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Abstract: 

While the common procedure of statistical significance testing and its accompanying concept of 

p-values have long been surrounded by controversy, renewed concern has been triggered by the 

replication crisis in science. Many blame statistical significance tests themselves, and some 

regard them as sufficiently damaging to scientific practice as to warrant being abandoned. We 

take a contrary position, arguing that the central criticisms arise from misunderstanding and 

misusing the statistical tools, and that in fact the purported remedies themselves risk damaging 

science. We argue that banning the use of p-value thresholds in interpreting data does not 

diminish but rather exacerbates data-dredging and biasing selection effects. If an account cannot 

specify outcomes that will not be allowed to count as evidence for a claim—if all thresholds are 

abandoned—then there is no test of that claim. The contributions of this paper are: 

• To explain the rival statistical philosophies underlying the ongoing controversy;  

• To elucidate and reinterpret statistical significance tests, and explain how this 

reinterpretation ameliorates common misuses and misinterpretations;  

• To argue why recent recommendations to replace, abandon, or retire statistical 

significance undermine a central function of statistics in science: to test whether observed 

patterns in the data are genuine or due to background variability. 
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Statistical Significance and its Critics: 

Practicing damaging science, or damaging scientific practice? 
 

1 Introduction and Background 

 

While the common procedure of statistical significance testing and its accompanying concept of 

p-values have long been surrounded by controversy, renewed concern has been triggered by the 

so-called replication crisis in some scientific fields. In those fields, many results that had been 

found statistically significant are not found to be so (or have smaller effect sizes) when an 

independent group tries to replicate them. This has led many to blame the statistical significance 

tests themselves, and some view the use of p-value thresholds as sufficiently damaging to 

scientific practice as to warrant being abandoned. We take a contrary position, arguing that the 

central criticisms arise from misunderstanding and misusing the statistical tools, and that in fact 

the purported remedies themselves risk damaging science. In our view, if an account cannot 

specify outcomes that will not be allowed to count as evidence for a claim—if all thresholds are 

abandoned—then there is no test of that claim. 

 

In this paper we propose to explain why some of today’s attempts to fix statistical practice are 

actually jeopardizing reliability and integrity. Even where critics of statistical significance tests 

are mainly objecting to misuses and misinterpretations, recommended fixes often grow out of 

controversial underlying conceptions about the nature and role of statistics in science. 

Philosophers of science are immersed in many areas beset with uncertainty and statistical models 

and methods are pervasive. Getting a handle on the current controversies in statistical 

foundations is important to the success of such projects, hence this special issue on Recent Issues 

in Philosophy of Statistics: Evidence, Testing, and Applications. The controversy has generated a 

huge and unwieldy literature over many years. We will use the recent and ongoing controversy 

involving the American Statistical Association (ASA) as a vehicle for us to highlight the central 

issues and zero in on the current state of play in the debates.  

 

     To outline our goals, we begin with some background. In 2016 the American Statistical 

Association (ASA) issued a Statement on P-Values and Statistical Significance intended to 

highlight classic misinterpretations and abuses (Wasserstein and Lazar, 2016, hereafter, 2016 

ASA Statement). The six principles 1 it offers are a mix of statements of familiar properties of p-

values, well-known misunderstandings, and guidance on the correct usage. But in March 2019, 

an Executive Director’s editorial introducing 43 papers in a special issue of The American 

Statistician (“Statistical Inference in the 21st Century: A world beyond ‘p < 0.05’”), declared 

that: “[the 2016 ASA Statement] stopped just short of recommending that declarations of 

‘statistical significance’ be abandoned” (Wasserstein, Schirm, and Lazar, 2019, p. 2, hereafter, 

 
1 The 6 Principles from the 2016 ASA Statement on p-values (pp. 131-132):  

1. P-values can indicate how incompatible the data are with a specified statistical model. 

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data 

were produced by random chance alone. 

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes 

a specific threshold. 

4. Proper inference requires full reporting and transparency. 

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result. 

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis. 
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WSL 2019). They announce: “We take that step here….[I]t is time to stop using the term 

‘statistically significant’ entirely. …’” (WSL 2019, p. 2). They do not propose to ban p-values, 

but they do propose banning the phrases “statistical significance/statistically significant” and 

hold that “whether a p-value passes any arbitrary threshold should not be considered at all when 

deciding which results to present or highlight” (ibid.). We may call this the “no threshold view”.  

Our main focus is on the no threshold view (WSL 2019) as well as other criticisms of statistical 

significance. (Our reference to WSL 2019 refers only to the opening sections, not the summaries 

of papers in the issue.) We shall also consider accounts that retain p-value thresholds, but call for 

appraising or using them in Bayesian computations. Since all of these positions vary and even 

disagree with one another, we will identify the relevant theses as we proceed.  

 

     The process that professional societies use to argue against a methodology that is widespread 

in science matters a good deal when it comes to the very goal they are supposed to be 

championing—trust in science. To claim, as WSL 2019 does, that a declaration of statistical 

significance is the “antithesis of thoughtfulness” (p. 4) is misleading and uncharitable. We will 

argue that abandoning a concept or tool which can be of great value when it is used properly 

merely because it has been misused in the past is itself the apotheosis of thoughtlessness. 

Further, we argue that a trustworthy critique of statistical significance tests should specifically 

consider the responses of testers themselves.  

 

      Concerned that WSL 2019 might be taken as a continuation of the 2016 ASA Statement, 

in 2019 the Board of the ASA appointed a President’s Task Force on Statistical Significance 

and Replicability. It was put in the odd position of needing to “address concerns that [the 

Executive Director’s editorial, WSL 2019] might be mistakenly interpreted as official ASA 

policy” (Benjamini et al., 2021). Their recently published report concludes: “P-values and 

significance testing properly applied and interpreted, are important tools that should not be 

abandoned” (ibid). We concur, but will go far beyond their one-page report to give detailed 

arguments for advancing this position. The goals of our paper are: 

 

• To explain the key issues in the ongoing controversy surrounding statistical significance 

tests;  

• To reinterpret statistical significance tests, and the use of p-values, and explain how this 

reinterpretation ameliorates common misuses that underlie criticisms of these methods;  

• To show that underlying many criticisms of statistical significance tests, and especially 

proposed alternatives, are often controversial philosophical presuppositions about 

statistical evidence and inference;  

• To argue that recommendations to replace, abandon, or retire statistical significance tests 

are damaging to scientific practice.  
 

    Section 2 sets out the main features of statistical significance tests, emphasizing aspects that 

are routinely misunderstood, especially by their critics. In sections 3 and 4 we will flesh out, and 

respond to, what seem to be the strongest arguments in support of the view that current uses of 

statistical significance tests are damaging to science. Section 3 explores five key mistaken 

interpretations of p-values, how these can lead to damaging science, and how to avoid them. In 

Section 4 we discuss and respond to central criticisms of p-values that arise from presupposing 

alternative philosophies of evidence and inference. In section 5 we argue that calls to replace, 
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abandon, or retire statistical significance tests are damaging to scientific practice. We argue that 

the “no threshold” view does not diminish but rather exacerbates data-dredging and biasing 

selection effects (5.1), and undermines a central function of statistics in science: to test whether 

observed patterns in the data can be explained by chance variation or not (5.2). Section 5.3 

shows why specific recommendations to retire, replace, or abandon statistical significance yield 

unsatisfactory tools for answering the significance tester’s question. Finally, in Section 6 we pull 

together the main threads of the discussion, and consider some implications for evaluating 

statistical methods with integrity. 

 

2 P-values and statistical significance 

 

Statistical significance tests are part of a rich piecemeal set of tools intended to assess and 

control the probabilities of misleading interpretations of data—often called error probabilities. 

Because of this role, the tools may be described as error statistical, a much more apt and 

inclusive term than “frequentist”. The set includes simple Fisherian tests, Neyman-Pearson (N-P) 

formulations of hypothesis tests, confidence intervals, randomization, resampling methods and 

much else. Statistical significance tests address the particular error of mistaking a feature of the 

data that has arisen because of random variability for a genuine underlying effect. As Fisher 

(1956, p. 79) wrote: “[tests of significance] are constantly in use to distinguish real effects of 

importance to a research programme from such apparent effects as might have appeared in 

consequence of errors of random sampling, or of uncontrolled variability, of any sort, in the 

physical or biological material under examination”. As Yoav Benjamini puts it, significance tests 

are our “first line of defense against being fooled by randomness” (2016, p.1). 

 

2.1 Elements of statistical significance tests 
 

A statistical hypothesis H is a claim about some aspect of the process that might have generated 

the data.  For example, a common statistical hypothesis, H0, has the form that an experimental 

intervention has “no effect" or produces "no difference". The ubiquity of this “no effect” 

hypothesis explains why Fisher's term null hypothesis is often used. A more apt term is Neyman 

and Pearson's test hypothesis, because we do not want to limit ourselves to “no effect” since it is 

often quite artificial. Still, we use “null” for brevity. For example, a general form of test 

hypothesis asserts that some characteristic of the process that generated the data has a value δ 

that is less than some value of interest δ'. In discussing a Covid-19 trial run by AstraZeneca 

(AZ), statistician Stephen Senn notes that “the null hypothesis that is being tested is not that the 

vaccine has no efficacy but that its efficacy does not exceed 30%” (Senn, 2020). In general: 

 

The immediate objective is to test the conformity of the particular data under analysis 

with H0 in some respect to be specified. To do this we find a function d = d(x) of the data, 

to be called the test statistic, such that 

• the larger the value of d the more inconsistent are the data with H0; 

• the corresponding random variable D = d(X) has a (numerically) known 

probability distribution when H0 is true. (Mayo and Cox 2006, p. 81, T replaced 

with D, y with x) 

 

The observed significance level or p-value associated with d(x0) is the probability of getting at 

least as extreme a value as d(x0) computed under H0, where x0 is the observed sample. 
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p-value = Pr(d(X) ≥ d(x0); H0). 

 

In words, the p-value is the probability that the test would have produced a result differing from 

H0 at least as much as the one observed, if H0 is the case.  

 

    Note that we compute the probability of (d(X) > d(x0)) under the assumption H0, stressing the 

inequality. We cannot just look at the probability of the particular observation, Pr(d(X) = d(x0); 

H0) because any continuous observation is going to be improbable under H0. Yet it is very 

common to find formulations of statistical significance tests that describe tests as declaring a 

result x0 statistically significant if x0 is not likely to occur assuming the null hypothesis is true. 

This is wrong. We would not declare a result statistically significant simply because it is 

improbable under H0.2 If we did, a test would very probably declare results statistically 

significant erroneously, violating the error probability guarantees. 

 

    The reasoning, Cox and Hinkley (1974, p. 66) explain, is this: 

  

Suppose that we were to accept the available data as evidence against H0. Then we would 

be bound to accept all data with a larger value of [d] as even stronger evidence. Hence 

pobs [the observed p-value] is the probability that we would mistakenly declare there to be 

evidence against H0, were we to regard the data under analysis as just decisive against H0. 

  

Note that what is being accepted or not are claims that the data provide evidence against H0—not 

claims to accept or reject H0 itself. To “accept” or “reject” a hypothesis is really just a shorthand 

for these claims about evidence, at least in contexts of scientific inference. 

 

    We recommend this reading in relation to a given test T: A p-value is the probability test T 

would have given rise to a result more incompatible with H0 than d(x0) is, were the results due to 

background or chance variability, as described in H0. It is a counterfactual claim. The error 

probability is accorded to the test procedure, not to the observed data. In other words, we 

understand the capacities of the test by considering how it would behave with other data 

generated under H0. 

 

2.2 Neyman and Pearson (N-P) tests 

 

Neyman and Pearson (N-P) tests introduce the alternative statistical hypothesis H1 where H0 and 

H1 are typically assertions about parameters within a model. For example, H0 might assert the 

vaccine efficacy δ is less than or equal to 30%, and H1 assert that δ is greater than 30%.3 The N-P 

test prespecifies a p-value at or beyond which H0 is rejected—thereby controlling the Type 1 

error probability, the probability of erroneously rejecting H0. Introducing the alternative 

hypothesis H1 also allows control of the Type 2 error: failing to find statistical significance when 

 
2 They also should not be using “likely”. Although in ordinary English we use “probable” and “likely” 

interchangeably, in statistics they have very different meanings. The likelihood of a hypothesis given data x 

measures the probability or density of x computed under that hypothesis. Unlike with probability, several 

incompatible hypotheses can all have high or even maximal likelihood. 
3 H1 is made up of all positive discrepancies from 30%, it is composite. Each particular value may be written as δ’. 
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there is a genuine discrepancy δ' from H0. The complement is the test’s power to detect δ'. 

Having fixed a threshold for the maximal Type 1 error probability, N-P sought tests to minimize 

the Type 2 error probability or, equivalently, maximize the test’s power to detect alternatives. A 

sensible test must have a higher probability of rejecting H0 when H1 is true than when H0 is true.   

 

    Their success at finding tests with good if not optimal error probabilities established a new 

pattern for appraising statistical methods that continues to be important in statistics and machine 

learning. However, it also encouraged the perception that hypothesis tests, rather than being tools 

for inference, are rules for deciding if a hypothesis should be rejected or accepted according to 

how well tests would perform in some long run of applications. Call this the performance 

construal of N-P tests. But, it is not the only, or the best, way to view them. The truth is that N-P 

were trying to provide a more rigorous framework for Fisherian tests. Wanting to distinguish 

their account from inductive logics of the day,4 they viewed the “decision” to interpret data as a 

kind of action. Instead of inductive inference, Neyman (1957) spoke of inductive behavior.  

 

2.3 Performance vs probativeness 

 

David Cox usefully connects Fisherian and N-P tests by considering the p-value as a function to 

be computed under alternatives H1 as well as under H0.  

 

In the Neyman–Pearson theory of tests, the sensitivity of a test is assessed by the notion of 

power, defined as the probability of reaching a preset level of significance . . . for various 

alternative hypotheses. In the approach adopted here the assessment is via the distribution of 

the random variable P, … for various alternatives. (Cox, 2006, p. 25) 

 

In other words, the p-value can refer both to the random variable P and also to its particular 

value. Once the p-value is known, one can compute Pr(d(X) ≥ d(x0); H') for various alternatives 

H' of interest. Cox stresses that the calibration of tests in terms of how often we would 

erroneously interpret data is solely to convey the meaning of terms. We agree. In scientific 

contexts, the relevance of the overall performance of the tool is not merely to ensure we will 

avoid erroneously interpreting data in the long run. It is informative for understanding the 

capacities of the tools that apply in the case at hand. (For a full development of this philosophy 

of statistics, see Mayo 1996, 2018.) 

 

    Minimally if a tool is incapable of having uncovered the falsity of, or flaws in, a claim, then 

finding none fails to provide evidence for that claim. This gives a minimal requirement for a 

good test or evidence. This applies whether we are dealing with a formal test, a method of 

estimation, or one of prediction: 

 

Minimal requirement for evidence: We have evidence for H only if H passes a test that 

probably would have found evidence of flaws in H, if they are present.  

 

This probability is the strength or severity of the test H has passed with the data being 

considered. We also hold the converse of this claim: Data x provide evidence for a claim H to the 

extent that H has passed a severe test with x. In this way, a test’s error probabilities are used to 

 
4 This includes not only Bayesian accounts but Fisherian fiducial accounts. See Mayo 2018, Excursion 5. 
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evaluate how well or poorly probed claims are. We dub this the probativeness use of error 

probabilities. Good long-run performance is a necessary but not a sufficient condition for a test 

to calibrate probativeness. In our view, a probative test will generally involve combining several 

subsidiary tests, deliberately designed to unearth different flaws.  

 

    The reasoning supplies a statistical falsification of H0. If the test would produce even larger 

differences than d(x0) fairly frequently assuming H0 to be true (that is, the p-value is not small), 

then there is little evidence of incompatibility with H0. We would then have no reason to suppose 

H0 to be a poor explanation of the data. By contrast, if the p-value is small (and what should be 

regarded as “small” will depend on the research aims and context), then with high probability the 

test would have produced a smaller difference than we observed, were H0  in fact adequate. To 

put this in Popperian terms, if H0 very probably would have “survived” the test, if true, and yet 

the test yields a result discordant with H0, then it gives an indication of the denial of H0. In 

speaking of statistical falsification, Popper notes that although extremely rare events may occur: 

 

such occurrences would not be physical effects, because, on account of their immense 

improbability, they are not reproducible at will . . . If, however, we find reproducible 

deviations from a macro effect . . . deduced from a probability estimate . . . then we must 

assume that the probability estimate is falsified. (Popper, 1959, p. 203)  

 

3 Damaging misrepresentations and how to avoid them  

 

3.1. Statistical significance is erroneously taken to mean scientifically important  

 

A central criticism is that calling something “significant” in ordinary English connotes 

importance. Placing “statistical” before “significance” is intended to have the diminutive effect 

to avoid misinterpretation. It is saying merely that the observed effect or difference is not readily 

explained by random or chance variability. “Statistical significance was never meant to imply 

scientific importance”, WSL 2019 correctly observes (p. 2). To the authors, the confusion 

between the statistical and ordinary language meanings of the word is itself grounds to avoid it. 

A term other than significance might well be preferred, for example “is statistically 

distinguishable from”, or “is statistically inconsistent with”, random error, at the given level. But 

any words used are going to be open to misinterpretation (as with “probable”, “likely”, and 

“confidence”). 

 

    Particularly pernicious is the practice of inferring a substantive research claim from a single 

statistically significant result. It is this fallacy that is at the heart of why statistical significance 

tests are often blamed for a high rate of failed replication:  

  

[T]he high rate of nonreplication of research discoveries is a consequence of the 

convenient, yet ill-founded strategy of claiming conclusive research findings solely on 

the basis of a single study assessed by formal statistical significance, typically for a p-

value less than 0.05. …(Ioannidis, 2005, p. 0696) 

 

In fact, even to obtain grounds for a genuine statistical effect requires more than the isolated p-

values that Ioannidis describes. From the start, R.A. Fisher emphasized: 
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[W]e need, not an isolated record, but a reliable method of procedure. In relation to the 

test of significance, we may say that a phenomenon is experimentally demonstrable when 

we know how to conduct an experiment which will rarely fail to give us a statistically 

significant result. (Fisher, 1935a, p. 14)  

 

In fields beset by nonreplication, many researchers have not heeded their chief protagonist back 

in the 1970’s, who warns “[T]he almost universal reliance on merely refuting the null hypothesis 

as the standard method for corroborating substantive theories in the soft areas . . . is basically 

unsound, poor scientific strategy . . .” (Meehl, 1978, p. 817). 

  

     Even with respect to inferring the existence of a genuine effect, the p-value should not be 

used rigidly. In good practice, conventional choices, such as .01, .025, .05, are set when they are 

found to correspond to useful Type 1 and 2 error probabilities for a given field and stage of 

research. We should not confuse prespecifying minimal thresholds in each test, which we 

uphold, with fixing a value to use routinely (which we would not). Granted, conventional choices 

for thresholds may often be used thoughtlessly. Neyman and Pearson advised that tests be used 

with “discretion and understanding” (1928, p. 58), claiming “it is doubtful whether the 

knowledge that Pz [the p-value associated with test statistic z] was really 0.03 (or 0.06) rather 

than 0.05, . . . would in fact ever modify our judgment . . . regarding the origin of a single sample 

(ibid., p. 27). Even Neyman’s first student, Erich Lehmann, who was responsible for developing 

the influential behavioral-decision formulation of tests, recommends that post-data, researchers 

report the observed p-value, which “gives an idea of how strongly the data contradict the 

hypothesis. It also enables others to reach a verdict based on the significance level of their 

choice” (Lehmann and Romano, 2005, pp. 63-64). We agree, but to make this choice wisely 

requires considering the effect sizes (or population discrepancies) indicated by achieving a given 

significance level.  

 

3.2 The p-value does not measure the size of a population effect  

 

Damaging misunderstandings occur from supposing a small p-value indicates a large magnitude 

of a population effect, while supposing a lack of statistical significance means a small population 

effect size. A p-value is a probability, not a measure in units of the hypothesized parameter. At 

most it is to be taken as a report of evidence of the existence of an inconsistency with the null 

hypothesis. Determining how large an inconsistency is indicated is a distinct step. However, 

error statistical methods do provide ways to carry out this step. A simple way, using only p-

values, is to consider, not just a single null hypothesis, but several discrepancies from that null 

hypothesis.  

 

     Suppose we are testing the mean μ of a Normal distribution: H0: μ < μ0 versus H1: μ > μ0, 

with a random sample of size n. This is a 1-sided test, because only positive discrepancies from 

μ0 are being probed. We observe, x̅, the value of the sample mean, X̅, and compute how much it 

differs from μ0 in standard error (SE) units. That is, the test statistic d is (X̅ - μ0)/SE. If the p-

value is small, it is indicative of some discrepancy from H0, but we are concerned about the 

magnitude of that discrepancy. That is, we are interested in alternatives of the form μ1 = μ0 + γ (γ 

being a discrepancy parameter). A general error statistical testing principle is:  
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Error statistical testing principle (i) (for avoiding a magnitude error):  

If there is a fairly high probability that d would have been larger than observed (a probability 

> .5), even if μ is no greater than μ1, then d is a poor indication that μ > μ1, where μ1 = μ0 + γ 

(with γ > 0). 

 

There is good evidence that μ > μ1 if (and only if) this probability is low. 

 

      For a toy example, let H0: μ < 0 versus H1: μ > 0, and let the SE equal 1. The 2-SE cut-off 

giving a p-value of approximately .025 is 2 (0 + 2SE). If d (which in this case is just x̅ ), is 2 or 

greater, the result is statistically significant at level .025. Suppose d is 2. A useful benchmark for 

a poorly warranted discrepancy is to consider a μ1 greater than x̅, e.g., x̅ +1SE (3). The 

hypothesis μ > 3 will be poorly warranted because the probability that d is even larger than 2, 

under the assumption that μ = 3 is fairly high .84.5 By reporting various benchmarks, tests can 

avoid magnitude errors in interpreting p-values. (See Mayo 2018; Mayo and Spanos 2006, 2011.) 

 

    One can arrive in much the same place using confidence intervals developed by Neyman 

(1937) to estimate a range of values of a parameter. Like tests, they can be 1 or 2-sided. The (2 

SE) confidence interval estimation rule is to estimate the mean μ of a Normal distribution as the 

sample mean X̅ plus or minus 2 SE, i.e., μ = X̅ + 2SE. Applications of this method result in 

covering the true μ, whatever it is, around 95% of the time. (Note the .025 is doubled because 

both sides are considered.) The 2-sided interval in our example with x̅ = 2 is [0 < μ < 4]. There is 

a direct duality between tests and confidence intervals: a confidence interval (CI) at level 1 – c 

consists of parameter values that are not statistically significantly different from the data at 

significance level c. One could obtain the lower (1-sided) CI bound (at level 1 – c) by asking: 

what parameter value is the data statistically significantly greater than at level c?  

 

    We endorse the common practice of reporting a CI along with a p-value. The trouble is that 

merely reporting a confidence interval does not distinguish the warrant associated with 

hypotheses about different points in the interval. So we think that CI advocates would benefit 

from considering several different thresholds for confidence levels, not just the standard .95.6  

 

3.3 A statistically insignificant result (a non-small p-value) is not evidence for H0 

 

A well-known fallacy is to take the failure to find evidence against a claim as evidence for it. As 

the title of one influential paper calls out: “Absence of evidence is not evidence of absence” 

(Altman and Bland, 1995). After all, a test may have little capability of issuing a statistically 

significant result, even if meaningful effects were to exist. Amrhein, Greenland and McShane 

(2019), in an editorial in Nature heralding WSL 2019, find this fallacy sufficiently damning to 

“retire” the concept of statistical significance. The premise for their argument is that “a 

statistically non-significant result does not ‘prove’ the null hypothesis (the hypothesis that there 

is no difference between groups or no effect of a treatment)” (p. 305).  

 
5 The standard Normal variate Z is (X̅ - μ)/SE which would be (2 – 3)/1 = -1. Pr(Z > -1) = .84. 1SE = √𝑛 
6 An approach that gives confidence intervals for all confidence levels is that of confidence distributions, first 

suggested in Cox (1958) and developed more recently in Thornton and Xie (2022). 
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    The remedy is not to retire the tool but rather explain why it is fallacious–and error statistical 

requirements enable just that. A rule that allowed inferring, from a statistically insignificant 

result, that H0 is proved, or even well warranted, would have high Type 2 error probabilities. 

This is especially so in their example (with its point null and composite alternatives).7 We 

consider Amrhein et al. (2019) further in Section 5.3. 

 

    Granted, formulating tests as a binary classification “reject H” and “accept H” is responsible 

for considerable confusion, but for Neyman the term “acceptance” was merely shorthand: “The 

phrase ‘do not reject H’ is longish and cumbersome . . . My own preferred substitute for ‘do not 

reject H’ is ‘no evidence against H is found’” (Neyman, 1976, p. 749). He developed power, and 

power analysis, to block the fallacy of non-significance. Interestingly, Neyman criticizes Fisher 

for occasionally moving from a large p-value to inferring the null hypothesis as: “much too 

automatic [because] . . . large values of P may be obtained when the hypothesis tested is false to 

an important degree” (1957, p. 13). Thus, a researcher needs to specify the test so that 

meaningful effects have a good chance of triggering significance at the level chosen (typically by 

ensuring the sample size is large enough). A companion principle is: 

 

Error statistical testing principle (ii) (for avoiding fallacies of non-significance): 

If there is a low probability (i.e., less than .5) that d would have been larger than observed, 

even if μ is as great as μ1, then d is not a good indication that μ < μ1, where μ1 = μ0 + γ (with 

γ > 0) . 

 

The severity with which μ < μ1 has passed is less than .5. The data begin to indicate that μ < μ1 

(for a given μ < μ1) only to the extent that this probability is high, e.g., .8, .9, .95, .99, etc. Rather 

than set a single cut-off, with data d in hand, we recommend reporting the severity associated 

with different assertions of form μ < μ1, varying the values of μ1. 

 

3.4 P-values are uninterpretable if there has been p-hacking, data-dredging or a variety of 

biasing selection effects 

 

The most damaging mistake, and one that is surely the main culprit behind many failures to 

replicate, is selective reporting and exploiting a variety of selection effects (e.g., Gelman and 

Loken 2014, Ioannidis 2005, Simmons, Nelson and Simonsohn 2011). These gambits—often 

placed these days under the label of “p-hacking”—increase a test’s Type 1 error probability. A 

report of a small p-value suggests the results are very difficult to achieve under the assumption of 

background variability alone. However, impressive-looking results are easy to achieve if one can 

ignore unwelcome results, alter what is being tested post-data, or exploit a variety of sources of 

researcher flexibility (e.g., exclusion criteria, data dredging, stopping rules). To the extent that 

the calculation does not take account of the selection process, then the p-value has been 

miscalculated. It is not a genuine p-value.   

 

    Suppose, for example, that N sets of differences are examined, and all but the one that appears 

large enough to test are erased. With a single hypothesis the possible results are the values of a 

 
7 There is always a small enough discrepancy from a null such that the power to detect it is small—close to α.   
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single d(X); now the possible results are all the hypotheses that might be found to reach a small 

significance level, say .05. The probability of finding at least one such nominally statistically 

significant difference di(x0) out of N (in either direction), even though all N null hypotheses are 

true, will be much greater than .05. For example, with 20 independent samples from populations 

with true differences of 0, the probability of finding at least one statistically significant different 

at the .05 level is 1 – Pr(all 20 are non-significant). This is 1 – (.95)20 = 1 - .36 or .64.8  

     

    Perhaps the oldest method for dealing with this is the Bonferroni correction, dating from the 

first half of the twentieth century. This requires setting the significance level to p/N, with N the 

number of factors or, in medical testing, endpoints. There are many more sophisticated 

approaches, and this continues to be a research area in its own right. One example of a less 

conservative approach, developed by Benjamini and Hochberg (1995), is based on the false-

discovery rate (FDR): the expected proportion of the N hypotheses tested that are falsely 

rejected. Often, selection effects have been so tortuous that it is not possible to ascertain a correct 

p-value but, even then, it is poor practice not to report that selection has occurred. (See 5.1.) 

 

3.5 A p-value can be invalidated by violations of the underlying model 

 

As with other statistical methods, statistical significance tests depend on the assumptions 

underlying the model. Although assumptions of a statistical model must be met adequately in 

order for the p-value to operate in a test of H0, it is not required that we have an exactly correct 

model—whatever that would mean. A model need not be true in order to learn true things by 

means of it. It is required only that the error probabilities of the test are approximately related to 

the actual ones. (See Box 1983, Mayo 2018, Mayo and Spanos 2004, Spanos 2007, 2018.) 

  

    Some critics of statistical significance tests erroneously suppose that imperfect statistical 

models create an insurmountable obstacle to the usefulness of tests. David Trafimow, co-editor 

of the journal Basic and Applied Social Psychology, which has banned the use of p-values 

altogether, remarked in a recent National Institute of Statistical Science (NISS) debate (October 

15, 2020): “it’s tantamount to impossible that the model is correct, … And so what you’re in 

essence doing then, is you’re using the P-value to index evidence against a model that is already 

known to be wrong. … so there’s no point in indexing evidence against it” (NISS, 2020, 08:44). 

But the p-value is not indexing evidence against the underlying model: the p-value is not 

tracking model violations. Statistical significance tests are, by definition, formulated in terms of 

a particular test statistic. The chosen test statistic measures discordance of a particular kind 

between the data and H0, not more general discrepancies between the data and the hypothesis or 

the data and the model. To the extent that underlying model assumptions are mistaken, the p-

value could be large or small.  

 

    The reason that even Bayesians turn to simple significance tests, if they want to check their 

assumptions, is that such tests do not require specifying an alternative, but only a single, 

appropriately chosen, null hypothesis (e.g., Bayarri and J. Berger 2004, Box 1983, Gelman 2011, 

Gelman and Shalizi 2013). Bayesian statistician George Box famously advocated eclecticism 

 
8 This is discussed by Hanan Selvin in Morrison and Henkel’s classic volume, The Significance Test Controversy 

(1970). He also notes that if a sufficient number of the N data-dredged hypotheses reach nominal significance, the 

overall or family-wise p-value may still be low. 
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because “diagnostic checks and tests of fit which, I will argue, require frequentist theory 

significance tests for their formal justification” (Box, 1983, p. 57). 

  

    In testing assumptions, typically the null hypothesis is that the assumption(s) hold. Suppose in 

our example of testing the mean of a Normal distribution we want to test the assumption that the 

random variables are independent and identically distributed (IID), based on data set 𝒙0 =
(𝑥1, 𝑥2, . . . , 𝑥𝑛). We transform x0 into “runs’ by recording whether the difference between 

successive observations is positive (+) or negative (−). So for example if x2 is greater (less) than 

x1, the first element of our new data set is + (−), and so on for each xi. The data with 10 numbers 

might look like +, +, −, −, +, +, +, +, −, −. Each sequence of pluses only or minuses only is a 

run, so our new data shows 4 runs. The distribution of R, the number of runs, can be computed 

under the assumption that x0 is a realization of an IID sample. It depends only on sample size n. 

The expected number of runs, under IID, is (2n – 1)/3. The standard error SE equals √(16n− 

29)/90.9 IID is rejected if there are either too many or too few runs. This nonparametric test does 

not depend on the underlying distribution assumption. This allows falsifying assumptions, as 

well as pinpointing improved models. If an assumption passes a variety of probes, one can argue 

there is evidence that any departure from the assumption is not too dramatic, particularly with 

tests known to be robust to small departures from assumptions. 

  

     The intimate link between experimental design and interpretation in statistical significance 

testing is especially seen in design-based, as opposed to model based, p-values: “The simple 

precaution of randomisation will suffice to guarantee the validity of the test of significance, by 

which the result of the experiment is to be judged” (Fisher 1935a, p. 24). Suppose a Covid 

treatment, say dexamethasone, makes no difference to hospitalized patients (receiving oxygen) 

(Horby et al., 2021). Then patients would have died or not within 28 days regardless of whether 

they were assigned to the treatment or control group. Under the sharp null hypothesis (of no 

effect), therefore, any observed differences between the two groups would be due to the 

accidental assignment to the treated or control groups. Thanks to the random assignment to the 

two groups we can determine the probability of any observed difference due to the accidental 

assignment of groups. This allows computing the statistical significance level, which then 

controls the Type 1 error probability. 

 

4 Criticisms and/or reforms that presuppose rival statistical philosophies 

 

We have considered familiar criticisms of p-values based on misuses and have proposed a 

reinterpretation that readily avoids them. Other criticisms revolve around controversial 

presuppositions about the very concept of evidence and the appropriate roles of probability in 

statistical inference. These are associated with two main alternatives to the error statistical 

philosophy, likelihoodist and Bayesian accounts, although they come in many forms. Here 

probability is used to assign a degree of probability, confirmation, support or belief in 

hypotheses, given data x0. The measure can be absolute, as in computing a posterior probability 

of a hypothesis, or comparative as with likelihood ratios, Bayes factors, and model selection. To 

have a single heading for these alternatives, we may place them all under the umbrella of 

 
9The test statistic for the test of IID is [R – E(R)]/SE. For a full discussion see Spanos (2019, chapters 5 and 15). 
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probabilisms (although nothing turns on combining them). Even where today’s critics view 

themselves as merely objecting to misuses of tests, the proposed fixes and alternatives grow out 

of these philosophical presuppositions. Pointing to core assumptions is a way to quickly get to 

the heart of what may appear to be disconnected criticisms.  

 

4.1 P-values violate the likelihood principle 

 

As Elliott Sober (2008, p. 77) observes, Bayesianism and likelihoodism “both interpret 

experimental results by using the law of likelihood”. The law of likelihood states: data x support 

H1 over H0 if the likelihood of H1 exceeds H0, that is, if the likelihood ratio Pr(x|H1)/Pr(x|H0) 

exceeds 1. The likelihood function is the probability (or density) of the observed value of the test 

statistic, regarded as a function of the unknown parameter(s). The likelihood principle (LP), 

which goes a bit further, asserts that all the evidence about the unknown parameter(s) resides in 

the likelihood ratio, once the data are observed.10 Based on assuming the LP, critics Burnham 

and Anderson charge that “P-values are not proper evidence as they violate the likelihood 

principle (Royall, 1997). Another way to understand this is the ‘irrelevance of the sample space 

principle’” (2014, p. 627).  

 

    The LP is violated by statistical significance testing. As with other error statistical methods, 

statistical significance tests are not based solely on the probability of the observed data but also 

consider the probability that one might have observed other values. The LP, by contrast, 

conditions on the observed data. Likelihood analysis is answering a different question from 

statistical significance testing, so that if one wishes to answer the statistical significance 

question, it will not do to follow the LP. Methods that obey the LP do not provide error control 

in the sense of the error statistician.11 A central problem is that any hypothesis that perfectly fits 

the data is maximally likely.12 One can therefore readily find in one’s data a better supported 

alternative than H0 since “there always is such a rival hypothesis viz., that things just had to turn 

out the way they actually did” (Barnard, 1972, p. 129). In other words, there is a high probability 

that Pr(H0 is less well supported than H1;H0) for some H1 or other. That is why N-P say, in order 

“to fix a limit between ‘small’ and ‘large’ values of [the likelihood ratio] we must know how 

often such values appear when we deal with a true hypothesis” (Pearson and Neyman, 1930, p. 

106).13  

 

    Leading likelihoodist Richard Royall himself gives the example of a “trick deck.” Having 

shuffled a deck of ordinary-looking playing cards; you turn over the top card and find an ace of 

diamonds: “According to the law of likelihood, the hypothesis that the deck consists of 52 aces 

of diamonds (H1) is better supported than the hypothesis that the deck is normal (HN) [by the 

factor 52]” (Royall, 1997, pp. 13–14). Although in such a case, an appeal to a prior disbelief 

 
10 Likelihoods rest on assuming the statistical model. 
11 J. Berger (2003) offers a Bayesian notion of “error probability” whereby the error probability associated with 

inferring H is its posterior probability. A discussion is in Mayo (2018), Excursion 3 Tour II.  
12 In the case of two predesignated point hypotheses, H0: μ = μ0, and H1: μ = μ1, the error probabilities are controlled. 

In particular, the probability of obtaining a result that makes H1 r times more likely than H0, if H0 is true, is less than 

1/r: Pr(LR > r; H0) < 1/r. 
13 Ian Hacking based his logic of support on the law of likelihood (1965), but then rejected it in (1980) declaring “I 

now believe that Neyman, Peirce, and Braithwaite were on the right lines to follow in the analysis of inductive 

arguments” (p. 141). Still, Hacking did not commit to any one view. 
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scotches any inference to a trick deck, it is important to see that according to this account of 

evidence, the trick deck is still maximally supported.  

 

     Whatever one’s view, a criticism that presupposes the irrelevance of error probabilities to 

evidence is radically different from one that points to misuses of tests for their intended 

purpose—to assess and control error probabilities. Any “fix” based on satisfying the LP will not 

do the job of statistical significance tests. 

  

4.2 Statistical significance tests are not giving a comparative appraisal  

 

We agree with Sober (2008, p. 77) that Bayesian and likelihoodist accounts should not be 

saddled “with ideas that are alien to them”, but think the same principle should apply in 

evaluating statistical significance tests. According to Sober, the fact that “significance tests don’t 

contrast the null hypothesis with alternatives suffices to show that they do not provide a good 

rule for rejection” (ibid., p. 56). But statistical significance testing is not of the comparative 

(“evidence favoring”) variety. To the significance tester this is a central asset rather than a 

liability. To merely infer that one hypothesis is more likely than the other by a given amount is 

not to provide evidence for or against either. Both can be unlikely. 

 

    Moreover, the comparative likelihoodist appraisal precludes the testing of composite 

hypotheses that are central to statistical significance testing – as in our earlier example where H0 

asserts the vaccine efficacy δ < 30% while H1 asserts δ > 30%. (A simple or point hypothesis, by 

contrast, would have an equality such as δ =30%.) The fact that statistical significance tests 

generally test composite hypotheses becomes problematic for the strict likelihoodist. The 

problem, as the likelihoodist sees it, is that even though the likelihood of δ = 30% is small, there 

are values within alternative H1: δ > 30% that are even less likely on the data x that has reached a 

specified p-value. To get the point without computations, imagine an alternative hypothesizing 

100% vaccine effectiveness. Such an extreme alternative would be less likely than the null 

hypothesis H0 that δ < 30%. Should that preclude inferring H1? For the likelihoodist, rejecting 

H0: δ ≤ 30% and inferring H1: δ > 30% is to assert every parameter point within H1 is more likely 

than every point in H0. To the statistical significance tester, this seems an idiosyncratic meaning 

to attach to “infer evidence of δ > 30%”, but it explains a key objection raised by the 

likelihoodist. The significance tester just takes rejecting H0: δ ≤ 30% as inferring evidence of 

some positive discrepancy from 30%.  

 

4.3 The p-value is not the probability that a test (or null) hypothesis is true 

 

A p-value of .05 means Pr(d(X) ≥ d(x0); H0) = .05. It is not the conditional probability  

Pr(H0|d(X) ≥ d(x0)). The latter is Pr(d(X) ≥ d(x0) and H0)/ Pr(H0) which requires a prior 

probability assignment to statistical hypothesis H0 and its alternatives. However, some critics 

charge that unless the p-value is mistakenly interpreted as a posterior probability, it is of 

questionable relevance to inference. That assumes a philosophy of inference at odds with 

statistical significance testing.  

 

To a Bayesian, parameters are random. Jay Kadane, a subjective Bayesian, describes “[t]he key 

distinction between Bayesian and sampling theory statistics” [i.e., error statistics] as concerning 
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the fundamental issue “of what is to be regarded as random and what is to be regarded as fixed. 

To a Bayesian, parameters are random and data, once observed, are fixed” (Kadane, 2011, p. 

437). By contrast, Kadane says,“[t]o a sampling theorist, data are random even after being 

observed, but parameters are fixed” (ibid.). In particular, the probability statement Pr(d(X) > 

1.96) = 0.025 “is a statement about d(X) before it is observed. After it is observed, the event 

[d(X) > 1.96] either happened or did not happen and hence has probability either one or zero” 

(ibid., p. 439).14 But this is incorrect: To sampling theorists, or error statisticians, the data which 

have been observed are also fixed, but they are still interested in the probability the test method 

would have resulted in an even greater observed d(x) even if H0 is true. They are interested in 

how probative their test was. Given how fundamentally different the style of reasoning, the 

Bayesian and error statistician are often talking past each other. The Bayesian is assuming 

probabilism, while the error statistician is assessing a method’s probativeness.  

 

    An example of how a criticism of statistical significance tests can grow out of assuming a 

perspective at odds with the fundamental philosophy underlying such tests, is the charge that p-

values exaggerate the evidence against a null hypothesis (Edwards, Lindman, and Savage 1963, 

Berger and Sellke 1987). This boils down to the fact that a p-value may be low, pointing to 

evidence against H0, while a posterior probability on H0 might be high. The Bayesian criticism 

here makes the implicit assumption that posterior probabilities are the correct measure of 

evidence. Yet one could equally say that these posterior probability measures understate the 

evidence. The fact is that the different measures do different things.  

 

Replace statistical significance. The recent popular movement to “Redefine Statistical 

Significance” (Benjamin et al., 2018), which garnered roughly 80 co-authors or signees, 

recommends that the conventional threshold of .05 be replaced with .005 so that it will better 

correspond to a high posterior probability on the alternative. To be clear, our objection is not to 

lowering the p-value threshold. We think thresholds are to be set in accordance with needs of 

given contexts. The problem is basing this reform on the supposition that a p-value should match 

Bayesian measures. Rather than call this a redefinition of statistical significance—since a 

particular threshold is not part of defining the concept—we refer to it as a call to replace a 

conventional threshold for statistical significance (using a Bayes factor or other probabilist 

measure as a reference point). A group response to Benjamin et al. (2018) is Lakens et al. (2018). 

 

     The result on which this call is based is actually quite old (Edwards, Lindman and Savage, 

1963). It turns on the Jeffreys-Lindley “paradox”, or more appropriately, the Fisher-Bayes 

disagreement between posterior probabilities and p-values. The classic example refers to testing 

the mean μ of a Normal distribution (with a known variance σ2). There is a point null hypothesis 

H1: μ = 0 and the alternative is H1: μ ≠ 0. A “lump” or “spike” of prior probability, say .5, is 

given to H0 (or a tiny region around 0), the remaining .5 is spread over the entire alternative 

space. As the sample size increases, even a result that is statistically significantly different from 

0 can be more probable under H0 than under H1. However, it is important to see that p-values can 

also equal the posterior (with a diffuse rather than a spiked prior)–even though they measure 

very different things. These are sometimes called frequentist matching priors. Jim Berger (2006), 

despite being one of the originators of this criticism of p-values, allows that the p-value is a good 

 
14 The problem of how a Bayesian confirms H with data accorded a probability of 1, the known evidence problem, 

goes beyond the current discussion. (See Glymour, 1980.) 
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measure of evidence when one does not have a strong prior belief in the null hypothesis. (See 

also Section 5.3.)  

 

    Casella and R. Berger claim that “[c]oncentrating mass on the point null hypothesis is biasing 

the prior in favor of H0 as much as possible” (1987a, p. 111). They point out that the most 

common uses of a point null, asserting the difference between means is 0, merely describe a 

potentially interesting feature of the population, with “no a priori concentration of belief about 

H0” (Casella and R. Berger, 1987b, p. 345). They argue, “the very argument [that some critics] 

use to dismiss P-values can be turned around to argue for P-values” (ibid., p. 346). That is 

because in one-sided testing, without the spiked prior, the p-value can be “reconciled” with the 

posterior probability on the null hypothesis.15 As important as is this retort by Casella and R. 

Berger, the deeper problem is getting lost: the statistical significance test does not use prior 

probabilities, and is not seeking to assign a posterior probability to H0, (whether subjective, non-

subjective, empirical or other). Stephen Senn gives a good upshot: 

 

. . . [S]ome Bayesians in criticizing P-values seem to think that it is appropriate to use a 

threshold for significance of 0.95 of the probability of the alternative hypothesis being true. 

This makes no more sense than, in moving from a minimum height standard (say) for 

recruiting police officers to a minimum weight standard, declaring that since it was 

previously 6 foot it must now be 6 stone. (Senn, 2001, p. 202) 

 

We grant that by setting the threshold to .005, along with certain choices of prior probabilities, 

the p-value can be made to correspond more closely to a posterior of .95 on a chosen 

alternative.16 But we deny this shows the p-value exaggerates evidence.17  

 

    Again, whether tests should use a lower Type 1 error probability is a separate issue. The 

problem is supposing there should be agreement between quantities measuring different things. 

Interestingly, an eclectic group of authors (in a supporting document for the 2016 ASA 

Statement), Greenland et al. (2016), concede, whether p-values exaggerate 

  

depends on one’s philosophy of statistics. …[M]any other statisticians do not accept 

these [Bayesian] quantities as gold standards, and instead point out that P values 

summarize crucial evidence needed to gauge the error rates of decisions based on 

statistical tests (p. 5).  

 

See also Greenland (2019) and Haig (2020). 

 
15We agree with Cox and Hinkley (1974) that insofar as one is interested in the direction of the effect, and will not 

simply infer there is an effect in either direction, the two-sided test should be seen as combining two one-sided tests, 

doubling the p-value for a selection effect. 
16“A two-sided P value of 0.005 corresponds to Bayes factors between approximately 14 and 26 in favour of H1. 

This range represents ‘substantial’ to ‘strong’ evidence according to conventional Bayes factor classifications” 

(Benjamin et al., 2018). For computations and further references also see Edwards, Lindman, and Savage (1963), 

Berger and Sellke (1987), Johnson (2013), Mayo (2018). See also the computation in Note 19. 
17David Bickel (2021) argues that “if the p-value is sufficiently small while the posterior probability according to a 

model is insufficiently small, then the model will fail a model check” and may need revision (p. 249). In this view, 

akin to Fisher (1956), conflicts between posteriors and p-values may be resolved by revising the Bayesian model.   
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    The claims in 4.1-4.3 are true, but they do not constitute criticisms of statistical significance 

tests from the perspective of the statistical significance tester. Any proposed reform that assumes 

these are bugs rather than features goes beyond pointing to misuses of p-values to importantly 

different conceptions of evidence and inference. Some maintain that problems with p-values are 

not about underlying philosophy, the problem is that they exaggerate evidence, or conflict with 

the LP, or with Bayesian posterior probabilities. But these are problems only under conceptions 

at odds with the one underlying statistical significance tests – call them what you wish.  

 

     Sections 3 and 4 do not cover all criticisms or proposed fixes. We will take up further 

criticisms in Section 5. 

 

5. Abandoning statistical significance tests is damaging scientific practice 

 

In arguing our position, we must take those who advocate replacing, redefining or abandoning 

statistical significance at their word. We need to look at their actual arguments and 

recommendations and not dismiss the consequences of their platform because they only mean to 

stop abuses and misinterpretations. To change their arguments and recommendations to ones that 

would not be causing damage, would be to close one’s eyes to the damage that we argue is 

occurring.    

 

5.1 Researcher flexibility and data dredging are exacerbated 

 

By and large, there is agreement as to the source of lack of replication. In many fields, latitude in 

collecting and interpreting data makes it too easy to dredge up impressive looking findings even 

when spurious. Any reasonably large data set will have interesting patterns or unusual data 

configurations which are merely the consequence of random variation (Hand, 2014). Such 

patterns, and their associated low p-values, will disappear when an independent group seeks to 

replicate the results – and the random variation goes in a different way. Or, to put it another way, 

the reported p-values are incorrect—they are not genuine p-values. The problem is not testing 

several claims, the problem is selectively reporting results: that is what causes high error 

probabilities. 

 

    Interestingly, even agreement on this source of poor replication has led to disagreement about 

dropping the use of p-value thresholds in interpreting results. A key argument made for dropping 

them is that without a p-value threshold the researcher would lose the (perverse) incentive to data 

dredge, p-hack, or try and try again when confronted with a statistically insignificant p-value. 

But it is not p-value thresholds which are the problem here: any measure for showing apparent 

structures in data is susceptible to the generation of spurious results via data dredging, and would 

be susceptible to the same perverse incentive. Insofar as p-values are still used (and nearly all 

proposals to replace statistical significance suggest retaining p-values), researchers would still 

need to show a reasonably small p-value to claim to have evidence of a genuine effect. Were 

they to claim large p-values supplied such evidence, they would be forced into the nonsensical 

position of saying “Even though more extreme results than ours would frequently occur by 

chance variability alone, I maintain our data provide evidence they are not due to chance 

variability.” 
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    Researchers will still be keen to show evidence of an effect, be it positive or negative. The 

tendency to spin and selectively report on results is a well-researched empirical fact. Even in 

fields like medicine where there are official channels to monitor outcome-switching between pre-

specified and reported results, “outcome misreporting continues to be prevalent” (Goldacre et al., 

2019, p.1). Any researchers incentivized to data dredge in order to arrive at an apparently small 

p-value would be that much more incentivized to dredge were they assured they did not need to 

meet predesignated statistical significance level thresholds. (Granted they might not have to 

dredge as far.) That is because it would be hard to hold them accountable when they report data-

dredged results in just the same way as if they had been predesignated. After all, what 

distinguishes nominal p-values from actual ones is that they fail to meet a prespecified error 

probability. Moreover, regarding p-values as “reasonably small” without explicitly stating a 

threshold is not equivalent to not using one, but rather means that the researcher has the freedom 

to bend their definition of “small” to achieve their aims. It means that any decision or 

recommendation arrived at is based on unclear, woolly, and unstated decision criteria. In an 

editorial in Clinical Trials, Cook et al., (2019, p. 224) worry that, “By removing the prespecified 

significance level, typically 5%, interpretation could become completely arbitrary. It will also 

not stop data-dredging, selective reporting, or the numerous other ways in which data analytic 

strategies can result in grossly misleading conclusions.” 

   

The case of Harkonen. Even the earlier 2016 ASA Statement has been used as grounds to free 

researchers from culpability for failing to report or adjust for data dredging and multiple testing. 

In one case that reached the Supreme Court of the United States in 2009, Scott Harkonen (CEO 

of a drug company InterMune) was found guilty of wire fraud for issuing a misleading press 

report purporting that his company’s drug showed a survival benefit for a fatal lung disease. 

Downplaying the high p-value on the primary endpoint, that the drug improves lung function 

(and 10 secondary endpoints), he reported statistically significant drug benefits had been shown, 

without mentioning this referred only to a subgroup he identified from ransacking the unblinded 

data. Nevertheless, in the last of many years of appeals, Harkonen and his defenders argued that 

“the conclusions from the ASA Principles are the opposite of the government's" conclusion that 

his construal of the data was misleading (Harkonen v. United States, 2018, p. 16). The theory on 

which the client’s guilt rests—statistical significance tests—is declared to have been “shown 

false” by the 2016 ASA Statement. (For details see Mayo 2020.) 

 

     It might be claimed that Harkonen’s defenders were deliberately distorting the 2016 ASA 

Statement. We think they are in earnest, and unfortunately the Statement provides them some 

grounds. Immediately after giving the 6 principles, the Statement notes “In view of the prevalent 

misuses of and misconceptions concerning p-values, some statisticians prefer to supplement or 

even replace p-values with other approaches”. Moreover, some of the “other approaches” listed 

do not uphold the statistical significance tester’s rules against multiple testing. It seems to us that 

“If the 2016 ASA guide opens the door to giving data dredging a free pass, the recommendation 

in [WSL 2019] swings the door wide open” (Mayo, 2020). 

 

    It is important to recognize that the problem of selective reporting and data dredging can occur 

when using Bayes factors, likelihood ratios, and other alternative methods. The inference will 

still be adversely affected even where the method lacks antennae to detect the problem, as with 

accounts that adhere to the likelihood principle (Section 4.1). Proponents of alternative methods 
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may say, as they increasingly do, that they too will not allow ignoring multiplicity and selection 

effects, but that is not the same as having a rationale for taking them into account. (See Lakens 

2019.) If explicit principles are now to be added to those accounts, that is all to the good. That is 

where the focus of discussion on the reforms should lie.18 

 

    Familiar techniques to control overall Type 1 error rates rely on adjusting α thresholds for 

individual tests. Leading supporters of abandoning thresholds, Hurlbert et al., (2019) admit:   

 

Others may be concerned about how we can justify and determine or fix set-wise or 

family-wise Type I error rates when multiple tests or comparisons are being conducted if 

we abandon critical p-values and fixed α's for individual tests. The short and happy 

answer is 'you can't. And shouldn't try!’ (Hurlbert et al., 2019, p. 354) 

 

This is not reassuring for those who care about error probability control.  

 

    Commonly, challenges to adjusting for multiplicity come from those whose philosophical 

conception of evidence comports with the likelihood principle (LP). Consider a remark by 

statistician Steven Goodman, a contributor to the ASA p-value project:  

 

Two problems that plague frequentist inference: multiple comparisons and multiple looks, 

or, as they are more commonly called, data dredging and peeking at the data. The 

frequentist solution to both problems involves adjusting the P value…But adjusting the 

measure of evidence because of considerations that have nothing to do with the data defies 

scientific sense. (Goodman, 1999, p. 1010) 

 

But does it defy scientific sense? To the error statistical tester, selection effects alter the error 

probing capacities of methods, and thus have everything to do with the data. Rather than see it as 

adjusting the p-value, it is more aptly seen as a matter of correctly computing the p-value. To be 

charitable, we may assume that Goodman also wants to take selection effects into account, but in 

some other way, perhaps via altered prior probabilities. But this needs to be shown. We might 

then compare which method gives the more direct way of taking into account the information 

about selection effects.  

 

Bayesian clinical trials. Stopping at interim points of clinical trials is common for both 

frequentists and Bayesians, but to control the Type 1 error probability it is required to prespecify 

stopping points and adjust p-values according to the stopping rule. This puts advocates of 

Bayesian clinical trials in a quandary because,  

 

the [regulatory] requirement of type I error control for Bayesian [trials] causes them to 

lose many of their philosophical advantages, such as compliance with the likelihood 

principle, and creates a design that is inherently frequentist … That is, inferential 

corrections, e.g., adjustments to posterior probabilities, are not required for multiple looks 

at the data. (Ryan et al., 2020, p. 7) 

 
18If all hypotheses to be considered are already pre-specified in the model prior to the data, the Bayesian may avoid 

a problem of selection effects in computing a posterior probability.  
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     They admit that the “type I error was inflated in the Bayesian adaptive designs through 

incorporation of interim analyses that allowed early stopping for efficacy and without 

adjustments to account for multiplicity.” (They separately consider stopping for futility.) Yet 

they suggest that: “Given the recent discussions to abandon significance testing it may be useful 

to move away from controlling type I error entirely in trial designs” (ibid., p. 7). The high error 

probability would still be there, but would not be reported in the posterior probability. To some 

this is welcome; to others, it seriously damages error control.  

 

5.2 A central function of statistics in science is undermined 

     

    WSL 2019 do not restrict their recommendations to particular fields, say to observational 

studies lacking controls offered by randomized controlled trials (RCTs). They call for 

abandoning statistical significance across all science, acknowledging that strict compliance with 

the no threshold view is incompatible with the FDA practice of using predesignated thresholds in 

Phase III trials. (Generally a drug must show statistical significance at a small value in two trials 

before it will be accepted by the FDA.)  

 

    In 2019, The New England Journal of Medicine (NEJM) resists WSL’s 2019 call to abandon 

statistical significance thresholds, asserting:  

 

A well-designed randomized or observational study will have a primary hypothesis and a 

prespecified method of analysis, and the significance level from that analysis is a reliable 

indicator of the extent to which the observed data contradict a null hypothesis of no 

association between an intervention or an exposure and a response. Clinicians and regulatory 

agencies must make decisions about which treatment to use or to allow to be marketed, and P 

values interpreted by reliably calculated thresholds subjected to appropriate adjustments [for 

multiple trials] have a role in those decisions. (Harrington et al., 2019, p. 286) 

 

The WSL 2019 position does not merely object to having a single threshold, but to any number 

of thresholds. “[T]he problem is not that of having only two labels. Results should not be 

trichotomized, or indeed categorized into any number of groups… ” (p. 2). This glosses over the 

fact that all real data are necessarily grouped – they are measured to a finite number of decimal 

places. Note too that the use of classification thresholds is not in opposition to also reporting the 

particular measure reached. We employ thresholds to distinguish myriad characteristics: high and 

low blood pressure, PSA levels in prostate cancer, etc.—even though a person’s actual reading is 

also reported. One might say the cut-offs are conventions, but this does not make them arbitrary. 

 

    Even the use of confidence intervals, advocated by many as a replacement for statistical 

significance tests, would violate the rule that results should not be “categorized into any number 

of groups”. An objection to taking a difference that reaches p-value .025 as evidence of a 

discrepancy from the null hypothesis would also be an objection to taking it as evidence that the 

parameter exceeds the lower .025 CI bound (or is “incompatible,” at that level, with the 

parameter values below it). They are identical, insofar as CIs retain their duality with statistical 

tests. Do any statistical tests survive the no threshold rule? It seems to us that without thresholds 

there are no tests.  
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    The possibility of falsification is what distinguishes good science from questionable science. 

While falsification need not be a binary decision (one can have an intermediate zone requiring 

more evidence to be gathered), there needs to be some point for distinguishing data which are 

seriously inconsistent with a test hypothesis H from those that corroborate it. What is the point of 

insisting on replication checks if researchers can always deny their effects have failed to 

replicate? We agree with John Ioannidis that “fields that obstinately resist refutation can hide 

behind the abolition of statistical significance but risk becoming self-ostracized from the remit of 

science” (2019, p. 2068). However, if influential voices reject p-value thresholds, there is a 

danger that the grounds for ostracism might evaporate.  

 

     So that there is no misunderstanding, there are contexts where the goal is constructing a 

theory to be tested on other data, sometimes called an exploratory inquiry. (See Hand 1994.) The 

reason new data are needed to check hypotheses gleaned from exploration is precisely that 

finding a hypothesis that fits the data is different from testing it. 

 

   It might be said that even those espousing the no threshold view do not really favor an end to 

the use of thresholds in inferences (outside of contexts of inductive behavior). If they do not, 

they should not be saying it. Their recommendations are being taken to heart every day in 

science, business, law and elsewhere. Although statistical falsification does not mean that further 

evidence might not reverse that decision, for a given test of H it is essential to specify in advance 

at least some outcomes that will not be allowed to count in favor of H. That is to have a 

threshold. 

 

5.3 Recommendations to replace, abandon or retire statistical significance do not do the job 

of statistical significance tests 

 

WSL 2019 admit the statistical community does not agree about statistical methods, and “in fact 

it may never do so” (p.2). To nevertheless call for ousting statistical significance tests, or their 

thresholds, from the large variety of tools that practitioners regularly use is unwarranted and is 

damaging. (See Mayo 2021.) Let us examine some of the leading recommendations to retire, 

replace/redefine, and abandon statistical significance to cash out our charges in 5.1 and 5.2 (that 

they exacerbate researcher flexibility, and undermine a key function of statistics in science).  

 

Retire. Begin with the recommendation that is closest to the error statistical paradigm: Amrhein 

et al.’s (2019) “retire statistical significance”, the article enlisted by Nature to amplify WSL 

2019. For convenience, we refer to it as (AGM), the initials of its authors Amrhein, Greenland, 

McShane. They recommend reporting the .95 confidence interval, although they rename them 

compatibility intervals – redolent of the "consonance intervals" of Kempthorne and Folks (1971). 

The latter has the advantage of using many thresholds, one for each of several consonance levels, 

while AGM adhere to the classic .95 level. Where the N-P tester infers the data are statistically 

significantly different (usually indicating the direction) from a hypothesized reference point (at 

the given level, e.g., .05), AGM may report that the data are not compatible with the parameter 

values outside the .95 interval. Insofar as they choose a threshold, they could do the job of 

statistical significance tests. But a mere comparative report of compatibility (e.g., those within 

the interval are more compatible than those outside) would not deem any hypotheses about 
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parameters incompatible with the data (however high the confidence level). We think there is a 

role for first identifying an effect as genuine (via a significance test) before estimating its effect 

size. Additional reasons we find AGM’s “retire” to be damaging are as follows. 

 

     First, echoing WSL 2019, AGM declare: “Decisions to interpret or to publish results will not 

be based on statistical thresholds”. As argued in Sections 5.1, this gives a pretext to the data-

dredger to wriggle out of charges that they have failed to meet a predesignated threshold. They 

can conveniently declare: “Decisions to interpret results are not supposed to be based on 

thresholds, so how can I be blamed for not upholding one?”  

 

     Second, they recommend that p-values be restricted to behavioristic, performance goals. Say 

AGM: “We are not calling for a ban on P values. Nor are we saying they cannot be used as a 

decision criterion in certain specialized applications (such as determining whether a 

manufacturing process meets some quality-control standard)” (p. 306). However, scientists use 

p-values for the general goal of finding things out: Do the data indicate that dexamethasone has a 

statistically significant survival benefit for hospitalized patients (receiving oxygen)? Are these 

data evidence of a Higgs particle? To accept that p-values (or significance tests) be restricted to 

routine quality control contexts would rob scientists of a general tool for dealing with random 

error. Of course scientists must show the statistically significant effect in several trials before 

claiming evidence of a genuine effect—but that does not turn them into quality control tools, 

where only performance matters.  

 

     Third, what justifies the CI compatibility report that the parameter, say μ, is within the 

particular CI formed? Given how much importance critics place on misinterpreting p-values, one 

would have expected this question to be addressed in proposed reforms. An extremely common 

fallacy is to suppose that the .95 assigns a probability to the particular CI formed. For example, it 

might be claimed that the probability is .95 that μ is in the interval, say, [0, 4]. This is incorrect. 

At most AGM can say that this particular interval arose from a procedure that in the long run 

would cover the true parameter value with probability .95. This is a quality control performance 

assessment that they purport to want us to move away from! The statistical significance tester, by 

contrast can give an inferential rationale of this form: The reason the data are evidence μ > 0 is 

that, were μ < 0, then with high probability we would have gotten a smaller x than we did. This 

probability is still operative, post-data, and is the key to the severity interpretation of tests.  

 

     Perhaps they regard their CIs as merely descriptive, without enjoying an associated .05 error 

probability. WSL 2019 may already be having the effect, likely unintended, of severing CIs from 

their initial error probability guarantees. The NEJM’s revised guidelines (2019) stipulate: When 

no method to adjust for multiplicity of inferences or controlling the Type 1 error probability is 

prespecified, the report of secondary endpoints: 

 

should be limited to point estimates of treatment effects with 95% confidence intervals. 

In such cases, the Methods section should note that the widths of the intervals have not 

been adjusted for multiplicity and that the inferences drawn may not be reproducible. No 

P values should be reported for these analyses. 

 

Severing CIs from their dualities with tests, we think, is damaging. 
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Replace/redefine. Move now to assessing Bayesian replacements. This requires a practitioner to 

know how to interpret the prior probabilities involved. Some might take priors to measure 

strength of belief, which a tester might feel are quite fragile. One can hold strong beliefs in a 

hypothesis which has been subjected to weak tests. A more prevalent view appeals to non-

subjective or default priors. They are intended to let the data be dominant in some sense. 

“Technically they are only positive functions to be formally used in Bayes’ theorem to obtain 

‘non-subjective posteriors’ . . . (Bernardo 1997, pp. 159–60). The question of interpretation 

looms large. “If the prior is only a formal device and not to be interpreted as a probability, what 

interpretation is justified for the posterior as an adequate summary of information?” (Cox, 2006, 

p. 77). (The error statistician will use frequentist priors when they are available and testable.) 

 

     We have discussed aspects of the “replace/redefine” significance in Section 4.3. Our focus 

here is on the particular recommendation put forward within the recent, highly influential call to 

“redefine” statistical significance (Benjamin et al. 2018, Ioannidis 2005, Johnson 2013). It has its 

roots in a much broader Bayes factor approach pioneered by J. Berger (2003, 2006). It has found 

its way into such popular treatises as the 2019 National Academy of Science (NAS) Consensus 

Study Report on Replication. The idea is to replace p-values with the kind of assessment from 

diagnostic screening in medicine. Call it the diagnostic screening replacement. The outcomes are 

dichotomized into two: statistically significant (e.g., at the .005 level) or not, the significance 

level having been fixed. In this replacement, assessing evidence for H1 is to be obtained by the 

posterior prevalence of H1, or the posterior predictive value (PPV).19 In other words, a threshold 

remains, e.g., .005, but its occurrence becomes an event in a Bayesian (or quasi-Bayesian) 

computation of a posterior probability. (See Mayo 2018.) 

 

      Suppose our practitioner is facing a result statistically significant at the .05 level, which 

means it reaches the 1-sided level of .025. According to Benjamin et al. (2018), the practitioner 

should report that there is only weak evidence against the null hypothesis, unless one has a high 

prior degree of belief that the effect is present—that is, a low probability on H0 of “no effect”. 

Otherwise, a null hypothesis H0 of “no effect” is given a high prior probability (e.g., .8, .9). This 

prior probability may arise in an unusual, quasi-frequentist manner. (There are generally just two 

hypothesis: H0 and H1.) It is assumed H0 was selected (randomly?) from a population of null 

hypotheses with a high prevalence (e.g., 90%) of truth. This renders H0 probable, H1 improbable. 

Not only would this prior prevalence be unknown, the attempt is vitiated by the reference class 

problem. Should we look at the prevalence of “no effects” within a given research area? Within a 

given type of study, e.g., observational, randomized control? Moreover, from the fact that H 

comes from a pool where k% are true, we do not get the probability that this particular H is true. 

Such an assignment is fallacious, for the same reason a confidence level is not the probability a 

particular interval is true. Computing a PPV is apt in given contexts of predicting the prevalence 

 
19  

Pr(𝐻1|𝒙) =  
Pr(𝒙|𝐻1)Pr (𝐻1)

Pr(𝒙|𝐻1) Pr(𝐻1) + Pr(𝒙|𝐻0)Pr(𝐻0)
 

 

With Pr(H1) =.1, Pr(H0) = .9, and obtaining Pr(x|H1) = .9 and Pr(x|H0) = .05 from a test’s power and Type 1 error 

probability, respectively, the PPV is .64. Note that if Pr(x|H0) = .005, the Pr(H1|x) becomes .95. 
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of properties, e.g., the presence of disease in high throughput screening, but it does not provide 

an assessment of plausibility or well-testedness of a particular hypothesis.   

  

      Ioannidis’ (2005) proposed assigning priors according to the group a hypothesis is thought to 

fall into: high priors for those examined via RCTs, low priors for exploratory research and 

discovery. Assigning prior probabilities by dint of “association” might have the damaging 

consequence of disincentivizing both groups to avoid bias: for the former (latter), because 

assigning priors by group means they will be accorded fairly high (low) prior prevalence 

regardless of the effort made in the case at hand. (Further criticisms of the diagnostic screening 

replacement are Goodman and Greenland 2007, Mayo 2018, Spanos 2010.)  

 

     Granted, if the concepts of N-P power and the Type 1 error probability are allowed to be 

treated as likelihoods in a Bayesian computation, lowering the p-value threshold (e.g., to .005) 

gets a justification in terms of raising the PPV (see Note 19). This can have the odd effect of 

giving a high PPV to alternatives tested with high power. There is no problem if power is 

assumed to be the same for all alternatives (as Benjamin et al., 2019 assume), but it entirely 

changes the assessment of the warrant to accord the particular effect and research effort under 

study. Ironically, it becomes more like the quality control assessment that statistical significance 

test critics deride. Finally, its advocates admit that: 

  

The proposal does not address multiple hypothesis testing, P-hacking, publication bias, 

low power, or other biases … which are arguably the bigger problems. We agree. 

Reducing the P value threshold complements — but does not substitute for — solutions 

to these other problems. (Benjamin et al., 2018, p. 8) 

 

So a practitioner embracing “redefine/replace” still needs to appeal to methods to address 

multiplicity and the other “bigger problems”. But these bigger problems are the ones underlying 

the replication crisis, and the error statistical account supplies ways to address them—and 

without prior probability assignments.20  

 

Abandon. Suppose now our practitioner turns to a recommendation to “abandon” statistical 

significance in McShane et al., (2019)—one of the leading papers in the collection introduced by 

WSL 2019. According to McShane et al. (2019), problems are “unresolved by proposals 

involving modified p-value thresholds, confidence intervals, and Bayes factors” (p. 235). So the 

practitioner is not advised to use any of these. They are especially hard on the replace/redefine 

approach just discussed (Benjamin et al., 2018), because it retains p-value thresholds. Moreover 

they criticize it because “it falls short of being truly Bayesian” (p. 242). For example “it does not 

condition upon the actual observations but instead integrates over the observation space and 

hence may fall afoul of the likelihood principle” (ibid.). But, as we have already noted, any 

account that obeys the LP violates error statistics principles. Hearing them laud the LP, the 

practitioner is rightly worried that their recommendations will not control error probabilities.  

 

     McShane et al. (2019, p. 235) aver “that it seldom makes sense to calibrate evidence as a 

function of p-values or other purely statistical measures”. In our view, the p-value is an apt 

 
20 We do not rule out ways to reconcile Bayesian and error statistical approaches using frequentist priors (Efron 

2005, Bayarri and Berger 2004) and assessing associated error probabilities.   
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measure of evidence when engaged in the question of whether there is evidence of a genuine 

effect. The p-value is not “purely” formal: it requires knowledge of the context, how many tests 

were done, if it was data-dredged, and aspects of the design of the data generation (2016 ASA 

Statement, principle 4). The main positive proposal that McShane et al. (2019) offer the 

significance tester is to take account of a variety of background factors rather than looking only 

at the p-value. Of course that is right, and their list is clearly useful. But most practitioners will 

be aware that the error statistical framework contains systematic means for taking these factors 

into account in design and specification, and in multiplicity adjustments. So they will wonder 

what advantage this position holds, given we are not told how the abandoners propose to do so 

(except for an allusion to “informative priors”). The practitioner is at sea. She is left wondering 

how to proceed to answer her question of whether there is reasonably good evidence that a given 

intervention has a genuine positive effect. She recognizes there is much more to scientific 

inference than p-values—indeed, much more than statistics--but she seeks a way to ask questions 

piecemeal, rather than reach some grand substantive conclusion, all at once.  

 
6. Conclusion  

 
A long paper calls for an overview. Allow us to supply one. 

 

Summary. As noted in Section 1, our paper explains why some of today’s attempts to fix 

statistical practice by abandoning or replacing statistical significance are actually jeopardizing 

reliability and integrity. The ASA Executive Director’s editorial, WSL 2019, is a vehicle to zero 

in on the current debates. In Section 2 we set out the main features of statistical significance 

tests, emphasizing aspects routinely misunderstood especially by their critics. Section 3 describes 

five mistaken interpretations of p-values around which numerous criticisms revolve, and shows 

how the improved formulation in Section 2 avoids them. These criticisms and especially 

proposed reforms are often intertwined with rival underlying conceptions about evidence and the 

role of probability in statistical inference. We call these the method’s “philosophy”. In Section 4, 

we delineate some of these rival philosophical conceptions. Even where critics of statistical 

significance tests are mainly objecting to misuses, recommended fixes often reflect underlying 

conceptions about evidence and probability. In section 5 we employ the insights from the 

previous sections to argue that calls to abandon or replace statistical significance tests are 

damaging to scientific practice. We explain why banning the use of p-value thresholds does not 

diminish but rather exacerbates data-dredging and biasing selection effects (5.1), and undermines 

a central function of statistical testing in science (5.2). Section 5.3 shows how the specific 

recommendations to retire, replace, or abandon statistical significance exemplify the problems in 

5.1 and 5.2.  

  
A reviewer objection. One reviewer has objected that the damages we consider would only arise 

if the replace, retire, abandon statistical significance advocates enforced their view, precluding 

even thoughtful and appropriate uses of statistical significance testing. We disagree, and we have 

argued in detail why (see especially Section 5.3). Policies need not preclude valuable tools to 

result in undermining them. If legitimate characteristics, essential to the successful use of 

significance tests, are the focus of criticism and disparagement, then the goals of tests are 

diminished, insofar as criticisms are attended to—which we think they are.      
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     For example, thoughtful tests turn on specifying ahead of time outcomes that will not be 

allowed to count in favor of a claim—but this is to identify a predesignated threshold, going 

against the “no threshold" view. Or again, essential goals of significance tests are weakened if 

tests are criticized for not obeying the likelihood principle, which finds error probabilities 

irrelevant, or if p-values are appraised using Bayesian quantities that are measuring different 

things. To recommend replacements, without acknowledging where such replacements lack 

essential features for accomplishing the tasks of significance tests, may discourage researchers 

from performing a key job of statistics in science.  

 

Final remarks. P-values have the intrinsic properties for their task, if used properly. We have an 

indication of inconsistency with a test hypothesis H0 only when H0 very probably would have 

survived the test, if adequate, and yet the test yields results discordant with H0. The more 

probable it is that a test would have correctly alerted us that results are reasonably consistent 

with H0, the tougher the test that H1 has passed, and the stronger the evidence against H0. The 

same pattern of reasoning occurs at multiple stages of learning from data, formal or informal.  

 

    The debate is not over a single tool, it is much more than that. Statistical significance tests are 

a small part of a rich repertoire of methods, entwining design, modeling and inference, that have 

been developed to put deliberate constraints on human biases to construe data in terms of a 

preferred claim. It serves as a small piece contributing to full-bodied inquiries built on piecemeal 

error control. Many criticisms focus on those who take a single, isolated statistically significant 

result as evidence of a genuine experimental effect, and even of a substantive scientific theory. 

But the fact that a tool can be misunderstood and misused is not a sufficient justification for 

discarding that tool. Rather, methods for calling out and avoiding such mistakes are required – 

and error statistical principles enable just that.  

 

    The 2016 ASA Statement declared itself concerned that irreplication would lead to “doubt 

about the validity of science” (p. 129). To reject or play down the role of statistical significance 

tests risks implying that the statistical community accepts that those tools are unsuitable, rather 

than that misuse of those tools is the problem. The consequence could be “the most dramatic 

example of a scientific discipline shooting itself in the foot” (Hand, 2021). We know 

irreplications and fraud are unearthed by statistical significance tests, and that they are the basis 

for tests of assumptions of statistical models which all accounts use. The replication crisis should 

not be used to replace statistical significance tests with alternative methods that do not 

accomplish statistical significance testing tasks.  

 

    Our critical analysis has implications for how to evaluate statistical methods with integrity. 

When WSL 2019 criticize “the seductive certainty falsely promised by statistical significance,” 

(p. 3), it is a shock to serious practitioners. Statistical tests provide certainty only in the hands of 

those who are misusing them. Indeed, it is the essence of statistical inference that it does not 

provide certainty. Perhaps they imagine the only way to express uncertainty is using comparative 

likelihoods, Bayes factors, or posterior probabilities (probabilisms). The error statistician instead 

qualifies the inference by assessing the error probing capabilities of the method used and the data 

that result (probativism). The WSL 2019 authors would have strengthened their cause had they 

given a more charitable interpretation of tests, avoiding straw person fallacies.  
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     WSL 2019 tells us that “a declaration of ‘statistical significance’ has today become 

meaningless” (p. 2). Admittedly, a statistically significant p-value only gets its meaning in 

context, but it is not meaningless. Today, it is rather informative to learn, for example, that a 

given Covid-19 treatment yields a statistically significant decrease in mortality (at a specified 

level) between patients randomized to treatment versus control groups. WSL 2019 maintain “No 

p-value can reveal the …presence… of an association or effect” (2), but this even conflicts with 

Principle 1 of the 2016 ASA Statement, that “p-values can indicate how incompatible the data 

are with a specified statistical model” (p. 131). An indication of how incompatible data are with 

a claim of the absence of a relationship is an indication of the presence of the relationship.  

 

    It is generally agreed that a large part of the blame for lack of replication in many fields may 

be traced to biases encouraged by the reward structure. The pressure to publish, to advance one’s 

career, is thought to seduce even researchers aware of the pitfalls of capitalizing on selection 

biases. That mindset makes for a highly susceptible group. It is risky to stand in opposition to 

journals and leaders of professional organizations. Instead of critically reflecting on the 

arguments independently, practitioners may blithely repeat the same criticisms, and accept that 

statistical significance tests have brought about a crisis in science. The ASA President’s Task 

Force is to be commended for distinguishing the Executive Director’s editorial (WSL 2019) from 

ASA policy. (See Mayo 2021.) Rather than follow the most valuable recommendation of WSL 

2019—that researchers take a neutral stance in confronting controversial hypotheses (part of 

their call for “Modesty”)—antagonists to statistical significance repeat the criticisms we have 

discussed, rarely engaging existing counterevidence in favor of statistical significance.21 Thus, 

the very process used today to advance a position purporting to improve on replication may 

inculcate the bad habits that lead to irreplication. This is another reason that calls to abandon 

statistical significance are damaging scientific practice.  
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