolution is invertible, so |φ〉 can be computed from Ut |φ〉 and vice versa. This implies

that Kε
Q(|φ〉 | Ut)

+
= Kε

Q(Ut |φ〉 | Ut). From this, one obtains Kε
Q(|φ〉) +

= Kε
Q(|φ〉 | Ut)

+
=

Kε
Q(Ut |φ〉 | Ut)

+

≤ Kε
Q(Ut |φ〉). �

This is unsurprising in light of the facts reviewed above concerning the relative (in)frequency

of states of non-maximal complexity in the set of all pure states.

One can also recognize the same intuitive reasoning at work as in the result of (Janzing

et al., 2016): Suppose that Ut |φ〉 had less quantum algorithmic information than |φ〉. By

definition there would be a circuit CUtφ, the concatenation of CUt and Cφ, with a simpler

binary encoding than Cφ.43 That would entail one could obtain a shorter description of the

initial circuit Cφ by applying CUtφ to the reference state |0〉 and appending CU−1
t

to prepare

|φ〉: CU−1
t
CUtφ |0〉 = |φ〉. But by definition Cφ is the shortest binary encoding of any circuit

that will prepare |φ〉 from |0〉, so this is impossible.

C that prepares it, this is a straightforward adaptation of the standard proof that the relative frequency of
compressible strings in the set of all n-bit strings goes to zero as n→∞.

43Time evolution for a large class of Hamiltonians can be well-approximated as a quantum circuit CUt ; see
(Nielsen and Chuang, 2010, section 4.7).
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One may wonder how this is consistent with the measure-zero set of pure states whose

Schmidt rank decreases for a given dynamical evolution U(ti). The answer is simple: they are

excluded by imposing the Principle of Independent Mechanisms I(|φ〉 : Ut) = 0. Specifying

a particular time interval ti of dynamical evolution tells one quite a lot about the candidate

“cause” states for an entanglement-decreasing evolution. Indeed, it is only conditional on

knowing U(ti) that one can even specify such states. Even then they can only be picked

out from the set of all pure states in HN by including their dynamical behavior in their

description. They are thus ruled out as candidate “cause” states because they fail to satisfy

I(|φ〉 : Ut) = 0.

From a physical perspective No entanglement decrease is quite reasonable. It would

be baffling if a quantum system contained information about the dynamics, like the geometry

and strength of the potential, prior to having experienced them. It is obvious that the system

will have acquired some information about the dynamics after it is subjected to them. This

informational asymmetry will be encoded in the quantum state – in multiple ways, surely,

but I have focused on the extent to which this information about the dynamics is captured

by the degree of entanglement in the quantum state. This gives us a new criterion for causal

inference:

Given two states |α〉 and |β〉 related by unitary evolution, if Kε
Q(|α〉) < Kε

Q(|β〉) then

|β〉 was caused by time-evolving |α〉.

This criterion represents an improvement in several respects on the criteria identified at the

end of section 3. First, the introduction of a fidelity ε means that it no longer depends on

an unsatisfiable standard of precision, as noted above.

Second, the set of states for which it holds has finite measure in the set of all pure states

in HN , as discussed above. The algorithmic information Kε
Q is defined on patches of pure

states of small, but finite, volume and so states of non-maximal algorithmic information will

occupy finite volume in the set of all pure states in HN . A similar conclusion follows from

recalling that in the set of all pure states, the relative frequency of pure states of maximal

algorithmic complexity is ≈ 1− 22N log ε.

It is illuminating to contrast this with the case of classical statistical mechanics; for

example, Goldstein et al. (2017) estimate that for a system of N ∼ 1020 particles, the

relative volume of phase space occupied by microstates in the equilibrium macrostate is

≈ 1 − e−10−15N .44 The relative frequency of pure states of maximal algorithmic complexity

thus represents a difference in degree from the classical statistical mechanical case – possibly

44More precisely, this the volume occupied by the equilibrium macrostate for any energy shell in phase
space containing microstates with energies in the range E + ∆E.
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a dramatic degree, depending on the system size N and chosen fidelity ε – but not a difference

in kind.

Third, the criteria proposed in section 3 were too weak to identify a causal direction be-

tween two pure states each of less-than-full Schmidt rank, as noted in fn. 26. The algorithmic

information-theoretic criterion can do better: given two pure states of any Schmidt measure,

No entanglement decrease entails that the state with strictly lower algorithmic informa-

tion is the cause state. Finally, the criteria in section 3 were restricted to bipartite systems,

while this algorithmic information-theoretic criterion extends also to multipartite systems

of qubits. Note, however, that it does not straightforwardly extend to infinite-dimensional

systems, while the criteria in section 3 applied to both finite and infinite-dimensional systems.

One may naturally wonder if No entanglement decrease is an artifact of the chosen

definition of quantum algorithmic information. There is good reason to be optimistic on

this score. Many proposals for extending algorithmic information to quantum states assign

higher algorithmic information to entangled states (see (Mora et al., 2007) for a review) so

one can reasonably expect that some version of the conclusion here concerning Kε
Q could be

reproduced for other proposed measures of quantum algorithmic information. Additionally,

the measure here is defined using quantum gates – the unitary operations composing the

circuit Cφ – and one may be concerned that this limits its application to systems of qubits.

That concern can be alleviated: there is no principled obstacle to extending the use of

quantum gates beyond two-level systems to more interesting multi-level systems, or even

to quantum systems with continuous degrees of freedom Braunstein and Van Loock (2005),

and thus to extending the notion of algorithmic information employed in this paper to those

systems.

There is a significant limitation to this result, however, which is a well-known drawback

of any use of algorithmic information theory: the algorithmic complexity of an object is

not computable. Making use of this causal inference criterion in any practical setting would

thus require identifying contextually appropriate, computable substitutes for the algorithmic

complexity. Certain computable substitutes have already been proposed in different contexts;

for example, the “information-geometric approach” of (Daniušis et al., 2010; Janzing et al.,

2012). (The practical applicability of this method is itself limited by the fact that it requires

deterministic relations between cause and effect variables.) It is also the case that the

particular scenario here – inferring the causal ordering of two known pure states – is itself of

limited practical application in the laboratory; after all, one doesn’t typically find pure states

lying around in the world (to borrow a phrase from a referee). As a philosophical result,

it succeed in demonstrating that contrary to what Russell and modern-day Russellians say

about causation in “fundamental” physics, the time-symmetric nature of dynamical evolution
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does not make it impossible for that dynamical evolution to ground relations of cause and

effect. However, as a procedure intended for practical use in the laboratory, this is only

a small first step in applying the methods of Janzing, Schölkopf, and collaborators to a

quantum context.

That said, focusing solely on the strength of the causal inference criterion underwritten

by No entanglement decrease may be too parochial. Arguably the primary interest

of the criterion proposed here lies as much in the method used to reach it as its content.

By attributing to quantum states a measure of algorithmic information and incorporating

them into an empirically successful framework for causal inference, one can identify causal

asymmetries between quantum states related by unitary time evolution. All that is required

is a very weak assumption: the Principle of Independent Mechanisms. The extension of the

methods of (Janzing and Schölkopf, 2010; Peters et al., 2017) to quantum theories introduces

a novel set of mathematical and conceptual tools into the landscape for quantum causal

inference. The fact that those methods confirm a conclusion that can also be reached on

physical grounds provides a comforting verification of their reliability in this context, while

their ability to extend that conclusion in select ways encourages their broader exploration.

6 Conclusion

In this paper I have argued that one can give a general and principled identification of a

causal asymmetry between pure states of certain quantum systems related by unitary time

evolution. The physical fact underlying this identification is simple: interaction between

quantum systems entangles those systems but almost never disentangles them. Although

there are many ways to make that physical fact precise, I have focused on one in particular for

identifying causal asymmetry: the Schmidt rank (more generally, the Schmidt measure) of

the two quantum states in question. I argued for the presence of this asymmetry on physical

grounds in section 3, while in section 5 I did so by applying algorithmic information-theoretic

concepts and methods from causal inference. In both cases, the Principle of Independent

Mechanisms played a central role: the requirement that one ought to be able to specify the

“cause” state without any information about the dynamics identified the causal asymmetry.

Also in both cases, the asymmetry arose not in the laws governing dynamical evolution

themselves, but between the states related by that dynamical evolution. In this respect,

the asymmetry was identified by abandoning what (Woodward, 2020, section 11) calls the

“cause-in-laws” attitude: the belief that if the laws of dynamical evolution themselves do

not reflect an asymmetry, then there is no asymmetry to be found. Instead, my discussion

here is a reflection of the more general fact that “the directional features of causation are
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closely bound up with facts about the initial and boundary conditions of the systems we are

analyzing and the way in which these are related to or interact with the [laws] governing

those systems” (Woodward, 2020, section 11). That one can identify causal asymmetries in

the dynamical evolution of quantum theories is indication that, pace Russell and others, one

can locate a meaningful notion of causation in microscopic physics after all.

I want to conclude by highlighting a couple of philosophical questions that the previous

sections raise. The first is the relationship between causal asymmetry and temporal asymme-

try. Couldn’t the conclusions here about causal asymmetry be simply recast as conclusions

about inferring temporal asymmetry? That is, couldn’t this have been described as an exer-

cies in determining which of |α〉 or |β〉 was the initial or earlier state, rather than whether

|β〉 was caused by time-evolving |α〉 or vice versa? This is certainly how Janzing, Schölkopf,

and collaborators interpret much of their work; when applied to a time series or within the

context of physical theory, for instance, they frequently describe their aim interchangeably

as distinguishing between cause and effect or between past and future.

I think that it is quite reasonable to accept that in the setup I have considered, a causal

asymmetry entails a temporal asymmetry. Indeed, one might think that when applied to

states and dynamics in physical theories, some pre-theoretic understanding that causal asym-

metries are almost always asymmetries in time is what lends the Principle of Independent

Mechanisms its plausibility. However, I ultimately do think that what is being inferred from

these methods is, first and foremost, a causal relationship. One reason for thinking this is

that the methods of Janzing et al. that I use in this paper have been shown to perform

well at distinguishing cause from effect even for data sets that are not time series data (e.g.

the relationship between altitude and temperature, or longitude and precipitation in (Mooij

et al., 2016).). That suggests that the structure being identified by these methods is causal

structure; it just so happens that in the restricted setup being considered in this paper, that

causal asymmetry coincides with the temporal asymmetry.

Second, one might wonder how this relates to other recognized temporal asymmetries

in quantum theories. The clearest relationship is with decoherence.45 As is well known, in

quantum systems of many particles the entanglement between any two subsystems rapidly

decoheres as each subsystem interacts, and becomes increasingly entangled, with other parti-

cles in the system.46 It essentially never happens that a multiparticle system that is initially,

or evolves into, a highly entangled state is later disentangled through some series of inter-

actions between the particles. This is a manifestation of the general physical fact at the

45See (Wallace, 2012, chapter 9) for a discussion of decoherence and temporal asymmetry.
46In language that may be more familiar: typically one splits the multiparticle system into two and calls

the subsystem(s) of interest “the system” and the rest of the particles “the environment”. The entanglement
between the subsystems of interest is then decohered by their respective entanglements with the environment.
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foundation of this paper: interactions between quantum systems generically entangle those

systems but almost never disentangle them. The non-unitarity of time evolution associated

with decoherence that arises when one traces out all but the subystem(s) of interest is the

sharpest formal sense in which decoherence is asymmetric in time. There is an asymmetry

that arises prior to the tracing out, however: the increasing entanglement between subsys-

tems.47

With this in mind, one could focus on the physical fact underlying my formal discussion

of causal inference: the generic creation of entanglement between quantum systems by in-

teractions. One could then view my discussion as merely one way to formalize that fact in a

restricted context, in a way chosen specificially to be amenable to a particular set of formal

methods of causal inference. In that case, one could see that physical fact as identifying

an asymmetry that is conceptually prior both to the asymmetry I identifed using causal

inference methods and to the asymmetry introduced when, after two entangled subsystems

are decohered through interactions with some “environment”, that environment is traced

out to produce a non-unitary evolution for the subsystems of interest. With that attitude,

the causal asymmetry I have identified for bipartite (and multipartite) pure states is just the

maximally microscopic manifestation of the very same physical conditions that produce the

asymmetry manifest in decoherence.

Finally, I have spoken consistently of inferring or identifying causal asymmetry. As this

epistemic language suggests, I have not primarily been concerned with providing an analysis

of what causation or causal asymmetry is, in any strong metaphysical sense, but rather

with certain circumstances in quantum theories under which one can identify it. That said,

empirically accessible manifestations of an object in, or property of, the natural world –

and thus successful methods for detecting that object or property – are not independent of

the way that object, or that property, actually is. By focusing on how one can learn about

causation under particular circumstances, one can hope to learn something about the worldly

properties that provide the physical basis for, or ground, our reasoning about causal relations

in various contexts. I am particularly influenced on this score by (Woodward, 2020):48

47As I mentioned in section 1, the relationship between entanglement and the direction of time has received
extensive exploration.

48See also (Eberhardt, 2009, p. 914):

“. . . metaphysical accounts have provided essentially no guidance for methods of discovery
because it remains unclear how they could be operationalized into discovery procedures that do
not depend on the availability of causal knowledge in the first place. Epistemological headway
was made by a completely different strategy that largely ignored metaphysical considerations.”

I would only emphasize that I think that once one has made this epistemological headway, it can be valuable
to use it as a basis for circling back to address some of the metaphysical considerations that one initially set
aside to make epistemic progress.
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This is the project, alluded to earlier, of elucidating the worldly infrastructure

that underlies and grounds assessments of causal direction. I see this project as

connecting epistemological concerns having to do with how we find out about

causal direction with the “what is out there” concerns of metaphysicians, al-

though my answer to the what is out there question does not involve any kind

of elaborate metaphysics. My general picture is that causal thinking “works” to

the extent that it does because it picks up on or is supported by certain generic

features of our world . . . (Woodward, 2020, p. 5).

The causal inference methods of Janzing, Schölkopf, and collaborators, or of (Pearl, 2009)

or (Spirtes et al., 2000), represent relatively unified methodological strategies for identifying

causal relations in the world without presuming any unified metaphysical ground of those

relations. These methodological frameworks allow that the physical basis, or metaphysical,

ground of any particular causal relationship identified by those methods will likely vary with

the worldly situations to which those methods are applied. Aside from the satisfaction of

certain statistical or algorithmic information-theoretic properties, there may be little in their

respective worldly grounds to link them together as causal relationships ; the relationships

may be metaphysically necessary or contingent, may be fundamental or emergent, and so

on. The ability of these methodological frameworks to act as reliable diagnostics for such

a diversely instantiated class of causal relations is part of their immense epistemic value.

In the case I have considered, the worldly structure that grounds the identifiation of a

causal asymmetry is a differential degree of entanglement in two states related by unitary

time evolution. This asymmetry, in turn, is grounded in the physical fact that interactions

between subsystems in quantum theories generically produce entanglement. The fact that

one can identify this causal asymmetry using methods of causal inference reflects not merely

a fact about causal epistemology, but a fact about the nature of the physical world.
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Procopio, Časlav Brukner, and Philip Walther. Experimental verification of an indefinite

causal order. Science advances, 3(3):e1602589, 2017.

Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

Bertrand Russell. On the notion of cause. Proceedings of the Aristotelian society, 13:1–26,

1912.

Robert G Sachs. The physics of time reversal. University of Chicago Press, 1987.

J.J. Sakurai and Jim Napolitano. Quantum Mechanics: Second Edition. Addison-Wesley,

2011.

44



Anna Sanpera, Dagmar Bruß, and Maciej Lewenstein. Schmidt-number witnesses and bound

entanglement. Physical Review A, 63(5):050301, 2001.

David Schmid, John H Selby, and Robert W Spekkens. Unscrambling the omelette of

causation and inference: The framework of causal-inferential theories. arXiv preprint

arXiv:2009.03297, 2020.

Daniel V Schroeder. Entanglement isn’t just for spin. American Journal of Physics, 85(11):

812–820, 2017.

Anthony J Short and Terence C Farrelly. Quantum equilibration in finite time. New Journal

of Physics, 14(1):013063, 2012.

Lawrence Sklar. Physics and Chance. Cambridge University Press, 1993.

J Sperling and W Vogel. The schmidt number as a universal entanglement measure. Physica

Scripta, 83(4):045002, 2011.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, pre-

diction, and search. The MIT Press, 2000.

Ward Struyve. Time-reversal invariance and ontology. philsci-archive preprint:17682, 2020.

Barbara M Terhal and Pawe l Horodecki. Schmidt number for density matrices. Physical

Review A, 61(4):040301, 2000.

Jayne Thompson, Andrew JP Garner, John R Mahoney, James P Crutchfield, Vlatko Vedral,

and Mile Gu. Causal asymmetry in a quantum world. Physical Review X, 8(3):031013,

2018.

Christopher G Timpson. Quantum information theory and the foundations of quantum me-

chanics. OUP Oxford, 2013.

Maarten Van den Nest. Universal quantum computation with little entanglement. Physical

Review Letters, 110(6):060504, 2013.
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