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Abstract

The research program of eXplainable AI (XAI) has been developed
with the aim of providing tools and methods for reducing opac-
ity and making AI systems more humanly understandable. Unfor-
tunately, the majority of XAI scholars actually classify a system
as more or less opaque by confronting it with traditional AI sys-
tems such as linear regression models or rules-based systems, which
are usually assumed to be the prototype of transparent systems. In
doing so, the concept of opacity remains unexplained. To overcome
this issue, we view opacity as a concept whose meaning depends
on the context of application, and on the purposes and characteris-
tics of its users. Based on this, in this work, we distinguish between
access opacity, link opacity and semantic opacity, hence providing the
groundwork for a taxonomy of the concept of opacity for AI systems.
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1 Opacity: one word, many things

The incredible success of artificial intelligence (AI) systems in recent years is
considered mostly a consequence of the recent advancements in machine learn-
ing (ML) techniques, which make artificial agents able to extract information,
learn knowledge and build models from data on their own. Unlike more tradi-
tional AI systems, those based on ML possess an impressive inferential power
that allows them to analyse large amounts of data and identify patterns that
neither the human eye nor traditional statistical methods would likely ever
be able to discover (Alpaydin, 2021). Unfortunately, these systems suffer from
the problem of being opaque, or, as they say, ‘black boxes’. Roughly speaking,
that a ML system is opaque means that it is difficult for users to know how
it works, as well as to interpret its decisions at various levels and evaluate its
behaviour against scientific and ethical norms (Zednik, 2019).

Given its impact on various spheres of contemporary society, the opacity
problem has recently caught the attention of many scholars, both from engi-
neering, philosophy, and the social sciences. In general, engineers have directed
their efforts towards the development of methods and tools to mitigate opacity
and obtain explainable AI systems (Adadi & Berrada, 2018; Guidotti, Mon-
reale, Turini, Pedreschi, & Giannotti, 2018). Philosophers and social scientists,
on the other hand, have focused on analysing the concept of opacity, as well as
its epistemological, ethical, social and legal implications (Burrell, 2016; Durán
& Formanek, 2018; Héder, 2020; Miller, 2019; Zednik, 2019). In recent years,
their efforts have led to the birth of eXplainable AI (XAI), a new area of
research aimed at rendering ML systems less opaque and more humanly under-
standable (Samek, Montavon, Vedaldi, Hansen, & Müller, 2019). Despite the
extensive technical and philosophical literature on the subject, however, both
the exact meaning of opacity and the reasons leading users to consider certain
systems more opaque than others still remain unclear. In the literature, there
exist a sort of “received view”1 that considers opacity a consequence of the
high-complex and sub-symbolic design of certain ML systems, which prevents
users from understanding their structure and functioning and interpreting their
behaviour on various levels. This received view relies on the following simple
considerations. At a very abstract level, we can describe the behaviour of a
ML model in terms of a function f mapping specific features of the input into
predictive outcomes (an example is a function f that maps the features “high
bloody pressure” and “obesity” into the predictive outcome “high probability
of a hearth attack”). In more traditional statistical ML systems (e.g., linear
regression) f is typically a function defined in a low-dimensional space that can
be easily turned into an analytical expression (e.g., an equation) or a graphical
representation (e.g., a plane in a 3-D space) understandable by humans. When
considering symbolic ML systems such as decision-trees (DT) or rules-based
systems generated by inductive logic programming (IRBS), even if f might be
difficult to turn into a representation that is understandable by humans, the

1See e.g. in Adadi and Berrada (2018); Arrieta et al. (2020); Baldi (2021); Doshi-Velez and Kim
(2017); Guidotti et al. (2018).
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behaviour of the system can be understood by reconstructing the inferential
steps leading to the outcome in terms comprehensible by users. Differently,
in models generated by highly-complex sub-symbolic ML systems (e.g. deep
neural networks or support vector machines), f is a non-linear function over
a high-dimensional space that is usually impossible to turn into a represen-
tation understandable by humans. Furthermore, the sub-symbolic nature of
these models makes it hard to reconstruct in comprehensible terms the steps
leading to an outcome. As a consequence, their inner structure and functioning
remain obscure (Baldi, 2021).

Consistently with these considerations, highly-complex sub-symbolic sys-
tems such as deep learning neural networks (DNN) and support vector
machines are usually described as ‘black boxes’, whereas “[i]n the state of the
art, a small set of existing interpretable [transparent] models is recognized:
decision tree, rules [rule-based systems], linear models”(Guidotti et al., 2018,
p.7) since these less-complex or symbolic models are easily understandable and
interpretable for humans. Analogously, in (Arrieta et al., 2020, Sec. 2.5.1), the
authors claim that “[t]ransparent models convey some degree of interpretabil-
ity by themselves”, that is, their users can immediately understand the process
followed by the model to produce any given output, each of their parts can
be explained, and the models can be “simulated or thought about strictly by
a human”, as it is precisely the case with linear/logistic regression models,
decision trees, and rule based systems.

Although relevant, these considerations put all the emphasis on the intrin-
sic design of the ML systems, failing to recognize that also the context of use,
the users’ cognitive skills, and the purposes for which an ML system is involved
may affect its perceived opacity, respectively, transparency. In fact, it is not
uncommon that users deem a system transparent in one context but opaque in
another. Consider for example DNNs. Consistently with the received view, such
complex sub-symbolic systems are usually considered opaque. However, there
exist contexts where DNNs are considered more transparent than symbolic
models. Computational neuroscience is an example of one such context. There,
DNNs are employed to model brain networks implementing high-level cogni-
tive functions, such as human perception (Cichy & Kaiser, 2019). Contrary
to traditional symbolic models, DNNs not only can accurately simulate high-
level cognitive processes but are also able to explain how a purely sub-symbolic
architecture, working similarly to the human brain, can implement them. At
the same time, there are contexts in which both complex sub-symbolic mod-
els and symbolic ones are deem equally opaque. An example is the use of ML
models to predict pathological phenotypes from the analysis of genome muta-
tion. In this context, it is common to consider both DNNs and decision trees
equally opaque since both do not shed light on either the molecular pathways
or the mechanisms responsible for the predicted pathological phenotypes.

These and other similar examples highlight the fact that opacity does
not have a single and well-defined meaning, but is rather a plural concept.
Stated otherwise, kinds of opacity and reasons to deem a system opaque are
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many and different; their clarification and characterisation constitutes a crucial
philosophical work. Nonetheless, at the moment, there are very few attempts
available to carry out a conceptual analysis of opacity. Those proposed by
Burrell (2016), Creel (2020) and Boge (2021) are among the most relevant.

In her analysis, Burrell (2016) identifies three different manifestations of
opacity: ‘opacity as intentional corporate or state secrecy’, ‘opacity as technical
illiteracy’, and ‘opacity as the way algorithms operate at the scale of applica-
tion’, each related to a different source. Differently, Creel (2020) starts from
the fact that the structure and functioning of AI systems can be described
at three different levels of abstraction. Hence, she distinguishes between three
different forms of opacity: ‘run opacity’, ‘structural opacity’, and ‘algorithmic
opacity’, each one related to users’ understanding of the structure and func-
tioning of the system at a given level of abstraction. “Algorithmic opacity” is
related to the abstract specification level and concerns users’ understanding of
the algorithm describing the overall system’s behaviour; “structural opacity”
is related to the implementation level and concerns the users’ understanding
of the program (code) implementing the algorithm; “Run opacity” is related
to the physical execution level and concerns users’ understanding of the physi-
cal process executing the program. Both these taxonomies make some progress
in characterizing the plural nature of “opacity” but still miss a dimension of
opacity, which, instead, is recognized by Boge (2021) and concerns the funda-
mental distinction between understanding of a model and understanding with
a model. In the context of scientific research, models are not generally interest-
ing per-se but only as they allow scientists to understand something about the
world. Models generated by ML systems, however, are typically mere predic-
tive models, i.e., they do not convey information relevant to understand why
and how phenomena occur, but simply to predict their occurrence. Actually,
this represents one of the major reason why scientists tend to consider such
models opaque. However, the meaning they attribute to the term “opacity” is
clearly different from the usual one in XAI. It does not refer to users’ under-
standing of the ML model but to users’ (in)ability to understand something
about target-phenomena with a ML model. Despite Boge (2021) marks a fun-
damental progress over the previous taxonomies, in our opinion his analysis
remains too broad and needs to be deepened. In fact, as discussed in the fol-
lowing sections, a further inquiry reveals that the two dimensions identified by
Boge (2021) actually include many different specific forms of opacity. Further-
more, there exists kinds and sources of opacity that neither Boge (2021) nor
Burrell (2016) and Creel (2020) have explored, which notwithstanding deserve
a careful analysis.

Taking these considerations into account, we propose a more detailed anal-
ysis that starts from the identification of three macro-dimensions of opacity,
and then refine further each of them by including specific forms, as depicted
in Figure 1. The main dimensions of opacity are called, respectively, access
opacity, link opacity and semantic opacity.
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Fig. 1: Map of the different forms of opacity

2 Access opacity

Access opacity concerns the capability of understanding the structure and
functioning of an AI system. It occurs when human users have limited epistemic
access to elements that are relevant for explaining, predicting, and controlling
the behavior of the considered system.2 Notice that by “having an epistemic
access to an element”, we mean the ability to figure out the location of the
element and the functional role it plays in the overall structure and functioning
of the system.

We identify three main factors that may limit epistemic access and thus
cause access opacity.3 The first coincides with the transparency policies
adopted by the system’s designers, who might deliberately obscure some rel-
evant details of the system’s structure and functioning for either commercial,
competition, or privacy reasons. The second is related to the stakeholder’s
background knowledge and skills. Intuitively, the more a stakeholder is famil-
iar with a given AI system, the more they can understand, predict and control
the system’s behavior. Finally, the third arises with the complexity of the sys-
tem’s structure, conceived as a function of both the system’s size4 and format5

(López-Rubio & Ratti, 2021). The intuition is that, as human users possess
limited cognitive resources, their ability to explain, predict and control the

2The notion of ‘epistemically relevant element’ is borrowed from (Humphreys, 2009).
3They are related with the three forms of opacity described by Burrell (2016).
4I.e., the number of its elements and their mutual relations.
5I.e., the type of elements it includes and how they are related.
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system’s structure and functioning decreases as the complexity of the system
increases.

Once clarified these general aspects, we are ready to deepen some details.
In doing so, we will analyze the different forms in which access opacity may
occur and identify the specific causes related to each of them.

First of all, we should note that an AI system based on machine learn-
ing techniques is a complex computational architecture that includes distinct
components:

1. the training sample: the data-set used to train the system.
2. the training engine: the computational process that allow the system to

learn from data during the training process;
3. the learned model : the final model of data obtained after running the

training engine on a specific training sample;

Each component plays a fundamental role in determining the overall
behaviour of the AI system and, as we will clarify in the following, it is related
to a specific form of access opacity.

2.1 Opacity of the training sample

This form of access opacity occurs when users have limited epistemic access to
the data included in the samples used to train the model. There are several cir-
cumstances where this may happen. A first circumstance is when the system’s
constructors decide to not adopt data transparency policies, and therefore do
not provide or partially hide the training sample, generally because of ethical
or commercial reasons. A second circumstance is when users have difficulties
to interpret the training sample and check the reliability of the data it contains
because of its complexity. This scenario is very common when dealing with big
data samples.6 The large size and the variety of data-formats these contain, in
fact, makes it hard to check their reliability and identify potential sources of
mis-training and biases (Marr, 2015). A third circumstance occurs when the
training process takes place in an open environment, such as the web or the spe-
cific part of the world an autonomous robot or a self-driving car is interacting
with. In general, to determine in retrospect what data influence the training
process in an open environment is practically impossible. The risk that train-
ing a system in an open environment produces undetectable biases in the data
model that influence the system behavior, therefore, is high.7 Finally, a fourth
circumstance is when a stakeholder cannot make sense of the data included in
the training samples because the transformations applied during the construc-
tion of the training samples bring them into an incomprehensible format. This
scenario is very common when dealing with DNNs. In fact, the DNNs specific
training procedures cannot generally be applied to raw data but require these
to be mapped in an adequate space, technically called the features space. In

6For an overview of the different meanings of the term big data, see: Kitchin and McArdle
(2016).

7The Google tool Quickdraw provides a good example of an AI system trained in an open
environment.
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many cases, the transformations applied to map the raw data into the feature
space alter its format so much that they eventually result incomprehensible
to users. Furthermore, these transformations are usually irreversible, making
impossible for users to go from the features space back to raw data (Bishop,
2007).

2.2 Opacity of the training engine and of the learned
model

In technical language, training engine refers to the computational architecture
that allows an AI system to learn from data. Learned model8, instead, refers
to the model of data obtained by training the AI system on a given sample
through a proper engine. Differently from the training sample, which is techni-
cally a database, the training engine and the learned model are computational
artifacts9.

According to a widely accepted tradition in the philosophy of computer
science, the structure and functioning of computational artifacts may be
described and understood at different levels of abstraction (LoA for short),
namely collections of interpreted type variables, each one modeling an entity or
activity relevant to characterizing the structure and functioning of the artifact
(Floridi & Sanders, 2004; Primiero, 2019). Here, we adopt the classification
proposed by Primiero (2019), who distinguishes between five different LoAs:

1. The Functional Specification Level (FSL), which consists of an abstract-
mathematical specification of the artifact’s overall behaviour in terms of
the function it computes;

2. The Design Specification Level (DSL), which specifies the procedures for
computing the function identified at the FSL generally in terms of an
abstract state-transition machine;

3. The Algorithm Design Level (ADL), which consists of the algorithmic (oper-
ational) specification, generally in terms of rules, of the procedures specified
at the DSL;

4. The Algorithm Implementation Level (AIL), which consists of the transla-
tions in terms of high and low-level programs of the algorithms specified at
the ADL;

5. The Algorithm Execution Level (AEL), which consists of the physical
executions, on hardware, of the programs specified at the AIL;

Each LoA provides a different description of the artifact’s structure and
functioning, which may be suitable and relevant for some users but insufficient
or inadequate for others.10 For instance, a molecular biologist interested in
using AI to predict cancer will probably deem sufficiently detailed a description

8Notice that, here we use the term model in a very broad sense. In fact, the specific nature of
the learned model varies depending on the AI system and the kind of ML methods applied, some
methods (e.g., Clustering methods) produce models that are nothing but compact descriptions of
data, whereas others generate patterns that can be used to generate predictive outcomes.

9For a philosophical perspective on this concept, see Turner (2018).
10In this respect, our taxonomy extends that proposed by Creel (2020).
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provided at the FSL. Differently, a computer scientist in charge of checking
the reliability of the training procedures, or the learned model, will probably
be interested in a more fine-grained description that may also include details
about the algorithms (ADL), the programs (AIL), and even the hardware
(AEL). Consequently, whether and to what extent an artifact results opaque
will depend both on who the users are and which LoAs are accessible to them.
In general, we can say that a given computational artifact A is opaque for a
certain stakeholder S if and only if S has limited epistemic access to the LoAs
of A suitable for their cognitive skills and relevant to their purposes. This
reasoning holds both for the training engine and the learned model as both
are computational artifacts.

3 Link opacity

Link opacity concerns the use of AI systems to model phenomena in scien-
tific research. It occurs when a system that is used to model a given target
phenomenon conveys inadequate or insufficient information about the ele-
ments that are relevant for explaining, predicting, and controlling such a target
phenomenon.11

In general, ML systems are very good at extracting information from large
amounts of data and generating highly accurate predictive models without the
necessity of background knowledge or human intuition. This ability confers
them a clear advantage over more traditional tools in the study of highly
complex phenomena (e.g., the fluctuations in financial markets in economics
or gene regulation in biology) that represent the target of much contemporary
science. For this reason, these systems have quickly spread in several sectors
of scientific research, leading to a progressive replacement of the standard
scientific methodology12 with a data-centric approach based on the collection
and the AI-supported analysis of observational data (Leonelli, 2016).

In reality, as we have recently argued in (Facchini & Termine, unpublished),
we can distinguish between two different kinds of data-centric approaches to
scientific research: a data-informed one, which preserves the classical mod-
els and ways of scientific explanation despite the intensive use of AI systems
to perform statistical analyses, and a fully data-driven one, characterized by
theory-free scientific research and the replacement of classical models with
those generated by ML algorithms, which, however, are very different from
the former. In fact, while models usually involved in scientific research repre-
sent causal pathways, mechanisms, and laws governing target-phenomena, ML
models are nothing but functions correlating features of observational data

11We call this form of opacity ‘link opacity’ to emphasise the fact that it undermines our ability
to establish a link between the model and the phenomenon it is intended to represent. Stated
otherwise, it undermines our ability to establish whether a model is an ‘actual’ representation of
the target phenomenon or just a possible one. In this regard, the notion of ‘link-opacity’ resembles
that of ‘link-uncertainty’ introduced by Sullivan (2020), which concerns the extent “to which [a
ML] model fails to be empirically supported and adequately linked to the target phenomena”.

12By standard scientific methodology we mean the approach based on the formulation and the
experimental evaluation of hypotheses explaining the observable facts.
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with predictive outcomes. Hence, although being powerful from a predictive
point of view, they are often unable to provide sufficient information to explain
how and why the target phenomena occur and to figure out ways for control-
ling them (Baldi, 2021). This point highlights a huge epistemic limitation of
the fully data-driven approach. Regardless of whether one takes a realistic or
instrumentalist stance towards scientific knowledge, in fact, scientific under-
standing requires more than mere statistical associations. It needs information
about the causes of the phenomena, the mechanisms that produce them, and
the laws that regulate their functioning. As argued by de Regt (2017), the lack
of this type of information impedes our ability to explain, intervene on, and
control the target phenomenon, and thus to achieve what he calls pragmatic
understanding. For this reason, when an AI system is unable to provide scien-
tists with information that is essential for the pragmatic understanding of a
phenomenon, they tend to consider it as opaque.

Notice that, similar to access opacity, link opacity also occurs in differ-
ent forms as the elements that are relevant for explaining, predicting, and
controlling a given target phenomenon vary depending on the nature of the
phenomenon under consideration. In general, we may identify three main forms
of link-opacity, each related with one of the three fundamental notions that
were previously mentioned: cause, mechanism and law. We refer to these forms,
respectively, as causal opacity, opacity of the mechanisms and opacity of the
laws.

3.1 Causal Opacity

Causal opacity occurs when an AI system cannot reconstruct the causal path-
ways leading to the occurrence of the target-phenomena. As argued by de
Regt (2017), the identification of the causal pathways is essential for the
understanding of target-phenomena because it allows scientists:

• to distinguish between the variables necessary and sufficient for the occur-
rence of the target phenomenon from those that are merely related to
it,

• to predict the effects generated by external interventions and, therefore, to
understand how to control the target phenomenon by acting on the variables
related to it,

• to distinguish between genuine statistical correlations,13 grounded on the
existence of actual cause-effect links, and spurious ones, which are the by-
product of statistical paradoxes14.

As pointed out in (Pearl, 2019; Pearl & Mackenzie, 2018), the ability of
computational systems to recognize causal pathways strictly depends on their
ability “to choreograph a parsimonious and modular representation of their

13We do not mean here that a statistical correlation between a variable x and a phenomenon y
is genuine if and only if x is a (proximal or distal) cause of y. Instead, the correlation between x
and y is genuine even if x is related to y because of a common cause or effect.

14A famous example is the well-known Simpson’s paradox, see (Pearl, Glymour, & Jewell, 2016;
Pearl & Mackenzie, 2018).
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environment, interrogate that representation, distort it by acts of imagination
and finally answer ‘What if?’ kind of questions” (Pearl, 2019, p.1). These,
in particular, may be either statistical, interventional, or counterfactual ques-
tions. The former concern the statistical regularities observed in the naked
data and have the form “what if I see x?”; for example: “what if I see salt in the
water?”. The second one concern the consequences of intervention and has the
form “what if I do x?”; for example: “what if I add salt to the water?”. Finally,
the latter concern some counterfactual state of affairs and have the form “what
if I had done x?”, for example: “what if I had added salt to the water?”, or the
contrastive form “what if I had done y instead of x?”; for example: “what if I
had added sugar instead of salt?”. Causal information is classifiable in terms
of the kind of what-if questions it can answer. The classification generates a
three-layers hierarchy where “questions at the level i (with i = 1, 2, 3) can
be answered if and only if information from level j ≥ i is available” (Pearl,
2019, p.1). The three layers are respectively the association layer (AL), the
intervention layer (IL) and the counterfactual layer (CL). Information about
statistical regularities is enough for answering questions at the AL and can be
inferred directly from the observational data using conditional expectation. At
the IL the information requested no longer concerns only what we observe but
what we can observe if we perform a certain action. At the CL, it concerns
what we would have observed if a certain condition that did not occur had
occurred. We can infer this information by using particular inference engines
called Structural Causal Models (SCM), which, however, require more than
naked data. In particular, they require some background hypotheses usually
encoded in the form of a graphical diagram15.

Available ML systems usually work at the AL. They do not possess imagi-
nation and thus cannot figure out hypotheses beyond the observed data. This
inability prevents them from learning causal models and is the reason of their
link opacity.

3.2 Mechanisms Opacity

In many fields of science, it is common to understand phenomena in terms of
mechanisms, i.e., “entities and activities organized in such a way that they are
responsible for the phenomenon.” (Illari & Williamson, 2011, p. 120). The rea-
son is that thinking in terms of mechanisms presents some clear epistemological
advantages. It permits to manage with complexity and lead highly-complex
phenomena back to simpler, more fundamental facts (Bechtel & Richardson,
2010). It allows us to provide an explanation by stating a description, as “[by]
providing a description of the mechanism responsible for a phenomenon, one
provides an explanation for why that particular phenomenon occurs and why it
has the proprieties it does” (Halina, 2017, p.217). Finally, it supports general-
ization because mechanisms “work in the same or similar way under the same
or similar conditions” (Craver & Darden, 2013, p.19). Formulating a mecha-
nistic explanation, however, needs much more than mere observational data.

15On this topic, see (Pearl, 2019; Pearl et al., 2016; Pearl & Mackenzie, 2018).
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It requires to hypothesize what simpler, more fundamental entities and activi-
ties may produce the target phenomenon by interacting with one another. The
reason is that mechanistic thinking relies on heuristics that are very different
from those used to train AI systems. Actually, the nature of these heuristics
is a matter of debate. In their famous work on mechanistic reasoning, Bech-
tel and Richardson (2010) identify two mains reasoning strategies followed by
scientists to identify mechanisms’ structure and functioning, which they name
decomposition and localization. Roughly, the former consists of decomposing
the overall phenomenon into low-level activities while the latter consists of
localizing these activities in components of the system identified as responsible
for producing the target phenomenon. A different account of mechanistic rea-
soning is proposed by Craver and Darden (2013). According to these authors,
mechanistic reasoning is a hypothesis-driven practice that combines scientific
exploration, hypotheses-formulation and experimental manipulation. Loosely
speaking, the search for mechanisms is an iterative process consisting of the
iterated application of specific reasoning and experimental techniques that
allow scientists to refine a raw hypothesis about the mechanism’s structure
and functioning, generally in the form of a sketch representation full of black
boxes, until obtaining a sufficiently clear and detailed description. Regardless
of the details, in both cases, the information necessary to understand a mech-
anism requires hypotheses that cannot be inferred from mere observational
data but need a fundamental contribution of imagination. Since the heuristics
implemented in AI systems are unable to formulate this type of hypotheses,
these systems cannot generate mechanistic explanations, and are eventually to
be considered link-opaque.

3.3 Laws Opacity

Since its birth, discovering the laws that govern phenomena has represented a
fundamental aim of science. From an epistemological point of view, scientific
laws are essential to the understanding of phenomena. They allow scientists
to explain why phenomena occur in a way rather than another, to predict
under what circumstances they occurs, and to figure out how to act for con-
trolling their occurrence. Philosophers of science have long debated the nature
of laws, taking sides on two opposing positions: the instrumentalist and the
realist.16 A detailed discussion of these specific positions is beyond the scope of
this work. Here we simply note that, in scientific practice, the term ‘scientific
law’ may refer to different things. In some cases, ‘law’ denote sentences that
describe mere patterns of regularities between observable variables. An exam-
ple is Charles’ law in thermodynamics, which shows the relationship between
the volume and the temperature of a gas. These kinds of laws do not sub-
stantially differ from the functions learned by ML algorithms and, indeed, a
ML system might easily infer Charles’ law by analyzing a sufficiently large
sample of data. In other cases, a law is instead a description of the structural
relationships between observable variables and variables that:

16On the debate about instrumentalists and realists, see (Psillos, 2005).
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• denote unobservable entities, whose existence scientists theoretically hypoth-
esize but cannot statistically infer from observational data,

• scientists consider the main causes of the target class of phenomena.

Gauss’s law, which relates the electric charge and the magnitude of the electric
field17, is an example of the latter.

Both types of law coexist in scientific practice, but scientists tend to con-
sider laws of the second type epistemologically more relevant. Interestingly,
the reason is not that they believe in the actual existence of unobservable
entities, but because these laws allows them to bring the observed phenomena
back into a single representation of reality and figure out how to control their
occurrence. The epistemological value of these laws is therefore independent
from the ‘realists vs instrumentalists’ debate and have pragmatical roots. For
this reason, a science including only the first type of laws is very difficult, and
maybe impossible, to imagine.

Unfortunately for AI systems, the identification of laws of the second kind
is a purely theoretical work. It relies on the human mind’s ability to go beyond
the observable phenomena and figure out in what the supposed basic structure
of reality might consist. ML-based AI systems do not possess this ability, and
as a result scientists tend to regard them as opaque.

4 Semantic Opacity

In information theory, it is common to distinguish between a structural and
semantic aspect of information. The former concerns the mathematical and
physical properties of information, whereas the latter concerns its meaning. In
the case of ML systems, the structural aspect coincides with the properties of
the model that the system learns from data, which can be specified at different
LoAs as explained in Section 2. These properties are relevant for understanding
how the learned model works and, therefore, are connected with the problem of
access opacity mentioned above. Stated otherwise, the opacity of the structural
aspects of information is a form of access-opacity and, more specifically, an
occurrence of access-opacity of the learned model.

Differently from structural aspects, semantic aspects coincide with the
potential semantic contents of the information stored by the learned model.
They are not directly relevant for determining the functioning of the model.
Nevertheless, understanding these aspects is fundamental for users to grasp
and interpret the information that the system learns and manipulates. In fact,
it happens that if the format used to store and manipulate information pre-
vents users from giving it a meaningful interpretation, then users deem the
system opaque. This sense of “opacity”, however, cannot be included into any
of the kinds described so far. It represents a new form of opacity that we call
semantic opacity.

17The electric field is an unobservable entity theoretically hypothesized to explain remote
interaction among particles.
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(a) System A
(b) System B

Fig. 2: Two expert systems

Semantic opacity can occur in three different circumstances. First, when the
learned model lacks a clear, well-defined semantic interpretation that allows
users to make sense of both the information it stores and the inferences it
performs. Second, it may take place when a semantic for the learned model
is available but it is not comprehensible because of the users’ limited cogni-
tive resources, inadequate background knowledge, or lack of relevant epistemic
skills. Third, it can arise when the semantics of the learned model provides
the stored information with a meaning that is inadequate for the context.

In what follows we distinguish between two forms of semantic opacity. The
first one concerns the content of the information learned by a model, whereas
the second one concerns the inferences used to manipulate such information.
We call these two forms of opacity content opacity and inferential opacity
respectively.

4.1 Content opacity

This form of opacity occurs when the format used by an AI system to store
information prevents users from grasping its semantic content and using it for
their purposes. Notice that each type of AI system adopts a peculiar format
to represent the information learned from the data. In general, the choice of
the format affects the users’ ability to provide the stored information with an
interpretation that allows them to grasp its semantic content.

By way of example, let us compare the two expert systems A and B
reported in the Figures 2a and 2b.

A is an example of rules-based system generated through inductive logic-
programming and used in the context of medical decision-making to predict
whether a patient will suffer from colour blindness. ML systems such as A store
the information learned from data by means of logical sentences stemming
from a given formal language that are called hypotheses, e.g.:

colour blind(x)← has mutation on X(x) ∧male(x)

Hypotheses are collected in the knowledge base (KB) and manipulated
through iterative applications of the rules included in the inference engine
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(IE) in order to generate predictive outcomes. It is easy to see how a stan-
dard Tarskian semantics, which maps the syntactic elements (i.e., predicates,
variables, quantifiers, Boolean connectives) to features relevant to the context
(i.e., genetic mutations, sex, disease, patients), may easily provide the infor-
mation stored in the KB with a meaningful interpretation that allow users to
grasp its semantic content.

Things are different with a DNN such as B, which stores the information
learned from data by means of “weights”, i.e., numerical parameters connect-
ing the various nodes in the multi-layer network. Providing these parameters
with an interpretation is hard. In fact, they usually have a mere instrumental
meaning, that is, their values are chosen simply as those values that allow the
network to minimize the prediction error (Baldi, 2021). They lack any mean-
ingful semantic interpretation that would allow users to grasp the content of
the stored information.

4.2 Inferential opacity

This form of opacity occurs when the format of the inferences used by an AI
system to manipulate information prevents users from making sense of the
reasoning paths it follows. As for the format used to represent the information
learned from the data, each type of AI system uses a specific kind of inferences
to manipulate information. For instance, a rules-based system such as A in the
example above manipulates information by applying the rules included in the
IE to the hypotheses stored in the KB. Conversely, a DNN such as B manipu-
lates the information using analytical calculations that merge input data and
learned parameters. Unfortunately, it is not always possible to provide infer-
ences with an interpretation meaningful for the context of use that allows
users to reconstruct the reasoning pathways followed by the system in humanly
understandable terms. In some cases, inferences have a purely instrumental
value, i.e., they allow the system to generate accurate predictive outcomes,
but lack of any meaningful semantic interpretation. In other cases, they may
posses a well-defined and meaningful semantics that, however, is incompre-
hensible to a stakeholder because of their limited cognitive resources, their
inadequate background knowledge or their lack of fundamental skills. In all
these circumstances, we can say that the inferences performed by the system
under consideration are “semantically” opaque.

5 Dependencies between forms of opacity

This last section briefly explores the mutual dependencies among the forms of
opacity that have been introduced.

First of all, notice that the three macro-forms of opacity are conceptu-
ally and logically independent. That is, none of them is definable in terms of
another, and none of them represents a necessary or sufficient condition for the
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occurrence of another. Nevertheless, there may be circumstances in which dif-
ferent forms of opacity can influence each other. In what follows we summarize
some of them.

The learned model is usually the part of an AI system that provides sci-
entists with the information they need to understand a given phenomenon.
Accordingly, having limited epistemic access to the inner structure and
behaviour of the learned model may prevent scientists from obtaining enough
information to understand the target phenomenon and thus contribute to the
system’s link-opacity. More specifically, the access opacity of a learned model
may cause link-opacity whenever the users’ epistemic access to the LoA pro-
viding the information that is relevant for the understanding of the target
phenomenon is limited. For similar reasons, the access opacity of the learned
model may cause semantic opacity.

As already mentioned, semantic opacity is strictly related to the users’
ability to give a semantic interpretation to the LoAs of the learned model that
are relevant to their purposes. This ability may be compromised by a limited
epistemic access to the concerned LoAs and therefore cause semantic opacity.

Finally, there exists a fundamental relation between semantic opacity and
link-opacity. In particular, semantic opacity causes link-opacity whenever a
stakeholder cannot provide a clear and well-defined semantic interpretation to
the LoAs of the learned model that are relevant for understanding the target
phenomena.

6 Conclusions and Future Developments

Starting from the crucial observation that what users mean by saying that an
AI system is opaque in a given context depends on the nature, extent and char-
acteristics of their purposes, their background knowledge, and their cognitive
abilities, we identified three conceptually and logically independent macro-
dimensions of opacity: access opacity, link opacity and semantic opacity, and
analysed their possible specific instantiations, as well as dependencies. As a
result, we provided a first, albeit partial, taxonomy for the opacity of AI sys-
tems, considered as a contextual, plural concept. As such, the taxonomy goes
beyond the received view that focuses on the inner structure and functioning
of an AI system.

However, much still needs to be done. In particular, in addition to broaden-
ing the proposed taxonomy and deepening its analysis, it would be interesting,
for example, to associate relevant existing XAI methods and tools with each
of its members and specific context. It would also be interesting to apply the
taxonomy to shed lights on the impact of machine learning in data-centric sci-
ences, and in particular on the scientific understanding of phenomena. In fact,
from this perspective, ultimately our goal is to show that contemporary XAI
methods and tools can help reduce relevant forms of opacity that are limit-
ing the integration of data-driven approaches with established standards of
scientific explanation and understanding.
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Héder, M. (2020). The epistemic opacity of autonomous systems and the
ethical consequences. AI & SOCIETY , 1–9.

Humphreys, P. (2009). The philosophical novelty of computer simulation
methods. Synthese, 169 (3), 615–626.

Illari, P., & Williamson, J. (2011). Mechanisms are real and local. P.M. Illari,
F. Russo, & J. Williamson (Eds.), Causality in the sciences (p. 818-844).
Oxford: Oxford University Press.

Kitchin, R., & McArdle, G. (2016). What makes big data, big data? exploring
the ontological characteristics of 26 datasets. Big Data & Society , 3 (1),



Springer Nature 2021 LATEX template

18 Towards a Taxonomy for the Opacity of AI Systems

2053951716631130.

Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago, IL:
University of Chicago Press.
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