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Abstract 

Cognitive scientists deal with technology in a very particular way: they use technology to 
understand perception, action, and cognition. This particular form of human-machine 
interaction (HMI) is very well illustrated by the use cognitive scientists make of artificial 
neural networks as models of cognitive systems and, more concretely, of the brain. However, 
the activity of cognitive scientists in this context suffers from the shortcoming of epistemic 
opacity: artificial neural networks are too difficult to interpret and understand, so in many 
cases they remain black boxes for researchers. In this paper, we provide a diagnostic for such 
epistemic opacity based on dominant cognitive science’s lack of theoretical resources to 
account for the activity of artificial neural networks when taken as models of the brain. Then, 
we offer the guidelines of a solution founded on the notion of information developed in 
ecological psychology. 
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1. Introduction 

Human-machine interactions (HMI) in cognitive science can be studied from two different 
points of view. Cognitive scientists can study HMI themselves. How do people engage with 
new technologies and the different opportunities offered by them? These studies encompass, 
among many other topics, the way we engage with virtual and augmented reality devices 
(Raja & Calvo, 2017; Schettler et al., 2019), the use of sensory substitution devices (Favela, 
Riley, Shockley, & Chemero, 2018; Lobo et al., 2018), or the undesirable socio-political effects 
of using biased algorithms in machine learning and deep learning (Birhane & Guest, 2021). 
 A different way to look at HMI in cognitive science is to focus on how cognitive 
scientists engage with technologies to gather new knowledge and new understanding of 
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human and animal psychology. A contemporary example of this form of HMI has to do with 
neural networks. Several developments in machine learning and deep learning (Goodfellow 
et al., 2016; LeCun, et al., 2015) have made (deep) neural networks a relevant branch of 
research in the cognitive sciences. These neural networks are able to either reach or even 
surpass human performance in tasks such as image classification (He et al., 2015), 
translation (Wu et al., 2016), and various games (Mnih et al., 2015). However successful 
neural networks are, several voices have raised in the last decade regarding their epistemic 
opacity (see Humphreys, 2004, 2009; Parker, 2013; Winsberg, 2001, 2010; Stuart & 
Nersessian, 2019). The problem, so the story goes, is that although cognitive scientists are 
able to build up and train them, deep neural networks eventually become black boxes that 
provide neither explanation nor understanding due to the number of parameters and 
degrees of freedom they have (Hasson et al. 2020). This issue stands by itself as a problem 
different from others previously described in the research on neural networks—e.g., the 
famous systematicity challenge Jerry Fodor and Zenon Pylyshyn posited to connectionism—
and is the motivation for the move toward so-called Explainable AI (XAI) and the issue of 
trust in artificial intelligence (cf. Doshi-Velez & Kim, 2017; Duran & Formanek, 2018; Lipton, 
2018; Murdoch et al., 2019). This is the kind of HMI we will explore in this paper. 
 In the following sections, we are going to evaluate the reasons for the epistemic 
opacity of deep neural networks and will try to provide a plausible solution to it. In section 
2, our thesis is that HMIs involving deep neural networks in cognitive science are 
epistemically opaque not because those networks intrinsically are black boxes but because 
they either (i) work under the wrong theory or (ii) are used just as a substitute for the 
theoretical needs of cognitive science. In both cases, the lack of a proper theoretical structure 
is the reason why deep neural networks appear as black boxes when trying to explain 
perception, action, and cognition. In section 3, after the proposed diagnostic, we will provide 
several examples of different efforts made by researchers in machine/deep learning to make 
this technology less opaque. Finally, in section 4, we propose a radical departure from the 
dominant theoretical framework in the cognitive sciences in order to find a theoretical 
environment that helps the interpretability, explainability, and understanding of these 
networks and their role as models of cognitive systems. Such a new theoretical environment 
is based on ecological psychology and pivots on the notion of ecological information. 

2. A Theory Desert for Many Black Boxes 

The problem with the epistemic opacity of deep neural networks has to do with the inability 
faced by cognitive scientists to use those networks to gather new information, knowledge, 
or understanding of the cognitive processes they are supposed to be modelling. The source 
of this inability has been described from the point of view of both the complexity of deep 
neural networks as models (Castelvecchi, 2016) and the lack of connection between these 
networks and real-world phenomena (Sullivan, 2020). We think that these criticisms, 
although plural, fall within a broader category: the fact that deep neural networks have 
evolved within a theoretical environment that lacks the proper resources to make them 
useful explanatory tools for cognitive science. Such a theoretical environment is twofold. On 
the one hand, deep neural networks have evolved in an engineering environment that does 
not need to be directly related to or concerned with perception, action, and cognition. In this 



sense, deep neural networks are understood like tools that can be used to solve different 
engineering problems (e.g., image recognition). As Goodfellow et al. (2016) put it: 
 

While it is true that deep learning researchers are more likely to cite the brain 
as an influence than researchers working in other machine learning fields, 
such as kernel machines or Bayesian statistics, one should not view deep 
learning as an attempt to simulate the brain. [...] While some deep learning 
researchers cite neuroscience as an important source of inspiration, others are 
not concerned with neuroscience at all. (p. 15-16). 

 

On the other hand, among those researchers of deep neural networks that are indeed 
concerned with neuroscience, the theoretical environment is almost exclusively based on the 
computational-cum-representational theory of cognition (Fodor, 1975, 1981; Pylyshyn, 
1984; for a recent treatment, see Kriegeskorte & Douglas, 2018). Such a theoretical 
environment requires specific computations and concrete representations to explain 
cognition. In this context, deep neural networks become a form of explanatory black box as 
their features (e.g., dimensions, complexity, etc.) make researchers unable to put them in 
clear relationship to those needed computations and representations. Let’s take a closer look 
at this issue.  
 It is important to realize that deep neural networks used in deep learning systems are 
just artificial neural networks. Artificial neural networks are deep when they have many 
layers between their input and their output. Such depth became common currency in the late 
2000s when the renaissance of artificial neural networks in such a deep fashion started 
leading to dramatic improvements in machine learning (Hinton et al., 2006; Hinton & 
Salakhutdinov, 2006). However, the neural network architecture on which it is built was 
devised over half a century ago (McCulloch & Pitts, 1943) and the main algorithms (e.g., 
backpropagation and stochastic gradient descent) were applied in the field during the 1980s 
(Werbos, 1982; LeCun, 1988; Rumelhart, Hinton, & Williams, 1986). Indeed, although the 
basic technology has improved, it has not substantially changed much since then and the 
recent advances in deep learning and, more generally, in machine learning can be attributed 
to data availability and computational brute force (Goodfellow et al., 2016). 

Generally speaking, artificial neural networks are composed of nodes and edges. The 
nodes are the computing components of the network and they are vaguely inspired by 
neurons. The edges are the connections between nodes. Artificial neural networks are input-
output systems in which information usually runs from an input layer of nodes and towards 
an output layer of nodes. Between input and output layers usually we find one or more 
hidden layers of nodes. The nodes of each layer are connected to the nodes of the other layers 
through edges. The strength of these connections—i.e., the influence the activity of a node 
has in the activity of the nodes of the next layer—depend on the weights of those edges: the 
greater the weight of the edge, the stronger the connection between nodes (see Figure 1).  

 



 
Figure 1. Schema of an artificial neural network. Colored circles are nodes and 
black arrows are edges connecting nodes. Information flows from left to right 
(the direction of the arrows) or, in other words, from the input (I) to the output 
(O)—this is the reason why these networks are sometimes called feed-
forward neural networks. The set of four brown nodes to the left is the input 
layer. The two central sets of four blue nodes are two hidden layers. The set of 
four brown nodes to the right is the output layer. 

 In artificial neural networks, desired input-output relationships could be probed by 
adjusting these weights like so many knobs and dials. Of note is the view of information 
processing implicit in this model. As we have already noted, information flows from inputs 
to outputs (left to right in Figure 1). Inputs are usually understood as discrete features 
represented as a range of values—e.g., the features of a living thing (e.g., that it has two legs, 
walks upright, has no tail, and so on)—and they can come either from outside the networks, 
as in the case of the input layer, or from the previous layers of the network, as in the case of 
the hidden and the output layers. In the latter case, it becomes more and more difficult to say 
which features or combinations of features are represented in each layer. Usually, processing 
in each node occurs by taking the weighted sum of the values of those inputs, and giving an 
output based on that sum. Then either this output is an input for the next layer or the 
activation value of that node belongs to the output layer. For instance, suppose an artificial 
neural network gets a picture as an input and has to determine whether there is a human 
being in the picture. To do so, one possible structure of the input, as we have just noted, is 
that each node of the input layer gets one feature of a human being. Then, each node sends 
that feature as output to the nodes of the next layer where individual features can, for 
instance, be combined. As the processing goes on layer by layer, the eventual result is having 
a pattern of activation in the output layer that reflects the fact that the input was actually a 
picture with a human being in it (or not, depending on the input).  

In this simple example, we have offered a rather shallow understanding of what is 
going on in artificial neural networks when they are presented with a task such as 
recognizing a human being in a picture. Providing the actual details of this process is outside 
of the scope of this paper, but we want to point out some subtleties. Broadly speaking, 



artificial neural networks are no more and no less than universal function approximators. 
And it can be shown that, granting a few restrictions, artificial neural networks can 
approximate any computable function. In the case of our example, the artificial neural 
network just needs to approximate a function that takes pictures as inputs and then delivers 
labels like “human being” or “not human being” as outputs. We have chosen to depict this 
process in terms of feature detection and feature combination, but that is just one of the 
possible ways to understand the activity of the network. Other possibilities are, for instance, 
to take the artificial neural networks to be making some kind of inference or to be learning 
some representation—distributed or not—of the process that generated the inputs or both. 
These and other possibilities, along with different algorithms to implement them, can be 
found in the literature (for an exhaustive review of the field, see Goodfellow et al., 2016). 
That said, a general understanding of the architecture of artificial neural networks and their 
activity as function approximators is enough to keep with the rest of the paper. 
 This succinct review of artificial neural networks promptly highlights that the 
symbiosis between the prevailing science of the brain, as composed of neurons and their 
connections, and logic/mathematics, both in the application of functions and the (early!) 
application of network theory, was made apparent from the start.1 Subsequent synergies 
with computer science have developed along these lines such that improved storage and 
processing power now make feasible achievements foregone in the periods of reduced 
funding and interest in AI during the 1970s, ‘80s, and ‘90s, known as the “AI winter” 
(McDermott et al., 1985; Russell & Norvig, 2003, p. 22; Howe, 1994; see also Lighthill, 1973). 
Current deep neural networks now have many more nodes, and, crucially, additional hidden 
layers, but the very foundations of the system remain pretty much the same since its 
beginnings. 
 With the addition of depth—i.e., with the addition of hidden layers—came profound 
computational benefits. The notion of a hidden layer was first introduced by Minsky and 
Papert (1969), who, despite having shown that an additional layer made computing logical 
relationships like the exclusive or (XOR) possible, pessimistically concluded “We believe that 
[networks with hidden layers] can do little more than can a low order perceptron” (Minsky 
& Papert, 1972, p. 38). In fact, it is this depth, and its subsequent benefits, that is the hallmark 
of deep neural networks.  
 The “deep” in deep learning refers to additional processing layers of deep neural 
networks. As noted by Cameron Buckner in a recent article, “deeper networks can solve 
certain types of classification and decision problems exponentially more efficiently than 
shallower networks” (Buckner, 2019, p. 1). He goes on to illustrate this using sum-product 
networks as an example. As Delallau and Bengio (2011) have formally proven, in a network 
composed of only two kinds of nodes—one which returns a weighted sum of its inputs, and 
the other which returns a product—used to solve polynomial functions, deeper architectures 
capitalize on factorization to increase computational efficiency: 
 

 
1 The background of both developers of the first models of artificial neural networks speaks to this fact. Warren 
McCulloch himself was a neurophysiologist, and Walter Pitts a mathematician. That their combined insights 
yielded a logical electrical circuit is emblematic of the intertwining of neurobiology with the engineering and 
computational technologies used to study neurobiology that was the foundation of cybernetics, and later 
cognitive science.  
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Specifically, the number of times an input product composed at an earlier layer 
can be reused in more complex products built by later layers increases 
exponentially with the network's depth…[Thus,] functions that can be 
efficiently represented as redeploying simpler computations to hierarchically 
compose more complex computations—can be represented and computed 
exponentially more efficiently in a deep architecture than a shallow one 
(Buckner, 2019, p. 4). 

 
 This depth, in combination with the exponential increase in data availability and 
some improvements in the array of algorithms at different levels of the network, accounts 
for the computational power of deep networks, and the diversity of domains in which these 
models find application. Put plainly, if a question can be posed in the form of a solvable 
function, and the factors required for solving it can be measured or recorded as data, then a 
deep network with access to that data can find the solution, often very quickly, and 
increasingly free of human direct intervention. This is the reason why deep neural networks 
are said to be used in relatively theory-neutral or atheoretical ways. In cases like disaster 
prevention or marketing, any system that can quickly provide accurate predictions, say, of 
the likelihood of forest fires (Safi & Bouromi, 2013) or the designation of a potential 
customer (Bahari & Elayidom, 2015), will be valued at the expense of any kind of theoretical 
transparency. In these contexts, if the deep neural network is able to provide a good result, 
whether we understand the way the network has arrived at that result or not is completely 
secondary, if not irrelevant. 

By contrast, other fields where deep neural networks are applied, and scientific 
inquiry in a more general sense, seem to require a theoretically-loaded endeavor. And this is 
the case in cognitive science, even though much of the theoretical-neutrality rhetoric from 
what we might call “metaphysically unfettered” efforts seems to be making its way into it. As 
noted in a recent article by Perconti & Plebe (2020), more and more deep neural networks 
are used as research tools in the cognitive sciences. We find that, at the same time, more and 
more complaints are emerging regarding their epistemic opacity (e.g., Stuart & Nersessian, 
2019; Sullivan, 2020). Put simply, the problem is that, unlike in some other fields, if deep 
neural networks are used in cognitive science as models of brains or cognitive systems in 
general, the way the networks arrive at their results is an important part of the explanandum 
researchers are pursuing to explain. This explanandum is indeed difficult to explain in the 
case of deep neural networks. These networks just have too many interacting nodes, edges, 
weights, parameters, inputs, etc. To provide a comprehensive explanation of all these 
components and interactions is not feasible with the typical tools researchers in the 
cognitive sciences have at their disposal. Concretely, it seems impossible to find the proper 
relationships between these various components and interactions and the central notions of 
the dominant theory in cognitive science: computation and representation. What kind of 
computation is instantiated by these networks if any? Are different groups of nodes 
instantiating  different steps of the computational algorithm? If so, which group of nodes is 
doing what? What is the network representing if anything? These are kinds of questions that 
seem to have no possible answer when deep neural networks are used in the cognitive 
sciences as models of cognitive systems. For this reason, deep neural networks become black 
boxes: elements that play a role in the explanation of a given cognitive ability or effect but 
that remain themselves unexplained. 



 One important aspect of the role of deep neural networks as black boxes in cognitive 
science is that they not only become black boxes for the lack of theoretical tools to explain 
them, but that they are actually embraced as black boxes by many cognitive scientists. The 
result in these cases, as we see it, is a theory desert: researchers in cognitive science are 
forced to choose between embracing a powerful engineering device with no regard for a 
theory backing it up, or attempting to apply a computational-cum-representaional theory 
that has no tools to make the device epistemically transparent. In other words, researchers 
find themselves in a desert in which they have no theory at all to fight against the opacity of 
deep networks. However, we think there is no reason to assume that these networks are 
intrinsically inert for explanatory/understanding purposes. On the contrary, it is our 
contention that the problem is that the current dominant computational-cum-
representational theory of cognition has no resources to make them useful. Weighed down 
by finding herself in a desert with inappropriate or outdated theoretical machinery, or 
finding herself with no theory at all, the deep learning modeler may be tempted to abandon 
cognitive science, perhaps taking their talents to another more fruitful area. Rather than 
suffer the mass exodus of talented researchers to other fields, a potential solution to this 
issue is to explore the theoretical space for suitable alternatives. As we will go on to show, a 
viable theoretical alternative already exists which is better suited to meet the task of 
overcoming epistemic opacity in deep neural networks.   

3. Removing Black Boxes? 

There are at least two different points of view from which one may address the issue that 
deep neural networks have effectively become an epistemologically opaque black box in 
scientific explanations. The first of these points of view is  quite  general and has to do with 
different ways in which deep learning and machine learning modellers—not only those with 
ties with the cognitive sciences but all of them—try to make the networks they work with 
amenable to a better understanding. This point of view is based on techniques that allow for 
interpreting the algorithms used in deep neural networks and their results in a deeper way. 
The second point of view is specific to the cognitive sciences and has to do with finding 
relationships between deep neural network activities and brain activities in order to shed 
light on both of them.2 The hope of this approach is that both systems are sufficiently similar 
such that insights about one system can be applied to the other system. Before we put this 
approach into question, let’s say a few more words regarding both points of view. 

Within the general research on deep learning, one example of the efforts made to 
better understand the activities of deep neural networks is the growing literature on their 
interpretability (see Chakraborty et al., 2017). Although achieving adequate task 
performance is a central aim of deep learning systems, it is far from being the only one of a 
handful of important concerns regarding their activity. Other important concerns might 
include safety (Pereira & Thomas, 2020), nondiscrimination (Birhane & Guest, 2021), or 
privacy (De Cristofaro, 2020). With respect to these other criteria, some of them difficult to 
quantify, interpretability commonly acts as a proxy. As Doshi-Velez and Kim (2017) put it, 
“if the system can explain its reasoning, we then can verify whether that reasoning is sound 

 
2 We say this is a point of view specific to the cognitive sciences because that’s our focus. In principle, the same 
approach can be taken from any scientific field. 



with respect to these auxiliary criteria” (p. 1; emphasis in the original). Interpretable deep 
neural networks, on this view, provide human-readable justification for their outputs or, at 
least, researchers have some (hopefully) reliable resources, models, and meta-models to 
interpret those deep neural networks (for a review, see Linardatos et al., 2020). In other 
words, interpretable deep neural networks are those whose activity can be understood by 
researchers under some circumstances. The information researchers can gather from these 
deep neural networks is, both theoretically and methodologically, the key for their 
interpretability. 

In many cases, researchers explicitly use the technical notion of information from 
information theory. For instance, many of the cost functions—i.e., the functions that measure 
the performance—of unsupervised deep learning systems make explicit use of Shannon 
information (Shannon, 1948) to estimate the maximum likelihood of the parameters of the  
network. This use of information theory provides some insights regarding the activities deep 
learning systems are performing: generally speaking, deep neural networks are 
approximating a desired function by minimizing some other function (the cost function) and 
that minimization is cashed out in terms related to uncertainty and Shannon information. 
Such an interpretation of the activities of deep neural networks is, however, indirect. The 
researchers only have access to a proxy of the performance to interpret the activities of the 
network. They know it is doing better or worse in the task of interest, but they don’t know 
how it is doing it. In other words, having access to a performance index based on Shannon 
information does not tell researchers anything regarding how the deep neural network is 
actually carrying out the task. In this sense, this technical use of information theory does not 
allow us to see into the black boxes of deep neural networks. 
 In other cases, however, researchers can gain interpretational grip on deep neural 
networks by different means. Some of these means consist of explicit interpretability tools, 
as for instance, DeepExplain (Zeiler & Fergus, 2014), Grad-CAM (Selvaraju et al., 2017), or 
InterpretML (Ribeiro, Singh, & Guestrin, 2016). All of them are interesting ways and 
toolboxes with which researchers target diverse interpretability issues of deep neural 
networks by developing tailored algorithms and visualization methods. However, there are 
more fundamental approaches to these issues. These approaches do not consist of ad-hoc 
interpretability methods but take a more basic route associated with the architectural and 
functional properties of deep neural networks. One of these approaches is, for instance, to 
constrain the features and activities of deep neural networks to get informative outcomes—
in this case, the notion of information is used in a non-technical, common language way. One 
of these constraints is known as sparsity. Signals of interest are, generally speaking, highly 
structured. Some deep learning and other machine learning models exploit this structure to 
find a low-dimensional model of the data; that is, a model that captures the different aspects 
of the data with just a set of few parameters that can be cast in terms of  rules in a classifier 
(Friedman & Propescu, 2008; Letham, et al., 2015), the pairwise interactions in a matrix 
(Lou, et al, 2013; Caruana, et al., 2015), or the number of coefficients in an algorithm (Ribiero, 
et al., 2016; Kindermans, et al., 2018), for instance. In other words, a sparse model 
compresses a high-dimensional feature space of a dataset of inputs into a few 
predictively/performatively adequate outputs.  
 The sparsity of some deep neural networks permits improving their interpretability 
insofar as the high-dimensionality of their input is reduced in their output to an extent that 
can be understood by researchers. For instance, if a data set of million pictures is encoded 



by a deep neural network in a handful of factors that account for the variability of all the 
features of those pictures, then that handful of factors can be used to generate new instances 
of the dataset—this is what variational autoencoders, for instance, can do (Kingma & 
Welling, 2014, 2019). But then, researchers have more information about that generative 
process: they know that the deep neural network is generating new instances of the data set 
from a specific set of factors and not another one. In this sense, some information about the 
activity of the deep neural network is gathered by the sparsity constraint. However, the 
concrete steps of the encoding or the generating activities performed by the deep neural 
network, although more constrained in their possibilities, remain completely unknown. 
Therefore, the network remains a black box regarding its concrete activities for the most 
part. 

Finally, deep learning systems are sometimes interpreted through their application, 
either in real world cases or sufficiently similar simpler instances. Sometimes this involves 
expert assessment of the system’s outputs. For instance, an algorithm for correcting 
segmentations in microscopy data could be evaluated by expert review of the same target 
image task (Suissa-Peleg et al., 2016). In other cases, system outputs can be checked against 
competing explanations for quality of explanation type (Kim, et al. 2015). As in the case of 
the previous efforts on the interpretability of the activities of deep neural networks, using 
this kind of post-hoc assessment regarding the performance of the network is not providing 
any further information regarding its concrete activities to achieve that performance level. 
Once again, deep neural networks remain epistemically opaque. 

The instances of interpretability just reviewed apply to deep neural networks writ 
large. Namely, these are strategies researchers can follow irrespectively of their interest in 
neuroscience. Beyond them, however, there are some efforts within neuroscience to remove 
the black boxes of their explanations that make use of these networks. These efforts have to 
do more directly with theory building and theory refinement. This is the case, for instance, 
of recent attempts to link the features of artificial and natural neural networks (Bashivan et 
al., 2019; Buckner, 2018; Poldrack, 2020; Yamins & DiCarlo, 2016). These views take, on the 
one hand, the deep structure of successful artificial neural networks, and, on the other, the 
organization of neurons in the cellular networks of the brain as combined evidence that 
successful implementations of the former stand as accurate cognitive models of the latter. 
For instance, Cameron Buckner (2018) concludes, “convolutional and pooling nodes 
correspond to simple and complex cells in the mammalian neocortex, which are organized 
in hierarchical layers as depicted in the layers of a DCNN [Deep Convolutional Neural 
Network]. Thus DCNNs provide a mechanistic model of abstract categorization and 
perceptual similarity judgments in mammals” (p. 5364). In other words, at least according 
to some researchers in the field, the activities and outputs of a black-box neural network can 
be interpreted through the application of mechanistic theory to its features.  

This is a straightforward application of the model-to-mechanism mapping (3M) 
requirement held by various neo-mechanist philosophers (see Kaplan & Craver, 2011; also 
Craver & Kaplan, 2020; Craver, 2007). This requirement states that the features in a model—
the neural network in this case—are explanatory to the extent that they can be mapped to 
real entities, activities, or organizational features of a mechanism. This mapping occurs by 
comparing a model’s structure against the structure of the target system. Using an example 
strangely beloved by philosophers of science, a model of a toilet will be explanatory to the 
extent that the model identifies the component parts of the toilet (e.g., handle, valve, tank, 



etc.) and their orchestrated activities (e.g., pulling, lifting, filling, etc.). Likewise, a model of 
similarity judgments in mammals will be explanatory, not by how often the model’s 
judgment of similarity matches a mammal’s, but to the extent that the model’s components 
can be mapped to the entities and activities, properly organized, which actually account for 
similarity judgments in mammals.  

  There is an interesting aspect of this way of proceeding in the case of deep neural 
networks and their status as black boxes. The mentioned use of DCNNs in the cognitive 
sciences becomes an application of mechanistic theory of cognition. In this sense, properties 
of DCNNs—convolution or max-pooling, for instance—rather than simply being opaque 
mathematical procedures when they are at play in a system as complex as a deep neural 
network, become concrete ways of modeling the activities of neurons in the brain.  In other 
words, the very abstract activities of the DCNNs are mapped to specific functions of biological 
neurons and neural networks. It is by this process, for instance, DCNNs are claimed to be able 
to implement a hierarchical processing which Buckner (2018) dubs “transformational 
abstraction”. The process, so the story goes, “iteratively converts sensory-based 
representations of category exemplars into new formats that are increasingly tolerant to 
‘nuisance variation’ in input” (Buckner, 2018, p. 5339). It is this process and its underlying 
architecture, Buckner claims, that accounts for visual similarity judgements in the 
mammalian brain. However, it is important to note again that this use of the mechanistic 
theory of cognition just maps aspects of a mechanistic description of the mammalian brain 
in a given task to abstract aspects of DCNNs. In this sense, the DCNNs is interpreted: we have 
more information about what cognitive activity the DCNN is carrying out. However, the 
DCNNs status as black boxes remains the same. The concrete activities of the DCNN remain 
completely opaque to the understanding of the researchers. The specific details of a given 
convolution of two given layers of the deep neural network are unknown. Of course, 
researchers know what a convolution is, but they do not know the details on how deep neural 
networks exactly carry it out to achieve the proper performance in visual similarity 
judgements (e.g., the specific features of the input combined in the convolution step and how 
they map onto the features combined in natural neural networks; see Poldrack, 2020). The 
information gathered by the application of the mechanistic theory of cognition, therefore, 
does not remove the black box but assumes it as such in the mapping with the description of 
the biological target system.3  

However, it must be noted that the described mapping between the DCNN and the 
biological target system is only based on performance. Namely, other than the fact that 
DCNNs perform well in the visual similarity judgement task, there is no other reason to 
assume that the DCNNs can be mapped in concrete aspects of the biological mechanism. The 
DCNN remains opaque, thus the mapping can only be done from the biological mechanism 
to the DCNN and not the other way around: researchers much choose which concrete aspect 
of the biological mechanism is modelled by the DCNN as there is no intrinsic information of 
the network to decide on the issue. Again, at all effects, although the DCNN is interpreted, it 
remains a black box for the neuroscientist. 

 
3 It should be noted that this strategy is by no means unique to mechanists. A similar tactic has recently been employed 

by Ofner and Stober (2018), exploiting the affinity between variational auto-encorders (Kingma & Welling, 2014; 
Rezende, et al, 2014) and the free energy principle as it relates to the predictive activity in the brain (Friston, 2010; 
Friston & Stephan, 2017)—see also Raja et al. (2021).  



The reviewed attempts to interpret deep neural networks have helped researchers 
gain understanding in limited domains. However, it is clear that, both in the general case and 
in the concrete case of neuroscience, deep neural networks remain for the most part an 
epistemically opaque black box. As we have tried to show in the previous two sections, this 
situation is not a product of the nature of deep neural networks but a product of its 
theoretical environment. Either because of a general disinterest in neuroscience or because 
of the theoretical commitments which interpret deep neural networks without removing 
black boxes, these architectures, although tremendously powerful, remain very limited tools 
when used to understand cognitive systems. Our proposal is that if we have a theory that 
better characterizes and constrains the limits of the cognitive systems and their environment 
(e.g., the kind of things cognitive systems can do and the kind of things environments can 
offer; see Raja 2020a), we will have better chances to understand what is going on in deep 
neural networks. Namely, by providing the proper theoretical framework, deep neural 
networks may be interpreted. This might not solve all the issues but would help us to open 
some black boxes. In the next section, we provide some guidelines on how this can be done. 

4. Deep Neural Networks in the Theory Eden 

The previous sections illustrate that at least part of the problem of epistemic opacity in deep 
neural networks has quantitative origins and that at least part of the possible solutions to 
that problem have to do with some form of quantitative reduction. Researchers are not able 
to properly explain and understand the activities of deep neural networks because of the 
many degrees of freedom both in the data used and in the network itself. Deep neural 
networks are composed of many layers of many nodes with many connections between 
them. And all these many components have one or more associated parameters. Because of 
this, most contemporary deep neural networks are defined in terms of incredibly large 
amounts of parameters—sometimes of the order of tens of millions (Hasson et al., 2020)—
that make the activities of the networks impossible to represent and conceptualize by 
researchers. What is the network defined by that amount of degrees of freedom actually 
doing? How can we even represent a system of these characteristics? How is each parameter 
related to the activity of the network? The epistemic opacity of deep neural networks partly 
depends on the inability to answer these and similar questions on how to address this 
concrete form of HMI. This is the reason why many strategies for deep neural network 
interpretability are based on somehow reducing the amount of dimensions in which those 
parameters define the activities of the networks (i.e., their degrees of freedom) to be able to 
understand what’s going on in them.  
 The problems of the inherent structure of deep neural networks are exacerbated by 
the data they deal with. When data is understood as input, it provides an extra layer of 
degrees of freedom. The pictures used to train a network, for instance, can vary in many 
different ways, can portray different kinds of objects, can include different levels of noise, 
etc. In other words, information that can be extracted from that input is huge. And the 
computation-cum-representational paradigm does not provide researchers with an 
understanding of information compatible with this issue—for a review of the problems with 
the notion of information and the application of information theory to cognitive science and 
neuroscience, see, e.g., de-Wit et al. (2016), Nizami (2019), Gallistel (2020). Additionally, the 
aspects of the input deep neural networks use to perform whatever function they are 



designed to perform (e.g., classification, recognition, denoising…) are usually different from 
those cognitive scientists and neuroscientists would enumerate if asked about the way 
cognitive systems perform the same function. Again, for instance, the aspects of pictures 
upon which deep neural networks rely in order to accomplish their “visual” function seem 
to have nothing to do with edges, contours, shades, and all the other features typically used 
in the cognitive science/neuroscience of vision (see, e.g., Poldrack, 2020). This problem is 
very clear in the case of adversarial examples; namely, those individual inputs that seem to 
belong to the same data pool but that make deep neural networks fail in their performance 
(Buckner, 2019; Ilyas et al., 2019). Instances of these adversarial examples are pictures with 
a little bit of noise added. Although they have the same properties other pictures have (e.g., 
same edges, contours, and so on), networks often misclassify them. As in the case of the huge 
amount of information in the input, researchers have no theoretical resources to deal with 
adversarial examples insofar as they are not able to map the fundamental concepts used in 
the cognitive sciences to the activity of deep neural networks, providing a specific instance 
of link uncertainty as described by Sullivan (2020). Our proposal gains traction in facing 
these two theoretical limitations of the computation-cum-representaitonal paradigm. 
 In order to improve the human-machine interactions in the context of the sciences of 
the mind, we propose to look outside its dominant theoretical paradigm to find resources 
that allow for (i) a better characterization of the information available in the inputs of deep 
neural networks and (ii) a better characterization of the very activities of those deep neural 
networks when considered models of the cognitive activities of the brain.  More concretely, 
it is our contention that the notion of ecological information from ecological psychology is 
able to qualitatively and quantitatively constrain the possible activities of deep neural 
networks (when used as models of the brain) and, therefore, it can work as a theoretical aid 
to fight against their epistemic opacity. In other words, by framing the explanation of the 
activities of deep neural networks as models of the brain within the framework of ecological 
psychology, researchers may find themselves outside of the theoretical desert of the 
computation-cum-representational paradigm, and in the lush oasis of a theory eden. 
 Ecological psychology was founded by J. J. Gibson (1966, 1979) and E. J. Gibson (1969) 
as a general approach to perception and perceptual learning. Later, it became a 
comprehensive alternative theory for cognitive science in general (Chemero 2009) and its 
principles and main concepts have been applied fields like social psychology (Heft, 2021), 
developmental psychology (Adolph & Hoch, 2019), or neuroscience (de Wit & Withagen, 
2019; Raja, 2018, 2019, 2020b; Raja & Anderson, 2019). Probably, the most famous 
ecological concept is the concept of affordance, which refers to the opportunities for action 
organisms find in their environment (Chemero, 2003; Heras-Escribano, 2019). Affordances 
are, for instance, the grab-ability of a mug or the climb-ability of a stair.  The key aspect of 
affordances we are interested in is that, according to ecological psychology, they are 
perceptually available to organisms because they are specified by ecological information. In 
this sense, we will not offer anymore analysis on affordances themselves but we will focus 
on what ecological information is, what does it mean that ecological information specifies 
them, and how it is possible. 
 Within ecological psychology, ecological information is constituted by patterns of 
stimulation that surround organisms and that can be used by them to perceptually guide 
their behavior (Segundo-Ortin, et al., 2019; Warren, 2021). These patterns of stimulation are, 
put simply, structures in the energies to which the different sensory modalities are sensitive. 



For instance, the structures in light in the case of vision, the structure in the vibrating air in 
the case of audition, or the structures in the dissipation of chemicals in the case of olfaction. 
In the case of vision, the layout of the surfaces of the objects that surround a given organism 
reflects the light that comes from the light sources in that environment and structures that 
light in a particular way—for example, there is likely more illumination over your desk than 
under your desk due to the layout of the elements of your room/office with regard to the 
light sources in it. This entails that at any position of the environment where the visual 
system of an organism can be, a slightly different structure of light is available to it. And when 
the organism moves around, an ever-changing structure is available to its visual system. This 
ever-changing structure is called optic flow and some invariant structures in this flow are 
considered ecological information for vision in ecological psychology. 

But what are these invariant structures that constitute ecological information? It is 
pretty clear that the typical basic properties in which dominant cognitive science describe 
visual features, such as color, contours, shapers, and so on, are not invariant in the optic flow. 
Your desktop looks like a rectangle, a square, or a trapezoid depending on the place in the 
environment you are looking from, and its color changes depending on whether there is 
sunlight or artificial light and depending on the intensity of that light. These properties 
cannot be ecological information insofar as they are not invariant. However, there are other 
properties of the optic flow that are invariant. Think, for instance, about the optic flow 
generated by the forward locomotion of an organism: the direction of the heading is 
invariably in the center (origin) of the flow and the flow itself is invariably centrifugal from 
it—i.e., any point of the flow that is not in the origin follows a trajectory that would 
eventually leave it outside of the visual field. Backward locomotion, on the contrary, 
generates an invariably centripetal flow—i.e., any point of the flow that is not in the origin 
(now a vanishing point) follows a trajectory that would eventually make it collapse in the 
vanishing point. These two different kinds of flow are invariant with regard to other features 
of the environment (e.g., color, shapes, illumination) and lawfully specify events of 
locomotion on it. In this sense, these two flows are invariant structures that can constitute 
ecological information. 

There are many other invariant structures in the patterns of optic flow that, like the 
just described centrifugal and centripetal flows, can constitute ecological information and 
many of them have been already described and formalized in the ecological literature. A chief 
example of these is tau or the time-to-contact invariant (for a review, see Lee, 2009). Put 
simply, anything that approaches a visual system occupies more and more space in the visual 
field of the observer as the approach goes on—you can test that just by making your hand 
approach your eyes and notice how it covers more and more parts of the background as you 
do it. In other words, the approaching thing expands in the visual field while the non-
approaching background remains the same. Such an expanding pattern occurs irrespectively 
of the color, size, shape, etc., of whatever is approaching the visual system. In this sense, the 
pattern is invariant in all but in one way that may be referred to as the “speed” of expansion: 
the faster the approaching thing expands in the visual field, the sooner it will make contact 
(i.e., will hit/will occupy the same point in space) with the visual system. This is the reason 
why this invariant structure named tau can be used by the observer to know the time-to-
contact to an approaching object and, therefore, can be considered as an instance of 



ecological information.4 Indeed, that observers use tau to control their behavior with respect 
to approaching things has been found in a great number of studies both in experimental 
psychology (e.g., Craig & Lee, 1999; Craig, et al., 2000; Lee, 2005; Lee & Reddish, 1981) and 
neuroscience (e.g., Sun & Frost, 1998; van der Weel & van der Meer, 2009; van der Weel, et 
al., 2019). 

Given this succinct presentation of ecological information as a central concept within 
ecological psychology, we want to point out one of the fundamental consequences when it is 
used to describe the input of a cognitive system like the brain: that ecological information 
greatly constraints the degrees of freedom of relevant information in the input. In other 
words, there are many ways in which the input may vary (e.g., color, contrast, shape, 
contours, etc.), but these are just irrelevant for the cognitive system. The only variable the 
cognitive system needs to detect to properly perform the activity is the variable of ecological 
information. In the case of approaching objects, for instance, the cognitive system or brain 
just needs to detect the expansion of the approaching thing (i.e., tau) in the visual field, 
regardless of the other many properties of the input. As well as other variables of ecological 
information in other tasks, tau is invariant with respect to the approaching object. Namely, 
the color of the object, or its shape, or its edges, vary in the visual field with respect to the 
position of the observer, the illumination conditions, etc. However, the expansion of the 
object in the visual field on which tau is based remains invariant—i.e., remains the same—
with regard to all these changes, so the latter are cast out as irrelevant for the system: brains 
can ignore all the degrees of freedom that do not have to do with tau as only tau is needed to 
perform the task. In this sense, the informational possibilities of the input are constrained to 
one kind of invariant event. Thus, just by reframing the theoretical space of cognitive science 
in terms of ecological psychology and, more concretely, in terms of ecological information, 
researchers in the field can constrain the degrees of freedom of the input and make it easier 
to understand when explaining the activities of the cognitive system. And the same can apply 
to deep neural networks. Deploying the language of ecological information is, in this sense, 
just another form of dimensionality reduction.  

Trying to understand deep neural networks from the theoretical space of ecological 
psychology begins from a somewhat counterintuitive place. The way the ecological 
framework is able to help solving the quantitative issues that underlie the epistemic opacity 
of deep neural networks when they are used as models of cognitive systems begins by 
looking at the way what we know about cognitive systems and the environment they face 
can constrain some of the degrees of freedom of the input. Instead of directly looking at the 
activities of deep neural networks themselves and trying to limit or minimize their own 
degrees of freedom, we should start by reducing the degrees of freedom in our data set. The 
ecological approach forces us to curate our data set in order to provide the network with the 
relevant ecological information for the task at hand—e.g., a data set in which tau is present 
for time-to-contact judgements. By doing so, we are sure that, if the deep neural network is 
a model of brain activity, this activity must be dealing with one and only one variable, the one 
that constitutes ecological information, and we can put all the other sources of variability in 
the data set aside. This is a straightforward way to reduce the degrees of freedom of the deep 

 
4 The actual formalization of tau is more complicated and involves the inverse of the relative dilatation of the 
optic angle of the approaching object. We do not need these details to grasp the general idea of ecological 
information. For further details, see Lee (2009). 



neural network and an aid to a better understanding of it. However, it may be unclear why 
the deep neural network must be dealing with ecological information and not other aspects 
of the input. The answer to this concern is, again, theoretical. Ecological psychology describes 
(at least perceptual) activities of cognitive systems in terms of detecting ecological 
information. So, if we accept this theoretical framework and we take deep neural networks 
to be models of the cognitive systems, they must model this detection of ecological 
information. The quantitative reduction needed to fight against the epistemic opacity of 
these networks is therefore acquired by the constraints in the possible explanations posited 
by the theoretical framework of ecological psychology. The computational-cum-
representational framework does not posit these constraints. Indeed, it virtually posits no 
constraints in what the input can be, in what the computation executed by the deep neural 
network can be, or in what the deep neural network can be representing. Such a lack of 
theoretical constraint is what directly leads to the epistemic opacity issue. On the contrary, 
the much more constrained space allowed by the ecological theory enables understanding. 
Within the ecological framework, researchers know what’s the relevant informational aspect 
of the input and that the activity of the network—e.g., in a loose sense, the computation 
executed by it—is detecting that specific information. In this sense, the constraints posited 
by ecological psychology in our explanations of cognitive systems using deep neural network 
models can be considered a form of enabling constraint (Anderson, 2015; Raja & Anderson, 
2021): limitations that enabling some functionality (explainability/understability in this 
case) by virtue of that very limitation.5 Summing up, what ecological psychology provides is 
a theoretical framework that provides tools to overcome the epistemic opacity of deep 
neural networks when used as models of cognitive systems by virtue of using ecological 
information as a limitation of the relevant aspects of their inputs and their activities. 

It is important to point out that, although our proposal is strictly theoretical so far, 
some recent work in the field of computer vision, and concretely on the topic of object 
segmentation and tracking, may be seen as a proof of concept of the theoretical framework 
presented in here. Tsao & Tsao (2021) have recently provided a mathematical proof of the 
plausibility of ecological information for visual perception and of its computational 
implementation. Concretely, they prove that: 

[O]bject surface information is redundantly represented by the field of ambient optic 
arrays through two of its topological structures: the pseudogroup of stereo 
diffeomorphisms and the set of infinitesimal accretion borders. Formulated in terms of 
ecological optics, vision is a fully constrained, well-posed problem. Complete 
information for perception of objects as discrete, persistent units is contained in the 
visual environment itself within the field of ambient optic arrays. (p. 3; emphasis is 
ours). 

 
5 A simple example of an enabling constraint is the limitation of the movability of a well-functioning human 
knee. Well-functioning human knees can bend in very limited ways—pretty much only backwards—and, along 
with other features of the human body, this limitation is what makes it possible that we walk the way we walk, 
we run the way we run, or we control our posture the way we do it. In this sense, the constraint in the bending 
of well-functioning human knees is enabling and, therefore, it is an enabling constraint. 



Technicalities aside, Tsao & Tsao (2021) show how two invariants of the optic flow (stereo 
diffeomorphisms and infinitesimal accretion border) indeed exist in that flow and constitute 
information adequate to identify objects as individual units (object segmentation) and to 
track them in the visual field. Namely, these invariants and no other properties of the optic 
flow (e.g., colors, shapes, contrasts, and so on) are the ones needed for successful object 
segmentation and tracking. In this sense, any system devoted to implementing object 
segmentation and tracking, and that has sets of frames of the optic flows as inputs, may use 
those invariants to be successful. Actually, Tsao & Tsao (2021) show that these functions can 
be (relatively) easily implemented in a computational system by means of a general 
algorithm with a few parameters. Insofar as deep neural networks are universal function 
approximators, the functions should be in principle possible to implement by them—Tsao & 
Tsao discuss this extent (2021, p. 12-14). Thus, this work can be taken as a concrete proof of 
concept of our general proposal although we acknowledge more work needs to be done in 
pursuing its generality. 

Beyond the plausibility of ecological information as a constraint for the research with 
deep neural networks, our proposal still leaves one fundamental question open: how do deep 
neural networks detect ecological information? In other words, how can we know that the 
network is actually detecting ecological information and the way it does it? These questions 
resemble the ones we asked before while analyzing the computational-cum-
representational framework. In that moment, we pointed out that the specific details of 
concrete activities of deep neural networks when they successfully perform a task (i.e., the 
specific way a face recognition algorithm is implemented by the parameters of the network) 
remains completely opaque to the understanding of the researchers. Similarly, we can say 
that, even if we know a deep neural network is detecting ecological information, we do not 
really know how such a detection function is implemented by the network or what is actually 
being represented on it. 

To date, the resources the ecological approach provides to answer this kind of 
question are not as powerful as ecological information in constraining the dimensionality of 
the data set. However, there are some interesting aspects of the approach that point out a 
number of possible solutions. First, if deep neural networks are used as models of the brain 
within the ecological theoretical framework, the function implemented by the network is 
clear: detecting the relevant ecological information for the task at hand. There is only one 
variable of ecological information that can be detected, so there is no question on what 
features of the input are used and, therefore, there is no question on whether the network is 
implementing an unknown function. This is, again, an example of theoretical constraint that 
aids explainability and understanding of deep neural networks.  And second, ecological 
psychology provides us with the notion of resonance (Raja 2018, 2020b). Put simply, 
cognitive systems (e.g., brains) detect ecological information by resonating to it, where 
“resonating” means to be coupled to the dynamics of the situation through ecological 
information. For instance, suppose a situation in which the relevant ecological information 
for the task at hand is tau. We know that the brain of an observer is resonating to tau if we 
find that the value of tau of the whole situation and the value of tau of brain dynamics—
measured by with an EEG, for instance—are coupled. This kind of situation may be named 
as tau-coupling and has been empirically tested in a variety of studies (e.g., van der Meer et 
al., 2019, and references therein). The consequence is that if a deep neural network is 
modeling a cognitive system in this kind of situation, the prediction under the ecological 



framework is that the network will be tau-coupled to the input in terms of its global 
dynamics for whatever measurement of these dynamics we select. Therefore, notice that the 
relevant aspect of the activity of the deep neural network in this case has to do with its global 
dynamics and not with local aspects regarding particular layers or parameters, as it is the 
case within the computational-cum-representational framework and its feature-based 
approach, for instance. In this sense, although resonance itself does not fully account for the 
how question regarding the activity of deep neural networks, it does open a different look on 
its activity—i.e., a global look instead of a local look—that may be productive on its own or 
in combination with other strategies as the ones suggested in the previous section. 

A related consequence of this ecological view of deep neural networks concerns the 
way in which deep neural network modeling is done in cognitive science. This view suggests 
not only that we reevaluate what it is we are modeling in applying deep neural networks to 
cognitive systems (i.e., ecological information), constraining the inputs to the system, but 
also how that modeling is done. On the model of ecological psychology, organisms perceive 
affordances, and thus ecological information, by interacting with features of their 
environment to uncover invariant features in what we might think of as “dynamic 
information processing” (cf. Faries & Chemero, 2019). This contrasts with the standard 
computational-cum-representational view in which computations are made over static 
representations. By parity of reasoning, this ecological view of deep neural networks 
suggests that information gleaned from deep neural network models is not best determined 
by post-hoc quantitative reductions on single instances of a network model. Instead, 
researchers uncover ecological information about deep neural networks by interacting with 
them: perhaps by perturbing the system by incremental changes to parameters over 
multiple runs, or attempting to “break” them by sending inputs engineered to test the 
system’s responses. This is the spirit of work in XAI on iterative random forests (Basu, et al., 
2018; Kumbler, et al., 2018), and adversarial networks (Buckner, 2019; Ilyas, et al., 2019), 
respectively. On an ecological view, these and related efforts are well-deserving of increased 
focus and attention. 

We think these are examples enough of the different ways the theoretical constraints 
posited by an ecological framework in the understanding of the activities of deep neural 
networks when they are used as models of cognitive systems may help with the issue of their 
epistemic opacity. It is worth noting though, that this kind of solution only applies to a 
specific kind of HMI, that is, to the interaction between cognitive scientist/neuroscientists 
with the technology of machine and deep learning. Interactions with this kind of technology 
in other contexts is outside the scope of this paper as the application of the ecological theory 
to them is not granted without further justification that we will not pursue here.  

5. Conclusion 

In this paper we have shown that by using a specific notion of information, ecological 
information, we can improve a specific kind of Human-Machine Interaction (HMI): the one 
between cognitive scientists and machine/deep learning technologies. We have shown that 
when deep neural networks are used in the contemporary sciences of the mind, researchers 
find themselves in a theory desert: they do not have the theoretical resources to 
explain/understand the activities of deep neural networks and their places within the overall 
explanatory enterprise of cognitive science and neuroscience. In this sense, deep neural 



networks are explanatory black boxes in the field due to what has been labelled as their 
epistemic opacity. Then, we have claimed that a change in the underlying theoretical 
assumptions from which deep neural networks are understood in the science of the mind 
could help against such epistemic opacity. Concretely, we have claimed that understanding 
deep neural networks under an ecological framework puts them within a theory eden. The 
notion of ecological information—and, to a lesser extent, the notion of resonance—provides 
adequate theoretical constraints to aid the explanatory enterprises of cognitive scientists 
when they use this kind of technology. The success or failure of this theoretical move is, of 
course, an empirical question and will only be decided after such empirical work is deployed. 
However, given our own exposition of reasons and the proofs of concept discussed in it, we 
think we have provided enough theoretical reasons to make the whole enterprise palatable 
both to philosophers and cognitive scientists.  
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