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Abstract

Why does time reversal involve two operations, a temporal reflec-
tion and the operation of complex conjugation in quantum mechanics?
Why is it that time reversal preserves position and reverses momen-
tum and spin? This puzzle of time reversal in quantum mechanics has
been with us since Wigner’s first presentation. In this paper, I argue
that the standard account of time reversal in quantum mechanics can
be derived from the natural requirement that time reversal reverses
velocities by analyzing the continuity equation.

Why does time reversal involve two operations, a temporal reflection
and the operation of complex conjugation in quantum mechanics? Why is
it that time reversal preserves position and reverses momentum and spin?
This puzzle of time reversal in quantum mechanics has been with us since
Wigner’s (1931) first presentation, although some progress has been made
to solve it recently (Roberts, 2017, 2020; Struyve, 2020; Callender, 2021).
According to some authors, time reversal “can involve nothing whatsoever
other than reversing the velocities of the particles” (Albert 2000, p.20),
and “It does not make sense to time-reverse a truly instantaneous state
of a system” (Callender, 2000). I am in sympathy with the arguments of
these authors. In this paper, I will argue that the standard account of time
reversal in quantum mechanics can be derived from the natural requirement
that time reversal reverses velocities by analyzing the continuity equation.

Consider the Schrödinger equation for a spin-0 quantum system in an
external scalar potential:

i~
∂ψ(r, t)

∂t
= [− ~2

2m
∇2 + V (r, t)]ψ(r, t), (1)
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where ~ is Planck’s constant divided by 2π, ψ(r, t) is the wave function of
the system, m is the mass of the system, and V (r, t) is an external scalar
potential. From this equation we can derive the continuity equation:

∂ρ(r, t)

∂t
+∇ · j(r, t) = 0, (2)

where ρ(r, t) = |ψ(r, t)|2 and j(r, t) = ~
2mi [ψ

∗(r, t)∇ψ(r, t)−ψ(r, t)∇ψ∗(r, t)]
are probability density and probability current density, respectively. By
writing the wave function in the polar form ψ = ReiS/~, where R and S are
real functions, we can obtain the local velocity for the probability current:

v(r, t) ≡ j(r, t)

ρ(r, t)
=

1

m
∇S(r, t). (3)

Now let’s see how the wave function ψ(r, t) is transformed by the time
reversal operator T . First, since the definition of probability density (via
the Born rule) does not depend on the direction of time, we have Tρ(r, t) =
ρ(r,−t), which leads to TR(r, t) = ±R(r,−t) due to ρ(r, t) = R2(r,−t).
Next, since time reversal involves reversing velocities, we have Tv(r, t) =
−v(r,−t), which leads to TS(r, t) = −S(r,−t)+C0, where C0 is a real con-
stant. Note that the continuous equation is time reversal invariant under
these transformations. Then we can obtain the standard antiunitary trans-
formation rule for the wave function: Tψ(r, t) = ψ∗(r,−t) when ignoring
an overall constant phase. In addition, by analyzing the probability current
acceleration, we can obtain the transformation rule for the scalar potential:
TV (r, t) = V (r,−t). Notably this transformation rule applies to the electric
scalar potential Tφ(r, t) = φ(r,−t).

Based on the transformation rule for the wave function, we can derive the
transformation rule for every observable from its definition (or its operation
on the wave function). For example, for position r, we have TrT−1 = r,
and for momentum p = −i~∇, we have TpT−1 = −p, and for angular
momentum L = r× p, we have TLT−1 = −L.

By analyzing the continous equation for a charged system in an electro-
magnetic field, we can also obtain the transformation rules for the electro-
magnetic potentials and fields. The probability current velocity for a spin-0
system with mass m and charge Q in an external electromagnetic field is

v(r, t) =
1

m
[∇S(r, t)−QA(r, t)], (4)

where A(r, t) is the magnetic vector potential. Then Tv(r, t) = −v(r,−t)
leads to TA(r, t) = −A(r,−t). Using the definition B = ∇ × A, we can
obtain the transformation rule for the magnetic field TB(r, t) = −B(r,−t).
By combining with Tφ(r, t) = φ(r,−t), we can also obtain the transforma-
tion rule for the electric field TE(r, t) = E(r,−t). Note that both ρ(r, t)
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and v(r, t) or j(r, t) are gauge invariant quantities which are physically mea-
surable (for an ensemble of identically prepared systems).

Finally, we can also obtain the time reversal transformation rule for spin
in a similar way. The probability current velocity for a spin-s system with
mass m and charge Q and magnetic moment µs in an external electromag-
netic field is

v(r, t) =
1

m
[∇S(r, t)−QA(r, t)] +

µs
s

∇× (ψ∗(r, t)Sψ(r, t))

ψ∗(r, t)ψ(r, t)
, (5)

where S is the spin operator. Then Tv(r, t) = −v(r,−t) leads to TS(r, t) =
−S(r,−t). Based on the transformation rules for spin and the wave function,
we can also derive the famous result T 2 = −I for spin-1/2 systems.

The above analysis provides a full derivation of the standard time reversal
transformation rules in quantum mechanics. Based on this analysis, we can
confirm that the Schrödinger equation is time reversal invariant as usually
thought. This analysis can be extended to relativistic quantum mechanics
and quantum field theory.

The derivation of the transformation rules also provides an intelligible
way to understanding time reversal in quantum mechanics. Why time rever-
sal involves complex conjugation is because the phase of the wave function
is the spatial derivative of certain velocity and reversing the velocity as re-
quired by time reversal amounts to taking the complex conjugation of the
wave function. Some authors have given a similar account (Earman, 2002;
Sebens, 2015; Callender, 2021). Moreover, why time reversal reverses mo-
mentum, spin, and magnetic fields (which are not the rates of change of
anything) is because these quantities are closely linked with the velocity in
a certain way. In this sense, the above derivation satisfies Albert’s stringent
requirement that time reversal involves only reversing velocities.

To sum up, I have argued that by analyzing the continuity equation,
the standard account of time reversal in quantum mechanics can be derived
from the natural requirement that time reversal reverses velocities. This
provides an intelligible way to understanding the time reversal invariance of
the theory.
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