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Preface

The project for this volume started modestly. It was classified as the “little 
induction book” in my original notes. The plan was to write a short and 
easy introduction to the main ideas of the material theory of induction. 
As the writing proceeded, those modest ambitions were supplanted by in-
creasingly ambitious ones until the project had ballooned into something 
enormous. There were three parts. The first dealt with qualitative notions 
of inductive inference and the second with quantitative notions. They cor-
respond roughly to Chapters 1–9 and 10–16 of the present work. There was 
no space for the third part that dealt with the global structure of inductive 
support. It will be the subject of another volume. Readers anxious for a 
taste of its content should consult the Epilog here.

The principal idea of the material theory of induction is that back-
ground facts obtaining in some domain tell us which are the good and bad 
inductive inferences in that domain. This conception differs fundamen-
tally from virtually all approaches to inductive inference in the present 
literature. There the good inductive inferences are distinguished from the 
bad by checking whether the inference has appropriate formal properties, 
such as fitting to an approved inferential template or preferred calculus. 
Because the divergence from the present literature occurs at such a fun-
damental level, my experience is that philosophers of science who work in 
inductive inference have trouble approaching the theory. The difficulty, 
I conjecture, is that we approach new ideas by trying to assimilate them 
into our existing conceptual system, which has in turn been shaped by our 
own research agendas. What are we to do when an idea arrives that does 
not neatly fit into any of our existing conceptual pigeonholes? Is this ma-
terial theory just another variant of enumerative induction? Is it inference 
to the best explanation with some alternative notion of explanation? Is it 
the proposal of a non-probabilistic, mathematical calculus of inductive in-
ference? Or is it another tiresome skeptical assault on inductive inference 
and the evidential grounding of science?

The material theory of induction is none of these. The slogans “All 
induction is local” and “No universal rules of induction” may appear 
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skeptical. They are not. They are an attempt to diagnose why inductive 
inference has, for thousands of years, been a locus of trouble for philoso-
phers. The words “induction” and “problem” are nearest neighbors in any 
philosophical lexicon. This enduring, troublesome character derives, I be-
lieve, from a foundational mistake that was made at the outset. We tried 
and continue to try to understand inductive inference using the formal 
methods that have proven so fertile for deductive inference. While differ-
ent formal approaches may work in different domains, a formal approach 
is the wrong one for understanding inductive inference overall. This ap-
proach is responsible for the enduring trouble. The material approach 
offers an alternative foundation for inductive inference that repairs the 
trouble.

A prominent corollary of the material approach is that probabilistic 
methods do not provide a universally applicable account of inductive in-
ference. For those enamored by Bayesianism, it will be tempting to drop 
the material theory into the pigeonhole occupied by formal luddites whose 
opposition to all mathematical approaches is grounded in a visceral antip-
athy to them. I do not belong in that company, as Chapter 16 will make 
clear. My work elsewhere in history and philosophy of physics is very 
hospitable to mathematical methods, whose power continues to astonish 
me. I am especially impressed with the power of probabilistic methods in 
statistical physics. When they are applicable, they are wonders.

My advocacy and defense of probabilistic approaches extends to in-
ductive inference, but only on a case-by-case basis. When probabilistic 
methods are warranted in some domain, they work and they work very 
well. Where Bayesians err is in their belief that probabilistic methods are 
a universal default that can be applied everywhere, automatically. Instead, 
my view is that probabilistic methods can be applied only in some domain 
when the background facts of that domain authorize it. We cannot just 
assume that they apply in some new domain. We have a positive obligation 
to show that they are warranted by background facts in each case.

A consequence is that I wilt every time I see yet another paper that 
promises a Bayesian analysis of such-and-such, especially when such-and-
such is some aspect of inductive inference or evidential support. The pre-
tense is that the Bayesian analysis will provide universal understanding. 
It cannot do this since Bayesian analysis cannot be applied everywhere. 
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Instead, we are given a few elementary results in the probability calculus. 
The terms of these formulae are then matched tendentiously with terms of 
art from such-and-such. The relabeled formulae are supposed to provide 
insight, but they only give us the illusion of understanding.

The style of analysis of this work falls within my conception of hist-
ory and philosophy of science. It begins by taking the pertinent science 
seriously. This is especially important when it comes to inductive infer-
ence since the evidential successes of modern science are extraordinary. 
That we philosophers of science are struggling to vindicate these successes 
is more a commentary on our failures than any failure of the sciences. 
The chapters that follow are rich in examples from science. I lean towards 
grasping the science by exploring its history, for an emphasis on the hist-
ory provides some protection from the inevitable, modern textbook sim-
plifications of relations of inductive support. The presence of this history 
is not mere decoration; it is essential to understanding of the evidential 
relations in the science.

It is customary in a preface to acknowledge those who have been 
helpful in the book’s project. This project has many distinct parts, com-
monly divided naturally by chapter. Rather than delivering here a long but 
opaque list of names, I have acknowledged in individual chapters those 
who have been especially helpful in those parts. Those acknowledgments 
fall short of naming all those who have provided support, encouragement, 
or helpful critical responses. To all those I have failed to name, I offer 
apologies and thanks.

On 27–28 October 2018, there was a conference on the material 
theory of induction at the Center for Philosophy of Science, University 
of Pittsburgh, called “Norton for Everyone: The Material Theory of 
Induction and Beyond.” It was beyond extraordinary and humbling for 
me to have the material theory of induction scrutinized by so many talent-
ed and accomplished philosophers of science. I would like to thank once 
again all those who participated. The conference organizers were John 
Earman, Bryan W. Roberts, and Elay Shech. Speakers and discussion lead-
ers were Jonathan Bain, Nora Boyd, Jeremy Butterfield, Richard Dawid, 
Siska De Baerdemaeker, Balazs Gyenis, Eric Hatleback, Leah Henderson, 
Michel Janssen, Molly Kao, Jonathan Livengood, Wendy Parker, Dasha 
Pruss, Bryan W. Roberts, Elay Shech, and David Wallace. Many more 
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were present and contributed most valuably. With apologies to anyone 
I may have omitted, I would also like to thank Harvey Brown, Hasok 
Chang, Pat Corvini, Nick Huggett, Shahin Kaveh, Edouard Machery, John 
McCaskey, Tom Pashby, Willy Penn, Mike Tamir, Jennifer Whyte, and 
Jim Woodward. 

After the conference, Elay Shech and Wendy Parker solicited contri-
butions from the speakers and elsewhere for a special issue on the ma-
terial theory of induction in Studies in History and Philosophy of Science. 
The now complete special issue includes an editors’ introduction, fifteen 
papers and a response to each from me.1 Once again, I thank the con-
tributors for their interest and efforts. I reserve special thanks for Elay and 
Wendy for having undertaken the burden of organizing this special issue 
and shepherding its contributions through to completion.

When this manuscript was submitted to BSPSOpen, several anonym-
ous reviewers for the press read the manuscript carefully and sympathet-
ically. I thank them for their helpful remarks and corrections, which have 
been incorporated as best I can into the manuscript. I am also grateful 
to Michael Gollner for his thorough and sensitive copyediting of the 
manuscript.

Finally, I offer the most profound gratitude to my wife Eve, who has 
provided a happy home for my body and heart through the years of writ-
ing this work and many before it. Those who know the joy of true and 
enduring love will understand what that means. No combination of words 
can properly express it.

1 The collection of papers can be accessed through the journal’s website: https://
www.sciencedirect.com/journal/studies-in-history-and-philosophy-of-science-part-a/special-
issue/10205S9XGWG
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Prolog

The Wonder of Science
Our best science tells us wonderful things. The cold and dark skies of our 
universe were not so long ago in their entirety in a state of unimaginably 
high energy and temperature. The detritus that exploded from it con-
gealed into stars, planets, and galaxies. These systems of celestial masses 
are in turn held together by a curvature of the geometry of space and time 
itself. On a most minute scale, the matter of these systems and the light 
they radiate consist of neither waves nor particles but a curious amal-
gam that is, at once, both and neither. The organisms that walk on one 
of these planets, complete with their intricate eyes and thinking brains, 
emerged incrementally from crude matter, in tiny steps over eons. They 
were shaped only by the fact that a small, random change in one organism 
might give it a slight advantage over its rivals. The design specification of 
these accumulated advantages is recorded and transmitted through the 
generations of the organisms by its encoding in hundreds of millions of 
base pairs of a chemical found in every cell of each organism.

These, and many more ideas of science like them, are extraordinary. 
Their contemplation must eventually overwhelm with wonder even the 
most curious and flexible of minds. Only the dullest of wit or the most 
soured of skeptics could resist their charms.

For me, there is a still greater wonder. These ideas are not the inven-
tions of writers of myth and fiction. They could not be so, for their content 
far outstrips our meager human imaginations. Rather they are the result 
of careful, painstaking, systematic investigations of nature, guided solely 
by inventive insight and cautious reasoning. They are discoveries. When 
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these efforts go past the early speculative stages and succeed, their prod-
ucts are distinguished by a special relation with what we experience of 
the world. These experiences provide the inductive support for successful 
science. They tell us that this is how the world is.

The explosive expansion of the universe is supported by the reddening 
of light from distant galaxies. That the curvature of the geometry of space 
and time keeps the planets in their orbits is supported by the most deli-
cate measurements of slight anomalies in planetary motions. The curious 
quantum nature of matter in the small is supported by how light from 
excited gases is concentrated into just a few quite specific frequencies. The 
evolution of humans from simpler organisms is supported by fossilized 
bones, whose chronology is recorded by their positions in layers of rock 
strata. The double spiral geometry of the molecules of deoxyribonucleic 
acid is supported by the patterns formed when X-rays diffract off material 
extracted from the nuclei of cells.

In all this, the essential relation is inductive support. It obtains be-
tween the general propositions of science and those particular ones that 
express the evidence on which science rests. It enables us to assign an au-
thority to the ideas of science that no other narrative can match. Without 
it, science becomes just another “way of knowing,” to use a popular oxy-
moron of the skeptics. Without this relation, we do not know anything of 
the world. We “know” but do not know. Without it, the ideas of science 
are no better than the fanciful creation stories of primitive mythologies.

Where the Philosophy of Science Literature Falls Short
If we are to understand how science succeeds where these other narratives 
fail, we must understand how this relation of inductive support works. 
This is a core task for philosophy of science. Its efforts reside in the expan-
sive literature on induction or inductive inference. The project of this book 
results from an enduring dissatisfaction with this literature.

There is no shortage of approaches in this literature. However, what 
is distinctive about these approaches is that they are fractured. There are 
many of them. They rise and fall with the generations and even with the 
particular philosopher consulted. Each approach has its successes and each 
has its failures. None, it seems to me, is by itself fully adequate to the task.
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Loosely speaking, there are two traditions.1 One is qualitative and a 
few examples illustrate its pervasive problems. Evidence supports hypoth-
eses that, in various senses, generalize the evidence, or deductively entail 
the evidence, or explain the evidence, or provide a severe test of the evi-
dence. Each case is troubled. There are so many ways one item of evidence 
can be generalized that most generalizations cannot be supported. Most 
applications of the simple scheme must fail. Similarly, there are very many 
hypotheses that entail one item of evidence. The same problem arises. 
Most applications of this scheme will fail. The problem of proliferation 
is ameliorated if the hypothesis must not just entail the evidence but ex-
plain it. The meagerness of the gain is revealed when we realize that we 
have no general account of explanation precise enough to support a theory 
of inductive inference. The account rests ultimately on dubious intuitive 
judgments of what explains what and how well it does so. Severe testing re-
quires a judgment that the evidence would likely not come about were the 
favored hypothesis false. To apply the scheme, we must know what is likely 
in the case of this falsity. Excepting contrived situations, like controlled 
studies, such judgments are at best speculative and at worst self-serving 
inventions.

The second tradition is quantitative. We assign a numerical measure 
to the support. The measure used almost universally is probability. The 
approach is appealing initially since we replace a vague “weakly supports” 
or “strongly supports” by precise numbers that must be combined by quite 
specific rules. Now we can calculate! My enthusiasm for this approach 
dampened when I found that its central theoretical tool, Bayes’ theorem, 
has a voracious appetite for prior probabilities and likelihoods. The trouble 
is that the value of these probabilities must be specified by considerations 
outside the calculation itself. Prudent or malicious choices of these values, 
more than the niceties of mathematical theorems, control the final result. 
Worse, as this Bayesian approach ascended to the dominance it presently 
enjoys in the philosophy of science, its analyses became more and more 
separated from real applications to inductive inference in the sciences. 
These analyses have drifted towards self-contained exercise in recreational 

1 This is a hasty dissection of an enormous literature. See Norton (2005) for a more 
careful dissection and categorization.
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probability theory. This separation is disguised by tendentious labeling 
of terms. A calculation best adapted to the accumulated results of many 
coin tosses is represented as giving some sort of understanding of how the 
accumulation of intricate and diverse evidence in science can support a 
univocal result.

The situation has not been improved by a rash decision to conceive 
of the prior probabilities of Bayes’ theorem subjectively—that is, as freely 
chosen opinions that can vary from person to person. For once one has 
let arbitrary opinion into the system, the probabilities cease to measure 
strengths of inductive support, but only some indissoluble amalgam of 
them with arbitrary opinion. These problems are not resolved but com-
pounded by dubious analogies. We are told a fable of a punter at a racetrack 
making monetary bets with bookies who are determined to take every 
advantage possible. This epistemic situation is supposed to be sufficiently 
close to that of scientists weighing evidence for Big Bang cosmology or a 
neural basis for cognition that all should conform to the same principles 
of rationality.

The Material Approach
The upshot of these accumulated woes is that philosophy of science as a 
discipline cannot now offer those outside it a univocal account of induct-
ive support. My goal in this book and in the larger program of research it 
embodies is to solve this problem. The clue to its solution is found in the 
observation that each of the accounts sketched above work somewhere. If 
we are investigating controlled trials, then ideas about severe testing are 
apt. If we are interested in matching DNA from blood samples with that 
of accused offenders, then we can use Bayesian methods. When Einstein 
found that his new general theory of relativity “explained” (as he put it) 
the anomalous motion of Mercury, he could claim a wonderful “confirm-
ation” (as he wrote) of his theory.

The clue in all this is that the application of the various approaches 
works when we add factual conditions that limit the domain in which they 
are to be applied. The stronger the factual restriction, the more successful 
the application. The material approach simply asks us to “take the limit.” 
That is, what warrants the successful application of a particular inference 
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is found entirely in the background factual conditions that delimit the do-
main of application.

This last assertion is the key idea of the material theory. It distinguish-
es the material theory from all other approaches, which use the standard 
literature in deductive inference as the model for analyzing inductive in-
ference. This provides them with a formal model. According to this model, 
the good inferences can be distinguished from the bad by checking wheth-
er the candidate inference fits in its form with some universal template or 
schema. For example, take the following inference:

All men are mortal.
Therefore, some men are mortal.

This is a valid, deductive inference since it is derived from the universally 
applicable schema that I will call all-some:

All As are B.
Therefore, some As are B.

We are allowed to make any substitution for A and B, and we are assured 
that what results will be a good inference in its form. The schema is uni-
versally applicable. Its use is not restricted, for example, to inferences 
about human mortality.

Since antiquity, philosophers have sought to recover similar schemas 
for inductive inference. The successes have always been partial. One of the 
earliest attempts was “enumerative induction”:

Some As are B.
Therefore, all As are B.

The trouble is all too clear. It will almost never work. With obvious substi-
tutions, we might be happy to infer that

Some men are mortal.
Therefore, all men are mortal.

But we would be unhappy with almost every other variant of it, such as
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Some men are Greeks.
Therefore, all men are Greeks.

All of the approaches sketched above lie within this formal tradition. If we 
just focus on simple examples like these, it becomes quite apparent that 
they fail to have universal scope.

The all-some schema does have universal scope since it is fully 
self-contained. Its cogency derives completely from the meanings of the 
words “all” and “some.” If someone doubts the cogency of the inferences it 
authorizes, we would gently inquire of them whether they understood the 
meaning of the words.

In contrast, enumerative induction is not self-contained. It can work, 
but only when we restrict the substitutions for A and B to terms hospitable 
to the induction. When A is “men,” successful substitutions for B include 
biological properties like “are mortal,” “are borne of a mother,” “have a 
blood circulation system,” and so on. That is, if we restrict the domain in 
which the schema is applied, it can warrant good inferences. However, 
its success is entirely dependent on the restriction. The facts comprising 
the restriction are the ultimate source of its warrant. They are biological 
facts about living beings. The inference is warranted, in the last analysis, 
because that is the way living beings are biologically. If some members of a 
species have a blood circulation system, then likely all do. The correspond-
ing regularity does not hold for national identification.

Further, the inference is a good inference only in so far as the war-
ranting facts are true. If science advances to the extent that we can create 
people entirely in a test tube from synthetic DNA without the need for a 
gestating mother, some of these facts would cease to be true, and one of 
the inferences would become an inductive fallacy.

It is easy to see how these conclusions about inductive inference gen-
eralize. All inductive inferences lead to conclusions that go beyond what is 
necessitated logically by their premises. It follows that they are only good 
so long as the inferences are carried out in domains that are factually hos-
pitable to the inferences. The facts that make the domain hospitable are 
the facts that warrant the inference. Here it is helpful to remember that 
a commonplace of deductive inference is that propositions can both state 
factual matters and also serve as warrants for deductive inference. The 
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proposition “If A then B” is both a factual proposition and also a warrant 
that authorizes a deductive inference from A to B. The material theory 
asserts that, ultimately, this dual role for factual propositions is the only 
way that inductive inferences are warranted.

This applies even to Bayesian analysis inasmuch as it has any ambi-
tions of providing an account of inductive inference. It is true that the ma-
nipulations of Bayes’ theorem itself are deductive inferences lying within 
the probability calculus. We deduce a value near unity for the probability 
of Newton’s universal law of gravitation, conditioned on the motion of the 
sun’s planets and their moons. An essential background fact is that these 
deductions are implemented in a domain in which distributions of induct-
ive support are properly represented by probabilities. In the second half of 
this book, we shall explore domains in which this presumption fails.

These last considerations constitute the core of the material approach 
to inductive inference. It provides a single, unified approach that incor-
porates all the different approaches in the present literature; or at least it 
incorporates them all in so far as they are sufficiently and precisely defined 
to be viable in some domain.

The core ideas of the material theory can be encapsulated in a few 
slogans. First, “All induction is local.” This slogan reminds us that any 
regularity we may find among inductive inferences is restricted to some 
domain and is dependent for its warrant on the particular facts that ob-
tain there. Second, “There are no universal rules for inductive inference.” 
It reflects the core posit that the warrant of an inductive inference is not 
traced back ultimately to some universal schema but to facts that obtain 
only locally.

If one were to encounter this last slogan in isolation, one might mis-
take it for a skeptical thesis akin to Feyerabend’s notorious “anything 
goes.” This is very far from its import. The slogan is merely a part of the 
relocating of the warrant of inductive inferences from rules to facts. The 
material theory does not seek to undermine inductive inference; it seeks to 
save it. For the formal approaches that dominate the literature have simply 
failed in their most important functions. None gives us a successful sys-
tem, applicable universally, for discerning the good from the bad induct-
ive inferences. None gives an account of why the inferences it does author-
ize are appropriate. This last failure stands in stark contrast to standard 
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examples of deductive inference. Inferences warranted by the deductive 
schema all-some are good inferences simply in virtue of the meaning of 
“all” and “some.” These final considerations pose two problems that the 
material theory solves.

First, inference schemas in the present literature cannot be used uni-
versally. While the writings of Bayesians are curiously silent on the ques-
tion, they will concede to me in conversation that their system does not 
apply everywhere. This invites key questions about where the limits are 
and how we identify them. The material theory answers: one must locate 
the facts that can warrant the schema, Bayesian or otherwise. The schemas 
can be applied only in domains where those facts obtain.

Second, merely stating an inference schema does not automatically 
make it a good one. In familiar deductive cases, we discern that they are 
good because of the meaning of the connectives. We cannot do the same 
for inductive schemas. Instead, the material theory tells us that certain 
inference schemas are good since they depend on factual matters in the 
domain of application. Biological predicates, like “is mortal” and “has a 
blood circulation system,” appear in living species in a regular manner, 
which authorizes the inferences sketched above.2 

Adopting the material approach to inductive inference leads one to 
approach problems in inductive inference differently. There is no default 
schema that can be applied mechanically and automatically. If one wants 
to employ some mode of inductive inference in some context, one must 
be able to supply positive reasons for why that mode is applicable in that 
circumstance. This applies also to probabilistic inference. One should not 
assume by default that this type of inference always applies. If it is to be 
used in some domain, we have a positive obligation to provide the founda-
tions for its applicability. Otherwise, it cannot be used.

While this book is largely unconcerned with beliefs (credences) as op-
posed to objective relations of inductive support, the moral carries over. 
There should not be a default presumption that credences are probabilities. 
If credences are to be represented as probabilities in some circumstance, 

2  Mortality is not assured. Symmetrically dividing bacteria and yeast cells can be 
rejuventated in the division such that they may persist indefinitely.
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then positive reasons must be given for why they are appropriate in that 
circumstance.

The Chapters
The book is divided into two parts. Chapters 1–9 are devoted to laying out 
the basic ideas of the material theory and applying it to what are identi-
fied above as the qualitative approaches to inductive inference. Chapters 
10–16 concern quantitative approaches, most notably the probabilistic ap-
proaches of Bayesianism.

Chapter 1 states the basic propositions of the material theory of in-
duction. These are developed with the help of Marie Curie’s inferences 
from the crystallographic properties of her sample of radium chloride to 
those of all possible samples. This is an instance of enumerative induction 
of breathtaking scope. It depends on the evidence of just a few specks of 
the only sample of radium chloride then known. This chapter also shows 
how the material theory can warrant successful inferences of this form, 
even inferences of breathtaking scope, by displaying the underlying facts 
that warrant them. In this case, the pertinent fact is Haüy’s principle. It 
lies at the core of extensive investigations into the properties of crystals in 
the nineteenth century and solves the vexing problem of discerning just 
which of the many properties of crystals are projectable—that is, suitable 
for enumerative inductions. 

Chapter 2 elaborates the argument stated briefly above that justifies 
the material theory of induction. The essential ideas of the justification 
are these. No extant formal schema of inductive inference has proven to 
be applicable universally. The successes of all these schemas can be ex-
plained by the material facts within the restricted domains in which they 
succeed. Most importantly, inductive inference is by its nature ampliative. 
This means that its conclusions are logically stronger than its premises. 
Hence, an inductive inference can only succeed in domains in which fur-
ther background facts are hospitable to it. This chapter also poses the in-
ductive puzzle “1, 3, 5, 7. What’s next?” The puzzle is, of course, insoluble 
non-trivially without some indication of the background facts that can 
serve to warrant an inductive inference that answers the question “What’s 
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next?” The chapter discusses the underappreciated and ingenious way 
Galileo solved this problem.

Chapters 3 to 9 address specific rules and schemas proposed in the 
literature for inductive inference. The goal of these chapters is to show that 
when these rules or schemas work, they do so because of identifiable back-
ground facts, and that they can only work in domains with such hospit-
able facts. We also find in each case that the apparent unity of application 
of the candidate rule survives only as long as we do not look too closely at 
the details of the examples. As we consider these details more thoroughly, 
we find the specific background facts taking on the primary burden of 
warranting the inferences. The original rule survives only as a superficial 
similarity among the examples.

In writing these chapters, I have tried as much as possible to use ex-
amples of inductive inference from real science. This literature can suffer 
when commonplace, non-scientific examples are used to guide our in-
ductive inferences in science. The material theory predicts the problem: 
since the background facts of ordinary life differ from those of abstruse 
scientific contexts, there is no basis for expecting the same inferential 
schemas to work in both contexts.

Chapter 3 looks at the idea of replication of experiment, which is rou-
tinely touted in the scientific literature as the “scientific gold standard.” 
We find this merely a useful but defeasible rule of thumb. It has not been 
given a precise enough formulation, comparable to those of the schemas 
of deductive logic, that would enable its mechanical application. Through 
a series of case studies, I show that the rule is defeasible and has been 
overruled in every possible combination. Successful replications (interces-
sionary prayer) and failures of replication (Miller experiment) have both 
been discarded as evidentially inert. However, on a case-by-case basis, 
warrants for the strong inferences associated with individual replications 
can be found in particular facts in their domains. A general principle of 
replication is superfluous.

Chapter 4 investigates analogy, a traditionally recognized argument 
form whose history extends back to Aristotle. However, a review of the 
recent literature shows that efforts to express the form precisely as a uni-
versal rule devolve into an explosion of divisions into special cases and 
further qualifying clauses. Each expansion produces new problems that 
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require further expansions and, paradoxically, carries us farther from 
any final formulation. This conception of analogy as an argument form 
is contrasted with how analogies are treated by scientists. For them, an-
alogies are facts. This fits with a material analysis, for it allows analogies 
to be both facts and warrants for inductive inferences. Among these war-
rants, there can be no universal, formal rules. Efforts to adapt a candidate 
analogical rule to real examples will force a proliferation of conditions, 
while the rules seek a unity not present in the details of the examples. 
Instead, the inferences we label analogical are warranted by the facts of 
analogy identified by the scientists. In the examples explored in the chap-
ter, Galileo infers analogically that there are mountains on the moon. His 
inferences are justified by the dark patches visible on the moon’s surface 
that are formed by the same processes that produce shadows on the earth. 
The same factual basis for inference is found in two further case studies: 
Reynolds analogy in transport phenomena in fluid engineering and the 
liquid drop model of the nucleus of an atom.

Chapter 5 takes an unflinching look at the now-fashionable talk of 
“epistemic values” or “epistemic virtues.” An early-twentieth-century 
quantum physicist who prefers the logically inconsistent old quantum 
theory does so, we are to suppose, because that physicist values simpli-
city over the competing virtue of logical consistency. The latter, however, 
is valued more highly by a classical physicist who then finds a different 
import for the same evidence. If the terms “virtue” and “value” have their 
usual meanings, they are ends in themselves and can be freely chosen by 
us. With this understanding, the physicists’ inferences cease to be object-
ive. The bearing of evidence merely reflects the physicists’ freely chosen 
biases and prejudices. This, I maintain, is not how notions of simplicity 
and logical consistency are used, when used properly. They are not values 
but criteria whose use is justified by their heuristic ability to lead us to the 
truth. They are defeasible and can be discarded when they cease to serve 
this end. Unless we wish to endorse an inductive skepticism by our use of 
tendentious language, we should stop using the misleading language of 
virtue and value. The term “criterion” serves better.

Chapter 6 examines the inductive criterion of simplicity in greater 
detail. There is no precise rule that tells us when to prefer simpler hypoth-
eses. The principle that “entities must not be multiplied beyond necessity,” 
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misattributed to William of Ockham, is vacuous by not specifying what 
counts as an entity and what counts as necessary. We are deceived into 
allowing the vacuity of the principle to pass, in part, because of the faux 
dignity of its expression in Latin. Instead, appeals to parsimony in real 
evidential situations are abbreviated appeals to specific background facts 
that tell us which are the simplest cases. In curve fitting, for example, 
straight lines are not necessarily the simplest starting point. If we are fit-
ting trajectories to the observed positions of comets, background facts tell 
us to start with parabolas, then ellipses, and then hyperbolas. For tidal 
data, we start with an elaborate set of sinusoidal curves whose periods are 
adapted to the physical parameters of the tidal processes.

Chapter 7 probes the Akaike Information Criterion, which has been 
offered as a vindication through statistical theory of a general principle 
of parsimony. Closer scrutiny reveals that the criterion neither employs 
a presumption of parsimony in its derivation nor does it entail any such 
general principle. Its celebrated formula merely adds a term that corrects 
for the overfitting of data in curve-fitting problems. We, not the statis-
tics, illicitly interpret this narrowly applicable term as a vindication of a 
broader principle of parsimony. The presence of the term itself depends 
upon strong background assumptions, most notably that the true curve 
lies within the model being tested. Assumptions like these are the material 
facts that warrant inferences that use the Akaike Information Criterion.

Chapter 8 addresses the popular argument form inference to the best 
explanation. The hope of its proponents is that there is some feature, pe-
culiar to explanation, that can power inductive inferences. Close analysis, 
however, proves unable to locate such a feature. Indeed, notions of explan-
ation are so varied that instances of inferences to the best explanation may 
bear only superficial similarity to one another. At this superficial level, 
these arguments share a rudimentary common form. Real examples in 
science commonly begin as comparative arguments. One hypothesis is 
favored over another because the first entails the evidence. The competing 
hypothesis fails the evidence. It is either refuted deductively by the evi-
dence or must take on a substantial evidential debt in the form of further 
unsupported assumptions if it is to remain compatible with the evidence. 
The success of the favored hypothesis does not rest on any peculiar ex-
planatory prowess, but merely on its adequacy to the evidence and, more 
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importantly, the failure of the competitor. The more fraught subsequent 
step of the inference must show that the favored hypothesis prevails over 
not just this one explicit competitor, but against all. This is often left tacit 
in real cases in science.

Chapter 9 seeks to reverse a decline in the literature on inference to the 
best explanation. This literature began rich in real examples drawn from 
science. The most notable is Darwin’s self-conscious use of this argument 
form in his On the Origin of Species. Since then, proper study of scientif-
ic examples has been replaced gradually by imperfect mentions of them 
that often oversimplify and misinterpret them, and by prosaic illustrations 
drawn from everyday life. The entirety of Peter Lipton’s canonical mono-
graph, Inference to the Best Explanation, contains only one example from 
real science that is developed at length. It is Semmelweis’ identification of 
the cause of childbed fever (Lipton 2004, chap. 3). The example is poorly 
chosen since it is one of the few that happens to be treated more precisely 
by the simple thinking of Mill’s methods.

This literature has been increasingly dominated by superficial exam-
ples. The best explanation for footprints in the snow, for example, is that 
someone has walked there. This example is unlike those in science, for the 
human explanation of a person making distinctive marks has no serious 
competitors. Worse, it encourages explanation by intelligent intervention. 
This would be an unwelcome encouragement to Darwin. He sought to 
overthrow intelligent creation as an explanation for biological features. 
My contribution is to provide a somewhat more detailed exposition of 
eight cases in science to which the loose pattern of inference to the best ex-
planation can be fitted. I show in each case how some powerful, primitive 
notion of explanation plays no role. The examples illustrate and support 
the general claims made in Chapter 8 for the structure of inferences to the 
best explanation in real science.

With Chapters 10 to 16, the narrative takes a different turn. The 
Bayesian approach presently dominates thinking about inductive infer-
ence in the philosophy of science. According to this approach, relations 
of inductive support are recoverable in some manner from probabilistic 
relations among propositions. I have no quarrel with the use of these 
probabilistic methods in domains where the background facts specific-
ally authorize them. There are many such domains. Where I differ from 
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the Bayesians is over their ambitions of providing a universally applic-
able understanding of inductive relations. Contrary to the title of Edwin 
Jaynes’ Bayesian manifesto, it is not “The Logic of Science”; it is only the 
logic of certain special cases. My arguments against the ambitions of uni-
versality are laid out in these chapters.

Chapter 10 has the title “Why Not Bayes.” It is a statement, not a ques-
tion. I illustrate how background conditions can lead us to non-probabil-
istic representations of evidential relations using the extreme illustration 
of completely neutral evidence. For this case, application of simple invari-
ances leads to a highly non-additive representation of inductive support. 
It is quite contrary to the additivity of a probability measure. I argue that 
even the contrivances of the new literature in “imprecise probability” can 
sometimes fail to do justice to it.

Bayesian analysis is distinctive in that, laudably, it has taken seriously 
the burden of proving the uniqueness of its probabilistic representations. 
This chapter argues that all these efforts must fail since they all have the 
same structure. Whether they are Dutch book arguments or employ rep-
resentation theorems, they proceed from some set of assumptions and 
then deduce that the targeted beliefs or relations of inductive support must 
conform to the probability calculus. This last conclusion is a contingent 
proposition. It follows that it can only be deduced from assumptions that 
are at least as strong as it logically. Hence, necessarily, the assumption 
of probabilities must be hidden within the starting assumptions. The 
proofs are not demonstrations of the necessity of probabilities, but merely 
a restatement of a preference encoded in its premises. Once one realizes 
this, it becomes a mechanical exercise to identify and expose the hidden 
assumptions. I carry out the exercise for Dutch book arguments and rep-
resentation theorems and note that all similar arguments will fail in the 
same way.

Chapter 11 contains an extended example of this last exercise. The 
scoring rule or “accuracy-based” vindication of probabilism is based on a 
dominance theorem. If our credences are not probabilistic, then the theor-
em tells us that we can always improve the accuracy of our credences, no 
matter what the true situation may be, merely by shifting our credences to 
a probability. The chapter shows that the theorem is sensitively dependent 
on the particular scoring rule used to measure the inaccuracy of credences. 
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It develops a family of scoring rules such that any desired deviation from 
additivity in the credences can be secured simply by choosing the requi-
site rule from the family. Then, a variant theorem shows the dominance 
of credences with the specified deviation from additivity. The literature 
in accuracy-based vindications has sought to parry such possibilities by 
seeking further reasons for why only those rules that deliver probabilities 
are admissible. These efforts cannot succeed since they still seek to derive 
probabilities deductively from further assumptions. I continue the exer-
cise of showing how these further assumptions still have the presumption 
of probabilities hidden within them.

Chapter 12 addresses a more general problem facing all efforts to devise 
a mathematical calculus for strengths of inductive support. Applications 
of Bayes’ theorem require specification of prior probabilities, which make 
a difference to the resulting posterior probabilities. Since these prior 
probabilities must be determined by factors external to applications of 
Bayes’ theorem, it follows that this specific computation is not inductively 
self-contained. One might hope to eliminate this dependence on external 
considerations by a suitable expansion of the scope of the application of 
Bayes’ theorem. The prior probabilities would then be recovered as poster-
ior probabilities of antecedent applications of Bayes’ theorem. Continued 
expansion might, we hope, eventually eliminate the intrusion of external 
considerations. It is well known that such hopes fail. No matter how large 
the scope of the application, one is never freed from the need to use exter-
nal considerations to fix prior probabilities.

It turns out that the inductive incompleteness of the Bayesian system 
is not a failure unique to the Bayesian system. Rather, it is an instance 
of a broader incompleteness that afflicts all candidate calculi of inductive 
inference. That is, a theorem demonstrated elsewhere shows that this in-
completeness must arise in all such calculi that conform with weak and 
broadly acceptable conditions. This chapter does not develop the theorem 
in all its mathematical details but presents its core ideas and some illustra-
tions of it. The theorem gives a precise instantiation of the slogan “there 
are no universal rules of inductive inference.” It shows that there are no 
inductively complete calculi of inductive inference.

The remaining Chapters 13 to 16 present further situations in which 
the background facts warrant formal treatments of inductive support that 
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are not probabilistic. They illustrate the locality of inductive inference. In 
each case, we must first find the facts prevailing in some domain and then 
read from those facts the particular logic that would apply to the domain. 

Chapter 13 considers an infinite lottery machine that chooses without 
favor among a countable infinity of outcomes, labeled 1, 2, 3, 4, …. The 
condition that the lottery machine chooses without favor is expressed as 
an invariance, “label independence.” According to this independence, the 
support accrued to any individual outcome, or set of outcomes, remains 
the same no matter how we may permute the labels. This independence 
exercises a profound restriction on the formal behavior of strengths of 
support. For example, all infinite sets of outcomes whose complements are 
also infinite must accrue the same support. This sector of the logic is highly 
non-additive. A corollary is that the relative frequency of even-numbered 
outcomes does not stabilize towards one half in many, repeated drawings. 
Rather, all relative frequencies continue to accrue equal support. The fac-
tual conditions characteristic of the infinite lottery machine arise in a 
particular problem in recent inflationary cosmology. The infinite lottery 
machine logic is the applicable logic.

Chapter 14 undertakes the same exercise for an uncountably infinite 
outcome set, particularly the continuum-sized set of outcomes formed by 
the real numbers between zero and one. One might think that choosing 
without favor among outcomes in this set is easily achieved probabilistic-
ally by a uniform probability distribution. This is a misleading assumption 
since by foundational design such a probability distribution neglects to 
assign probabilities to many subsets of outcomes of the space. If we re-
quire a representation that covers all subsets, we arrive at a logic similar 
to that of the infinite lottery machine logic but with more sectors. The 
chapter then considers successive restrictions that would move the logic 
towards a probabilistic logic. With each restriction, we find a variant of 
the non-probabilistic inductive logic warranted. One application of these 
intermediate logics is the continuous creation of matter in the steady-state 
cosmology of Bondi, Gold, and Hoyle. The most interesting cases technic-
ally arise with paradoxical decompositions of measure spaces. These de-
compositions show the existence of outcome sets not measurable by addi-
tive measures, such as a probability measure. To make the character of 
these decompositions more concrete, the chapter develops nonmeasurable 
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sets derived from coin tosses. It turns out that a variant but weak inductive 
logic—an “ultrafilter logic”—applies to these sets.

Chapter 15 investigates the inductive logic warranted in two sorts 
of indeterministic physical systems. The first are those whose temporal 
behavior is indeterministic. They are quiescent for an arbitrary time and 
then, without any specific triggering event, spontaneously move. The 
chapter develops the especially simple example of the infinite domino 
cascade, which is new in the literature. The second type of indeterminis-
tic system is that in which specification of one part of the system fails to 
fix the remainder. Fixing the mass distribution in Newtonian cosmology 
fails to fix the gravitational potential. It is also shown that no probability 
measure can represent the indeterminacy. The infinite dimensionality of 
the space of Newtonian potentials presents especially intractable problems 
for additive measures. Instead, it is shown that the background facts of the 
systems realize the invariance that led to the completely neutral support 
elaborated in Chapter 10. This is the logic applicable to these indetermin-
istic systems.

The alternative inductive logics explored so far all tend to be simpler in 
their structures than the additive measures of probability theory. Chapter 
16 shows that this need not be so. The system considered is the spin of 
electrons in quantum theory. While probabilities arise in the process of 
quantum measurement, they do not turn out to be the structure repre-
senting inductive support that is warranted by the physical facts of quan-
tum theory. That structure, rather, is the density operator that also repre-
sents states in quantum theory. The chapter explains what these operators 
are, how they come about, and how they represent inductive support. The 
development is written at a level that presumes no special knowledge of 
quantum theory but assumes some comfort with abstract mathematics. 
We learn from the example that background facts in some domains can 
warrant an inductive logic of some complexity that is quite different in its 
structure from a probabilistic logic.

A Material Theory of Induction or The Material Theory of 
Induction?
Finally, a note on terminology. Is it a material theory of induction or the 
material theory of induction? I use both expressions. The first refers to 
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the general idea of finding the warrants for inductive inferences in back-
ground facts. There is no presumption in this usage of a particular way 
of proceeding beyond just the general idea. The second expression—the 
material theory of induction—refers to the particular instantiation of the 
general idea found in this book and my relevant papers.
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1

The Material Theory of Induction Stated 
and Illustrated

1.1. The Terms “Induction” and “Inductive Inference”
This is a book about induction and inductive inference. Since these terms 
may mean different things to different people, it is worth fixing what they 
mean at the outset. Traditionally, induction has had a narrow meaning. At 
its narrowest, it refers to “induction by simple enumeration,” the inference 
from “Some As are B” to “All As are B.” This is an example of “ampliative 
inference,” for we have amplified the instances to which our knowledge 
applies. The premise applies just to the few cases of As at hand; the con-
clusion applies to all. I take this idea of ampliation in its most general 
sense to be what induction is about. I shall use “induction” and “inductive 
inference” as the general terms for any sort of ampliative inference. That 
is, they are licit inferences that lead to conclusions stronger deductively 
than the premises or even just conclusions that differ from those that can 
be inferred deductively from the premises. Therefore, the terms embrace 
what is sometimes called “abductive inference,” which is an inference to 
something that explains an otherwise puzzling phenomenon.

A still broader form of induction commonly goes under the name of 
“confirmation theory.” It typically has no inferences with premises and 
conclusions. Rather, it looks at degrees of support between propositions. 
The best-known and dominant form is probabilistic support. The condi-
tional probability P(H | E) represents the total inductive support an hy-
pothesis accrues from all evidence, including our background knowledge, 
written as E. One then tracks how the support between hypothesis and 
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evidence changes as the evidence changes. This form of analysis will be 
included under the terms “induction” and “inductive inference.”

My use of the terms “inference” and “infer” will follow what I take to 
be the traditional usage and the one that is still most common. That is, an 
inference from proposition A to proposition B is a logical relation between 
the two propositions as sanctioned by some logic. When we infer from A 
to B, we merely trace through that logical relation. The usage is analogous 
to that of “add.” When we add seven to five to arrive at twelve, we are 
simply tracing through the relation 5 + 7 = 12 among the three numbers 
as authorized by ordinary arithmetic.

This usage is to be contrasted with a psychologized notion of the term 
“inference” that will not be employed here. According to this latter usage, 
to say that we infer from proposition A to proposition B only records a 
fact of our psychology: that we proceed from a belief in A to a belief in 
B, without a requirement that this transition is authorized by some logic. 
While I understand the distinction is important to those who work in the 
psychology of belief, it seems to me a troublesome redefinition of a term 
whose normal usage is already well established. Could not another word 
have been found? Perhaps the redefinition is supported by the usage of the 
term that presupposes an agent that infers. A similar redefinition might 
insist that saying “we add seven to five to arrive at twelve” merely reports 
our belief in the summation with no supposition that it conforms with 
arithmetic. I would find that redefinition equally troublesome.1

Throughout this volume, unless some context demands an exception, 
I will restrict notions of inference and logic to relations of deductive and 
inductive support between propositions, independently of our beliefs and 
thought processes.

1 Harman (2002, p. 173) gives a clear statement of the psychologized notion of inference 
that is not employed in this book: “Inference and reasoning are psychological processes leading 
to possible changes in belief (theoretical reasoning) or possible changes in plans and intentions 
(practical reasoning). Implication is more directly a relation among propositions.” This usage is 
incompatible with the longstanding and pervasive usage of “rules of inference” as designating licit 
manipulations and argument schemas, such as modus ponens and various syllogisms. See, for 
example, Boole (1854, chap. 15) and Copi (1967, p. 36 and inside back cover).
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1.2. The Formal Approach to Induction
My contention is that the broad literature on induction is built on faulty 
foundations. It has long sought as its most basic goal to develop induct-
ive inference as a formal system akin to deductive logic and even ordin-
ary arithmetic. What is distinctive about these systems is that they are 
non-contextual, universal, and governed by simple rules. If we have six 
cartons of a dozen eggs each, arithmetic tells us that we have seventy-two 
eggs overall. It also tells us that if we have six troupes of a dozen acrobats, 
then we have seventy-two acrobats overall. Arithmetic tells us that when 
it comes to counting problems like this we can ignore almost everything 
except the numbers appearing in the descriptions. We extract those num-
bers and then see if our arithmetic provides a schema that covers them. In 
this case, we find in our multiplication tables that

6 × 12 = 72.

This is really a schema that says (among other things) if you have six 
groupings of twelve individuals, then you have seventy-two individuals 
overall. It is a schema or template since it has empty slots, indicated by 
the words “grouping” and “individuals” in italics; and we generate truths 
about specific systems by inserting appropriate, specific terms into the 
slots. Insert “carton” and “egg,” and we generate a numerical fact about 
eggs. Insert “troupe” and “acrobat,” and we have a numerical fact about 
acrobats.

This example illustrates the key features typically sought in an induct-
ive logic. It is to be non-contextual, universal, and formal. The numerical 
facts of arithmetic are non-contextual—that is, independent of the con-
text. In abstracted form, they hold for eggs, acrobats, and every other sort 
of individual. The rules are universal; they do not come with restrictions 
to particular domains. It is the same arithmetic for eggs as for acrobats. 
And the rules are formal in the sense that they attend only to the form of 
the sentence asserting the data: six … of twelve …. The matter—eggs or 
acrobats—is ignored.

Deductive logic has developed similarly as a universal, non-context-
ual formal theory; and it enjoys extraordinary success. It has been a rea-
sonable and attractive project to try to find a similar account of inductive 
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inference. A universal formal theory of induction would enable us to focus 
attention just on the specifically inductive-logical parts, ignoring all the 
material complications of the much larger inductive enterprise. And we 
would hope eventually to generate great theorems of tremendous power 
and scope, perhaps rivaling those of arithmetic and deductive metalogic.

1.3. Problems of the Formal Approach
However, the formal approach is a failed project. The simple formal rules 
that worked so well for deductive inference have no counterpart in in-
ductive inference. In antiquity, we were quite confident of the deductive 
schema

All As are B.
Therefore, some As are B.

Yet its inductive counterpart, enumerative induction—

Some As are B.
Therefore, all As are B.

—was already the subject of doubt and even ridicule in antiquity. Inductive 
logic never really caught up. While deductive inference has settled into 
the grey maturity of arcane theorem proving, inductive inference has 
remained an erratic child. For philosophers, the words “induction” and 
“problem” are routinely coupled.

There are, as we shall see later, a plethora of modern accounts of 
induction. But none succeed with the simple clarity of deductive logic. 
We should infer inductively, we are told, to the best explanation. But we 
are given no comparably precise account of what makes one explanation 
better than another—or even precisely what it is to explain something. 
Efforts to make these notions precise raise more problems than they solve. 
Elsewhere, we are told that all of inductive logic is subsumed by probability 
theory. Chapters 10 to 16 are devoted to arguing that the resulting theory 
has failed to provide a universal account of inductive inference. The prob-
abilistic enterprise has become so many-headed that no single formula 
captures the difficulty. The account is sometimes too strong and imposes 
properties on inductive inference it should not have. It is sometimes used 
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too permissively so that any inductive manipulation one might conceive 
of is somehow embraced by it. It is almost always too precise, fitting exact 
numbers to relations that are not that exact.

So how are we to think about inductive inference? Formal theories 
of induction distinguish the good inductive inferences from the bad by 
means of universal schemas. In their place, I propose a material theory of 
induction.2 According to this view, what separates the good from the bad 
inductive inferences are background facts—the matter of the inference, as 
opposed to its form. To put it another way, we locate what authorizes an 
inductive inference not in some universal, formal schema but in facts that 
prevail in the domain of the inference.

1.4. Inductions on Crystal Forms3

An example will make the problems of the formal approaches clearer and 
the idea of a material theory of induction more concrete. We shall con-
sider an elementary inductive inference in science that is so routine that 
we may even fail to notice that it is an induction. Consider a chemist who 
prepares a new salt of some metal and notes its particular crystalline form. 
It is routine for the chemist to report the form not only as the form of the 
particular sample but as the form of the salt generally. For crystals have 
quite regular properties, and crystals of different substances have char-
acteristic differences. Nonetheless, it is an inductive inference from the 
one sample to all. Even if the inductive character of the inference is easily 
overlooked, we should expect a good treatment of it from an account of 
inductive inference.

To develop the example, we need to appreciate that adequate reporting 
of the crystalline structure of a new salt is somewhat delicate. For the in-
dividual crystals of one salt may have many different shapes. In the early 
history of work on crystals, it proved to be quite complicated to find a 
simple and robust system of classification. This complication will become 
a central concern of the material analysis of these inductive inferences.

2 For earlier accounts, see Norton (2003, 2005).
3 My thanks to Pat Corvini for correcting errors in an earlier version of this section 

and also Section 1.9 below; and later for providing an extensive list of typographical errors in the 
Prolog and Chapters 1 and 2.
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Crystallographic analysis now categorizes crystal forms according to 
the axes characteristic of the shape. The simplest of the seven crystallog-
raphic systems is the cubic or regular system. The crystals of common table 
salt, sodium chloride, fall into this system. It is characterized by three 
perpendicular axes of equal length. A cube conforms to this system; it 
takes no great geometrical insight to see that a cube has these three per-
pendicular axes of equal length. The same is true of a regular octahedron, 
which also conforms to the system. Sodium chloride normally crystallizes 
in cubes. However, in special environments, such as in the presence of 
urea, it can crystalize as octahedra.

One might imagine that the cube and octahedron are the only shapes 
that crystals in the cubic system can adopt. Matters are more complicated, 
however, for there are many more shapes in this system. The mineral spi-
nel lies within the cubic family and forms octahedral crystals. However, 
spinel can also form many misshapen octahedral crystals, as shown in 
Figure 1.1. 

Figure 1.1. Misshapen octahedra.4

The octahedral character of the crystals arises from their faces being par-
allel to those of a fictional regular octahedron, which we might imagine 
secretly buried within the crystal. 

Crystals have natural cleavage planes. A crystal cube of sodium chlor-
ide will cleave along planes parallel to the cube’s surfaces. The mineral 
fluorspar represents an unusual case. Although it is in the cubic family 

4 Illustration based on Miers (1902, p. 11, Figs. 9 and 10).
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and crystalizes in cubes, it cleaves along planes that eventually expose an 
octahedral shape. Figure 1.2 shows successive cleavages.

Figure 1.2. Cleaving fluorspar.5

In the process of cleavage, we pass through many more complicated cube 
shapes with corners removed to different extents. The shape on the right 
of Figure 1.2 is such an intermediate form. These multi-faceted shapes and 
many more are licit forms for certain crystalline substances within the 
cubic system. 

All of these shapes are different from the crystalline shapes permitted 
to barium chloride, for barium chloride is monoclinic. This means that its 
crystals are characterized by three unequal axes, two of which intersect at 
an oblique angle, and a third that is perpendicular to them. Instead of a 
cube, its primitive form—the simplest crystal shape—is a right prism with 
a parallelogram base. This is shown in Figure 1.3, where the parallelogram 
is the rearmost face. Alternatively, one may generate the shape by starting 
with a right prism with a rectangular base and inclining it to one side 
(hence “mono-cline”). In Figure 1.3, the inclination is towards the right 
of the figure.

5 Illustration based on Miers (1902, p. 14, Figs. 17 and 18).
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Figure 1.3. Primitive form of the monoclinic system.

The range of crystal shapes allowed in the monoclinic system is related 
to this form in the same way that those allowed in the cubic system are 
related to a cube.

When a new metallic salt is prepared, the chemist will simply assert 
that such-and-such is the form of the salt’s crystals. This is an inductive 
inference and one of breathtaking scope. On the strength of just a few 
samples, the chemist is quite prepared to infer the crystal system of all 
samples of the salt:

This sample of salt A belongs to crystallographic system B.
Therefore, all samples of salt A belong to crystallographic system B.

1.5. Curie and Radium
Perhaps the most famous of all episodes in crystal formation was Marie 
Curie’s separation of radium from uranium ore by fractional crystalliza-
tion. The massive labor of extracting radium from the pitchblende ore is 
the stuff of scientific legends, Nobel Prizes, and a 1943 MGM movie. The 
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radioactive elements—polonium, radium, and actinium—exist in such 
trace quantities that several tons of uranium ore residue had to be treated 
to recover just a few decigrams of radium. A decigram, a tenth of a gram, 
is a mere speck. The process of recovering the radium was arduous. From 
each ton of ore, after much processing, about eight kilograms of barium 
chloride was recovered. Radium chloride is present in barium chloride as 
a trace impurity. Radium’s presence is revealed by its great radioactivity.

The final separation of the radium chloride from the barium chloride 
was difficult to achieve since radium and barium behave in similar ways 
chemically. The separation depends on the fact that radium chloride is less 
soluble in water than barium chloride. If the barium chloride in solution 
is concentrated by boiling and cooling until it forms crystals, the crys-
tals will harbor more radium chloride. The solution remaining above the 
crystals had one fifth of the radioactivity of the original, Curie reported. 
While that seems like a large increase, the quantity of radium present in 
the crystals was so tiny that it fell far short of what was required for sub-
stantial separation. Curie needed to repeat the process over and over: re-
dissolving and recrystallizing to form more fractions, recombining them 
according to their radioactivity, and doing it again and again. In all, she 
needed to carry out several thousand crystallizations.

All of this is described in her doctoral dissertation (Curie 1904), pre-
sented to the Faculté des Sciences de Paris in June 1903. There, she re-
ported on the analytic work carried out in the few years before with her 
husband, Pierre Curie. The feature of the radium chloride that attracted 
most attention was its powerful radioactivity. In spite of the thousands 
of crystallizations performed, the crystallographic properties of radium 
chloride barely rated a mention. In the ninety-four pages of the disserta-
tion, there are only a few complete sentences on the crystallographic form, 
and they bleed off into less certain reports on the colors of the crystals 
that, she suspected, would prove of practical use in the separation:

The crystals, which form in very acid solution, are elon-
gated needles, those of barium chloride having exactly the 
same appearance as those of radium chloride. Both show 
double refraction. Crystals of barium chloride containing 
radium are colourless, but when the proportion of radium 
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becomes greater, they have a yellow colouration after some 
hours, verging on orange, and sometimes a beautiful pink. 
This colour disappears in solution. Crystals of pure radium 
chloride are not coloured, so that the colouration appears 
to be due to the mixture of radium and barium. The max-
imum colouration is obtained for a certain degree of radi-
um present, and this fact serves to check the progress of the 
fractionation.

I have sometimes noticed that formation of a deposit 
composed of crystals of which one part remained unco-
loured, whilst the other was coloured, and it seems possi-
ble that the colourless crystals might be sorted out. (Curie 
1904, p. 26)

Curie and soon others separated out only minuscule quantities of radium. 
Yet that radium chloride forms crystals just like those of barium chloride 
entered the literature quite quickly. In his 1913 survey of radioactive sub-
stances, Ernest Rutherford reported:

Radium salts crystallise in exactly the same form as the 
corresponding salts of barium. The crystals of radiferous 
barium chloride several hours after preparation usually as-
sume a yellow or rose tint. The intensity of this colouration 
depends on the relative proportions of barium and radium 
present in the crystal. Nearly pure radium chloride crystals 
do not show this colouration, indicating that the presence 
of barium is necessary. (Rutherford 1913, p. 470)

The facts are reported as having quite general scope, even though the in-
stances of observed radium chloride crystals must have been few, given 
the enormous labor needed to create them in tiny quantities. Nonetheless, 
both Curie and Rutherford seemed quite certain of the generalization. 
Rutherford’s report looks like little more than a paraphrase of Curie’s 
remark.
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1.6. A Formal Analysis
If we approach inductive inference formally, how are we to accommodate 
this induction? We need only investigate a few simple formal attempts to 
see just how poor the formal analysis is. The inference looks like a type of 
enumerative induction with the schema

Some (few) As are B.
Therefore, all As are B.

Yet this alone cannot be what authorizes the induction. For almost every 
substitution of the As and Bs would yield a feeble induction. To get an 
induction of the strength seen by Curie and Rutherford, we have to be 
selective in what is substituted for A and B. The As have to be specific 
chemical types, such as radium chloride or barium chloride, as opposed 
to the hundred and one other types of stuff that Curie found in her vats. 
More importantly, the induction works only for carefully chosen proper-
ties of B. There are many ways of describing crystal forms. Virtually none 
of them support a strong inductive inference.

To revert to the simpler example, one may find that some particular 
crystal of common salt is a perfect cube. However, no chemist would risk 
the induction to all crystals of common salt having exactly that shape. It 
was only after serviceable systems of crystallography were introduced that 
the right property was found. Individual crystals of common salt fall into 
the cubic or regular system, and this property can be inserted into the 
schema of enumerative induction to form the generalization.

The problem of finding the right descriptions challenged genera-
tions of crystallographers. Indeed, for a long time, many held that crystal 
forms admit no simple systematization so that exactly this sort of induc-
tion would be denied. The scientist, historian, and philosopher of science 
William Whewell gave a lively account of these hesitations—and of how 
Romé de l’Isle and René Just Haüy after 1780 sought to resolve the prob-
lems—in his History of the Inductive Sciences (1837, vol. 3, book 15, chaps. 
1–2).

These difficulties make it a matter of some delicacy to specify in for-
mal terms just what property of the radium chloride crystals can be gen-
eralized. Curie and Rutherford used parasitic locutions: the crystals of 
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radium chloride are the same as those of barium chloride. Hence, Marie 
Curie in her 1911 Nobel Prize address chose a technical locution to de-
scribe the crystal form of radium chloride: “In chemical terms radium 
differs little from barium; the salts of these two elements are isomorph-
ic, while those of radium are usually less soluble than the barium salts” 
(Curie [1911] 1999). Isomorphism is a term of art used then and now to 
describe the circumstance in which two different substances have very 
close chemical and crystalline properties (see Miers 1902, p. 213). Curie’s 
use of the term saved her the need of describing in more detail the precise 
structure possessed by the salts of radium. It was familiar knowledge for 
chemists that barium chloride has such-and-such a monoclinic crystalline 
form. The declaration of isomorphism indicated that radium chloride had 
this form too.

If the schema of enumerative induction is to function as a general 
logic, the restrictions on just what may be substituted for A and B have 
to be abstracted, regularized, and formalized, and then included in the 
schema. The problem is that the restrictions that must be added are so 
specific that one despairs of finding a general formulation. Presumably, a 
general logic cannot append clauses of the form: “If A is a substance that 
manifests in crystalline form, then B must be one of the known crystal 
forms as sanctioned by modern crystallography.” This is a little short of 
offering a huge list in which we inventory the specific inferences that are 
allowed. This would not be a logic but a catalog whose guiding rationale 
would be hidden.

A more promising approach is to draw on a popular philosophical 
notion devised for this sort of application: we require that A and B must 
be natural-kind terms. These are terms adapted to the divisions arising in 
nature (“is crystallographically regular”), as opposed to artificial divisions 
introduced by humans (“looks like a cubist sculpture”). The hope is that 
we succeed in delimiting the good inductive inferences by restricting the 
schema explicitly to natural-kind terms.

The approach fails at multiple levels. First, it fails because the good 
inductions on crystal forms are still narrower. It is surely a natural-kind 
term for a crystal to be a perfect cube, one of the five Platonic solids. Yet an 
induction on common salt that uses the property fails to be a good induc-
tion by the standards of the crystallographers. Second, the schema is only 
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viable if one can give a general formula that specifies what a natural-kind 
term is. A common characterization of natural-kind terms is that they 
support induction (Bird and Tobin 2010, sec. 1.1). This means that we are 
allowed to generalize relations found in a few cases to hold between natur-
al-kind terms. If we append this characterization of natural-kind terms to 
the schema of enumerative induction, the schema is rendered circular. For 
to require that the schema can only be used on terms A and B that support 
induction is just a fancy way of saying that the schema only works when 
it works. Another common characterization of natural-kind terms is that 
they appear in natural laws. If we try to include this characterization in 
the specification of the schema, we face similar circularities when we try 
to state just what we mean by “law.” Are they true relations that obtain 
between natural kinds?

1.7. A Bayesian Attempt6

The preceding section sought to develop the simple schema of enumera-
tive induction to convert it into a serviceable schema with universal appli-
cation. The efforts were unsuccessful. Might a different approach that em-
ploys probabilistic analysis fare better? What if we seek help from Bayesian 
analysis? We seek a vindication of the inference from “Some (few) As are 
B” to “All As are B” that relies essentially on the probabilistic character of 
relations of support. It should not merely adopt antecedently some version 
of the idea that the proposition “All As are B” accrues support from the 
proposition that “Some As are B” and then just restate it in probabilistic 
language. We saw that it was precisely this idea that proved unsustainable 
in the last section. Simply translating the idea into probabilistic language 
would only serve to hide the difficulties behind a veil of numbers and for-
mulae. In addition, we should like the probabilistic analysis to show us 
that “Some (few) As are B” can provide strong support for “All As are B.” 

There are many ways that one can give Bayesian analyses of this prob-
lem. Let me sketch just one. We write H for the hypothesis that a newly 
prepared salt belongs to some particular crystallographic system. We 

6 I thank Nick Huggett for helping me to think through revisions to this section and the 
next.
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write E for the evidence that a number of samples are each observed to 
belong to that class. If there are n samples, we can write E = E1 & E2 & … 
& En, where Ei asserts the evidence in the ith case. The probability of in-
terest is P(H | E), the probability of the hypothesis H given the evidence E. 
This represents the inductive support afforded to H by E if we think of the 
probabilities objectively. Or, if we interpret the probabilities subjectively, 
it is the belief that we have in H given that we know E. We are interested 
in seeing how the posterior probability P(H | E) compares with the prior 
probability P(H); that is, we seek to determine how the probability of H 
changes when we incorporate our learning of evidence E. These changes 
will tell us the evidential import of E. An increase in probability is favor-
able evidence; a decrease is unfavorable.

We can compute these changes by means of Bayes’ celebrated theor-
em. In a form suitable for this application, it asserts

We will not compute P(H | E) directly but only how incorporating E alters 
the balance of probability between the hypothesis H and its negation ~H. 
That is, we can see how the ratio of the prior probabilities P(H)/P(~H) 
changes to P(H | E)/P(~H | E) = r. From this last ratio, P(H  | E) can be 
recovered as

Bayes’ theorem tells us that the controlling quantities are the two likeli-
hoods P(E | H) and P(E | ~H). The first is easy to compute. It expresses the 
probability that we have the evidence E if the hypothesis H is true. The 
hypothesis H says that all samples belong to a particular crystallographic 
system. Hence, the n samples at hand must belong to that system. So the 
probability is unity that we have evidence E: P(E | H) = 1. 

The other likelihood, P(E | ~H), is much harder to determine. It re-
quires us to assess the probability of the evidence if the hypothesis is false. 
Determining this quantity requires some creative imagination, for we 
have no precise prescription for how the hypothesis might fail. The like-
lihood will vary depending on how we judge the hypothesis might fail. If 
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the only possibility for failure is that the salt belongs to one of the other 
crystallographic classes, then there is no possibility of the evidence E ob-
taining. Then P(E | ~H) = 0. Inserting this into Bayes’ theorem leads to P(E 
| H) = 1; the hypothesis is maximally probable.

But things are more complicated. E can be reported if there are obser-
vational errors so that the evidence is misreported. Or it may turn out that 
the salt is dimorphous or even polymorphous. This means that the salt can 
crystallize into two or more systems. So there is some chance—perhaps 
small, perhaps large—that the evidence Ei obtains, even if H is false.

We will set these concerns aside. Let us set the probability to q so 
that P(Ei | ~H) = q and suppose that each of the samples is taken under 
independent conditions with the supposition of the falsity of H. Then, 
obtaining each Ei is probabilistically independent of the others, and the 
probability of the conjunction is just a simple product of terms:

Bayes’ theorem now becomes

Here we have a nice limit result. As n becomes large, qn can be brought 
arbitrarily close to 0, as long as q < 1. Hence, the ratio of likelihoods  
1/qn becomes arbitrarily large, so that the ratio r = P(H | E)/P(~H | E) also 
grows arbitrarily large. This corresponds to the posterior P(H | E) = r/(r + 1) 
coming arbitrarily close to unity. And this means that the support for or 
belief in H approaches certainty. This limiting result is comforting, for it 
means that we do not need to worry about the particular values that we 
might assign to the priors. Whatever influence their values may have had 
on the final result is “washed out” by the limit process. This is for the best 
since the prior probabilities P(H) and P(~H) would have to be plucked 
from the air.
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1.8. Where the Bayesian Analysis Fails
If one inclines to numerical and algebraic thinking, the foregoing may 
seem like a very satisfactory analysis. It has brought mathematical pre-
cision to what at first seemed like an intractable problem. There is even a 
little limit theorem in which priors are washed out. All that is an illusion. 
There are few if any gains in the analysis. And the harm done is great since 
we have convinced ourselves that we have solved a great problem when we 
have not. Any positive result achieved has little to do with the probabilistic 
properties supposed for relations of inductive support and everything to 
do with the choices we make externally to the analysis. We shall see that 
the long-term results are determined by our antecedent choice of prior 
probabilities, which prove to be narrowly constrained to two extreme, 
dogmatic possibilities. The short-term results depend critically on arbi-
trarily chosen numbers. Finally, the necessary condition for any success-
ful result lies in choosing a description of the hypotheses and evidence 
that is delicately tuned to the properties of the system. Without such a 
description, inductive success is impossible. With it, success is assured for 
virtually any approach.

1.8.1. External Inductive Content
The first problem is that the analysis is heavily dependent on judgments 
of probability that are supplied externally to the analysis. That is, we must 
set prior probabilities that presume either a dogmatic skepticism or an 
unreasonable credulity concerning the universal hypothesis H. There is 
no other option.

To avoid the danger of these externally specified assumptions pre-
judging the result, we might require a prior probabilistic independence of 
the individual items of evidence, E1, E2, …, En. This avoids an antecedent 
assumption of them being connected by the universal hypothesis H. That 
is, we would have
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where for simplicity I have assumed an equal probability 0 < s < 1 for each 
P(Ei). The result is immediately disastrous. A version of Bayes’ theorem 
now tells us that

As the number of instances of n increases, sn decreases and can be brought 
arbitrarily close to zero, which means that 1/sn can be made arbitrarily 
large. Since P(E | H) can never exceed unity, probabilistic consistency 
requires that we can no longer choose our prior probability P(H) freely. 
We must have P(H) ≤ sn. Since sn can be brought arbitrarily close to zero 
when n is large enough, we must somehow choose a prior probability P(H) 
close enough to zero that anticipates in advance the number of items of 
evidence that may appear. The only secure value is a zero prior probability: 
P(H) = 0. In this worst case, we preclude learning from the evidence, since 
P(H) = 0 forces P(H | E) = 0 no matter what evidence E is presented. We 
must commit to a prior skepticism about the universal hypothesis H.

It is entirely reasonable to respond that this shows that presuming pri-
or probabilistic independence of the individual items of evidence E1, E2, 
…, En is not benign after all. The assumption of independence encodes a 
dogmatic skepticism concerning the universal hypothesis H. But the al-
ternative is equally troublesome. If we now admit the possibility of a prior 
probabilistic dependence among the items of evidence, we commit to un-
reasonable credulity concerning the universal hypothesis H. Here is why: 

To avoid prior skepticism about H, we must free ourselves of the need 
to set P(H) arbitrarily close to zero. We do this by ensuring that P(E) = 
P(E1 & E2 & … & En) does not become arbitrarily small as n grows large. 
We expand P(E) as

We preclude P(E) becoming arbitrarily small by requiring that P(En | E1 
& E2 & … & En−1) approaches unity in the limit as n grows large. This re-
quirement says that conditioning on the evidence E1, E2, …, En−1 requires 
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the limiting probability of En to be arbitrarily close to unity. This is close 
to assuming H itself. For informally it says that being an instance of H is 
projectable in this sense: if we have seen n − 1 instances of H with increas-
ing n, we approach probabilistic certainty that the next, nth item will also 
be an instance with H.

The credulity toward H lies in the permissiveness of this result. It 
turns out that we approach probabilistic certainty not just for the next in-
stance of H, but for the next N instances of H after it—no matter how large 
N is. For a simple variant of the last calculation shows that the conditional 
probability

must also approach unity as n and N grow large. Our confidence in pro-
jectability is not limited just to the universal hypothesis H, but to any hy-
pothesis of which the items of evidence are an instance, no matter how 
curious the hypotheses. The hypothesis may be that all samples of radium 
chloride were prepared by Curie; or that all are in Paris; or that all are in 
the northern hemisphere.

In sum, we cannot simply present the evidence as bare data and have 
the Bayesian analysis tell us its import. We have to add prior probabilities 
and there is no benign way to set them. We must choose antecedently be-
tween those that commit us to a dogmatic skepticism or to an unreason-
able credulity. This difficulty of Bayesian analysis has long been recog-
nized.7 Richard Jeffrey (1983, p. 194) was sufficiently disturbed by it that he 
concluded “willingness to attribute positive [prior] probability to a univer-
sal generalization is tantamount to willingness to learn from experience at 
so great a rate as to tempt one to speak of ‘jumping to conclusions.’” This 
example illustrates a quite general result reviewed in Chapter 12: formal 
analyses within a calculus of inductive inference cannot be freed from 
their dependence on externally supplied inductive content.

7 For a brief review, see Norton (2011, pp. 430–31).
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1.8.2. Curie Did Not Take a Large n Limit
The second issue is that the analysis has solved the wrong problem. Curie 
was sure of the result already from just a few samples. She did not need to 
look at n samples and ponder the result as this n grew arbitrarily large. This 
“small n” result can be addressed in the Bayesian system, but it requires us 
to insert numbers. We need concrete values for q and for the priors P(H) 
and P(~H) in order to determine whether the analysis supports Curie’s an-
alysis. Which are the right values? Can we find them? Or are our selections 
just hunches driven by dim feelings of what is reasonable?

We now must face the awkward problem of all Bayesian analysis: 
namely, that it introduces specific probability numbers while no such 
numbers are in evidence in the inductive practice. Just which value is ap-
propriate for P(Ei | ~H)? Is it 0.1? Or 0.5? What of the prior probabilities? 
If we think of the probabilities as measuring objective degrees of support, 
then we have no good basis for assigning the prior probabilities, and the 
whole small n calculation will rest on a fabrication. If we think of prob-
abilities subjectively so that they merely reflect our freely chosen opinion, 
we are no better off. The hope, in this case, is that the accumulation of evi-
dence will wash out the individual prejudices we introduced by arbitrary 
stipulation of our prior belief. This washing out does not happen precisely 
because we are limited to the small n analysis.

More generally, this “solving the wrong problem” is an infraction 
committed repeatedly in Bayesian analyses. There are a few simple com-
putations that serve as examplars, and the exercise in Bayesian analysis is 
to modify the problem actually posed in successive steps until it resembles 
one of them. In this case, the original problem is transformed into the 
problem of distinguishing a double-headed coin (hypothesis H) from a 
coin that has probability q of showing a heads (hypothesis ~H). We are 
given the evidence E of n independent tosses, all of which show heads.

These first two problems are familiar and generally addressed by mak-
ing the analysis more complicated. If selecting appropriate likelihoods or 
prior probabilities is troublesome, then a skeptical reader may be reassured 
that further Bayesian analysis will surely vindicate exactly the selections 
needed to get the result promised. My prediction, however, is that this 
maneuver will not solve the problem. It will merely enlarge the analysis 
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and exile such problems to remote corners, where they will proliferate. The 
problems will just be harder to see because the analysis will have become 
so much more complicated.

1.8.3. Finding the Right Description
The third problem is, in my view, the most serious. The Bayesian analysis 
began by declaring the hypothesis that the salt has crystals belonging to a 
certain crystallographic system and that the observed instances all con-
formed to this system. Once this description is given, the most important 
part of the inductive analysis is over; for once we know that these are the 
terms in which the problem should be described, then almost any analysis 
will succeed. Enumerative induction will quickly return something like 
Curie’s result. Or, looking ahead to other accounts of induction, we can 
declare the evidence a severe test of the hypothesis; or best explained by 
the hypothesis.

Until we are able to describe things in these terms, no analysis will 
work, not even the Bayesian. The alternative descriptions will either be 
too coarse or too fine. If they are too coarse, the sorts of hypotheses inves-
tigated and affirmed under Bayesian analysis will likely end up as banal. 
We may affirm that radium chloride forms crystals, for example. If the 
descriptions are too fine, we will likely find that no hypothesis is well sup-
ported by the evidence. If, for example, we give too detailed a description 
of the crystal form, then the several cases at hand will differ sufficiently 
such that no single description fits and we will be left without a compatible 
hypothesis to set for H in the analysis.

The damage done by the Bayesian analysis is that it obscures exactly 
the most important part of the inductive analysis with a smokescreen of 
numbers and theorems. The essential part of the analysis is the recogni-
tion that the hypothesis and the evidence need to be described in terms of 
a narrow and hard-won vocabulary of crystallographic theory. The elab-
orate computations of Bayesian analysis mislead us into thinking that in-
ductive problems are solved by manipulating probabilities and by proving 
theorems in the probability calculus. It is a seductive aura of precision that 
is to be resisted if we are to understand inductive inference.

It is widely acknowledged that the real challenge lies in finding the 
appropriate system of classification. In introducing crystallography as a 
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“classificatory science,” William Whewell stressed that finding this appro-
priate description is the object of the science:

Our classification of objects must be made consistent and 
systematic, in order to be scientific; we must discover marks 
and characters, properties and conditions, which are con-
stant in their occurrence and relations; we must form our 
classes, we must impose our names, according to such 
marks. We can thus, and thus alone, arrive at that precise, 
certain, and systematic knowledge, which we seek; that is, at 
science. The object, then, of the classificatory sciences is to 
obtain fixed characters of the kinds of things; the criterion 
of the fitness of names is, that they make general proposi-
tions possible. (1837, pp. 212–13; emphasis in original)

Finding the right system of classification is what makes generalization 
possible.8

1.9. A Material Analysis
Formal analysis presumes that one isolates the transition from knowledge 
of a single case to all cases as a problem in inductive logic, and that we 
establish the cogency of the transition by displaying its conformity with 
formal principles. For example, we might seek to show conformity of the 
transition with an abstract schema of enumerative induction or, in the 
probabilistic case, with Bayes’ theorem. Hence, the inference from a single 
sample to all is immediately beset with the familiar problems that have 
troubled induction for millennia. They sustain the weary sense among 
philosophers that induction, trouble, and woe all go together.

8 Looking ahead, a probabilistic analysis could avail itself of the “Weakened Haüy’s 
Principle” (discussed below), which I argue warrants the inference materially. The analysis would 
derive directly from the principle that there is a high probability that all samples of radium 
chloride crystals are monoclinic, conditioned on the fact that Curie’s few samples are monoclinic. 
This is merely a probabilistic restatement of the final result already achieved. Probabilistic analysis 
has added nothing beyond the illusion of quantitative precision.
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Chemists at the start of the twentieth century, pondering the crys-
talline structure of matter, would likely not have sensed that their pas-
sage from one sample to all was problematic. Indeed, they are unlikely to 
have thought of it in the abstract terms of theories of inductive inference 
at all. The century before had seen vigorous investigation into the ques-
tion of just how properly to characterize the crystalline forms so that the 
passage from properties of one sample to all may be effected. Curie and 
Rutherford, if called on to defend this transition, would not have recited 
passages from logic books. They would have pointed to background know-
ledge then shared by all competent chemists.

The foundations of the successful approach to crystallographic cat-
egorization were laid by René Just Haüy in the late eighteenth and early 
nineteenth century. His approach was based on the idea that each distinct 
substance that forms crystals is built up from many, primitive geometrical 
nuclei, all of the same geometric shape. The mineral galena, in this theory, 
is built from minute cubes. In his treatise published at the time Curie was 
working on radium, Henry Miers (1902, p. 21) illustrated Haüy’s account 
as in Figure 1.4:

Figure 1.4. Haüy’s account of crystalline shapes.9

9 The figure on the left is based on Miers’ Fig. 38 and the figure on the right is a 
reproduction of Miers’ Fig. 37.
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The oblique face ABC of a galena crystal in Figure 1.4 is, at the smallest 
scale, really many staircases of these cubes. But the scale is so small that 
we perceive a perfectly smooth surface.

An account by a contemporary of Haüy’s, Frederick Accum (1813, p. 
110), summarized the theory: “He [Haüy] has also shewn that all crystals, 
however complicated their form may be, contain within them a primitive 
geometrical nucleus, which has an invariable form in each chemical spe-
cies of crystallisable material.”10 From this theory came the essential result 
that every substance was characterized by a unique primitive form:

The diversity of primitive forms ought therefore to be re-
garded as a certain indication of a difference in nature be-
tween two substances and the identity of primitive form 
indicates identity of composition, unless the nucleus is one 
of those solids which have a marked character of regularity; 
such as the cube, the regular octahedron, &c. (p. 117)

The essential qualification is that sometimes two substances may be com-
posed of nuclei of the same form; this was likely to happen for crystals 
built from regular solids, like cubes. This was a quite essential qualifica-
tion since Accum could list numerous cases of substances with the same 
crystalline form. For example, he listed ten substances based on the cube 
(1813, p. liv), among which were native gold, native silver, native copper, 
gray cobalt ore, leucite, common salt, galena, and iron pyrites.

A century later, Haüy’s system had received multiple adjustments and 
his basic supposition was commonly bowdlerized:

The Abbë Reny Just Hauy [sic], whom Dr Tutton designates 
the “father of modern crystallography,” has enunciated the 
great principle that to every specific substance of definite 
chemical composition capable of existing in the solid condi-
tion there appears a crystallizing form peculiar to and char-
acteristics of that substance. (Anon, p. 365)

10 This account is more succinct than Haüy’s own synopsis (cf. Haüy 1807, pp. 86–101).
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The view outlined was not so much a principle as a simple consequence of 
Haüy’s theory, which, according to Accum, did not insist that each crys-
talline substance had its own “peculiar”—that is, unique—form.

For our purposes, the essential point is that if a chemist were to accept 
Haüy’s theory, then one good sample of a crystalline substance would be 
sufficient to identify the crystallographic system to which all crystals of 
that substance belong. We have the following inference:

Each crystalline substance has a single characteristic 
crystallographic form (Haüy’s Principle).

The sample of salt A has crystallographic form B.
Therefore, (deductively) all samples of salt A have crystallograph-

ic form B.

This is the crudest version of how chemists pass from a single sample to 
all. What is notable is that it is not an inductive inference at all. The infer-
ence is deductive and authorized by early crystallographic theory.

Of course, this is an extreme case and a purely deductive inference 
was possible only during a brief window of a few decades during the ear-
ly years of Haüy’s crystallographic theory. The theory soon encountered 
anomalies. The shapes Haüy postulated for his nuclei could not always be 
stacked so as to properly fill space. Whewell (1837, p. 235) reported the col-
lapse of Haüy’s physical theory: “and when Haüy, pressed by this difficulty, 
as in the case of fluor-spar, put his integrant molecules together, touching 
by the edges only, his method became an empty geometrical diagram, with 
no physical meaning.” A still more serious problem was the recognition 
mentioned above that one crystalline substance may form crystals that 
belong to two, three, or more crystallographic systems—called “dimorph-
ism,” “trimorphism,” and “polymorphism,” respectively. It was not clear 
how merely stacking nuclei of the same shape could yield these different 
shapes. Mineralogy texts of the early twentieth century routinely reported 
examples. William Ford’s list is presented as something of a reminder of 
what everyone supposedly knew, rather than as a surprising novelty:

Carbon in the forms of graphite and diamond, calcium car-
bonate as calcite and aragonite, iron sulphide as pyrite and 
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marcasite, are familiar examples of dimorphism. The two 
minerals in each case differ from each other in such phys-
ical properties as crystallization, hardness, specific gravi-
ty, color, reactions with acids, etc. Titanium oxide, TiO2, is 
trimorphous, since it occurs in the three distinct minerals, 
rutile, octahedrite and brookite. (1912, p. 80)

This means that Haüy’s principle of the earlier deduction was not true, for 
there were cases of one substance routinely manifesting in several differ-
ent crystalline forms.

But the idea of a strict regularity in the crystal forms manifested by 
one substance remained. So we might render a corrected version of the 
earlier inference accordingly:

Generally, each crystalline substance has a single characteristic 
crystallographic form (Weakened Haüy’s Principle).

The sample of salt A has crystallographic form B.
Therefore, (inductively) all samples of salt A have crystallograph-

ic form B.

We now have an inductive inference. The warranting principle is what I 
have called the “Weakened Haüy’s Principle.” What makes it inductive is 
the word “generally.” It licenses us to proceed from one sample to all, but 
not with certainty.

One might imagine that this “generally” is, finally, a manifestation of 
some universal inductive logic. Its schema might be represented as

Generally, X.
Therefore, X in this case.

While we may find many instances of propositions of the form “Generally, 
…,” they are not manifestations of a unique inductive logic. In each case, 
the word “generally” will have a meaning peculiar to the context. In this 
case, “generally” means “in so far as polymorphism does not interfere.” So 
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the nature of the risk one takes in accepting the conclusion will differ with 
each context.11

This is one illustration of how background knowledge drives induct-
ive inferences and how such background knowledge is deeply entangled 
with inductive practices. Once one knows to look for it, the extent of the 
entanglement is quite profound. Another notion that was well established 
in Curie’s day was isomorphism, mentioned earlier. This was then defined 
more precisely by Ford (1912, p. 79) as “A series of compounds which 
have analogous chemical compositions and closely similar crystal forms 
are said to make an isomorphous group.” An early case of initially un-
recognized isomorphism became a celebrated triumph of crystallographic 
analysis. Whewell (1837, pp. 226–28) reports confusion over the crystal-
line substance “heavy spar.” Haüy found that its cleavage angles varied by 
three and a half degrees, depending on the origin of sample. One sample 
was from Sicily and one from Derbyshire. The variation was a great per-
plexity and a dire threat to Haüy’s theory since the same nuclei could not 
accommodate even such a small change of angle. It turned out that the 
two samples were of different substances. The Sicilian sample was barium 
sulphate and the one from Derbyshire was strontium sulphate. Barium 
and strontium are both alkaline earth metals in the same column of the 
periodic table and have similar chemistry. They also form crystals that are 
very similar, although—crucially—not perfectly identical. This is a classic 
case of isomorphism.

When Curie remarked that the radium chloride formed crystals with 
“exactly the same appearance” as barium chloride, it would have been 
with full knowledge that the chemistry of radium mimicked closely that 
of barium. Indeed, that mimicry is what made the separation of the two 
so difficult. Hence, the familiar idea of isomorphism would have indicated 
that the crystals of the two chlorides should be similar. All that was really 

11 While the inferences may look formally similar, they will be quite different if applied 
to crystals or to astronomy. Take the following proposition: “Generally, orbiting objects in our 
solar system orbit in the same direction as the earth.” From this, we may infer with a small risk 
that a recently discovered asteroid will orbit in the same direction as the other objects in our solar 
system. The risk we take is different from that taken in crystallography. We risk the possibility that 
this asteroid was not formed by the same processes that formed most other objects in our solar 
system.
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left to affirm was how close the similarity would be. It was, Curie found, 
“exactly the same.”

Immediately after Curie’s work was published, the chemical and crys-
tallographic similarity of radium and barium was immediately investi-
gated and affirmed. Runge and Precht (1903) used spectrographic and 
atomic weight measurements to locate radium with the other alkaline 
earth metals, magnesium, calcium, strontium, and barium. The expected 
similarity of crystalline forms was found by direct measurement of the 
bromides of barium and radium. As Frederick Soddy reported,

F. Rinne … has published a careful comparison of the crys-
tallographic relation between the bromides of radium and 
barium and has shown that radium bromide crystallises in 
the monoclinic system and is isomorphous with and crys-
tallographically closely related to barium bromide. (1907, p. 
332)

To report the isomorphism of barium and radium became standard in the 
literature.

We can now appreciate the great subtlety of Curie’s inference. As 
long as the background theories of crystallography are to be trusted, the 
possibility of polymorphism was the principal risk taken in generalizing 
the crystalline form of radium chloride from one sample to many. Hence, 
Curie and Rutherford were quite sanguine to report the radium salts’ 
crystalline form as an isomorphism with barium salts. For if there had 
been any polymorphism of the radium salt, they could reasonably expect 
a similar polymorphism to arise with the barium salt. So, with or without 
polymorphism, their result would stand. With that canny formulation, 
the result could be asserted with the confidence they showed. The only real 
danger was a failure of the isomorphism and, given the multiple points of 
agreement between barium and radium, that was easy to discount.

Let us take stock. Our starting point was a simple inductive inference 
from a few crystal samples to all samples. It is the sort of simple induction 
that should be explicated easily by an inductive logic. In particular, we 
would expect the logical analysis to tell us why this particular inference 
from “some” to “all” is so strong as to be essentially unquestioned. On 
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closer inspection, we found appearances to be deceptive. The strength of 
the passage from “some” to “all” in this particular case had little to do 
with issues identifiable by a formal logic. It had all to do with background 
chemical knowledge. The confidence the chemists had for the inference 
resulted from the care with which Curie and Rutherford located the in-
ference within a complicated network of chemical ideas that had been 
devised over the previous century precisely to admit such generalizations.

1.10. Main Ideas of a Material Theory of Induction
The preceding exemplifies how I believe we should understand inductive 
inference. Let me collect the main ideas here:

Inductive inferences are warranted by facts not by formal schema.

What makes the inductive inference a good and strong one is not con-
formity with some universal formal schema; it is the facts pertaining to 
the subject matter of the induction. Hence, the warrant is “material” and 
not formal. Curie already knew of the closeness of the chemical proper-
ties of barium and radium. She knew of the well-established isomorphism 
that arose in such cases and indicated a closeness of the corresponding 
crystalline structures. Those facts assured her that the few cases she had 
observed of similarity between radium and barium chloride crystals could 
be generalized.

The essential idea here is that facts can serve a dual role, both as state-
ments of fact and as warrants of inference. This idea is actually quite fam-
iliar. In deductive logic, the conditional “If A then B” serves this dual role. 
It can serve as a factual premise in an argument; or we can take the same 
argument and understand its role as warranting a deductive inference 
from A to B.

In chemistry, the facts that play this dual role look, loosely, like 
“Generally, X.” For example, “Generally, salts that are chemically analo-
gous have similar crystalline structures.” This is both a fact in chemistry 
and an authorization to infer that radium salts and barium salts will have 
similar crystalline structures because of their chemical similarity. The 
inference is authorized all the more strongly when Curie found a single 
sample of radium chloride crystals that, as expected, exactly resembled 
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barium chloride crystals. This diminished the possibility of smaller but 
superficially detectable differences. The inference is inductive since the 
chemical facts do not deductively entail Curie’s inference. This is the im-
port of the modifier “generally.” It accommodates the ways the inference 
can still fail that are peculiar to this particular chemical example.

All induction is local. It is contextual. 

The chemical facts that authorize these inductive inferences are truths of a 
particular domain of chemistry. They warrant a local mini-logic, peculiar 
to the context, in which evidence of chemical similarity and of a few sam-
ples warrants the generalizations indicated. This local mini-logic resem-
bles the universal schema of enumerative induction. But the resemblance 
is superficial. There will, no doubt, be other domains in which other facts 
will warrant inferences that also resemble enumerative induction. The 
inferences of each domain will be distinct, carrying their own unique re-
strictions that do not derive from a universal schema, and bearing their 
own unique form of inductive risk.

Inductive inference is generically variegated and imprecise. 

The imprecision here designates a lack of formal properties such as appear 
in mathematical theories of inductive inference. The inductive inferences 
on crystalline structure surveyed above can be characterized as “strong” 
or “reliable” or “very certain.” These terms have a meaning only within the 
crystallographic context. Inferences to a unique crystallographic system 
are prone to failure if the salt displays polymorphism. The inference is 
“strong” just to the extent that polymorphism can be discounted.

Terms like these are variegated in that they have meanings peculiar 
to their contexts. The term “strong” will have one meaning in crystallog-
raphy, another in some branch of physics, and yet another in some sub-
field of astronomy. What is missing generically is any precise means of 
comparing the strengths of inferences deemed “strong” in crystallography 
and in other domains, such as physics or astronomy. We also lack pre-
cise means of calibrating the difference between, say, “strong” and “very 
strong,” within a single domain. This stands in contrast to contexts in 
which probabilities are applicable. The probability of at least one heads 
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in ten coin tosses is 1/1,024 = 0.99902. In another domain, we may find 
that the probability that a parent passes on some specific genetic trait is 
0.99. The two probabilities are comparable. The first exceeds the second by 
1% and this slight difference will manifest eventually in slight frequency 
differences among many repeated trials.

The qualification “generically” allows that there are important excep-
tions. Background facts may sometimes authorize a precise, mathematical 
calculus of inductive inference. The most familiar case arises when we 
perform inductive inferences specifically on systems governed by prob-
abilistic facts. Such systems include those undergoing radioactive decay, 
the forensics of DNA, and games of chance in a casino. Later chapters 
will describe systems in which other, non-probabilistic calculi of inductive 
inference are warranted. These precise calculi are only applicable when 
definite background facts warrant them.

The material theory does not authorize the default application of 
numbers to measure strengths of inductive support. It may be appealing 
to some to presume such numbers as a default. A probabilistic analysis 
can supply a definite number—say 0.99—whose closeness to unity gives 
the sought-for quantitative measure. As satisfying as this may be, without 
specific background facts to authorize the numbers, applying them is an 
exercise in spurious precision. It forces variegated notions of strength of 
support into a single, uniform mold that supposedly enables comparisons 
across domains. It neglects the domain-specific meaning for the strength 
of inductive support in each domain. To demand a single number or a sin-
gle universal term to characterize inductive strengths across all domains 
invents a uniformity that is not found in the variegated character of in-
ductive inference.

Inductive risk is assessed and controlled by factual investigation. 

When one makes an inductive inference, one takes an inductive risk and 
one seeks both to assess and to minimize the risk taken. In a formal theory 
of induction, the assessment of the risk becomes an assessment of the reli-
ability of the inference schema used. If we infer to the best explanation, we 
then need to ask how reliable it is to do that. And we are faced immediately 
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with an intractable problem. There is no simple answer to this question; 
and there is likely no serviceable, complicated answer either.

In a material theory of induction, things are quite different. The war-
rant for an induction is a fact, and we assess and then control the inductive 
risk by exploring and developing that fact. Let us imagine that we notice 
that only a few radium chloride crystals resemble those of barium chlor-
ide. The inference to a broader resemblance might then be warranted by a 
chemical fact that salts manifest only a few crystalline forms. The strength 
of the inductive inference depends essentially on the correctness of that 
fact and just how many forms are admitted by the word “few.” All of that 
can be checked by further investigation and just checking that is the nor-
mal business of research chemists. They developed theories of how crys-
tals are constituted to enable a better understanding of which crystalline 
forms will appear in which circumstances. These investigations assure us 
that two salts will manifest similar crystalline forms if they are chemically 
similar; and this conclusion is in turn grounded both in other observa-
tions and a theoretical argument. Since radium and barium are chem-
ically very similar, the chlorine atoms in a barium chloride crystal will 
permit the barium atoms to be replaced by radium atoms with minimum 
alteration to the crystal structure.

We assess and control inductive risk by learning more facts. The new 
facts provide new premises for inductive inference and new warranting 
facts. What was an intractable problem for a formal theory of induction 
becomes a routine problem in exploring the factual realm of chemistry for 
a material theory.

Inductive inference is material at all levels. 

The crystallographic example explored here looks at particular sorts of in-
ductive inferences at a specific level of refinement. One may wonder what 
happens if we take a more fine-grained view that looks more narrowly at 
specific inferences or—alternatively—if we take a coarser view that looks 
at inductive practice at a more general level. Will we find that a formal 
account of inductive inference succeeds there? Will we find that at levels of 
great refinement the glue that inductively binds the corpuscles of analysis 
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is formal? Or will we find at a general level that a universal, formal theory 
emerges that can unify the diversity of the particular cases?

The claim here is that a material theory prevails at all levels. Of course, 
at all levels there will be inferences that loosely fit with one or other formal 
theory. We have seen in the case of crystallography that the inferences 
resemble enumerative induction. We should expect such loose fits, else the 
formal theories would not have survived in the literature. On closer exam-
ination, however, we will see that material facts are what warrant them.

1.11. Does the Material Theory Say That Inductive 
Inferences Are Really Deductive? No!
No. No. NO. It does not say that. This is perhaps the most frequent mis-
reading of the material theory, and it can be put to rest here. The material 
theory maintains the distinction between the two forms of inference. In 
deductive inference, the truth of the premises assures the truth of the con-
clusion. In inductive inference, understood materially or otherwise, the 
premises only lend support to the conclusion. Inductive inference is not 
deductive inference.

The misreading of the material theory has it affirming that inductive 
inference is really some form of disguised deductive inference. My sense is 
that this misreading comes from a similarity between the material theory 
and another approach to inductive inference. In this other approach, we 
note that good inductive inferences are also deductive fallacies. For ex-
ample, we take the following as a premise:

This sample of salt A has crystallographic form B. 

From this, we infer

All samples of salt A have crystallographic form B.

This is a deductive fallacy. We could imagine that the argument is real-
ly, secretly a valid deductive argument, but we do not see it because one 
or more of the premises are unstated. That would make the argument an 
“enthymeme,” a valid inference with unstated premises. In this case, a 
suitable unstated premise would be the strong form of Haüy’s Principle:
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Each crystalline substance has a single characteristic 
crystallographic form. 

With this added premise, the inference becomes deductively valid. In 
the other approach, all inductive inferences are treated this way. They 
are treated as failed deductions that are repaired by supplying missing or 
unstated premises. This is not how the material theory treats inductive 
inference, however.

If we transform the inductive inference to a deductive inference by 
adding such premises, we have generated what is known as a “deduction 
from the phenomena.” The best-known examples are given in Book 3 of 
Newton’s Principia, where he shows how to infer deductively from the 
phenomena of celestial motions to the basic ideas of his theory of gravita-
tion. His examples are so important that inferences of this type are often 
called “Newtonian deductions from the phenomena.”

In admitting these cases, the material theory does allow that some 
inductive inferences may turn out to have been deductive inferences 
all along, once we make the background facts explicit.12 However—and 
here is the key observation—this deductive outcome is an extreme and 
relatively rare case. Most commonly, it does not arise. When we identify 
the warranting facts, they supply an inductive warrant only. The strong 
form of Haüy’s Principle is false. The correct, weakened form of Haüy’s 
Principle merely asserts that “Generally, each crystalline substance has a 
single characteristic crystallographic form.” The crucial word “generally” 
makes all the difference. It reminds us that the original principle fails if 
there is polymorphism. In accepting the conclusion, we take the risk that 
polymorphism—if present—will undo the conclusion. That is, the warrant 
supplied by the weakened form of the principle is not strong enough to 
assure us of the conclusion with deductive certainty. The distinction be-
tween deductive and inductive inference is maintained.

12 This is not a bad outcome at all. We thought that we must take an inductive risk in 
accepting the conclusion of the original inference. However, we learn that background facts assure 
us that no inductive risk is taken in accepting the conclusion. The inference has become deductive 
and, in effect, we already took the inductive risk needed when we accepted the background 
assumptions.
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Chapters 2–9 will elaborate and illustrate these claims further through 
examination of a sequence of inductive inference forms employed in the 
literature: the replication of experiment, analogical inferences, inferences 
grounded in notions of simplicity, and inference to the best explanation. 
These chapters will be followed by an extensive investigation into the lim-
itations of the Bayesian approach in Chapters 10–16. Where the present 
chapter has developed the material theory of induction by means of an 
example, the next chapter will develop the general arguments for it.

Note added March 15, 2020.
Commentaries on the draft chapters of this book have been collected for 
an issue of Studies in History and Philosophy of Science. It has become 
apparent from those commentaries that the draft chapters had not ad-
equately distinguished two questions that arise within the material theory 
of induction. They are

(inductive-logical)
Question: Which inductive inferences are licit?
Answer: Those that are warranted by a (true) fact.

(epistemic)
Question: How can we know that a specific inductive inference is 

licit?
Answer: We must be assured of the truth of the appropriate 

warranting fact.

The first question is answered by matters of fact that obtain independently 
of any human beliefs, knowledge, or awareness. The answer to the second 
question depends on the answer to the first question. To know that some 
candidate inference is licit, we need to know the warranting fact. Gaining 
that knowledge can sometimes be troublesome. We may have to conjec-
ture what the warranting fact is. In this case, we cannot be assured that 
the associated inference is licit until further investigation assures us that 
we have conjectured a factual truth.
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2

What Powers Inductive Inference?1 

2.1. Introduction
This chapter summarizes the case for the material theory of induction, 
drawing on material in other parts of the book. There are three arguments 
for the theory. The first two are the following:

1.  Failure of universal schemas. Through many examples in 
this text, we see that no attempt to produce a universally 
applicable formal theory of induction has succeeded.

2.  Accommodation of standard inferences. These same 
examples show that the successes of many exemplars of 
good inductive inferences can be explained by the material 
theory of induction.

These first two arguments suffice, I believe, to make a solid case for the 
material theory. They are developed in Sections 2.2 and 2.3. They make the 
case without giving an intuitive grounding for why the material approach 
is the right one. They establish that it is, not why it is. For the arguments 
succeed by showing that the alternative, formal approach fails and that the 
material approach works where its competitor fails. The third argument, 

1 My thanks to the Fellows of and a visitor to the Center for Philosophy of Science for 
discussions of a draft version of this chapter on 30 November 2011 and 23 November 2014: Yuichi 
Amatani, Ari Duwell, Uljana Feest, Leah Henderson, Gabor Hofer-Szabo, Soazig LeBihan, Dana 
Tulodziecki, Adrian Wuethrich, Adele Abrahamsen, Joshua Alexander, William Bechtel, Ingo 
Brigandt (presenter), Sara Green, Nicholaos Jones, Maria Serban, and Raphael Scholl.
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however, is grounded in the foundational question, developed in Section 
2.4, of why any inductive inference should work at all—that is, “What 
powers inductive inference?” The question presumes that we cannot take 
the success of inductive inference for granted. If it works, it does so for an 
identifiable reason. The material theory answers:

3.  Inductive inference is powered by facts. The ampliative 
character of inductive inference precludes universal 
schemas.

There are two steps in the argument for this conclusion, and they are de-
veloped more fully in Section 2.5. Briefly, the first step notes that inductive 
inference is, by its nature, ampliative. That is, unlike deductive inference, 
the conclusion asserts more than the premises. It amplifies what the prem-
ises say. For each sort of inductive inference, there will be worlds hostile 
to its success. Generalizing chemical properties of samples, for example, 
is futile in a world without stable chemical properties. Using an inductive 
inference presupposes that, as a factual matter, we are not in one of those 
hostile worlds. If the notion of these facts is construed broadly enough, 
commitment to them is all there is to accepting the logic. These are the 
facts warranting the inductive inference.

The second step specifies the character of these facts. They are not 
universal contingencies such as would warrant a universally applicable in-
ductive logic. This is shown by our failure to identify a universally applic-
able inductive logic and our failure to exhibit such a universally war-
ranting fact explicitly. Rather, the facts hold true only in limited domains 
so that there are many of them and the inductive logic each warrants has 
local applicability only.

The two sections following Section 2.5 illustrate these two steps. 
Sections 2.6 and 2.7 consider the inductive problem of extending the series 
1, 3, 5, 7. It is insoluble without background facts to warrant the inference. 
Section 2.8 displays some more examples of warranting facts. Finally, our 
predisposition for treating inference formally is strong. Section 2.9 will 
seek to weaken the presumption that all theories of inference must be 
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formal by indicating limitations in the formal, non-contextual treatment 
of the most favorable case, deductive inference. 

2.2. Failure of Universal Schemas
Formal approaches to inductive inference depend on supplying a universal 
template or schema. For example, in the last chapter, we saw the schema of 
enumerative induction

Some (few) As are B.
Therefore, all As are B.

Such templates are then used to generate the licit inductive inferences by 
substituting the content of the placeholders A and B. The enduring diffi-
culty for formal theories is that no general account of inductive inference 
has provided a clearly articulated exceptionless schema. Therefore, all 
formal accounts fail, and by eliminating the only rivaling accounts, the 
material theory gains support.

That all formal schemas fail is difficult to show directly since there are 
many of them. What can be shown, however, is the failure of a representa-
tive sample, which is the approach taken in this book.2 The mode of failure 
displayed by a given sample is sufficiently straightforward to make it likely 
that it will afflict all candidate schemas. 

In the preceding chapter, we saw in the example of crystalline forms 
that the schema of enumerative induction fails. For it to be applied success-
fully to crystalline forms, we needed to add additional, formal conditions 
contrived to rule out all but the very small set of properties of crystals that 
support inductive generalization. The sequence of additional conditions 
seemed to have no discernible end. Once even a few were added, it became 
clear that the schema lost all semblance of generality. 

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments, which is often introduced as a gold standard of 
evidence. On closer examination, however, it will be proven something 

2 In earlier work (Norton, 2003, 2005), I sought to be more systematic. I showed 
how virtually all accounts of inductive inference fell into one of three families, each powered 
inductively by a single idea. Since the sample of failures reviewed here are spread over the three 
families, we have some assurance that they are adequately representative of the range of accounts.
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less. We will see that it is a guide whose verdict is sometimes accepted and 
sometimes discarded. There is no formal rule that tells us when the prin-
ciple is to be upheld and when not. It is a principle that holds except when 
it does not. The following chapter looks at reasoning by analogy, a form of 
inductive inference whose use has pervaded science from antiquity to the 
present. Once again, we will see that the bare schema is too impoverished 
to be used exceptionlessly. Efforts over the past century to augment the 
schema have led to supplements of monumental size while still not deliv-
ering a self-contained formal schema.

This pattern of failure continues in subsequent chapters. While con-
siderations of simplicity are often invoked in discerning the bearing of 
evidence, they do not rest upon a factual principle of parsimony in nature. 
Notions of simplicity prove sufficiently elusive that there is no clear for-
mulation of such a principle. Similarly the slogan “inference to the best 
explanation” is so familiar that one might presume that there is some 
hidden inductive power in explanation. The presumption fails on closer 
examination. Our notions of explanation are too varied and vague to har-
bor powers sufficient to support a universal scheme of inductive inference.

Finally, a series of chapters investigates what is, momentarily, the 
favored account of inductive inference in the literature in philosophy of 
science, Bayesian inference. Any aspirations of universal applicability fail. 
Several chapters develop cases in which a probabilistic logic cannot apply 
since such a logic would contradict symmetries inhering in the cases. There 
is a rich literature that seeks to establish the necessity of probabilities in 
representations of belief and inductive support. An examination of these 
arguments shows them all to be circular. This circularity is developed 
at length in a chapter devoted to the scoring rule approach. Finally, any 
Bayesian analysis is inductively incomplete in the sense that it always re-
quires inductively potent prior probabilities to be specified externally. I 
report work elsewhere that shows that this incompleteness is not specific 
to the Bayesian system but troubles any calculus meeting certain weak 
requirements. It follows that no single calculus can cover all the inductive 
inferences of science. To repeat an earlier conclusion: all induction is local.

These examples embody modes of failure that, I believe, afflict all 
candidates for universal schemas of inductive inference. The schemas 
may simply be too vaguely specified at the outset to count as a logic of 
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induction, as is the case with inference to the best explanation. Or, if they 
are precisely specified, they prove too permissive and authorize too much, 
as is the case with enumerative induction. Efforts to restrict the schemas 
may specialize them so narrowly to one particular domain that they lose 
their universality. Or efforts may burden them with more conditions. And 
in adding them, we may need to import new notions—natural kinds, ex-
planation, lawfulness—which in turn require further conditions for their 
explication, and so on without termination. 

2.3. Accommodation of Standard Inferences
The last section offered a preview of the failure of familiar, formal schem-
as for inductive inference. These schemas were devised because each, to 
some degree, fits some collection of inductive inferences we deem licit. 
The second argument for the material theory is merely the flip side of this 
failure. Where the formal approach fails for these repositories of licit ex-
amples, the material theory succeeds.3

Once again, this can be read from the analyses of the previous and 
subsequent chapters. Curie inferred inductively from the crystalline form 
of mere specks of radium chloride to all samples of radium chloride. 
What licensed the inference was a hard-won fact from nineteenth-century 
work on crystals. It is what I have called the Weakened Haüy’s Principle: 
“Generally, each crystalline substance has a single characteristic crystal-
lographic form.”

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments. This requirement proves not to be a universal in-
ductive principle but is shown rather to arise in connection with a loosely 
affiliated but irregular collection of inductive inferences concerning re-
peated experiments. The otherwise inexplicable irregularity of such in-
ferences becomes intelligible when we recognize that they are warranted 
by two classes of facts: those specifying when some process will yield the 

3 In Norton (2003), I worked through the three families of accounts of inductive 
inference and showed briefly how the inferences of each account were materially warranted. The 
treatment of so many accounts there is necessarily brief. In this book, I seek to show the material 
warrant for standard examples of successful inductive inferences in much greater depth. As a 
result, fewer examples are treated.
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experimental outcome of interest; and those specifying what may con-
found the experimental outcome. These facts specify when a replication of 
an experiment is evidentially significant. More importantly, they specify 
when the replication is not evidentially significant. The variation in the 
facts from case to case explains the irregularity of the whole collection.

Arguments from analogy are so varied in their form that, as we shall 
see in Chapter 4, they defy complete characterization even by quite elab-
orate formulae. The material theory resolves the problem by conceiving 
analogy in the same manner as scientists. For them, analogy is not an 
argument form but a fact that asserts the similarity of two systems. This 
fact warrants inductive analogical inference. The resulting inferences have 
as varied a form as the facts of analogy themselves. It is this broad range 
of variation that defeats efforts to find a universal formal characterization.

This pattern of material reconstruction persists with the analysis of 
inductive inferences grounded in notions of simplicity or explanation. 
Invocations of simplicity in specific cases are shown to be abbreviated 
invocations of background facts. Since the background facts vary from 
case to case, their summary in an inductively potent principle of parsi-
mony is precluded. Similarly, in specific inferences to the best explanation, 
explanatory relations contribute nothing to the evidential import. Real 
examples of this sort of inference in science succeed through the mere 
adequacy of the favored hypotheses to the evidence and our success in 
eliminating its competitors by prosaic, non-explanatory means.

Finally, where the probabilistic representation of strengths of induct-
ive support is appropriate, it is because there are specific background facts 
that warrant them. The examples are many, varied, and familiar. Both 
quantum mechanical and statistical mechanical systems in physics are 
governed by probabilistic physical laws. These laws provide the warrants 
for the probabilistic inductive inferences over them. In biology, mechan-
isms of inheritance in population genetics are governed by probabilistic 
laws. They, too, warrant probabilistic inferences. An important back-
ground probabilistic fact in many areas of the biological and social sci-
ences is the presumption of sampling randomly from a population. This 
fact is important, for example, in the forensic identification of suspects 
through DNA analysis. It warrants the probabilistic inferences reported. 
A related case arises in controlled trials where subjects are randomized 
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into a test and control group. If the randomization is probabilistic, it intro-
duces background probabilistic facts that can warrant probabilistic infer-
ences about whether the effect measured could arise in case the treatment 
is ineffective.

These examples instantiate a familiar pattern. Whenever a cogent in-
ductive inference appears in a science, it has proven possible to trace the 
warrant for the inference to background facts.

2.4. The Mystery of Inductive Inference
The discussion so far has been devoted to the two most visible problems 
associated with inductive inference: 

1. Which are the good inductive inferences? 

To answer this, we must specify how we distinguish the good from the bad 
inferences. The material theory of induction says we do so by identifying 
warranting facts; we do not seek the warrant in universal schemas. This 
first problem is entangled with another problem that is more fundamental 
but largely overlooked in the present literature. How can inductive infer-
ence work at all? That is,

2. What powers inductive inference? 

Once we accept that inductive inference is powered by background facts, it 
becomes clear why the answer to the first question must lie in identifying 
the warranting facts.

The second question needs some elaboration. It is easy to take for 
granted that induction lets us do something remarkable. It lets us amplify 
our knowledge. We pay a small price for this amplification. Our new know-
ledge is not as certain as the old knowledge from which we proceeded. 
Sometimes the uncertainty is large. In important cases, the uncertainty 
is minuscule. Whether it is small or large, we still seem to get more than 
we should. The problem—the big mystery of induction—is to understand 
how this amplification can happen.

To sharpen the sense of why we need a solution to this second problem, 
consider an analogous problem. Imagine that we are in ancient Greece 
and encounter an oracle. In the darkness, we see the dim outline of the 
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sibyl, wailing and flailing. Her cries fall silent, and she issues several sharp 
proclamations that, over the course of time, turn out to be mostly accur-
ate. And all of this for the price of a goat and few drachma in her bronze 
bowl. Were this to happen, we would not be satisfied merely to note that 
this oracle has extraordinary predictive powers. We would want to know 
how this were possible. What is it in the order of things that enables this 
sibyl to make these predictions?

The puzzle is the same with induction. It performs a similar miracle, 
but without the movie-quality special effects. Experience gives us a small 
part of space for a small span of time. Yet from knowledge of this frag-
ment, we come to be sure that all things began some 14,000,000,000 years 
ago in an intense conflagration; that tiny smudges of light in the night sky 
are great galaxies of stars that duplicate our sun many times; and much 
more, down to the most minuscule structure of microbial life. We must 
ask, then, what is it in the order of things that allows induction to do this? 
What powers inductive inference?

The dominant trends in the present literature are incapable of satisfac-
torily answering these questions. To answer them adequately, both ques-
tions above need to be treated together. We cannot hope to know which 
are the good inductions without a clear and explicit idea of what powers 
induction. Answers to these questions in the literature have followed the 
model of deductive inference. This has driven us astray for millennia. It 
has led us to seek a non-contextual account of what powers induction and 
a formal answer to the problem of which are the good inductive infer-
ences. Neither works for induction. The central claim of this chapter is 
that a successful account of induction is contextual and material.

2.5. The Foundational Argument
The most compact argument for a material theory of induction proceeds 
by answering the foundational question of what powers induction. It is 
powered by facts. As indicated in the introduction, the argument has two 
premises.

Premise 1. Inductive inference is ampliative. This means that the con-
clusion of an inductive inference amplifies. It asserts more than the prem-
ises. This distinguishes inductive inference from deductive inference. 
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For deductive inferences merely restate what we have already presumed 
or learned. There is no mystery in what powers deductive inference and 
permits its conclusions. We are just restating what we already have in the 
premises. The warrant lies fully within the premises. If we know all win-
ters are snowy, it follows deductively that some winters are snowy.4 This 
derives from the premise “all.” If something is true of all, it is thereby true 
of some. The context in which we infer plays no role in powering the de-
ductive inference. The inference succeeds no matter what either “winter” 
or “snowy” might mean. The meaning of “all” is enough to uphold the 
conclusion regardless of context. The inference is valid independently of 
whatever other facts may obtain about weather and climate.

It is quite different with inductive inference. From the premise that 
all past winters have been snowy in some location, we infer inductively 
that the next winter will be snowy there. Yet it is entirely possible that this 
prediction fails. When we conclude in favor of the prediction, we assert 
more than the premises warrant. Such a conclusion is viable only in cer-
tain worlds. Hospitable worlds include those where the climate is stable. 
An inhospitable world would be one experiencing global warming, in 
which the past pattern of snowy winters does not continue unaltered. We 
can generalize the crystallographic family of a crystalline substance from 
one sample to all because our world is hospitable through the background 
fact of Haüy’s principle. But we cannot generalize the size of the one sam-
ple to all, for there are no background facts providing for restrictions on 
possible sample sizes. Correspondingly, we can generalize sizes of living 
organisms, for different types of organisms are restricted by their physical 
constitutions to specific scales. Insects cannot grow to human scale be-
cause their structures would be too weak to support their weight and they 
could no longer breathe by diffusion. Similarly, humans cannot shrink to 
the scale of insects. A shrunken human brain would have too few neurons 
for our cognition. At least this is true in our world, which is hospitable 
to the generalization. A science-fiction world, where the normal laws of 
science are suspended, however, might be another story.

4 To be clear, I follow the informal conversational presumption and tacitly assume that 
“All winters are snowy” is not true vacuously; that is, the truth of the proposition requires that 
there are some winters.
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The examples above illustrate the general point: the factual assump-
tion that our world is a hospitable one is the fact that, if true, warrants 
the inductive inference. But it may not always be apparent that this fact 
warrants the inference. It may appear that the warrant is still provided 
by some sort of schema. The inference to a future snowy winter, we may 
think, is still warranted by the schema:

All past As have been B.
Therefore, the next A will be B.

This supposition, however, is incomplete. If used at all, the schema would 
have a purely intermediate role. It does not have universal applicability. 
We can use it in the case of a snowy winter only because the requisite 
background facts authorize it when we make the specific substitutions: 
“winter” for A; “snowy” for B. That is, a cascade of warrants may pass 
through a schema. The cascade terminates in facts that are the final war-
rant of the inference.

It is essential here to distinguish two ways that an inductive infer-
ence can fail: either by loss of an inductive bet in a hospitable world or by 
failure of an inductive inference in an inhospitable world. The first arises 
because accepting a warranted inductive inference still involves a risk. In 
a hospitable world with a stable climate, it is a warranted induction to infer 
from a past history of snowy winters that the next winter will be snowy. 
The next winter, however, may turn out not to be snowy. When a climate 
is stable, such fluctuations would be rarer but nevertheless possible. Losing 
an inductive bet like this must be distinguished from the second case in 
which it is imprudent to take the bet in the first place. If the background 
facts are of a warming climate in some location, then the background facts 
do not warrant the inference. If one persists and makes the inference, the 
conclusion may prove false. The failure reflects the lack of warrant of the 
inference, not a failure arising from traditional inductive risk.

The material theory of induction arises from the recognition that the 
truth of these background factual presumptions is all that is needed for the 
inductive inference to be warranted. One might imagine that this might 
not be so. The facts, we might suppose, play only a partial role in war-
ranting the inductive inference. Might there still be a residual universal 
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formal schema or inductive rule that contributes to the warrant? If so, 
such a schema or rule would be subject to the same analysis just given. If 
it functions to authorize an inductive inference, then it amplifies what is 
already asserted in the premises and all other background facts. It cannot 
be universal in application, for there would be worlds inhospitable to it. 
And we should only use the rule or schema where it is hospitable to do 
so. That is, the warrant for its use is the factual supposition that the world 
is hospitable to it. Once again, the inductive warrant has terminated in 
facts that should be included with the true background facts needed to 
warrant the inductive inference at issue. In other words, the truth of the 
background factual assumptions, when construed broadly enough, is all 
that is needed to authorize the inductive inference. With that, we arrive at 
the first major tenet of a material theory of induction:

Inductive inferences are warranted by facts.

What remains open is the precise character of the warranting facts. There 
is little we can say at the general level about the nature of these facts. In 
particular cases, their character will be straightforward. Our inference to 
a future of snowy winters is warranted by the assumption that our local 
climate will persist pretty much as it has, so that winters without snow 
are possible but unlikely. If the climate warms sufficiently, however, these 
facts may fail and with them the inductive inference.

In some cases, the background facts may be such that the inductive 
inference would be deductive if we explicitly added the warranting fact 
as a premise. Then the inference would be an enthymeme, a deductive 
inference with a hidden premise. An example is this version of Curie’s 
inference from the preceding chapter:

This sample of radium chloride is monoclinic. 
Generally, each crystalline substance has a single characteristic 

crystallographic form (Weakened Haüy’s Principle).
________________________________________________________________

Unless exceptions encoded by “generally” intervene, all samples 
of radium chloride are monoclinic.
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But it would also be entirely natural to detach the “Unless…” clause and 
have the inference:

This sample of radium chloride is monoclinic. 
Generally, each crystalline substance has a single characteristic 

crystallographic form (Weakened Haüy’s Principle). 
________________________________________________________________
All samples of radium chloride are monoclinic.

This inference is inductive for we are taking the risk that the exceptions 
suggested by generally do not arise.

Corresponding complications arise if we infer inductively in the 
Bayesian framework. If we infer from prior probabilities to posterior prob-
abilities by means of likelihoods using Bayes’ theorem, then the inference 
is deductive. If we broaden the context, this ceases to be so. Propositions 
asserting evidence and background facts are not provided to us with 
probability measures. We add them. In doing so, we accept that we can 
represent their mutual relations of inductive support probabilistically and 
that their inductive consequences follow from the probability calculus. In 
this process, we take an inductive risk that probabilistic analysis correct-
ly represents these relations. If we also proceed as normal people do and 
accept a proposition with a very high posterior probability as established, 
then we take a second inductive risk in detaching the qualification of high 
probability.

The second premise places a restriction on the character of the war-
ranting facts:

Premise 2. There is no universally applicable warranting fact for induct-
ive inferences. This premise requires support, part of which is supplied by 
other arguments in this book that seek to establish that there is no univer-
sally applicable logic of induction. For if there were, then there would be a 
universally applicable warranting fact according to Premise 1.

A more direct grounding for the second premise lies in our failure 
to exhibit such a universally applicable warranting fact. It has been long 
sought, like the philosopher’s stone—and with equal success. The best-
known attempt at characterizing it is Mill’s principle of the uniformity of 
nature: “The universe, so far as known to us, is so constituted that what-
ever is true in any one case is true in all cases of a certain description; the 
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only difficulty is, to find what description” (Mill 1904, book 3, chap. 3, p. 
223). To this, he added: “Whatever may be the proper mode of expressing 
it, the proposition that the course of nature is uniform is the fundamental 
principle, or general axiom of Induction” (p. 224). It is a general fact about 
the world that holds in all domains in which we may seek to infer induct-
ively. It is the one, universal fact that would power all inductive inference.

The trouble with Mill’s principle is that, read literally, it is false; and 
read charitably it is so vague as to be unusable. Take the literal reading. 
Our world is not uniform in all its aspects. Indeed, the world fails to be 
uniform in virtually all its aspects. Otherwise, we would live in a largely 
homogenous environment. At best, the world is uniform in a very few, 
quite special properties that end up figuring in what we take to be laws of 
nature. This last statement is the charitable reading. The real challenge for 
the principle is to specify just what its special properties are. Yet through 
the vague generality of its formulations, it provides no such specification. 
At best, the principle deflates to a weak existential claim: there are uni-
formly implemented properties in nature, but we do not know precisely 
which they are. Or, more generally, nature is regular and orderly but in 
a way that we cannot state or grasp compactly enough to implement as a 
principle that can be employed practically in a logic of induction.

That the principle needs this shield of ignorance to protect it from 
scrutiny suggests that there is no real content hidden behind the shield. 
The principle has ceased to have any practical value in our inductive in-
vestigations. Wesley Salmon (1953, p. 44) long ago wrote its obituary: “the 
general result seems to be that every formulation of the principle of the 
uniformity of nature is either too strong to be true or else too weak to be 
useful.” This completes the argument for the premise.

If the facts warranting inductive inference are not universal truths, 
then they must be truths of restricted domains, and the inductive infer-
ences they warrant will be restricted to those domains. It may well be that 
the inferences warranted in some restricted domain have a regular struc-
ture. Then we have an inductive logic applicable to just that domain. For 
example, Haüy’s principle warrants an inductive logic that looks formally 
like enumerative induction but is restricted to generalizations concerning 
the crystallographic family of samples of crystalline substances. A general 
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statement of this restriction is the second major tenet of a material theory 
of induction:

All induction is local.

Philosophers are good at finding clever but ineffective loopholes. The 
following loophole is one that few can resist. If each domain has its own 
material facts that warrant inductive inferences in it, why not just com-
bine them all? The resulting conjunction would be a single, huge fact that 
warrants inductive inferences in all domains.

It would be correct to assume that this huge conjunction would war-
rant inductive inferences in all domains. But it would not provide an es-
cape from the necessarily local character of inductive inferences claimed 
by the material theory. That locality now reappears in the irreducibility of 
the huge conjunction to anything more compact. It remains just a single, 
huge conjunction of this fact and that fact and that other fact and so on, 
with many, many more conjuncts. To use the huge conjunction in any 
particular domain, we have to locate within the immensity the particu-
lar facts that applies to that specific domain, extract the particular facts 
while ignoring all others, and apply them. The warranting of inferences 
in that specific domain will still be done by facts prevailing just in that 
domain. The existence of the huge conjunction provides no universally 
applicable schema beyond the one already central to the material theory 
of induction: to identify the warrant of an inductive inference, seek facts 
that prevail in that domain.

The next two sections will illustrate the first and second premises re-
spectively of the argument of this section.

2.6. The Inductive Inference on 1, 3, 5, 7, …5

To quickly see the importance of background warranting facts, an in-
ductive inference problem bereft of background facts will help: Given 
the initial sequence of numbers 1, 3, 5, 7, how should this sequence con-
tinue? That the sequence could continue in many different ways is a trivial 

5 This example and a briefer version of the argument of the previous section are given in 
Norton (2014).
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mathematical fact. If the only restriction is that these are the first four 
terms of an infinite series, then there is an infinity of varying continu-
ations. The lack of specification makes it impossible to favor any one in 
particular—that is, to pick among the deductively authorized possibilities. 
Without some specification of background facts, to infer inductively about 
the continuation is impossible.

The possibilities are greatly reduced if we assume naturally that the 
sequence is governed by some simple rule. There are still many possible 
continuations. The sequence may just be the odd numbers:

1, 3, 5, 7, 9, 11, 13, 15, …

Or it may be the odd primes, including one:

1, 3, 5, 7, 11, 13, 17, …

Or it may be the digits of the decimal expansion of 359/2,645:

1, 3, 5, 7, 2, 7, 7, 8, 8, 2, 8, …

While the possibilities in these cases are reduced, the inductive problem 
is still intractable since the notion of a “simple rule” remains underspeci-
fied. This makes finding other continuations merely a challenge to our 
ingenuity in writing laws that look simple in some sense we happen to find 
congenial.

Another approach embeds the sequence in a context for which we 
have more information. The numbers may be drawn from a randomizing 
lottery machine. The fact of randomization then authorizes a probabilis-
tic analysis. Probabilistic inductive support is distributed uniformly over 
the remaining, undrawn numbers. Or perhaps the numbers appear in a 
question on an IQ test or in the interrogation of a psychologist we believe 
is intent on tricking us. These different background facts would then au-
thorize different inferences about the continuations, although the com-
plexity of the background would make discerning their precise character 
troublesome.
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2.7. The Law of Fall
It is easy to suppose that the preceding inductive problem is merely a con-
trivance, unrelated to real problems of inductive inference in science, and 
thus one that we need not strive to accommodate in our account. This 
supposition is wrong. The problem is in fact one of the classic problems of 
inductive inference in science. This particular number sequence happens 
to figure in one of the great discoveries in the history of science. In his 
Two New Sciences (1638), Galileo presented his law of fall. In one form, 
the law asserts that the distances fallen in successive units of time stand 
in the ratios 1 to 3 to 5 to 7 and so on; that is, in the ratio of the odd 
numbers. Galileo’s pathway to this law was long and convoluted. However, 
at least one part of it quite likely involved experimentally measuring the 
distances that bodies fall and the time this takes. In Two New Sciences 
([1638] 1954, pp. 178–79), Galileo describes an experiment in which a ball 
is timed rolling down a grooved ramp. The ramp is a surrogate for free 
fall that slows the motion sufficiently to enable time measurements using 
Galileo’s crude methods. Stillman Drake (1978, p. 89) has identified an 
early Galileo manuscript that, Drake argues, records the results of just 
such an experiment.

So let us pose a simple Galileo-like inductive problem. Given that the 
incremental distances fallen in successive units of time are in the ratios 1 
to 3 to 5 to 7, what will be the distances in subsequent times? Using resour-
ces available to Galileo, how might this be solved?

We have a good idea of Galileo’s methods. One element was that he 
presumed fall to be governed by a rule that was expressible simply in the 
mathematical techniques available to him. The idea is indicated in Two 
New Sciences. Galileo reflects on the gains in speed of falling bodies and 
asks of them, “why should I not believe that such increases take place in 
a manner which is exceedingly simple and rather obvious to everyone?” 
(p. 161). Galileo’s inference is warranted by a fact: the simple behavior of 
bodies in free fall. Galileo’s rhetorical question leaves the notion of sim-
plicity at issue underspecified and thus leaves underspecified just which 
inference is authorized. If we read Galileo’s writings more broadly, we find 
a stronger statement that identifies the notion of simplicity at issue. In a 
famous passage in The Assayer, he wrote:
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Philosophy is written in this grand book, the universe, 
which stands continually open to our gaze. But the book 
cannot be understood unless one first learns to comprehend 
the language and read the letters in which it is composed. It 
is written in the language of mathematics, and its charac-
ters are triangles, circles, and other geometric figures with-
out which it is humanly impossible to understand a single 
word of it; without these, one wanders about in a dark laby-
rinth. (1623, pp. 237–38)

This is a form of Platonism, which asserts that the world is structured as 
a copy of perfect mathematical forms. This factual statement about the 
world then warrants an inference to a simple mathematical rule as the 
continuation of the sequence 1, 3, 5, 7, ….

This approach may at first be appealing. The world does admit simple 
mathematical description. Why can we not use this fact to underwrite in-
ductive inferences? The appeal fades rapidly under closer scrutiny. There 
are three problems.

First, if one is not a Platonist, one judges the warranting fact to be a 
falsehood and thus the inference an inductive fallacy. The success of math-
ematical methods in science since Galileo does not, in my view, justify the 
Platonic view. Rather, as I have argued elsewhere (Norton 2000, Appendix 
D), the success merely reflects the post hoc adaptability of mathematics to 
new scientific discoveries.

Second, attempts to employ the Platonic idea fall prey to the problem 
that the mathematical imagination can conjure up vastly more structures 
than are implemented in reality. Seek simple laws written in the wrong 
mathematical language, and our investigations will stall and fail. Einstein 
became a mathematical Platonist during his later-life search for a unified 
field theory.6 His efforts were stymied by just this problem since he sought 
laws that could be simply expressed in the mathematics of tensors and the 
like on four-dimensional space-time manifolds. Subsequent theorizing in 
quantum gravity has branched out in the mathematical structures it uses 

6 This is recounted in Norton (2000).
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and typically does not posit a four-dimensional space-time manifold as a 
primitive.

Third, when Galileo investigated falling bodies, the mathematics ac-
cessible to him was limited to methods drawn from Euclid. They com-
prised the barest sliver of the mathematics we now employ. It would be 
naïve to assume that the Platonic blueprint of nature is drawn with the 
mathematics of this tiny sliver.

2.8. Invariance under the Change of the Unit of Time
In the face of these mounting difficulties, we may well wonder whether 
Galileo had the sufficient background facts to warrant what still appears 
to be a good inference. Fortunately, he did assume another background 
fact, which was perfectly tuned to warrant the inference and eliminate all 
but one of the open possibilities. This aspect of his work, however, typical-
ly receives scant attention.

Galileo’s experimental methods were unable to fix a precise unit of 
time. At best, he could determine that, in one experiment, successive 
intervals of time were equal. He realized that his experimental result was 
stable in spite of this variability of time units. In measuring fall, he re-
covered the same ratios, 1 to 3 to 5 to 7 and so on, no matter what unit of 
time he used. This important fact is stated by Galileo in Two New Sciences 
when he presents this odd-number formulation of his law of fall. He wrote:

Hence it is clear that if we take any equal intervals of time 
whatever, counting from the beginning of the motion, such 
as AD, DE, EF, FG, in which the spaces HL, LM, MN, NI 
are traversed, these spaces will bear to one another the same 
ratio as the series of odd numbers, 1, 3, 5, 7. ([1638] 1954, p. 
175; emphasis added)

The invariance of the result is asserted by the text I have italicized.7

7 Galileo’s Latin quotcunque tempora aequalia is literally “however so many equal 
times.” Crew and de Salvio render it as “any equal intervals of time whatever.” Their looser 
rendering fits with the overall context in allowing both the number and duration of the intervals 
to vary. An important part of the context is the earlier statement of the law of fall from which this 
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With a little arithmetic, we can see how this invariance under change 
of units of time works. In successive units of time, the body falls the fol-
lowing distances: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, …. Now replace the original 
unit of time with a new unit equal to two of the old units. The distances 
fallen in successive units of time with the new unit are

1 + 3, 5 + 7, 9 + 11, 13 + 15, 17 + 19, …

= 4, 12, 20, 28, 36, …

= 4 × 1, 4 × 3, 4 × 5, 4 × 7, 4 × 9, … .

Galileo’s law requires only that these distances be in the ratios 1 to 3 to 
5 to 7 and so on. Hence, we can neglect the factor of 4 and observe that 
the ratios conform to the law. This invariance obtains, Galileo asserts, no 
matter which unit of time we select.

The remarkable fact is that there are few laws of fall that respect this 
invariance. Using techniques in calculus and functional analysis not avail-
able to Galileo, it is possible to prove that the only laws are these. If d(t) is 
the fall distance in the unit of time (t − 1) to t, then8

where p is any real number greater than 0 (see Norton 2014a). This means 
that prior to any measurements, the scope of the law admissible is already 
reduced to these very few possibilities. 

What now gives the inference great strength is that there is just one 
free parameter in the law, p. It follows that securing just one ratio of dis-
tances experimentally fixes the law uniquely. For example, take the first 
ratio that Galileo would have measured, d(2)/d(1) = 3. It follows that p 
must satisfy

corollary is derived. The law is first introduced as “during any equal intervals of time whatever, 
equal increments of speed are given to it” (p. 161). Galileo’s Latin dum temporibus quibuscunque 
aequalibus is correctly rendered by Crew and de Salvio as “during any equal intervals of time 
whatever,” where quibuscunque has no restriction to number or duration. These unrestricted, 
equal time intervals are the ones that reappear in Corollary I.

8 There is a suppressed proportionality constant in the statement. It is suppressed since 
Galileo’s law concerns ratios of the quantities d(t), and the constant will not affect those ratios.
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The unique solution is p = 2 so that d(t) is proportional to

Hence, for successive times t = 1, 2, 3, 4, …, we have d(t) = 1, 3, 5, 7, …—
that is, the odd numbers.

This is a remarkable result, and it is worth restating: if invariance 
under change of units of time is to be respected, the only continuation of 
the two-membered sequence of incremental distances fallen 

1, 3 

is the sequence of odd numbers 

1, 3, 5, 7, 9, 11, 13, ….

Of course, Galileo could not have known this result in all generality. But it 
is quite likely that he was aware of how restrictive the invariance was. One 
needs only to try out a few alternatives to the odd-number sequence arith-
metically to realize that all simple alternatives fail. Drake (1969, pp. 349–
50) notes that a correspondent of Galileo’s, Baliani, reported that Galileo 
had used the invariance as a “probable reason” for the odd-number rule. 

While Galileo did not elaborate in Two New Sciences on this result, 
Christiaan Huygens soon did. When he was only seventeen years old, 
Huygens found the result independently, prior to reading Galileo’s Two 
New Sciences.9 One statement of what he found is given in a letter of 28 
October 1646 to Marin Mersenne (Huygens 1888, pp. 24–28). We see there 
that Huygens arrived at his result by considering two possibilities: that 
either the incremental distances fallen in subsequent, equal intervals of 
time increase in an arithmetic progression, or that they increase in a geo-
metric progression. Only one case gave non-trivial results: an arithmetic 

9 I thank Monica Solomon for drawing my attention to Huygens’ work and for sending 
me a copy of his letter and other supporting materials. 
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progression in the ratios of the odd numbers, 1, 3, 5, 7, …. The demon-
stration is creditable but less than general since it overlooks the possibility 
of expressions for the incremental distances d(t) with values of p other 
than 2 in the formula tp − (t − 1)p. Thus it precludes by supposition many 
other progressions that would give a law of fall whose ratios would remain 
unchanged under change of units of time. While one might imagine ways 
that the demonstration could be rendered more general, there seems to 
be no obvious way to arrive at the general proof without mathematical 
techniques stronger than those available to Galileo and Huygens—for in-
stance, those used in Norton (2014a).10 This may explain why Galileo did 
not elaborate on the result in Two New Sciences.

Our Galileo-like inductive inference problem admits a ready solution. 
We take as a premise that the ratios of the incremental distances fallen in 
successive units of time are 1 to 3 to 5 to 7. There are two warranting facts 
accessible to Galileo: that the rule governing the sequence is expressible 
simply; and that the rule is invariant under change of units of time. Only 
a small amount of arithmetic exploration will show that this invariance 
likely rules out all extensions other than the odd numbers. A fuller analy-
sis shows that the second invariance by itself is sufficient to warrant the 
inference.

2.9. Can Bayes Help?
One might imagine that the general inductive problem of extending the 
initial sequence 1, 3, 5, 7 is one where a Bayesian method would excel. But 
would it succeed without the need for specific background facts despite 
everything that has been said so far? In short, the answer is that it does 
not provide a successful, universal treatment of the problem. There are 
two striking failures in the analysis. First, Bayesian analysis fails to offer 
any inductive learning from the evidence of the initial sequence 1, 3, 5, 7. 
Second, prior probabilities control the analysis, but the requirement that 
they normalize prevents them being set in a manner that is universally 
benign.

10 One way is to consider not the incremental distances d(t) but the total distance s(t) 
fallen by time t. Then it is easy to show that the invariance is satisfied by setting s(t) proportional to 
tp for any p > 0. However, showing that these are the only laws satisfying the invariance is harder.
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To proceed, we will see how a Bayesian analysis might help us decide 
between two extensions of the sequence 1, 3, 5, 7:

The odd numbers Hodd: 1, 3, 5, 7, 9, 11, 13, 15, …
The odd primes with one Hprime*: 1, 3, 5, 7, 11, 13, 17, …

using the evidence E: 1, 3, 5, 7.
The ratio form of Bayes’ theorem asserts that

Since each Hodd and Hprime* deductively entails E, we have P(E | Hodd) = 
P(E | Hprime*) = 1. Therefore, Bayes’ theorem reduces to

According to the theorem, what have we learned from the evidence E? 
The prior probabilities P(Hodd) and P(Hprime*) represent our initial uncer-
tainty about the two hypotheses; the posterior probabilities P(Hodd | E) 
and P(Hprime* | E) represent their new values after incorporating evidence 
E. The reduced form of Bayes’ theorem just tells us that conditionalizing 
on the evidence makes no difference to our comparative uncertainty con-
cerning the two hypotheses. The ratio of the prior probabilities is the same 
as the ratio of the posterior probabilities. This will be true for any pair of 
hypothesized sequence that starts with 1, 3, 5, 7. In short, we have learned 
nothing new from the evidence as far as our decision between the two 
hypotheses is concerned.

Hypotheses logically incompatible with the evidence will be eliminat-
ed. Take, for example, the natural numbers represented by Hnat: 1, 2, 3, 4, 
5, 6, …. Since Hnat is logically incompatible with E, we have P(E | Hnat) = 0, 
and the posterior probability will be P(Hnat | E) = 0. But this result is not an 
inductive result. We have simply eliminated all hypotheses deductively in-
compatible with the evidence. The deductive result is easily obtained with-
out the probability calculus or any other inductive manipulations. Where 
we need help is with the inductive problem. Does the evidence E favor 
some hypotheses among those with which it is deductively compatible? 
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Here, the Bayesian analysis has failed to provide anything useful. Our in-
ductive preferences are unchanged by learning the evidence.

This is a somewhat discouraging start. Nevertheless, it will be instruct-
ive to press on and ask what our posterior probabilities may be with specif-
ic prior probabilities. The analysis bifurcates according to whether we are 
subjective or objective Bayesians. If we are subjective Bayesians, then our 
prior probabilities are merely expressions of prejudice, constrained only 
by compatibility with the axioms of the probability calculus. We might de-
cide that these prejudices dictate that Hodd has three times the probability 
of Hprime*. Then we conclude for our posterior probabilities that

Looking at the equation, it may seem that we have learned something. But 
we have not. The threefold difference in posterior probabilities is a direct 
restatement of our prior prejudices.

If we are objective Bayesians, we will seek prior probabilities that ob-
jectively reflect what we know. In this case, by supposition, we know noth-
ing initially, so we have no reason to prefer one hypothetical sequence over 
any other. Hence, the appropriate prior probability will assign the same, 
small probability ε to each hypothesis. That is, we have

The reduced form of Bayes’ theorem now tells us:

Once again, we have learned nothing. Our initial assumption was that 
all hypotheses are equally favored, and this remains true for any pair 
compatible with the evidence.

This last conclusion overlooks a complication that will gravely trouble 
both subjective and objective Bayesians. The prior probability distribution 
must normalize; that is, the prior probabilities assigned to all the possible 
sequences must sum to unity. There is an uncountable infinity of possible 
sequences.11 This means that, in a strong sense, most sequences must be 

11 To see that the set is at least continuum sized, we should note that a subset of sequences 
using the digits 1 and 2 only can be mapped one-to-one onto the real numbers in the interval [0, 1]. 
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assigned zero prior probability. Once a sequence has been assigned zero 
prior probability, its posterior probability on any evidence whatever will 
also be zero. This means that no evidence, no matter how favorable, will 
move us to entertain the sequence in the slightest. Hence, both subjective 
and objective Bayesians must make unavoidably damaging decisions, pri-
or to any evidence, as to which few sequences will be learnable.

Of course, there are ways we might try to work around the problem. 
We might try to retain the uniform prior probability distribution simply 
by dropping the requirement of normalization and using so-called “im-
proper priors.” This violation may be excused if it turns out that, after 
conditionalization, the posterior probability distribution is normalizable. 
Normalizability is not achieved in this case, however. There are infinitely 
many sequences beginning with 1, 3, 5, 7. After we conditionalize on this 
evidence, we will be assigning equal non-zero probability to each sequence 
in this infinity of sequences. Normalization will fail.

More drastically, we might retain a uniform prior probability distri-
bution by the artifice of simply choosing a finite subset of sequences and 
casting the rest into the darkness of zero probability. If we eschew the 
uniformity of prior probabilities for variable probabilities, we can expand 
the set of sequences with non-zero prior probabilities to a countably in-
finite set. As long as the prior probabilities diminish fast enough as we 
proceed through the set, the sum of the probabilities can be unity, as nor-
malization requires. One way of achieving this diminution is to assign 
these varying non-zero probabilities only to sequences that are arbitrarily 
long, but always of finite length. If we do this, we need some rule to decide 
which sequences are more probable and which are less. A popular choice 
is to use a prior probability distribution advocated by Solomonoff (1964). 
Briefly, describable sequences, like 1, 2, 1, 2, 1, 2, …, have greater prior 
probability than sequences without simple descriptions. A prior probabil-
ity distribution is implemented by penalizing each sequence’s probabil-
ity by an exponential factor (1/2)N, where N is the length of the shortest 

The sequence 1, 1, 2, 2, 1, 1, 2, 2, … is mapped to the fraction in binary notation 0.00110011…, etc. 
To see that the set is no bigger, we should note that we can map any sequence to a real number in 
[0, 1] by replacing the symbol “,” by the symbol “0”. The sequence 1, 3, 5, 7, 9 , 11, 13 … is mapped 
to the real 0.1030507090110130…, etc. The map is not “onto” because some real numbers, such as 
0.100010001, have no corresponding sequence.



792 | What Powers Inductive Inference?

description possible for the sequence.12 Bayesian analysis that employs this 
prior probability distribution is celebrated with joyous but naïve enthusi-
asm as providing a “complete theory of inductive inference” (Solomonoff 
1964, p. 7) or “universal induction” (Rathmanner and Hutter 2011).

The difficulty is that the comparative judgments of a prior probability 
distribution will never go away. They determine how we might discrimin-
ate between Hodd and Hprime* on learning the evidence E = 1, 3, 5, 7. Thus 
the selection of this prior probability distribution is not benign. It must be 
justified by something solid. Are we to suppose that, as a general propos-
ition, our world favors sequences with short Turing machine programs? 
This favoring might be credible in specific contexts, such as one where we 
know that people are thinking up the sequences. But we are to suppose 
that this favoring is true prior to any restriction whatever on where these 
sequences may appear. It is hard to see any reason for why the world would 
universally prefer to present us with number sequences that are comput-
able and in such a way that exponentially penalizes sequences with long-
er programs. The literature supporting the Solomonoff approach holds 
otherwise and matches its joy in its solution of the inductive problem with 
equally joyous pronouncements grounding the approach. Authors of this 
literature often resort to appeals to simplicity through “Occam’s Razor” 
(Solomonoff 1964, p. 7; Rathmanner and Hutter 2011, p. 1101). This reveals 
an inflated reverence for the insights of a medieval scholastic who wrote 
six centuries before Turing conceived the notion of a universal Turing ma-
chine. For more deflation of simplicity, see Chapter 6.

In short, the challenge of accommodating the requirement of nor-
malizability greatly complicates the analysis. More generally, the Bayesian 
analysis itself creates troubles that multiply and whose intractability deep-
ens the more we try to resolve them. We could continue to wrestle with 
them. Or we could see that the very fact that we face lingering problems 
of this gravity tells us that Bayesian analysis is just the wrong instrument 
for this inductive problem. Compare this with the simplicity of the ma-
terial analysis of the problem of extending 1, 3, 5, 7. Once we locate the 
appropriate context, as in Galileo’s law of fall, we find that the requirement 

12 N is usually taken to be the length of the shortest Turing machine program that would 
output the sequence.
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of invariance under change of units of time fixes the extension all but 
completely.

2.10. Warranting Facts
What might other warranting facts look like? Once we realize that familiar 
facts may serve also to warrant inference, we see that we are surrounded 
by such warranting facts.

Cosmology seeks to discover the structure of the universe on the lar-
gest scale. If the universe is infinite in spatial extent, then the finite por-
tion observable by us is minuscule. What we see is infinitely outweighed 
by what we cannot see. The essential assumption that allows us to proceed 
from what we can see to what we cannot is the “cosmological principle.” It 
asserts that the universe is roughly homogenous in its large-scale proper-
ties. While this wording may seem somewhat vague, standard applications 
of the principle employ it unambiguously. In our vicinity of the universe, 
matter is distributed roughly uniformly in galaxies in a space of constant, 
possibly zero, curvature. The cosmological principle authorizes us to infer 
that this condition obtains everywhere in the whole universe. Much of 
modern cosmological theory proceeds from this authorization.

Assume we have some isolated system with a given quantity of energy 
and entropy. The principle of the conservation of energy—the first law of 
thermodynamics—authorizes us to infer that, however else it changes, the 
same isolated system will have the same energy at any point in the fu-
ture. The second law of thermodynamics authorizes us to infer a similar 
conclusion about the entropy of the system: it will be the same or greater. 
A careful statement of the second law merely allows that, with very high 
probability, the entropy of such systems will be the same or greater. Hence, 
the conclusion is warranted inductively but with very great certainty.

Assume we have some experiment performed in an isolated laboratory. 
The principle of relativity authorizes us to infer that a uniformly moving 
replica of the experiment will yield the same result. A more careful fac-
tual statement of the principle allows that it would hold only in regions 
of space-time that are remote from intense gravitational fields and thus 
unaffected by the curvature of space-time revealed through the general 
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theory of relativity. So the factual principle informs us that, mostly, the 
same experimental result will obtain. Thus, the inference is inductive.

These examples are designed to illustrate a progression in two aspects. 
First, a progression from the more general to the more specific and local. 
Second, a progression from examples where the mediating facts authorize 
the conclusion deductively to those where they authorize them inductive-
ly. The next and final example extends the progression farther to a case of 
greatly narrowed scope and greater inductive risk.

Assume we set up some simple chemical process whose feed includes 
nitrogen gas. A general fact of chemistry is that nitrogen gas is quite un-
reactive. Its diatomic molecules are held together by a strong triple bond 
that is hard to break. This general fact authorizes us to infer, at a relative-
ly high level of inductive certainty, that the simple chemical process will 
leave the nitrogen gas unaltered. We are not assured of the conclusion with 
deductive certainty. There are extreme conditions under which nitrogen 
gas can be compelled to enter into reactions, as the Nobel Prize-winning 
work of Haber and Bosch demonstrated a century ago. Their Haber-Bosch 
process enables the chemical industry to synthesize ammonia from nitro-
gen and thereby manufacture both fertilizers and explosives.

This progression gives us factual principles of increasingly narrow 
scope that warrant inferences inductively. The material theory of induc-
tion places no lower limit on the size of the domain over which these fac-
tual principles operate.

2.11. A Non-Contextual, Formal Logic is Exceptional
The scope of successful applications of deductive logic that are non-con-
textual and formal is enormous. It is one of the great achievements of hu-
man thought. Its success makes it easy to think that the right way and 
only way to analyze inference is with non-contextual, formal theories. 
Correspondingly, then, one might think of a materially warranted logic as 
some kind of failure, perhaps the result of insufficient efforts to find that 
elusive, universal formal logic of induction. I will argue in this section that 
the success of non-contextual, formal accounts of deductive logic is excep-
tional. Hence, we should not use our familiarity with deductive logic to set 
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our expectations for inductive logic. We should not allow this to make us 
expect that there is a non-contextual, formal logic of induction.

2.11.1. The Undeserved Success
Which are the good deductive inferences? As long as the problems are kept 
simple, most people have a good instinctive grasp of the deductive conse-
quences of their knowledge, and they manage without external guidance. 
But the limits are readily breached. If each thing has a cause, does it fol-
low deductively that there is one ultimate cause for all things? If for every 
moment of time there is a later moment of time, does it follow that time 
endures infinitely? Novices relying on instinct can easily falter in the face 
of such traps. Can we find an instrument that systematically and reliably 
separates the good deductions from the bad? The means of discerning the 
good deductions is so familiar to anyone with a familiarity with modern 
logic that it is easy to underestimate the difficulty of the problem.

This problem was all but solved millennia ago with a simple, profound 
observation. To illustrate with a modern example, if you know that “All 
electrons have spin half,” then you know that “Some electrons have spin 
half.” The deductive inference is assured even if you have no idea of what 
an electron is and even less of an idea of what “spin half” is. You can make 
the inference merely by attending to the form of the sentences and ignor-
ing the material. You start with “All As are B” and know that you are then 
authorized to infer that “Some As are B.” You can ignore the details about 
electrons and spin; all that matters is the form of the sentences.

That deductive inference can proceed in such a simple and efficient 
manner is a marvel. It is the basis of a formal theory of inference, for we 
separate out the allowed inferences from the prohibited inferences merely 
by looking at their form. Specifying the logic then simply amounts to pro-
viding a list of schemas, such as

All As are B.
Therefore, some As are B.

To use the schemas, we replace A by anything we like and B by anything 
else we like and—bingo!—there’s a valid deductive inference.
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This example shows that the success of the schema depends on the 
non-contextuality of deductive inference. We can transport this schema 
to any domain, substitute anything for A and B, and still be assured that a 
valid inference results.

This simple schema is just the beginning. Generations of logicians 
have supplied us with a growing repertoire of schemas that embrace many 
logical operators. Sentential logic, for instance, employs the connectives 
“not,” “or,” and “and.” One of De Morgan’s laws is the schema

Not-(A and B).
Therefore, (not-A or not-B).

Predicate logic includes individuals and their relational properties, and it 
allows us to quantity over the individuals. If all things “x” gravitate “G(x),” 
then it is false that something exists that does not gravitate. This is an 
application of the schema

For all x, G(x).
Therefore, not-(there exists x, not-G(x)).

Modal logic introduces modal operators, like “It is possible that…” and “It 
is necessary that….” Tense logic introduces temporal operators, such as “It 
is always…” and “It is sometimes….”

2.11.2. Context Dependence of Connectives
In the face of the successes of deductive logic, it may seem that the scope of 
formal methods in logic is unlimited. However, lingering and recalcitrant 
anomalies limit the scope of the formal approach. Such anomalies mani-
fest in deductive logic when the logical terms used have meanings that are 
context dependent. Does “some” just mean “at least one”? Or does it mean 
“more than one but not too many”? The answer varies with the context. 
Consider this mathematical assertion: “For some x, the quotient 1/x is un-
defined.” Here, “some” can mean “one or more,” and the single case of x 
= 0 is the one that makes the sentence true. But consider “some” in the 
following context: “Some voters disapprove of the governor’s decision.” 
This “some” requires more than one voter, but probably not a majority. 
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This difference matters in the formal theory, for not all schemas we may 
wish to use for “some” will apply everywhere. Consider

Some As are B.
Therefore, more than one A is B.

The schema applies to the “some” of the voters but not to the “some” 
of division by x. The schema is context dependent; it is not universally 
applicable.

The humble conditional “If A then B” has proven to be a more notori-
ous locus of this sort of trouble. A natural understanding is that this con-
ditional is true when knowing A authorizes you to know B as well. That 
is, the conditional can be a premise in the argument form modus ponens:

If A then B.
A.
Therefore, B

The validity of the inference is secured if the conditional “If… then…” 
is the “material conditional.” Accordingly, “If A then B” is the same as 
“Either A is false or B is true.” Thus, if we happen to know that A is true, 
then we know the first option (“A is false”) fails. So that leaves the second, 
“B is true.” Hence, the material conditional has done the job of allowing us 
to proceed from knowing A to knowing B.

All of this may seem quite fine until one realizes that, with this under-
standing, the conditional “If A then B” turns out to be true whenever B is 
true, no matter what A says. That is, both statements “If pigs have wings, 
then the sky is blue” and “If the grass is green, then the sky is blue” turn 
out to be true, material conditionals simply because the sky is blue. The 
natural objection is that an “If A then B” statement can only be true if 
there is something in the antecedent A that makes the consequence B true. 
The objection fails in these last examples. Whether pigs have wings or the 
grass is green is irrelevant to the blueness of the sky. But the statement “If 
the sunset is red, then the sky is blue” can be a true conditional. For the 
sunset is red because the blue light from a setting sun has been scattered 
away by the air, and the blue light comprises the blue sky. The blue of the 
sky is directly relevant to the red of the sunset.
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Ingenious systems of relevance logic have sought to formalize the 
schemas into which “If… then…” properly enters, if understood relevant-
ly. However, deciding just what is relevant to what is a delicate issue that 
may embroil us in significant portions of science. The blueness of the sky 
results from the Rayleigh scattering of blue light by the air’s nitrogen and 
oxygen atoms, which just happen to be the right size for the job. Likewise, 
arcane facts in atomic theory are also relevant but perhaps not as directly 
relevant as the redness of the sunset. This tells us that relevance is context 
dependent and may vary in strength. Indeed, relevance may prove to be so 
diffuse that it may not be possible to separate off a small, tight formal logic 
of relevance as anything other than a crude gloss of a richer relation that is 
inextricably connected with the factual material of the science.

More generally, the success of a universally applicable formal logic 
of deduction depends on deductive inference being non-contextual. 
Whenever simple connectives fail to have a non-contextual meaning, as in 
the examples above, the logic in which they appear ceases to be universal.

2.11.3. Sellars’ and Brandom’s Material Inference
The anomalies for a formal theory of deductive inference above focused 
narrowly on logical connectives (“If…, then…”) and operators (“Some…”). 
And I have argued that such connectives have a context-dependent mean-
ing that is incompatible with their universal applicability—or at least 
they cannot have such applicability if we fix their meanings once and for 
all. Wilfrid Sellars and Robert Brandom developed a broader and more 
powerful critique of formal approaches to inference in general, not just 
deductive inference.

Their concerns were not limited to connectives but to all terms that 
appear in inferences. Their core idea is that the meaning of the terms in 
propositions is what makes good the inferences in which they correct-
ly appear. Brandom (2000, p. 52) provides an example of the inference 
from “Pittsburgh is to the west of Princeton” to “Princeton is to the east 
of Pittsburgh.” We recognize this as a good inference, but not for formal 
reasons. Rather, it is good because of the contents of the concepts of east 
and west. That is, the matter of the inference makes it good.

When I developed the material theory of induction, I was not aware 
of Sellars’ and Brandom’s notion of material inference and, in particular, 
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Brandom’s use of the term “material inference.” I learned of it through a 
lovely note written by Ingo Brigandt (2010), which usefully develops and 
applies the notion of material inference.

The difficulty is that my notion of material inference and that of 
Sellars and Brandom differ slightly, as far as I can see. This means that 
it would have been better at the outset if I had chosen another name. For 
Brandom, the above inference is material since it is made good by the con-
cepts invoked in the premises. In my view, it is material since I locate the 
warrant for the inference in the background material fact: if something 
is east of something else, then the second is west of the first. Here, I leave 
open whether this difference is consequential or merely a different entry 
point into a collection of views that largely agree.
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3

Replicability of Experiment1

3.1. Introduction
The general idea of the replicability of experiment is simple and instantly 
compelling. If an experimental result has succeeded in revealing a real 
process or effect, then that success should be replicated when the experi-
ment is done again, whether it is done by the same experimenter in the 
same lab (“repeatability”) or by others, elsewhere, using equivalent pro-
cedures (“reproducibility”). It is, at its base, the same idea that evokes the 
near-universal reaction “Do it again!” when a conjurer makes a coin van-
ish. And this time, we will watch more closely.

One readily finds enthusiastic endorsements of the idea in the scientif-
ic literature. The opening sentence of a special section in Science on “Data 
Replication and Reproducibility” says, “Replication—the confirmation 
of results and conclusions from one study obtained independently in an-
other—is considered the scientific gold standard” (Jasny et al., 2011). An 
editorial in Infection and Immunity on “Reproducible Science” begins its 
abstract unequivocally: “The reproducibility of an experimental result is a 
fundamental assumption in science” (Casadevall and Fang 2010, p. 4972). 
There are few if any doubts about the notion. The principal concern is 
that replication can be hard to achieve, either because of the difficulty of 
replicating pertinent conditions or through a lack of institutional rewards 
for the replicating experimenters.

1 A self-contained adaptation of this chapter has been published as Norton (2015) under a 
Creative Commons License: Attribution-Noncommercial-No Derivative Works 4.0 Generic. 
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My concern in this chapter is inductive logic. Might replicability pro-
vide a universal schema or principle that figures in a formal logic of induc-
tion, or at least in that portion of the logic that treats experiments? I will 
seek to establish in Section 3.2 that a principle of replicability cannot be 
given a general formulation that would allow it to serve in a formal logic 
of induction. I will argue that attempts to find such a general principle col-
lapse under the weight of mounting complexities arising from the multi-
tude of conditions and outcomes associated with replicability. Rather, 
successful inductive inferences associated with replicability should be 
understood as materially warranted. We can identify background facts 
that authorize the relevant inferences on a case-by-case basis, without the 
need for a universal principle. The types of background facts that serve 
this function are described in Section 3.3. Once we have identified these 
facts, the search for a general principle becomes unnecessary, in so far as 
we are interested in finding the warrants of our inferences. Sections 3.4 to 
3.7 will develop case studies that show that the import of replication or its 
failure can be upheld or denied in all possible combinations. This reduces 
the principle of replicability to one that works except when it does not. We 
will see at the same time, however, that the successes and failures of the 
examples are explicable materially. Conclusions are in Section 3.8.

My goal is not to discourage replication of experiments. On the con-
trary, replication is a powerful way to strengthen the evidential basis of 
our hypotheses and theories. This analysis is intended only to impugn the 
idea that replication gains its evidential power from some universal in-
ductive principle of replication.

Before proceeding, we need a brief terminological digression: the 
terms “repeatability,” “reproducibility,” and “replicability” are often used 
loosely and interchangeably. In some contexts, they have been given pre-
cise definitions. Accordingly, repeatability designates a replication of all 
conditions as exactly as possible, including the same operators and appar-
atus; reproducibility, for its part, calls for changes of these conditions.2 I 

2 In the narrower context of standardized measurement, the International Organization 
for Standardization has decreed (ISO 21748:2010(E), p. 3): “repeatability conditions include: the 
same measurement procedure or test procedure; the same operator; the same measuring or test 
equipment used under the same condition; the same location; repetition over a short period of 
time.” Reproducibility requires only that the measurement reappear under changed conditions. 
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will use the terms “replication” and “replicability” to cover both notions. 
Most of the general analysis below applies equally to repeatability and 
reproducibility.

3.2. Failure of Formal Analysis
What kind of an inductive notion is replicability? If we wish to pursue a 
formal analysis, is it possible to state this as a general principle? A good 
start might be this:

Successful replication of an experiment is a good indicator of a 
veridical experimental outcome. 

Failure of replication is a good indicator of a spurious experi-
mental outcome.

This is far from a self-contained principle. Each term needs further ex-
plication. We can start with the notions of veridical and spurious experi-
mental outcomes. They are more straightforward than the others:

A veridical experimental outcome is one that properly 
demonstrates the process or effect sought by the 
experimental design.

A spurious or artefactual experimental outcome is one that fails 
to demonstrate the process or effect sought by the experi-
mental design; it arises from an unintended disruption to 
the experimental design.

This is a rich enough characterization for us to proceed, even though 
many details are left open. 

How close have we come to a universal inductive principle? Do we have 
an inductive analog of the universal, formal principles of deductive logic? 
In asking this, we should bear in mind what the latter are like. One such 

That is (ISO 21748:2010(E), p. 3), “reproducibility conditions[:] observation conditions where 
independent test/measurement results are obtained with the same method on identical test/
measurement items in different test or measurement facilities with different operators using 
different equipment.” Similar definitions are found in the National Institute of Standards 
and Technology’s Technical Note 1297 (1994, D.1.1.2–3) and in the Compendium of Chemical 
Terminology (1997).
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universal deductive principle is the law of the excluded middle. It asserts, 
“For any proposition P, either P is true or P is false.” This deductive prin-
ciple is a schema: we can insert any proposition we like for P and recover 
a truth, the application of the principle to that proposition. It is self-con-
tained. There are no tacit conditions limiting just which propositions can 
be substituted for P; and there is no ambiguity in what is meant by the 
truth or falsity attributed to the proposition (or at least there is none be-
yond the usual evasions made by philosophers when they use these terms).

It is quite different with the replicability of experiment characterized 
above. The first difficulty is that the characterization includes many no-
tions that require elaboration if the characterization is to rise to the level of 
precision of the law of the excluded middle. Just what is “a process or effect 
sought by the experimental design”? Just when is a second experiment 
replicating an earlier experiment as opposed to being a different experi-
ment that just looks similar? Elaborating these and related questions is 
likely to be tedious and unlikely ever to yield a formulation that can stand 
without the need of further elucidation.

The second difficulty is more serious. The characterization employs 
inductive notions whose explication is unlikely to be achievable by formal 
means. It speaks of “good indicators.” This is an inherently vague notion. 
In the case of a single successful or failed replication, the strength of the 
indication can vary widely. Presumably there is some idea that multiple, 
successful replications are better than just one. But how much better are 
they? Is there a point of diminishing returns? When there are some suc-
cesses of replication and some failures, how do we trade them off to come 
to our final assessment? Somehow the formal analysis will need to specify 
in general, abstract terms how all of this accounting is to be effected.

Finally, the most serious problem facing a formal analysis of replic-
ability is that the principle appears to be defeasible in every way possible. 
That is, there are cases of successful replication where the replications are 
judged to be strong indicators of a veridical outcome; and there are cases 
where the success is judged to be epistemically inert. Conversely, there 
are cases of failure of replication that are judged to be strong indicators of 
a spurious outcome; and there are cases where the failure is judged to be 
epistemically inert. Thus, a full statement of the principle must provide 
independent criteria for when it applies or when it does not. Without such 
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independent criteria, it becomes a sad specter of a principle that applies 
except when it does not.

Looking ahead, most of this chapter will be devoted to examples where 
all of these combinations of success and failure are realized. The examples 
are listed in Table 3.1.

Table 3.1. Examples of all combinations of success and failure of 
replicability.

Import of replicability upheld Import of replicability discarded

Successful 
replication

H. pylori stomach ulcers
(result accepted as veridical)

Intercessionary prayer
(result rejected as spurious)

Failed 
replication

Cold fusion
(result rejected as spurious; 
skeptics discount cases of 
successful replication)

Miller experiment contradicts 
relativity theory
(relativity theory upheld)

The “import of replicability” refers to the standard reading: successful 
replication indicates a veridical outcome; failure of replication indicates 
a spurious outcome. For the cases in the middle column, the import of 
replicability is upheld as expected; for those of the right-hand column, it 
is discarded.

The three difficulties outlined above present formidable challenges 
to formulating a precise principle of replicability: it must be complete 
enough not to need further explication of its central terms; it must replace 
the vague inductive term “good indicator” with something that allows 
precise accounting for multiple successes and failure; and it must define 
independent conditions of applicability flexibly enough to accommodate 
the full range of cases where replication or its failure is taken to be epi-
stemically significant or inert.

3.3. A Material Analysis
While a formal account of replicability faces formidable obstacles, a 
material analysis easily surmounts them. The hard question of whether 
successful replication or its failure is epistemically significant or inert is 
answered on a case-by-case basis. The inductive import of each outcome 
is determined by the particular facts obtaining in the background of each 
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case. They warrant the inductive arguments that proceed from those 
outcomes.

Ultimately, each case is unique and requires its own detailed analysis. 
However, at a more superficial level, it is possible to identify two general 
classes of background facts that serve to license the different inferences 
associated with replicability in each case. These facts are not narrowly 
associated just with replicability. Rather, they are facts that warrant the 
inference from the observed experimental outcome to the process or effect 
sought by the experimental design. Or, if they take an inhospitable form, 
they may warrant an inference from the observed outcome to the conclu-
sion that it is spurious. These facts are the following:

A. Experimental conditions. The background facts specify the 
conditions under which the effect or process of interest 
will manifest in a veridical experimental outcome.3

B. Confounding conditions. The background facts specify the 
conditions conducive to spurious experimental outcomes. 
The conditions simulate a veridical experimental outcome 
when the effect or process sought is absent; or they may 
interfere sufficiently to produce an unsuccessful outcome 
when the effect or process is present.

A familiar illustration of the facts of class A and B arises in randomized 
controlled trials. We wish to determine if some treatment—a new drug, for 
example—is efficacious. We randomly assign subjects to a test and control 
group, both blinded. The test group is given the treatment and the control 
group is given a placebo. If the outcome is a statistically significant, bene-
ficial difference between the test and control group, then we infer from it 
that the treatment is effective.

The inductive inference to this conclusion is warranted by appropriate 
facts in class A and B. In class A, the key fact is that test subjects, not con-
trol subjects, are given the treatment, so a beneficial difference between 
them can be due to the treatment. Implicit in this fact is another fact not 
commonly made explicit: that there is at least some possibility that the 

3 This is sometimes called “construct validity.”
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treatment can bring about the effect. While this sort of fact is not one that 
we commonly call into question, it can be crucial. Critics of homeopathy 
(such as me) will refuse to accept that a controlled trial of a homeopathic 
remedy can demonstrate the remedy’s efficacy, for the remedy contains 
no active ingredients by its formulation. Similarly, we shall see below that 
skeptics of the healing efficacy of prayer find just this corresponding sort 
of fact to be missing.

In class B, we require the facts that preclude a spurious outcome. 
Randomization is important here, for it assures us that the only system-
atic difference between the test and control group is the administering of 
the treatment so that any ensuing difference between them can only be 
due to the treatment. Blinding is also important so that the subjects and 
researchers do not know who is in the test or control group. For otherwise, 
a statistically significant difference between the two groups might result 
from this knowledge itself, through the placebo effect or through the ex-
pectations of the experimenters recording the results.

In short, the facts in class A warrant the inference to the conclusion 
that the efficacy of the treatment can be responsible for a positive outcome. 
The facts in class B warrant the inference to the conclusion that another 
factor cannot be responsible for a positive outcome. We combine the two 
to conclude that the efficacy of the treatment is responsible for a positive 
outcome.

Now let us return to the issue of replicability. With any experiment, 
we cannot be certain whether appropriate facts in class A and B will pre-
vail. Successful replication does not test all of them. Rather, it tests wheth-
er certain unfavorable confounding conditions of class B are present. If 
we obtain the same positive outcome when a different operator performs 
the experiment, then we know that the first positive outcome was not 
due (solely) to some infelicity associated with the first operator. By sys-
tematically replicating the experiment with different operators, different 
standards, different materials, different laboratories, and so on, we elim-
inate the possibility of confounding conditions associated with each of the 
factors listed. If we test for repeatability in the technical sense—that is, 
if we replicate the experiment with all of these factors unchanged—then 
we are testing to see whether some random error in the execution of one 
experiment might be responsible for a spurious outcome.
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This seems quite straightforward, so how is it that we find prominent 
cases in which the normal import of replicability is denied? The reason is 
that this import involves the complete inference from the observed out-
come to the effect or process sought. This requires facts in both classes A 
and B to support the inference. In some of the disputed cases discussed 
below, however, we find that the denial of the import of replicability re-
sults from a presumption of failure of facts in class A, which are not dir-
ectly tested by replication. In one case, however, we will find disagreement 
over whether confounding conditions of class B have been appropriately 
arranged.

In the following sections, we will see the four cases of Table 3.1 elab-
orated. In the case of intercessionary prayer, we shall see successful repli-
cation of experiments judged by skeptics to be insufficient to establish the 
process sought. Their reasoning is that they do not find the requisite facts 
of class A to obtain. In the case of cold fusion, we shall see that establish-
ment skeptics and dissident supporters of cold fusion differ on the import 
of the mixed record of successful and failed replication. Their differences 
are traceable to differences of opinion on which facts in class A obtain. In 
the Miller relativity experiments, however, failure to reproduce an earlier 
experiment is judged not to impugn the earlier result since supporters of 
the experiment became convinced that Miller had not eliminated con-
founding effects covered by facts in class B.

3.4. H. Pylori Stomach Ulcers: Successful Replication
In 2005, Barry Marshall and Robin Warren won the Nobel Prize in 
Physiology or Medicine with a citation that read, “for their discovery of 
the bacterium Helicobacter pylori and its role in gastritis and peptic ulcer 
disease” (The Nobel Prize, 2005). Prior to their work, it had been assumed 
that stomach ulcers were caused by stress and spicy food. The idea that a 
bacterium may be involved was discounted. The stomach is highly acidic 
and bacteria do not tolerate such environments well.

By taking biopsies from a hundred participant patients, as reported 
in their initial letter (Marshall and Warren 1983), they were able to dem-
onstrate an association between the presence of the bacterium H. pylori 
and gastritis and ulcers, with 100% association for duodenal ulcers. The 
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importance of replication even at this early stage became clear when they 
sought to publish a more complete account. Warren recounts the decisive 
moment:

We sent our definitive paper to the Lancet in 1984 ([Mar-
shall and Warren, 1984]). Although the editors wanted to 
publish, they were unable to find any reviewers who be-
lieved our findings. Our contact with Skirrow became cru-
cial here. We told him of our trouble, and he had our work 
repeated in his laboratory, with similar results. He informed 
the Lancet and shortly afterwards they published our paper, 
unaltered. (2005, pp. 301–02)

Contrary to a persistent myth, the new work was assimilated and rapidly 
repeated. As part of an account debunking this myth, Kimball Atwood 
reported,

Within a couple of years of the original report, numerous 
groups searched for, and most found, the same organism. 
Bacteriologists were giddy over the discovery of a new 
species. By 1987—virtually overnight, on the timescale of 
medical science—reports from all over the world, including 
Africa, the Soviet Union, China, Peru, and elsewhere, had 
confirmed the finding of this bacterium in association with 
gastritis and, to a lesser extent, ulcers. (Atwood 2004, p. 29)

One replication was more of a media stunt than controlled science. To 
prove the association, Marshall drank a beaker of H. pylori and subse-
quently succumbed to gastritis.

This is a “textbook” case of the proper functioning of replication and 
there is little in it to distinguish formal and material approaches. The ear-
lier reluctance to accept Marshall and Warren’s work is readily explained 
materially. As long as it was taken as a background fact that bacteria do 
not thrive in the highly acidic environment of the stomach, there were 
insufficient background facts to support the facts in class A. Detection 
of bacteria could only be through some coincidental contamination. The 



The Material Theory of Induction98

successful inference from the presence of the H. pylori bacteria to the con-
clusion that they cause gastritis and ulcers required acceptance of a new 
fact in class A: that bacteria with the capacity to cause gastritis and ulcers 
can survive in the stomach. The rapid replication of the outcome in many 
laboratories affirmed the requisite fact of class B: that the presence of the 
bacteria was not due to some confounding effect peculiar to Marshall and 
Warren’s laboratory. 

3.5. Cold Fusion: Failed Replication
The episode of controlled fusion is traditionally presented as one where an 
avenue of research closed because of failure of replication. Superficially, 
this may be a correct description. However, a closer look at the episode re-
veals something more complicated than the application of some principle 
of reproducibility. There certainly were many failed attempts at replication 
reported. But there were also many successful replications reported. This 
has lead to a bifurcation in the community into those who discard the idea 
of cold fusion (the establishment view) and those who continue to pursue 
it (a dissident minority). No simple inductive principle concerning replic-
ability of experiment can capture the inductive reasoning associated with 
this bifurcation. It derives essentially from differences in the background 
assumptions of the groups. Talk of replication is really a gloss of more 
complicated inferences, as the material theory of induction indicates.

Traditional nuclear power generation derives from the fission—the 
splitting apart—of radioactive uranium or plutonium atoms. This fis-
sion is different from the nuclear reactions that power stars like our sun, 
which are driven by fusion—the joining together—of atoms of hydrogen 
and other light elements to form heavier elements. In both processes, pro-
digious quantities of energy are released. It has long been a goal of the 
nuclear power industry to adapt fusion reactions to power generation. 
The present terrestrial use of nuclear fusion is limited to the uncontrolled 
reactions of hydrogen bombs. The difficulty is that enormously high tem-
peratures are needed to smash the hydrogen atoms together with sufficient 
energy to ignite a fusion reaction. Materials at such high temperatures are 
difficult to control in a power station and practical, fusion-based nuclear 
power generation remains a distant dream.
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In March 1989, chemists Martin Fleischmann and B. Stanley Pons 
announced in a press release from the University of Utah that they had 
found a way of carrying out fusion reactions on a laboratory bench at 
ordinary temperatures. Their experiments did not use hydrogen but 
a heavier isotope of hydrogen—deuterium—in the form of deuterium 
oxide, also known as “heavy water.” They electrolyzed the heavy water 
using palladium electrodes. During a lengthy electrolysis, one of the pal-
ladium electrodes, the cathode, would become saturated with deuterium 
and, as a result, the individual deuterium atoms would be driven close 
enough together to ignite a nuclear fusion reaction. At least, that is what 
they claimed had happened on the basis of the large quantities of heat 
produced. These quantities were greater than what could be recovered 
from chemical changes, they asserted. In one burst, the released heat had 
melted and vaporized part of the electrode, destroying some of the equip-
ment. Then, Steven Jones, working at nearby Brigham Young University, 
revealed that he had been working largely independently on a similar cold 
fusion project and had experimental results involving not the generation 
of heat, but the generation of neutrons, which are a familiar signature of 
nuclear reactions.

Whether the researchers succeeded in igniting fusion reactions re-
mains a matter of debate. But they certainly ignited a scientific and popu-
lar frenzy. The principal trigger was the possibility of a new process that 
would revolutionize the energy industry. There was a scramble to repli-
cate the cold fusion experiments in the US and internationally. The re-
sulting episode was complex and fascinating on many levels. If affirmed, 
cold fusion would be a scientific discovery of the highest order. That lofty 
goal was overshadowed by the possibility of new technology for a major 
industry and its lucrative patent rights. These financial motivations lent 
an uncommon urgency to what was otherwise the realm of arcane spe-
cialists. There were other tensions as well, such as the professional rivalry 
of physicists and chemists. Here were physicists failing to tame nuclear 
fusion with enormous, expensive devices. Now some chemists succeeded 
with a project plotted in one of their kitchens and funded personally. Then 
there was a soap-opera quality to the rivalry between the Fleischmann-
Pons and Jones projects. They had planned to coordinate their communi-
cations, but the arrangements had misfired, and Fleischmann and Pons 
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took the unusual course of announcing their discovery through a press 
release without Jones’ knowledge.

Let us set all these complications aside and focus on the inductive in-
ferences. While there was initially considerable confusion over the induct-
ive import of the experiments, the confusion resolved within a year into 
two views, and it has largely remained so bifurcated. The establishment 
response was that the experiments failed to demonstrate fusion on the 
lab bench and that only modest resources should be assigned to further 
research. The minority, dissident view was that a great discovery had been 
made and all efforts should be put into developing it.

We find a clear statement of the establishment view in the November 
1989 report of the Energy Research Advisory Board to the US Department 
of Energy:

The Panel concludes that the experimental results on excess 
heat from calorimetric cells reported to date do not present 
convincing evidence that useful sources of energy will result 
from the phenomena attributed to cold fusion. In addition, 
the Panel concludes that experiments reported to date do 
not present convincing evidence to associate the reported 
anomalous heat with a nuclear process. (ERAB 1989, p. 1)

The Board was reserved in its recommendation for action:

The Panel recommends against the establishment of special 
programs or research centers to develop cold fusion. How-
ever, there remain unresolved issues which may have inter-
esting implications. The Panel is, therefore, sympathetic to-
ward modest support for carefully focused and cooperative 
experiments within the present funding system. (p. 1)

The dissident community continued its research and, in 2004, was suc-
cessful in pressing the US Department of Energy to reconsider its evalua-
tion. The community supplied a document, “New Physical Effects in Metal 
Deuterides,” that was peer reviewed and discussed. It was found that “the 



1013 | Replicability of Experiment

conclusions reached by the reviewers today are similar to those found in 
the 1989 review” (DOE 2004). The bifurcation remained.

Both sides deferred to reproducibility as a guiding standard. The 1989 
Advisory Board report began its preamble by noting the failure of reliable 
replication:

Ordinarily, new scientific discoveries are claimed to be con-
sistent and reproducible; as a result, if the experiments are 
not complicated, the discovery can usually be confirmed 
or disproved in a few months. The claims of cold fusion, 
however, are unusual in that even the strongest proponents 
of cold fusion assert that the experiments, for unknown 
reasons, are not consistent and reproducible at the present 
time. (ERAB 1989, p. 2)

But mere problems of reproducibility could not be the principal basis for 
the solidly negative conclusions reached by the Advisory Board. For their 
report documents both successful and failed replications of various types 
of experiments aimed at testing cold fusion. For example, in relation to 
experiments yielding excess heat, the report’s Table 2.1 listed five experi-
ments that found excess heat and thirteen that did not. While the ratio of 
five to thirteen certainly favors the no-heat result, it is hardly sufficient to 
dismiss the effect, especially when its reality, if demonstrated, would be of 
great utility.

The deeper grounding for the negative report is laid out early in the re-
port (pp. 6–8), where answers are offered to the rhetorical question “Then 
why the skepticism?” The first reason is developed only in a few sentences: 
many researchers have been unable to replicate the excess heat effect; and 
such calorimetric measurements are technically rather difficult. The two 
remaining reasons are developed in some detail and amount to conflicts 
between the particulars of the positive experiments and the accepted sci-
ence of nuclear reactions. The second reason was chalked up to “the dis-
crepancy between the claims of heat production and the failure to observe 
commensurate levels of fusion products, which should be by far the most 
sensitive signatures of fusion. The nuclear reactions proposed for cold 
fusion involve fusion of two deuterium atoms to produce other atoms. 
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Various reactions were possible and they would yield tritium, isotopes of 
helium or other products. The quantities of these fusion products detected 
did not match the quantities of heat reported. It was as if one burns wood 
in a fire. From the heat generated, one can determine how much wood ash 
must fall through the grate. The positive experiments were not finding the 
right amounts of ash.

The most important discrepancy was in neutron production. The most 
likely fusion reactions would produce neutrons and in large quantities. 
The report noted,

The initial announcement by Pons and Fleischmann in 
March 1989 exhibited the discrepancy between heat and 
fusion products in sharp terms. Namely, the level of neu-
trons they claimed to observe was 109 times less than that 
required if their stated heat output were due to fusion. (p. 6)

This discrepancy was noted very early by critics and, by itself, was deemed 
sufficient for instant dismissal of the claims of cold fusion. Here is how one 
popular narrative from 1989 reported the problem: 

According to Robert L. McCrory of the University of Roch-
ester’s Laboratory of Laser Energetics, for example, if nucle-
ar fusion was really taking place, then the only way to make 
sense of all that heat was to have a trillion neutrons being 
emitted each second—enough to kill everyone in the room. 

By now the following joke had begun to circulate 
around the world’s laboratories:

FIRST SCIENTIST: Have you heard about the dead-gradu-
ate-student problem?

SECOND SCIENTIST: No, what’s that.

FIRST SCIENTIST: There are no dead graduate students. 
(Peat 1989, p. 82)
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The third reason was summarized as “cold fusion should not be possible 
based on established theory” (ERAB 1989, p. 6). Deuterium does not 
undergo fusion reactions under normal conditions because the electro-
static repulsion of the nuclei prevent its atoms from approaching closer 
than about 0.1 nanometers, which is too great a separation for a nuclear 
reaction to start. The hope of the cold fusion researchers was that a pal-
ladium electrode could be so densely laden with deuterium that atoms 
would approach sufficiently closely. The report, however, dashed these 
hopes. The closest approach of deuterium atoms in palladium is just 0.17 
nanometers. That is over twice the distance (0.074 nanometers) separat-
ing two deuterium atoms in molecular deuterium, D2. The cold fusion 
researchers would be bringing the deuterium atoms closer if they merely 
left them in the form of free molecular deuterium.

Supporters of cold fusion also defer to the idea of reproducibility. 
Edmund Sturms initiated the discussion of the challenges to cold fusion 
with the resounding affirmation:

Replication is the gold standard of reality. If enough people 
are able to make an effect work, the consensus of science 
and the general public accept the effect as being real and not 
error or figment of imagination. (Sturms 2007, p. 49)

He affirmed that replication was successful:

A Myth has formed about cold fusion not being duplicated, 
being based on error, and being an example of “pathological 
science,” […] i.e. wishful thinking. None of this description 
is correct. The basic claims have been duplicated hundreds 
of times and continue to be duplicated by laboratories all 
over the world, although success is difficult to achieve. (p. 49)

However, he also allowed that the replication was not uniformly successful:

Replication occurs when other people observe the same ef-
fects using essentially the same conditions. Unfortunately, 
in the case of cold fusion, the required conditions are not 
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known. Occasionally, when a lucky combination of condi-
tions has been created, the effects are observed. These effects 
have been seen many times, as the results listed throughout 
the book demonstrate, but not always on command. This 
failure of the effects to occur every time they are sought has 
become a major issue for the field and needs to be examined 
in detail because some confusion exists about what replica-
tion actually means. (p. 117)

The record of successful replication was reinforced with massive tables list-
ing many successes. The table listing experiments that reported successful 
“anomalous power” production spanned nearly ten pages (pp. 52–61).

Sturms came to very different conclusions than the Advisory Board 
concerning cold fusion. He regarded cold fusion as an established fact to 
be announced with textbook-like certainty: 

The phenomenon of cold fusion or low energy nuclear reac-
tion occurs in an unusual solid or even within complex or-
ganic molecules. A variety of nuclear reactions are initiated, 
depending on the atoms present. Some of these reactions 
occur at a rate sufficient to make measurable heat. The most 
active reaction produces 4He when deuterium is present. 
Other reactions occur at lesser rates, but rapidly enough to 
accumulate detectable nuclear products. (p. 190)

Where the Advisory Board report found the existing theory of nuclear 
fusion secure and unfavorable to cold fusion, Sturms inverted the relation 
and impugned the theory for its failure to accommodate experiment. 

His treatment of neutron emissions illustrates this inversion. Standard 
nuclear physics allows for deuterium to fuse in several ways. The most 
probable reactions yield high neutron and proton emissions. The reaction 
favored by cold fusion supporters was the fusing of two deuterium atoms 
to yield a 4He atom, for that reaction involved only gamma-ray emission 
but no neutrons. The difficulty is that the neutron-free reaction is weak-
er by a ratio of 107 in cross section than the other reactions. Somehow 
the novel environment of the cold fusion experiment would need to bring 
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about a great enhancement of this reaction. The Advisory Board found 
this to be a fatal problem:

We know of no way whereby the atomic or chemical envi-
ronment can effect such an enhancement, as this ratio is set 
by nuclear phenomena and is on a length scale some 104 
times smaller than the atomic scale. (ERAB 1989, Sect. B.2)

The point is mildly stated, but the idea is powerful. Fusion reactions involv-
ing deuterium had been well researched and well understood. Proponents 
of cold fusion had to argue that this established theory fails for some as 
yet unknown reason when the fusion reaction occurs within a palladium 
electrode. Effects of this type were otherwise unknown and implausible 
because fusion requires the deuterium atoms to approach so closely that, 
in relation to the these short distances of approach, the palladium atoms 
remain distant spectators. Sturms took a different view:4

If theory and observation are in conflict, theory wins [in the 
skeptics view]. In this case, the absence of neutrons proved 
that the effect does not occur even when tritium and ex-
tra heat are measured, because theory requires neutrons be 
produced. In their minds, the extra heat must be a mea-
surement error and the tritium must be contamination. 
Evidence to the contrary was simply ignored. This is how 
faith-based science operates, but not the kind of science we 
are taught to respect. On the other hand, reality-based sci-
ence acknowledges what nature reveals and then attempts 
to find an explanation. Rejection occurs only if a satisfac-
tory explanation cannot be demonstrated. This demonstra-
tion is still in progress for cold fusion. (2007, p. 13)

4 I have not found an establishment response to this argument, but it is not too hard to 
imagine its content: the establishment view is not rejecting evidence but considering a larger class 
that includes the experiments and observations in other arenas that support the standard theory of 
fusion reactions.
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In sum, the real basis of the varying appraisals of cold fusion lay in in-
ductive inferences grounded by background facts of class A. These facts 
specified the conditions under which cold fusion would manifest experi-
mentally. In the establishment view, these facts called for rates of neu-
trons and other fusion production not reported in the experiments; and, 
in addition, these facts denied that deuterium-saturated electrodes could 
bring the deuterium atoms close enough to ignite fusion in the first place. 
Hence, the facts warranted the inference to the conclusion that the experi-
ments had failed. The dissidents, however, were willing to conjecture loos-
er background theories, including some undeveloped or even unknown 
theories that would warrant the inference from the experimental results to 
cold fusion. Both deferred to the idea of reproducibility. Yet, with the same 
record of experiment, they came to different conclusions.

My proposal is that they did not call upon a universal principle of 
reproducibility residing within some abstracted logic of induction. Rather, 
the idea of reproducibility is merely a gloss of inferences that are quite 
specific to the case at hand and dependent essentially on background 
assumptions. It is exactly because the two groups differed in their back-
ground assumptions that they could come to judge different inferences 
warranted.5

3.6. The Miller Experiment: Failed Replication with 
No Inductive Import6

How are we to deal with a case in which there are multiple successful 
replications of an experiment, but a prominent, well-executed failure? 
Understood as a formal principle, reproducibility gives us no real guid-
ance. It cannot authorize us simply to dismiss the one failure of replication 

5 According to the material theory, this does not mean that both inferences are sound. 
The situation is little different from the corresponding case of deductive logic. If two scientists 
employ the same premises but different deductive schema to arrive at contradictory conclusions, 
at least one of the schemas is a fallacy. Correspondingly, if two scientists arrive at different 
conclusions by inductive inference, at least one has a false warranting fact presumed.

6 This chapter was written prior to the publication of Volume 15 of the Collected Papers 
of Albert Einstein (Buchwald 2018), whose documents relate to Einstein’s appraisal of the Miller 
experiment. The editorial introduction (pp. lx–lxvii) provides further details of Einstein’s appraisal 
and those of his contemporaries.
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as inductively inert. Or at least it cannot do so without extensive elabor-
ation on just what conditions distinguish those cases in which the failure 
carries import and those in which it does not. Such elaborations are not at 
hand and not likely to be forthcoming.

A material analysis of cases like this, however, faces no such general 
problems. For approached materially, there is no universal principle im-
plemented. There are only particular cases, each of which is ultimately to 
be analyzed individually.

Here is a celebrated example. Nineteenth-century electrodynamics 
had given center stage to the ether, the medium that carries light and elec-
tric and magnetic fields. It surrounds the earth, and the earth’s motion 
through the ether creates currents that blow past us, much as a car’s mo-
tion creates a headwind. Famously, the Michelson-Morley experiment of 
1887 had failed to detect this ether wind. The experiment employed an 
extremely sensitive interferometer that split a light beam into two fold-
ed pathways and then recombined the beams. The results were read from 
changes in the interference patterns formed by the recombined beams 
as the interferometer was slowly rotated. While the importance of the 
Michelson-Morley experiment in Einstein’s pathway to special relativity 
remains debated (see Norton 2014), the null result of the experiment is 
foundational for special relativity. Had this experiment detected an ether 
wind or ether drift, it would have detected the absolute motion of the 
earth, in contradiction with the principle of relativity.

On 29 December 1925, Dayton C. Miller (1926) addressed the 
American Physical Society in Kansas City. He recounted his efforts to rep-
licate the Michelson-Morley experiment and reported the results of his 
latest efforts of 1925, when his apparatus was set up on Mount Wilson 
near the Observatory in California. He had found a positive result of 10 
km/sec for the ether drift. It was less than the 30 km/sec or so that might 
otherwise be expected from the motion of the earth. Yet it was not a null 
result. This replication of the Michelson-Morley experiment had failed.

This was not a failure to be taken lightly. Now, over a hundred years af-
ter the discovery of special relativity, we classify experiments challenging 
special relativity with circle squaring and perpetual motion machines. 
That dismissal was not so easy in 1926, especially in light of who Dayton 
C. Miller was. He was then the President of the American Physical Society, 
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and he was employed by the Case School of Science in Cleveland, the site 
of the famous Michelson-Morley experiment of 1887. His experiments 
had a venerable lineage. From 1902 to 1904, he had collaborated on ether 
drift experiments with Michelson’s original collaborator, Edward Morley. 
They had reused parts of the apparatus of the original 1887 experiment. 
These parts included the iron trough that held the mercury in which the 
interferometer floated and the original circular wooden float. These parts, 
Miller (1933, p. 209) noted, with some pride of ownership in his later re-
view, “have been continued in use by the writer to the present time.”

While there were other ether drift experiments at the time of this rep-
lication, Miller’s used one of the longest folded pathways for light, which 
would give his one of the greatest sensitivities.7 The experiments of 1926 
built on the experience with Miller’s earlier collaboration with Morley and 
successive refinements of the apparatus and experimental design through 
multiple experiments in a new series starting in 1921. It was feared, for 
example, that a basement in Cleveland, a mere 300 feet above the level of 
Lake Erie, may be too shielded from the ether current. For this reason, 
the entire apparatus was relocated to a mountainside next to the Mount 
Wilson Observatory at an elevation of about six thousand feet. Miller 
(1926, 1933) recounted the elaborate cautions undertaken to avoid and 
control all imaginable sources of error.

The report of Miller’s positive result produced great interest in both 
scientific and popular circles. Miller was even awarded a $1,000 prize 
by the American Association for the Advancement for Science for a re-
lated article. Einstein soon succumbed to popular pressure to respond. 
He wrote a short note for the popular press, published 26 January 1926, 
in the Vossische Zeitung, a well-known liberal newspaper in Berlin.8 He 
remarked,

There is, however, in my opinion practically no likelihood 
that Mr. Miller is right. His results are irregular and point 

7 For a compendium of other ether drift experiments from that time, see Miller (1933, pp. 
239–40) and Shankland et al. (1955, p. 168).

8 This article was found by Klaus Hentschel (1992). See Hentschel (1992) for more details 
of the scientific and popular reaction to Miller’s experiments.
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rather to an undiscovered source of error than to a sys-
tematic effect. Furthermore, Miller’s results are in and of 
themselves hardly credible, because they assume a strong 
dependence of the velocity of light upon the height above 
sea level. Finally a German physicist (Tomaschek) recently 
performed an electrical experiment also at a considerable 
height above the sea (the Trouton-Noble experiment), the 
result of which speaks against Miller’s results insofar as it 
supports the absence of an “ether wind” at great altitudes. 
(Emphasis in original)

From our perspective, what is notable about Einstein’s response is that 
it invokes no matters of general inductive principle. Had Miller’s claims 
somehow contravened an identifiable, universal inductive principle, it 
would have been easy for Einstein merely to point that out, much as one 
might identify a deductive fallacy. Rather, Einstein proceeds precisely as 
one would expect from the material theory. He gets the sharpest image of 
the inductive import of Miller’s work by looking most narrowly at it.

Einstein’s critique draws on facts in classes A and B above. For ex-
ample, he complained that Miller’s results are “irregular.” Einstein did not 
elaborate, but, presumably, his concerns are similar to those expressed by 
Hans Thirring later in a June 1926 communication to Nature. In explain-
ing his complete disagreement with Miller’s interpretation of the experi-
mental results, Thirring (1926) noted several irregularities within Miller’s 
data. Since the ether wind was supposed to come from one direction in 
space, the direction detected by the interferometer should rotate through 
all points of the compass in the course of a day, as the daily rotation of the 
earth rotates the apparatus once per day in space. Yet Thirring found

an effect pointing towards the north-west quadrant of the 
compass in about ninety-five per cent. of all observations. 
This fact seems to be fatal to the assumption of an ether 
drift of constant direction towards a certain point of the 
heavens. (p. 82)
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The facts at issue here are those of class A, which specify the conditions 
under which the process of interest manifests an experimental outcome. 
Under the supposition of an ether theory, the process of interest, the 
earth’s motion through the ether, would manifest as an ether wind of a 
definite direction in space. That was not found, so that these background 
facts could not license the inference from the experimental outcome to the 
ether current.

Einstein then conjectured “an undiscovered source of error.” He did 
not specify what this source might be. However, Einstein was quite direct 
in his private notes to correspondents. He wrote to his friend and confi-
dant, Michele Besso, on 25 December 1926: “I think that the Miller ex-
periments rest on an error in temperature. I have not taken them seriously 
for a minute” (quoted in Holton 1969, pp. 185–86). He pressed this con-
cern in a subsequent correspondence with Miller later in 1926, with Miller 
dismissing it by describing the elaborate corrections put it place to control 
temperature effects.9 Einstein’s doubts may have had a firmer foundation 
than the brevity of his Vossische Zeitung remarks suggest, for he had long 
taken a keen interest in Miller’s experiment. During Einstein’s 1921 visit 
to the US, he had taken the trouble to visit Miller and, on Miller’s report, 
had spent over an hour and a half discussing the ether drift experiments.10 
Einstein’s suspicions were affirmed when Shankland et al. (1955) later per-
formed a painstaking re-analysis of Miller’s results, finding that positive 
results were associated with temperature variations in apparatus.

This second set of inferences drew on facts in class B. Einstein and 
Shankland and his colleagues had a sense of the processes that could pro-
duce a confounding result and, as Shankland and his colleagues affirmed, 
the pattern of results in conjunction with the facts supported the conclu-
sion of the thermal original of Miller’s results.

9 For details, see Hentschel (1992, p. 608). Einstein noted that temperature changes of as 
little as 1/10th of a degree in the air of the light path would be sufficient to generate results of the 
magnitude of Miller’s.

10 As affirmed by a letter of Miller’s quoted in Holton (1969, p. 186).
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3.7. Intercessionary Prayer: Successful Replication 
with No Inductive Import
It is also possible for there to be cases involving the successful replication 
of experiments where the successes are nonetheless regarded as inductive-
ly inert. Once again no formal account of reproducibility of experiment 
can accommodate this unless it specifies the conditions under which suc-
cessful replication does and does not have inductive import. Approached 
materially, each case is treated individually, and we face no insurmount-
able problems of general principle.

In intercessionary prayer, one entreats a deity or supernatural power to 
intervene in mundane affairs. The entreaty is most commonly for well-be-
ing and health and especially the speedy recovery of the sick. In the nine-
teenth century, two leading scientists, John Tyndall and Francis Galton, 
proposed that the efficacy of prayer could be assessed by objective tests of 
the type routinely employed in science.11 If the sick do indeed fare better 
when they are prayed for, the effect ought to be discernible through simple 
statistical analysis. They were skeptical. Galton had been collecting data 
for what amounted to a rather fragile retrospective study. He displayed a 
table of the mean lifetimes of males who survived past thirty years of age. 
Recalling that sovereigns in every state are the subjects of public prayer, 
such as “Grant her in health long to live,” he observed,

The sovereigns are literally the shortest lived of all who have 
the advantage of affluence. The prayer has therefore no ef-
ficacy, unless the very questionable hypothesis be raised, 
that the conditions of royal life may naturally be yet more 
fatal, and that their influence is partly, though incompletely, 
neutralized by the effects of public prayers. (Galton 1872, p. 
91–92)

The proposal, as one might expect, evoked derision from theological cir-
cles. James M’Cosh retorted

11 For a brief history, see Brush (1974).
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We laugh at Rousseau’s method of settling the question of 
the existence of God: he was to pray and then throw a stone 
at a tree, and decide in the affirmative or negative, accord-
ing as it did or did not strike the object. The experiment 
projected by Professor Tyndall’s friend is scarcely less irra-
tional. (1872, pp. 777–78)

The mood had changed by the later twentieth century. Controlled studies 
of intecessionary prayer were conducted and continue to be conducted. 
Randolph Byrd (1988), for example, reported a prospective randomized 
double-blind trial of the effects of intercessionary prayer on the recovery 
of patients in a coronary care unit. He reported statistically significant 
improvements in recovery among those in the test group receiving prayer. 
Harris et al. (1999) performed a similar study on cardiac patients, again 
finding prayer to be associated with improvements in recovery. While not 
all studies of intercessionary prayer have produced positive results, there 
are a sufficient number for meta-level surveys to be written. Astin et al. 
(2000) reported the two studies above as the only ones producing posi-
tive results among the five surveyed. However, in the broader category 
of “distant healing,” 57% of the studies reported positive results, which 
supported the final conclusion that the field “merits further study.” A later 
review (Roberts et al. 2009)12 was less optimistic. They found the results 
among the ten trials surveyed to be equivocal and recommended against 
further investigation.

Most of these reports are of little use in our efforts to understand what 
grounds inductive inference in relation to the reproducibility of experi-
ment. Both surveys grapple awkwardly with the problem of some success-
ful and some failed replication and, from them, arrive abruptly at a syn-
optic judgment. We are given little insight into how the analysts balanced 
the competing inductive import of the successes and failure.

12 Curiously, this report included positive results from the spoof Leibovici (2001) study. 
It also noted a later critic who pointed out their error, but nonetheless did not disavow the 
study, concluding: “The Leibovici 2001 was not in jest. It is a rather serious paper, intended as a 
challenge” (pp. 56–57).
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There is a subgroup, however, whose members make clear that they 
regard successful replication of the intercessionary prayer experiments as 
inductively inert, for they do not believe that these studies have any in-
ductive powers at all. Their analysis conforms with the material approach 
to reproducibility. For successful replication requires the facts in classes 
A and B above to be hospitable. This skeptical group does not find facts 
in class A supporting an inference from the experimental outcome to the 
supernatural intervention proposed. Hence, replication adds nothing to 
an outcome that was already inductively inert.

Needless to say, this group includes atheist polemicists like Richard 
Dawkins. He remarks in his God Delusion (p. 86) that “the very idea of 
doing such experiments is open to a generous measure of ridicule.” Theists 
also have traditionally been skeptical of such experiments. Their analyses 
can be more measured and thus prove more illuminating. The three auth-
ors of Chibnall et al. (2001)—a Catholic, a Protestant, and a Jew—describe 
how they set out to perform an experimental test of distant prayer. They 
“became convinced that the very idea of testing distant prayer scientifically 
was fundamentally unsound.” In a telling, detailed analysis, they argued 
powerfully that, in effect, the requisite facts of class A do not obtain: in 
their view, there was no good reason to expect the effect or process of 
interest (supernatural intervention) to be manifested in the experimental 
outcome (statistics of recovery rates among patients). They asked:

If prayer is a metaphysical concept linked to a supernat-
ural being or force, why would its efficacy vary according 
to parameters such as frequency, duration, type, or form? 
The very concept of prayer exists only in the context of hu-
man intercourse with the transcendent, not in nature. The 
epistemology that governs prayer (and all matters of faith) 
is separate from that which governs nature. Why, then, at-
tempt to explicate it as if it were a controllable, natural phe-
nomenon?

…there is no reasonable theoretical construct to which 
to link prayer because of, we would argue, its very nature. 
No model guides our understanding of intercessory prayer 
as a treatment in the way we know that drug pharmaco-
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kinetics, type, dose, schedule, interactions, and treatment 
length are critical to an antibiotic as a treatment. In fact, we 
believe no scientific model can guide it. (p. 2530)

Perhaps one of the most revealing of all intercessionary prayer studies 
was reported in the December 2001 issue of the British Medical Journal. 
Leibovici (2001) collected all reports of patients who were detected with 
blood infections in a university hospital in Israel (Rabin Medical Center, 
Beilinson Campus) in 1990–96. In 2000, he randomized the cases and ar-
ranged for prayer for a test group. The results show no improvement in 
mortality among the test group but a statistically significant shortening 
of both hospital stay and fever duration. The results were “retrospective” 
in the sense that these outcomes had already happened at the time the 
prayers were administered. It was suggested that we should not assume 
that “God is limited by a linear time, as we are.”13

This peculiar report produced the uproar one might expect. Letters to 
the editor in the 27 April 2002 issue of the British Medical Journal covered 
a wide range of complaints; and it was at times hard to tell if they were 
written in the same spirit as the original article. They included a defense 
of the laws of physics against breakage and protests over the ethics of ex-
perimenting on subjects whose consent could no longer be secured at the 
time of the experiment. The letters were followed by an “Author’s Reply,” 
in which Leibovici admitted that the paper was really a spoof, but with a 
deeper purpose:14

The purpose of the article was to ask the following question: 
Would you believe in a study that looks methodologically 
correct but tests something that is completely out of people’s 

13 I learned of this bizarre paper from a talk by John Worrall.
14 Fact can be stranger that fiction. Over a year after the scam was admitted, Olshanky 

and Dossey (2003) published a note in the same journal that dismissed Leibovici’s disavowal. In 
a narrative laden with pleas for open minds, invocations of Einstein and Stephen Hawking, and 
allusions to quantum mechanics, string theory, and consciousness, they urged that we should 
subject these non-local, anomalous effects to serious study. This paper gives me great confidence in 
humanity’s ability to turn every stone, for clearly no idea, no matter how absurd, lacks proponents.
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frame (or model) of the physical world—for example, retro-
active intervention or badly distilled water for asthma? (p. 
1038)

Of three possible answers, Leibovici endorsed the third:

To deny from the beginning that empirical methods can be 
applied to questions that are completely outside the scien-
tific model of the world. Or in a more formal way, if the 
pre-trial probability is infinitesimally low, the results of the 
trial will not really change it, and the trial should not be 
performed. This, to my mind, turns the article into a non-
study, although the details provided in the publication (ran-
domization done only once, statement of a wish, analysis, 
etc) are correct. (p. 1039)

Leibovici’s assessment expressed in miniature why a formal account of 
controlled trials fails where a material account succeeds. He noted that 
one can have a trial that meets all of the requisite formal conditions. That 
was how he set up the study. But it had no inductive import. This situation 
is inexplicable if one adheres to a general, formal account of the repro-
ducibility of experiment. The material approach faces no such problems. 
Accordingly, a trial can have inductive import only if the requisite back-
ground facts are hospitable. This, Leibovici asserted, was not the case here.

3.8. Conclusion
What is the inductive import of a successful or failed replication of an ex-
periment? Mostly, successful replication is favorable to the result sought; 
and failures to replicate are unfavorable. But this is only “mostly” true. 
This broad similarity over many cases supports the illusion that there 
is some general inductive principle concerning reproducibility at work. 
However, efforts to specify the general principle precisely lead to mount-
ing difficulties and failure.

Instead, as the material theory of induction requires, the question 
is ultimately answered differently in different cases according to the 
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background facts obtaining. The more we narrow down the types of ex-
periments considered, the more precise the answers become. This is what 
we would expect from a material approach to induction, since with this 
narrowing down the variability in background facts is reduced. What ap-
peared to be a universal principle turns out to be really only a resemblance 
among many distinct inductive inferences that vary in details according 
to their domains. No universal principle of inductive logic provides a war-
rant for these individual inferences. They are warranted by the particular 
facts prevailing in each domain.

The situation is quite like the case of enumerative induction. In many 
domains, we find the background facts warranting an inference from 
some individuals bearing a property to all individuals in that class bear-
ing the property. As I argued in Chapter 1, these cases must be treated 
individually. The different background facts that obtain in each case will 
specify which individuals and properties in the domain are subject to the 
generalization. Nonetheless, as a looser gloss, the warranted inferences 
will look something like a progression from “Some As are B” to “All As are 
B.” They can be glossed loosely as enumerative induction, but all efforts to 
find a single inductive schema implemented in all cases fails. The unity is 
superficial.
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4

Analogy

4.1. Introduction
Reasoning by analogy is a venerable form of inductive inference and was 
recognized already millennia ago by Aristotle. Over the millennia it has 
been the subject of persistent analysis from the perspective of formal ap-
proaches to inductive inference. The goal has been to find the formal cri-
teria that distinguish good from bad analogical inferences. These efforts 
have met with mixed success, at best.

As we shall see below, the difficulties these efforts have faced are sim-
ilar to those facing the formal explication of other sorts of inductive in-
ference. If analogical reasoning is required to conform only to a simple 
formal schema, the restriction is too permissive. Inferences are authorized 
that clearly should not pass muster. This familiar problem is illustrated 
below in the case of a generic account of analogical inference drawn from 
the older literature and described in Section 4.2. This is George Joyce’s 
(1936, p. 260) account, which I label “bare analogy” to reflect its simpli-
city. It has long been recognized that bare analogy authorizes too many 
inferences. This failure and its longstanding recognition is recounted in 
Section 4.3.

The natural response has been to develop more elaborate formal tem-
plates that are able to discriminate more finely by capturing more details 
of various test cases. Two elaborations are recounted here. Section 4.4 re-
views Mary Hesse’s two-dimensional account, which is in turn derived 
from an analysis by John Keynes. Section 4.5 reviews Paul Bartha’s ar-
ticulation model. It was designed to remedy the shortcomings of Hesse’s 
account by still further elaborations. Section 4.6 describes how these 
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elaborations cannot escape the inevitable difficulty. Their embellished 
schema are never quite embellished enough. There is always some part of 
the analysis that must be handled intuitively without guidance from strict 
formal rules. 

Section 4.7 turns to the material approach. Accordingly, the continu-
ing expansion of the schema of the formal approach is inevitable since ac-
cording to the material approach there is no single formal schema that can 
embrace all cases. As one tries to find schema that fit a growing body of 
cases better, the schema must introduce further distinctions and elabora-
tions; and it must do so without end. For there are always new instances to 
be accommodated and a need for schema that fit more closely.

That the material approach is a better way to understand analogies 
and analogical inference in science is indicated by a curious divergence 
between the philosophical literature and the scientific literature. The 
philosophical literature categorizes analogy as a form of inference to be 
analyzed using some version of the formal methods of logical theory. The 
scientific literature approaches analogies as factual matters to be explored 
empirically; or at least it does so for the important analogies that figure 
centrally in the sciences. For the scientists, there are many inferences as-
sociated with the analogy. But the analogy itself is a factual matter.

This gap between the philosopher and the scientist is hard to close if 
we approach inductive inference formally. If, however, we take a materi-
al approach to inductive inference, the gap closes automatically, and the 
difficulties faced by the formal approach evaporate. We no longer need 
to display some universal schema that separates the good from the bad 
analogical inferences. Rather, an analogical inference is good to the extent 
that there is a warranting fact to authorize it. Each warranting fact can be 
identified on a case-by-case basis without the need for it to conform with 
some elaborate template. The warranting fact is the factual analogy that 
scientists pursue empirically.

Sections 4.8, 4.9, and 4.10 illustrate the material approach with three 
cases of analogies in science: Galileo’s discovery of mountains on the 
moon, the Reynolds analogy in fluid flow, and the liquid drop model of 
the atomic nucleus. Section 4.11 presents general conclusions. An appen-
dix provides technical details of the Reynolds analogy and a little of its 
history.
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4.2. Bare Analogy
Argument by analogy has long been a standard in the inventory of topics 
of logic texts in the older tradition. It is specified formally in terms drawn 
ultimately from syllogistic logic. Joyce (1936, p. 260) states it accordingly:

S1 is P.
S2 resembles S1 in being M.
[Therefore,] S2 is P.

John Stuart Mill (1904, book 3, chap. 20, §2) gives an equivalent character-
ization: “Two things resemble each other in one or more respects; a certain 
proposition is true of the one, therefore it is true of the other.” This simple 
argument form has proven quite fertile in the history of science. Galileo 
observed shadows on the moon that resembled the shadows of mountains 
on the earth in both their shape and motion. He pursued the resemblance 
to posit that there are mountains on the moon and sought to determine 
their height. Darwin’s celebrated argument in the early chapters of On the 
Origin of Species exploits an analogy between domestic selection by breed-
ers and the selective processes arising in nature. Gravity and electricity 
resemble one another in being forces that act between bodies or charges, 
diminishing in strength with distance. So in the eighteenth century, it was 
natural to expect that the analytic methods Newton developed for gravity 
might apply to electricity as well, even issuing in an inverse square law. 
Two more fertile analogies will be developed in more detail below: analo-
gies among transport phenomena, notably the Reynolds analogy; and the 
analogy between an atomic nucleus and a liquid drop.

4.3. The Failure of Bare Analogy
In spite of a record of success, descriptions of analogy as an argument 
form also routinely concede its inadequacy. Joyce insisted that the scheme 
he had just described had further hidden conditions:

The value of the inference here depends altogether on the 
supposition that there is a causal connexion between M and 
P. If this be the case, the inference is legitimate. If they are 
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not causally related, it is fallacious; for the mere fact that S2 
is M, would then give us no reason for supposing that was 
also P. (1936, p. 260)

This amounts to a gentle concession that the formal scheme laid out is not 
able to separate the good from the bad analogical inferences. The addi-
tion, the fact of a causal connection lies well outside the vocabulary of 
syllogistic logic in which this argument form is defined. This vocabulary 
is limited to individuals and properties and assertions about them using 
“Not,” “Some…,” and “All…” For example: “Some As are not B.” 

Recalling classic examples of the failure of analogical reasoning shows 
us that this pessimistic appraisal is still too optimistic. The depressions 
Galileo found on the moon’s surface resemble terrestrial seas. But there 
are no water-filled seas on the moon’s surface. Lines on the surface of 
Mars resemble terrestrial canals. But there are no such canals on Mars. 
Fish and whales resemble one another in many ways. But one extends the 
resemblance at one’s peril. Whales are mammals—not fish—and do not 
breathe through gills or lay eggs. In the eighteenth and early nineteenth 
century, heat was found to flow like a fluid from regions of higher heat 
density (that is, higher temperature) to those of lower heat density. Pursuit 
of the resemblance led one to conclude that heat is a conserved substance. 
That heat is not conserved, but is convertible with work, was shown by 
the mid-nineteenth century by Joule and others. Studies by Clausius, 
Maxwell, and Boltzmann showed that heat is not even a substance but a 
disorganized distribution of energy over the very many components of 
other substances. In the nineteenth century, the wave character of light 
was reaffirmed. In this aspect, it resembles the wave motions of sound 
or water waves. Since both of these waves are carried by a medium—air 
or water—analogical reasoning leads to the positing of a corresponding 
medium for light, the ether. The positing of this medium fared poorly after 
Einstein introduced relativity theory.

We see through these examples that formally correct analogical in-
ferences frequently yield false conclusions. Joyce’s added requirement of a 
causal connection is not sufficient to reveal the problems of the analogical 
failures just listed. Water on the moon or Mars would be causally con-
nected with seas and canals. The property of living underwater is causally 
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connected with having gills. The passage of heat from regions of higher to 
lower temperature is causally connected with heat as a substance and tem-
perature measuring its concentration. The wave motion of light is causally 
connected with the supposed medium that carries the waves.

We may want to discount these sorts of failure as a familiar artifact 
of inductive inference in general. When one infers inductively, one always 
takes an inductive risk and inevitably, sometimes, we lose the gamble. The 
frequency with which we lose the gamble has supported a more pessimis-
tic conclusion on analogical inference in science:

Even the most successful analogies in the history of science 
break down at some point. Analogies are a valuable guide 
as to what facts we may expect, but are never final evidence 
as to what we shall discover. A guide whose reliability is 
certain to give out at some point must obviously be accept-
ed with caution. We can never feel certain of a conclusion 
which rests only on analogy, and we must always look for 
more direct proof. Also we must examine all our methods 
of thought carefully, because thinking by analogy is much 
more extensive than many of us are inclined to suppose. 
(Thouless 1953, chap. 12)

This unreliability of analogical reasoning is a fixture of handbooks of 
logic. They commonly have sections warning sagely of the fallacy of “false 
analogy.” The reader is entertained with numerous examples of conclu-
sions mistakenly supported by analogies too weak to carry their weight. 
The difficulty with these accounts is that the falsity of the analogy is only 
apparent to us because we have an independent understanding of the case 
at hand. There is little beyond banal truism to guide us away from false an-
alogies when the difficulty was not already obvious at the outset.1 Merely 
being warned to watch for weak analogies is unlikely to have helped an 

1 Bartha (2010, p. 19) has performed the useful service of collecting a list of eight 
“commonsense guidelines.” They include: “(CS1) The more similarities (between the two domains), 
the stronger the analogy.” “(CS3) The greater the extent of our ignorance about the two domains, 
the weaker the analogy.” “(CS5) Analogies involving causal relations are more plausible than those 
not involving causal relations.”
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early-nineteenth-century scientist inferring that light waves are carried 
by a medium, as are other waves; or that heat is a fluid since it resembles 
one in so many ways. Until further empirically discovered facts are con-
sidered, these analogies seem quite strong.

After reviewing many examples of successful and unsuccessful analo-
gies, Stanley Jevons came to a sober and cautious conclusion:

There is no way in which we can really assure ourselves that 
we are arguing safely by analogy. The only rule that can be 
given is this, that the more closely two things resemble each 
other, the more likely it is that they are the same in other 
respects, especially in points closely connected with those 
observed. … In order to be clear about our conclusions, we 
ought in fact never to rest satisfied with mere analogy, but 
ought to try to discover the general laws governing the case. 
(1879, p. 110)

Once one has been steeped in the literature on analogical reasoning and 
has sensed both its power and resistance to simple systematization, it 
is easy to feel that Jevons’ rule is not such a bad outcome, in spite of its 
vagueness. It is helpful, therefore, to recall what successful rules look like 
in deductive logic. Modus ponens2 is a valid inference, always. Affirming 
the consequent3 is a deductive fallacy, always. We should take this as a 
warning. Where rules need to be protected by vagueness and ambiguity, it 
may be an alert that there is no precise rule to be found.

4.4. Two-Dimensional Analogy: Hesse’s Account
If a formal account of analogical inference is to succeed, it will need to be 
significantly richer than the schema of bare analogy just discussed. There 
have been important efforts in this direction. The most successful and 
promising is the two-dimensional account of Hesse and, more recently, 

2 If A then B; A; therefore B.
3 If A then B; B; therefore A.



1254 | Analogy 

Bartha. First, I will sketch the central, common idea of the account and 
then give a few more details of Hesse’s and Bartha’s versions.

An analogical inference passes from one system to another. Following 
Bartha (2010, p. 15), I will call the first the “source” and the second the 
“target.” A successful analogical inference in this richer account does not 
just pass a property from the source to the target; it passes a relation over 
the properties of the source to the analogous relation over the properties 
of the target. The source may carry properties P and Q, where P and Q 
stand in some causal, explanatory, or other relationship. If the target car-
ries a property P* that is analogous to P, the analogical inference author-
izes us to carry over the relation to the target system, where we now infer 
to a property Q* that stands in the same causal or explanatory relation to 
P*. This is the crucial enhancement. This relation makes it reasonable to 
expect that, if the target system carries P*, then it also carries Q*. I call 
this approach “two dimensional” because we have relations extending in 
two dimensions: there are relations contained within each of the source 
and target systems; and there are the relations of similarity between the 
two systems.

Hesse’s (1966) study of models and analogies in science provided a fer-
tile tabular picture in which the two dimensions are arrayed vertically and 
horizontally. Hesse gave tables illustrating particular examples. Bartha 
(2010, p. 15) extracted the general schema accordingly:

Source Target

P P* (positive analogy)

A ~A* (negative

~B B* analogy)

Q Q* (plausibly)

The first column indicates the properties carried by the source, and the 
second column indicates those carried by the target. Properties corres-
ponding under the analogy are indicated by an asterisk. The property P* 
in the target corresponds to P in the source.

The table includes the terms “positive analogy” and “negative an-
alogy,” drawn originally from Keynes (1921, chap. 19). A positive analogy 
refers to properties about which the source and target agree; the negative 
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analogy refers to properties about which they disagree. Establishing pos-
session of the as-yet-unaffirmed property Q* by the target is the goal of the 
analogical inference. The table does not indicate the relations obtaining in 
the two dimensions, the vertical and the horizontal. They are specified by 
Hesse (1966, p. 59): “horizontal relations will be concerned with identity 
and difference… or in general with similarity and vertical relations will, 
in most cases, be causal.”

The general sense is that the strength of support for this conclusion 
depends on a trade-off between the positive and negative analogy. The 
stronger the positive analogy, the more the conclusion is favored; but 
the stronger the negative analogy, the more the conclusion is disfavored. 
However, I have found no simple formula or simple synoptic statement in 
Hesse’s text for how this balance is to be effected. In discussing a particu-
lar example, Hesse (1966, pp. 58–59) gives guidelines for a particular case. 
These guidelines can be generalized by the simple expedient of suppress-
ing the particulars of the case by ellipses and the substitution of symbols 
in order to simulate a general schema.4 We recover:

The validity of such an argument will depend, first, on the 
extent of the positive analogy compared with the negative 
… and, second, on the relation between the new property 
and the properties already known to be parts of the positive 
or negative analogy, respectively. If we have reason to think 
that the properties in the positive analogy are causally relat-
ed, in a favorable sense, to [Q], the argument will be strong. 

4 The unedited quote reads,

Under what circumstances can we argue from, for example, the presence of 
human beings on the earth to their presence on the moon? The validity of such an 
argument will depend, first, on the extent of the positive analogy compared with 
the negative (for example, it is stronger for Venus than for the moon, since Venus is 
more similar to the earth) and, second, on the relation between the new property 
and the properties already known to be parts of the positive or negative analogy, 
respectively. If we have reason to think that the properties in the positive analogy 
are causally related, in a favorable sense, to the presence of humans on the earth, 
the argument will be strong. If, on the other hand, the properties of the moon 
which are parts of the negative analogy tend causally to prevent the presence of 
humans on the moon the argument will be weak or invalid. (p. 58–59)
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If, on the other hand, the properties of the [target] which 
are parts of the negative analogy tend causally to prevent 
[Q*] the argument will be weak or invalid. 

If any general schema is intended by Hesse, it must be this or something 
close to it. There is considerably more discussion in Hesse’s text, but I find 
it mostly inconclusive. The chapter “Logic of Analogy” (p. 101) is devoted 
to the question of whether the presence of an analogy makes it reason-
able to infer to some new property of the target system. “Reasonable” is 
given a weak reading only; it amounts only to the comparative notion of 
one hypothesis being more reasonable than another. Grounding for the 
comparative judgment is sought in several then-current approaches to 
evidence, with largely negative results.

4.5. Bartha’s Articulation Model
Bartha’s (2010, pp. 40–46) careful, critical dissection of Hesse’s theory re-
veals its problems and shortcomings. Bartha’s own theory is the best-de-
veloped account of analogy I have found in the philosophical literature. It 
sets out to resolve the problems of Hesse’s account and is based on an ex-
tension of Hesse’s two-dimensional approach (p. 35). The goal of Bartha’s 
(2010, chap. 4) “articulation model” is to enable a judgment of the plaus-
ibility of an analogical inference. The term “plausibility” is itself employed 
as a term of art and given two explications, probabilistic and modal (pp. 
15–19). The articulation model proceeds with the vertical and horizontal 
relations of Hesse’s two-dimensional model. However, the bulk of Bartha’s 
analysis is devoted to the vertical relations, and it greatly extends those of 
Hesse. Instead of merely requiring that the properties of the source system 
be causally related, Bartha allows four different sorts of vertical relations 
among the properties: they may be predictive, explanatory, functional, or 
correlative. The first two come in deductive and inductive forms. The final 
two come only in inductive forms. Analogical inference carries these rela-
tions from the source to the target system.

The conditions for a successful analogical inference in the articulation 
model are elaborate. There are two general principles (p. 25): “prior asso-
ciation,” which requires the existence of an explicit vertical relation that 
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is to be extended by the analogical inference; and “potential for general-
ization,” which requires “no compelling reason” that precludes extension 
of the prior associations to the target system. The formal specification of 
the model then approaches the judgment of plausibility in two stages. The 
first, “prima facie plausibility,” requires the positive analogy to be relevant 
to the prior association, and it requires the absence of critically relevant 
factors in the negative analogy. The second stage assesses qualitative plaus-
ibility on the basis of three criteria: strength of prior association, extent of 
positive analogy, and presence of multiple analogies.

The implementation of these two stages seems to differ according to 
the type of prior association. Further conditions become more clearly 
articulated as the implementation proceeds. For example, in the discus-
sion of “predictive/probabilistic analogies” (pp. 120–21), it turns out that 
there are five important determinants of plausibility: strength of prior 
association, extent of correspondence, the existence of multiple favorable 
analogs, only non-defeating completing analogs, and only non-defeating 
counteracting causes. Perhaps the most difficult case is that of multiple 
analogies. Its treatment requires a formal extension of the original theory. 
The ranking relation “is superior than” is introduced as a partial ordering 
on the set of analogical arguments at issue. There is much more to explore 
in Bartha’s richly elaborated account. However, the details provided thus 
far are sufficient to indicate why I think a different approach is preferable.

4.6. Problems of the Two-Dimensional Approach
Hesse’s and especially Bartha’s analyses of analogy are impressive for their 
care and detail; they significantly enrich the original formal notion of 
bare analogy. In particular, Bartha is surely correct to refocus attention 
on the vertical relations within the source and target, as opposed to the 
horizontal similarity relations between them. For these vertical relations 
matter more—or so I shall argue below. If a formal analysis of analogical 
inference can succeed, this is likely the right direction. However, my view 
is that advocates of the two-dimensional approach are proceeding in the 
wrong direction. The problem with the bare notion of analogy was that it 
tried to treat some inductive inferences formally rather than materially, 
and the resulting simple schema fit poorly. The two-dimensional approach 
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seeks to tighten the poor fit by including a more formal apparatus. Yet 
each new formal notion brings with it further problems, compounding 
the difficulties and threatening an unending regress. Here are some of the 
problems.

Hesse struggles to explicate in general terms even the simple notion of 
similarity that constitutes the horizontal relations. She does not favor “for-
mal analogy,” which refers to “the one-to-one correspondence between 
different interpretations of the same formal theory” (1966, p. 68). The sim-
ple example is the analogy of a father to the state. The scientific example 
(whose details are not elaborated) is “the formal analogy between elliptic 
membranes and the acrobat’s equilibrium, both of which are described by 
Mathieu’s Equation.” She continues: “This analogy is useless for prediction 
precisely because there is no similarity between corresponding terms” (p. 
69). Instead, she favors “material analogy,” by which she means “pretheor-
etic analogies between observables” (p. 68). Examples that she gives of the 
favored material analogy are between the pitch of sound and the color 
of light, and between the sphericity of the earth and the sphericity of the 
moon. These material analogies reduce the similarity relation to sameness 
of properties. The earth and moon are analogous in their sphericity since 
they carry the same property, sphericity.

While one can see the appeal of a limit to more secure material analo-
gies, it is clearly overly restrictive. It disparages the fertile analogy between 
Newtonian gravity and Coulomb electrostatics, for example. It is a formal 
analogy in that it connects gravitational and electrostatic fields by virtue 
of their both satisfying the same field law (up to signs in the source term). 
There are other problems, however. A formal test that checks whether 
an analogy is material requires clear guidelines for when some term is 
“pretheoretic” and “observable.” There are many traps here. The analogy 
between pitch and color can be implemented only if we have numeric-
al measures of pitch and color. Since these measures depend on a wave 
theory for both, are they still pretheoretic? Since they are inferred from 
measurements, are they observables?

Hesse’s vertical relation is causality and it is similarly troubled. If 
we are to recover a serviceable, formal account of analogy, we must have 
access to a serviceable, formal account of causation. We must be able to 
confront each instance of a vertical relation with some formal criterion 
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that tells us whether the relation is causal. Hesse’s (1966, p. 87) summary 
is vague on just what is meant by causal relations. The vertical relations 
are “causal relations in some acceptable scientific sense,” which seems 
to suggest that discerning them is unproblematic. In this regard, Hesse 
seems unfazed by the plethora of candidate explications of causation that 
she lists. They include (1966, p. 79) a Humean relative frequency account 
in which causation is co-occurrence; a hypothetico-deductive account, 
in which causal relations are delivered by some higher-level law; a modal 
account, in which causes are necessities; and an ontological account, in 
which causes are productive. We can hardly expect each of these theories 
to agree in every application. We have to know which theory is right and 
then how to apply it in a formal account. The length of Hesse’s list already 
indicates the difficulty in clarifying causation. Now, about half a century 
after her list was formulated, we are even farther from the goal of a gener-
al, formal account of causation. For my own quite pessimistic appraisal, 
see Norton (2003).

Bartha’s articulation model is designed to free Hesse’s more limited 
model from arbitrary restrictions. However, if an account this compli-
cated is what is needed for a successful formal treatment of analogy, we 
surely have reason to wonder if a formal analysis is the right approach. 
Our starting point was a simple and familiar idea. If systems share some 
properties, they may share others. This idea has been used repeatedly to 
good effect in science. As we pass through the various efforts to explicate 
the idea formally, we have arrived at a multi-stage procedure with many 
specializing components and trade-offs. Yet we are still not in possession 
of a fully elaborated formal schema. The trade-off of many competing fac-
tors still seems to be effected at crucial moments by our inspection and 
intuitive judgment.

Rather than examining these problems in detail, I want to indicate 
one aspect of the articulation model that is directly relevant to the decision 
between a formal and a material approach to analogical inference. The 
vertical relations of the articulation model are characterized in inferential 
terms. When P and Q are related predictively, P entails Q. When P and Q 
are related through explanation, Q entails P so that P explains Q. The third 
and fourth functional and correlative relations are explicated similarly as 
inductive relations. Hence, in this model, an analogical inference passes 
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a property, expressed in inferential terms, from the source to the target. 
This means the analysis is meta-logical, since the analogical inferences 
are performed at a higher level—that is, at a “meta” level—on lower-level 
structures that are in turn characterized by inferential properties. This 
meta-logical character places a rather extraordinary burden on the ar-
ticulation model. If it is to give a formal schema for analogical inference, 
it must provide a schema for the analogical parts of the inference at the 
meta-level and also schemas for each of the lower-level forms of inductive 
inference. In short, it must solve the formal problems of analogical infer-
ence and also every other form of inference it invokes.

The simple solution to the last problem is to approach inductive in-
ference materially. Then, to note that one may infer inductively from P 
to Q requires that there be some factual relation between P and Q that 
authorizes the inference. That is all it requires, for there is no supposition 
of a universal schema. This factual relation is what is passed by the ana-
logical inference so that the amended model would lose its meta-logical 
character. Rather than pursuing this hybrid material/formal model, let us 
return to the full material approach.

4.7. Analogy in the Material Theory of Induction
In the material theory of induction, an analogy between two systems is 
captured in a fact that may be merely conjectured or, better, explored em-
pirically. The fact of an analogy then warrants an analogical inference, 
which is the passing of particular properties from the source system to the 
target. The precise character of the fact of the analogy and precisely which 
properties may be passed will vary from case to case. There will be at best a 
loose similarity only between different analogical inferences in that, in all 
of them, we are authorized to pass properties from one system to another. 
There is no universal schema that can specify just which properties can be 
passed in which circumstances. 

Hence, we should expect efforts to find a formal schema to face pre-
cisely the difficulties sketched in the last three sections. A simple formal 
schema will at best fit a range of cases imperfectly. Efforts to narrow the 
gap between the schema and the cases will require more elaborate and 
fragmented schemas. In an effort to capture a diversity not governed by a 
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formal rule, formal theorists will need to divide the cases into a growing 
number of categories and subcategories. These refinements will allow a 
better fit, but the fit will never succeed perfectly for every case. We may 
eventually arrive at a formal system as elaborate as the articulation model, 
which, I have argued above, still falls short of the final, fully elaborated 
formal schema. No matter how complicated the successive proposals be-
come, they will never be adequate for all cases. Gaps will remain.

There are two notions in the material analysis. The first is the fact of an 
analogy, or just fact of analogy. This is a factual state of affairs that arises 
when two systems’ properties are similar, with the exact mode of corres-
pondence expressed as part of the fact. The fact is a local matter, differing 
from case to case. There is no universal, factual5 “principle of the uniform-
ity of nature” that powers all inductive inference. Correspondingly, there 
is no universal, factual “principle of similarity” that powers analogical 
inference by asserting that things that share some properties must share 
others.6 The fact of an analogy will require no general, abstract theory of 
similarity; it will simply be some fact that embraces both systems. There is 
no general template to which the fact must conform.

The second notion is an analogical inference warranted by a fact of 
analogy. Such an inference may arise if we know the properties of one 
system but not the other. We may then conjecture that a fact of analogy 
obtains between the first system and the other. This conjectured fact then 
becomes the fact that warrants the inference. If the conjectured fact is 
unequivocal and held unconditionally, the analogical inference from one 
system to another may simply be deductive, with all the inductive risk 
associated with the acceptance of the fact of analogy. In other cases, there 
will be some uncertainty or vagueness in the conjectured fact of analogy. 
The analogy is asserted as likely, or merely possible, or the particular way 
the analogy is set up might not be correct, but something like it might be. 

5 Such as is reviewed and rejected by Salmon (1953).
6 If one is tempted by a principle of similarity, note that every failure of an analogy 

is a counterexample to a simple statement of the principle. The real principle would separate 
the projectable similarities from the unprojectable, even if only statistically. Formulating such 
a principle amounts to the same problem as finding a formal theory of analogy, which, as this 
chapter argues, is an insoluble problem.
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These hesitations confer an inductive character to the inference warranted 
by the fact of analogy.

The fact of analogy must be able to power this inference. Since there is 
no “principle of similarity,” the fact of analogy cannot merely assert some 
similarity between the two systems. It must assert a factual property of the 
second system that is sufficient to warrant the inference to its properties. 
For this reason, it will turn out that similarities between the two systems 
will be less important in the material analysis. Instead, the similarities will 
appear more as conveniences of expression. It is cumbersome to speci-
fy how dark shapes on the moon appear as shadows of tall prominences 
when they obstruct linearly propagating sunlight. It is easy for Galileo to 
say that they are just like the shadows of mountains on the earth.

The material approach reorients our focus in two ways. First, it focuses 
on the fact of analogy, for this controls the inferential connection between 
the source and target systems. We will see in the examples below that the 
fact of analogy tends to express less a brute similarity between the source 
and target systems and more a property that they share. The fact of pos-
session of this property by the target system drives the resulting inference 
rather than similarity with the source. Second, there are no general for-
mal principles sought to assess the strength or weakness of an analogical 
inference. Its strength is assessed by examining the fact of analogy that 
warrants the inference. If we doubt the strength of the inference and wish 
to refine our assessment, we would not seek to refine and elaborate formal 
principles. For example, we would not seek better guides on just how as a 
matter of general principle, we should balance the competition of positive 
and negative analogies. Instead, we would engage in empirical investiga-
tions of the fact of analogy. Knowing more, the material theory asserts, 
enables us to infer better.

In the following, I will show how these ideas are implemented in three 
cases of analogy. The first is Galileo’s discovery of the mountains of the 
moon. The second and third are analogies that have played an important 
role in recent science: the Reynolds analogy for fluid flow and the liquid 
drop model of the atomic nucleus.
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4.8. Galileo and the Mountains of the Moon
Galileo’s (1610) Siderius Nuncius—the Starry Messenger—is an extra-
ordinary document. In it Galileo reports the discoveries he made when he 
turned his telescope to the heavens. One of the most striking observations 
he made was that the surface of the moon has mountains and valleys an-
alogous to those on earth. The announcement of his discovery provided 
strong support to a major shift in scientific thinking then underway. The 
heavens—people were coming realize—were not the realm of immutable 
perfection but rather more like the earth. Here was observational evidence 
that the moon was not a perfect heavenly sphere after all, but resembled 
the craggy, pockmarked earth.

Galileo did not directly see mountains on the moon. Their presence 
was inferred from what he saw. He tracked the advancing division be-
tween light and dark on the waxing moon. His telescope showed that its 
edge was not a smooth curve but an “uneven, rough and very wavy line.” 
More important was the way it changed over time. As it slowly advanced, 
bright points of light would appear ahead of it. They would grow and soon 
join up with the advancing edge. Galileo found the analogy to the illumin-
ation of mountains on earth irresistible. He exclaimed,

And on the earth, before the rising of the sun, are not the 
highest peaks of the mountains illuminated by the sun’s 
rays while the plains below remain in shadow? Does not the 
light go on spreading while the larger central parts of these 
mountains are becoming illuminated? And when the sun 
has finally risen, does not the illumination of plains and 
hills finally become one? (1610, p. 33)

Galileo was careful to exempt certain darker areas on the moon whose 
shading does not change with time. In so doing, he provided a positive 
summary of his conclusion concerning the shadows of the mountains: 

They [these other markings] cannot be attributed merely 
to irregularity of shape, wherein shadows move in con-
sequence of varied illuminations from the sun, as indeed 
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is the case with the other, smaller spots which occupy the 
brighter part of the moon and which change, grow, shrink, 
or disappear from one day to the next, as owing their origin 
only to shadows of prominences. (pp. 37–38)

Galileo provided a similar analysis that identified the depressions in the 
moon’s surface that we now know as “seas.”

Once secure in the conclusion that the moving dark shapes seen on the 
surface of the moon are shadows of mountains and valleys, Galileo pro-
ceeded to the most striking result (pp. 40–41). The higher the mountain, 
the farther ahead of the advancing edge that its peak will be illuminated. 
In some cases, Galileo noted, the peaks first appeared sometimes at more 
than one twentieth of the moon’s diameter. This illumination, Galileo pre-
sumed, came from a ray of sunlight grazing tangentially to the moon’s 
surface at the edge of light and dark and then proceeding in a straight 
line to the mountain peak. These presumptions reduced computing the 
height of the mountain to the simple geometry of triangles. The result was 
a height of four miles for the largest mountain, which fares well against 
modern assessments.

Galileo’s presentation of the analogy between the earth and moon is 
compelling. From the perspective of the logic, however, the arguments are 
presented in fragments only, and the reader is left to fill in the details. No 
doubt, once we undertake this exercise, different reconstructions of the 
logic will emerge. In what follows, we look at one way of reconstructing 
the logic from the material perspective.

The controlling fact of the analogy is that the mode of creation of 
shadows on earth and of the moving dark patterns on the moon is the 
same: they are shadows formed by straight rays of sunlight. This fact then 
authorizes two inferences, both of which start with the same premise: 
there are points of light in the dark that grow (as Galileo described) ahead 
of the advancing bright edge on the moon. From this premise we can infer:

The bright points are high, opaque prominences.
The higher points are as high as four miles.
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Both inferences proceed deductively if the fact of analogy is as stated. The 
details of the computations in geometry are tedious, so I will not rehearse 
them. It is simply a matter of inferring from a shadow to the shape that 
produced it. For example, the moment a bright spot first appears ahead of 
the advancing edge, we know that the bright spot lies on a straight line, 
tangent to the moon at the edge of the advancing brightness. It follows that 
that bright spot is elevated above the spherical surface of the moon and by 
an amount recoverable by simple geometric analysis of triangles.

It is worth noting two features of the inferences. First, the analysis 
looks initially like a textbook instance of a simple analogical inference. 
The earth and moon are similar in their shadows; on earth, mountains 
cause shadows; therefore, on the moon, it is the same. But closer inspection 
shows that notions of analogy and similarity play a small role. The earth 
functions as a convenient surrogate for any uneven body turning under 
unidirectional light. Galileo could have equally called to mind a person’s 
head turning in a room lit by a lantern. As the person’s face turns to the 
light, the tip of the nose would first be lit, before the full nose. What mat-
ters is the posit that the moon and its changing pattern of light and dark 
result from shadows cast. The inference is not driven as much by analogy 
as by subsumption of the moon into a larger class of illuminated bodies.

Second, the above reconstruction contains deductive arguments only. 
Galileo’s full analysis is inductive. The inductive elements have been con-
fined above by the selection of the fact of analogy. That fact comes after the 
inductive part of the analysis is complete. In that inductive part, Galileo 
inferred that the moving dark patches are shadows formed by straight rays 
of sunlight. The basis for his conclusion is the way the bright and dark 
spots change; they move just like shadows. This, however, does not entail 
deductively that they are shadows. The inference is inductive, albeit a fairly 
safe one. To see that it is inductive, we need only recall that the inference 
requires also the assumption that no other mechanism could produce pat-
terns of light and dark that move as Galileo observed.

Galileo took the inductive risk of accepting this assumption. Other 
explanatory mechanisms could be conceivable and further analysis would 
be needed to rule them out conclusively. One lies close at hand. In the mid-
dle of his discussion, Galileo sought to assure the reader that the moun-
tains and valleys need not be visible in the periphery of the moon, where 
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we are aligned to see them in elevation. As an addendum to his discussion, 
he conjectured that the moon’s surface may be covered by a layer of “some 
substance denser than the rest of the ether” (p. 39). This substance may 
obstruct a view of the lunar terrain at the moon’s periphery, for then one’s 
gaze passes through a great thickness of the material. Noting that the il-
luminated portion of the moon appears larger, Galileo conjectured that 
some interaction between this material and sunlight could be deflecting 
our gaze outward. Finally, puzzled that “the larger spots are nowhere seen 
to reach the very edge,” Galileo conjectured, “Possibly they are invisible by 
being hidden under a thicker and more luminous mass of vapours” (p. 40).

The illumination of the mountain tops ahead of the advancing edge 
employs light that grazes the moon’s surface and thus passes through a 
great thickness of this optically active, denser material. Galileo needed 
to assume that this optical activity was insufficient to create illuminated 
mountain tops as something like mirages—that is, by the bending of light 
towards us by this denser medium.

4.9. Reynolds Analogy
The explicit identification of analogies has played a prominent role in the 
analysis of transport phenomena, particularly for processes involving mo-
mentum, heat, and matter. Analogies within these processes form standard 
chapters in engineering textbooks on transport phenomena. The earliest 
such analogy is the “Reynolds analogy,” named after Osborne Reynolds, 
the nineteenth-century scientist-engineer who founded the field of trans-
port phenomena. The central idea of the analogy is an identity of the pro-
cesses that transport momentum and heat. Hot gases flowing through a 
tube, for example, are slowed by friction with the tube’s walls. This friction 
transfers momentum out of the gas, and this loss is manifested as a pres-
sure difference needed to keep the gas flowing. The gas will also transfer 
heat to the cooler tube walls. In the analogy, the two processes operate 
with identical mechanisms. For more detailed discussion, see the account 
of the Reynolds analogy below in Appendix 4.A.

The textbook attention to analogy is quite revealing, since it shows 
how science conceives of analogy, namely as an empirical fact. The fact 
has two modes of expression, as reported in the Appendix. In the first, 
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looser mode, the analogy asserts that the mechanisms or laws governing 
momentum and heat transfer are the same. This mode is somewhat am-
biguous. Since heat and momentum are different quantities with different 
properties, just how can the mechanisms or laws be the same? If we con-
strue the sameness to mean that the rates of momentum and heat transfer 
are numerically proportional under the same conditions, then there is a 
simple quantitative expression of this sameness in terms of two dimen-
sionless numbers. The friction factor f measures the frictional losses of 
momentum from a moving fluid; the Stanton number St measures the rate 
of heat transfer. This second, more precise form of the analogy sets these 
two numbers equal, up to a constant factor: f/8 = St.

In material terms, the literature equates analogy with the fact of 
analogy. The associated analogical inferences are present but draw only 
subsidiary attention. Most commonly, analogy is used to authorize an 
inference from momentum transfer to heat transfer. That is, if we know 
the friction factor f for some system, we use the fact of analogy to infer to 
the Stanton number St. From the Stanton number, we can infer rates of 
heat transfer. This inference has great practical utility. Friction factors are 
relatively easy to determine from pressure differences. The corresponding 
rates of heat transfer are much harder to measure.

This practical utility of the Reynolds analogy means that there is some 
premium on determining just how good of an analogy it is. When faced 
with this problem, the literature does not look to a formal theory of ana-
logical reasoning; it does not ask for rules on how to trade off the compe-
tition of positive and negative analogy. The refinement of the analogy is 
regarded as an empirical question to be settled by measurement. The equa-
tion to be tested is just that f/8 = St. It was evident already quite early on 
that the analogy obtains only in special cases. It fails for fluids in laminar 
flow and even for liquids in turbulent flow, but it succeeds as a relatively 
poor approximation for gases in turbulent flow. Since the fundamental 
analysis of fluids in turbulent flow is difficult, explorations of the analogy 
have remained largely a matter of brute-force empirical measurement.
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4.10. Liquid Drop Model
In the 1930s, after the discovery of the neutron, the field of nuclear physics 
was born. The nucleus of an atom was recognized as consisting of many 
particles. The most common isotope of uranium, U238, consists of 92 pro-
tons and 146 neutrons, which adds up to an overall nucleon number of 
238. The nucleus was found to exhibit energetically excited states, some-
what like the excitations of an electron in a hydrogen atom. However, the 
single particle methods that had worked so well for electrons in atoms 
were inapplicable to the many-body problem posed by the atomic nucleus. 
The many particles of the nucleus, all clustered together, seemed some-
thing like the many molecules clustered together in a liquid drop. The li-
quid drop model of the nucleus was based on this analogy. The hope was 
that the physics of liquid drops might also coincide with at least some of 
the physics of nuclei.

The liquid drop model was already an established element of nuclear 
theory in the 1930s, before it found its most popular application.7 In 1939, 
Lise Meitner and Otto Frisch (1939) sent their celebrated letter to Nature 
in which they proposed that a certain process was behind the division 
of uranium atom nuclei. This “fission” process, they suggested, could be 
understood using the liquid drop model. The capture of neutrons by ur-
anium nuclei may be sufficient stimulus to break them apart, much as an 
unstable liquid drop is easily broken up by a slight tap. The idea was taken 
up by Niels Bohr and John Wheeler (1939), who extended the liquid drop 
model quantitatively to encompass fission.

A liquid drop is held together because its constituent molecules are 
attracted to each other. For molecules deep within the drop, these attrac-
tions do not pull markedly in any direction and thus, by themselves, do 
not contribute to the drop’s cohesion. Molecules near the surface, however, 
are attracted to the center of the drop by molecules deeper within. A drop 
may have many shapes. Yet the larger the surface area, the more it has 
molecules on its surface that seek to move towards the center. Hence, the 
drop naturally adopts a shape with the smallest surface area—a sphere—as 

7 For an early review before fission, see Hans Bethe (1937, §53). For a history of the origin 
of the liquid drop model, see Roger Stuewer (1992). I thank Michel Janssen for drawing Roger 
Stuewer’s history of the liquid drop model to my attention.
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its lowest energy state. This tendency to spherical form is commonly de-
scribed as arising from a tension in the surface driving the drop to its 
smallest area. The general theory assigns a surface tension energy to the 
drop, proportional to its surface area. If the drop is energized by tapping, 
for example, it oscillates, somewhat like the ringing of a bell. As the drop 
deforms and increases its surface, it excites to higher energy states and 
absorbs the added energy of the tap. The spectrum of these oscillations 
was discovered by classical physics.

The motivation for the liquid drop model of the nucleus is based on 
the idea that the stability of the nucleus arises in some analogous way. It 
leads to the assumption that there is a nuclear energy corresponding to the 
surface tension energy of the drop. The volume of a nucleus is proportion-
al to A, the number of nucleons. Volume varies with radius3 and surface 
area with radius2. Therefore, the surface area of the nucleus varies as A2/3, 
and the liquid drop model posits an energy proportional to A2/3. Further, 
the various excitation modes of the nucleus were assumed to correspond 
to those of a liquid drop with suitably adjusted parameters.

Finally, the instability of a nucleus that results in fission can be ana-
lyzed quantitatively. The surface tension effect tends to hold the nucle-
us together. But a nucleus is positively charged, carrying Z protons. This 
positive charge creates forces that drive the nucleus apart. They come to 
be favored as the nucleus grows larger. The point at which they overcome 
surface tension can be computed by finding the state in which the slightest 
energizing of the nucleus will lead to such violent oscillations that the nu-
cleus must split. The computation yields a stability condition expressed in 
terms of the number of protons Z and the number of nucleons A. The ratio 
Z2/A must be less than 42.2 (as quoted by Blatt and Weisskopf [1979] 1991, 
p. 304). U238 is perilously close to this figure, so it is expected to be prone 
to fissioning. For this, Z2/A = 922/238 = 35.5. This result is traditionally 
quoted as a great success for the model.

The model appears to be a textbook case of analogical inference. In 
their synoptic treatise on nuclear physics, John Blatt and Victor Weisskopf 
(p. 300) gave what amounted to an inventory of the positive and negative 
analogies. “We find the following points of analogy,” they remarked, and 
then proceeded to list three elements of the positive analogy. These points 
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can be stated in simplified form, writing “A” for both the number of mol-
ecules in the drop and the number of nucleons in the nucleus:

•  The volume of a liquid drop and the volume of a nucleus 
are both approximately proportional to A.

•  The energy to evaporate a drop and the binding energy of a 
nucleus are both approximately proportional to A, subject 
to correction by a surface tension term.

•  Surface tension corrects this energy for a liquid drop by an 
additive term in A2/3; and a semi-empirical formula for the 
binding energy of a nucleus also has an additive term in 
A2/3.

Yet Blatt and Weisskopf harbor considerable doubt about the analogy. “It 
is probable that this analogy is only very superficial” (p. 300), they con-
tinued. The following amounts to an inventory of the negative analogy:

•  The stability of a liquid drop derives from repulsive forces 
that preclude molecules approaching one another by 
less than a minimum distance of the order of the size of 
electron orbits. There is no similar limit known for the 
approach of nucleons.

•  Molecules in a drop follow the classical dynamics of 
localized particles. Nucleons have de Broglie wavelengths 
of the order of inter-nucleon distances and are governed by 
quantum mechanics.

At this point in the narrative, what is needed is some assessment of how 
good the analogy is. What Blatt and Weisskopf did not do was try to as-
sess the competition between these rivaling factors by appealing to gen-
eral rules, such as one might expect from a formal approach to analogical 
inference. Rather, they derived the formula for the energy levels of a nu-
cleus as indicated by the model and subjected it to experimental testing. 
They decided that the energy levels fit observation poorly, noting that “the 
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liquid drop model of the nucleus is not very successful in describing the 
actual excited states,” and that “it gives too large level distances” (p. 305). 
However, they observed that the liquid drop model worked better when it 
came to fission: “The limit for stability against fission is well reproduced.”

This mode of assessment is just what the material theory calls for. 
The fact of analogy, as revealed through this assessment, is a rather bare 
one: the energy of a nucleus has an additive surface term proportional to 
A2/3; and the nucleus’ oscillatory modes match those of a liquid drop with 
corresponding parameters. This fact is sufficient to support the inferences 
made under the model; and this fact is what Blatt and Weisskopf actually 
tested.8

We also see once again that the similarity of the source and target is a 
subsidiary matter. What matters to the analogy is what is expressed in the 
fact of analogy, that the liquid drop and nucleus share just the properties 
listed.

4.11. Conclusion
The material theory of induction succeeds in simplifying our understand-
ing of analogical reasoning by accepting that facts play a dual role: they 
may be premises in arguments, and they may also serve as warrants of 
inference. Crucially, the material theory allows that displaying such facts 
provides the justification of the analogical inference and is the endpoint 
of analysis that seeks to determine the validity of the analogical inference. 
While there will be similarities among different analogical inferences, 
there will be no overarching similarity of sufficient power to allow the 
separation of good and bad inductive inference by purely formal means.

A formal approach faces a more elaborate challenge. It can allow that 
a fact of analogy somehow plays a role in justifying an analogical infer-
ence. But this recognition cannot terminate a successful formal analysis. 
The validity of an analogical inference must be established ultimately by 
displaying conformity with a universal schema. The enduring difficulty 
is that no matter how elaborate these schemas become, none proves to be 

8 For a more recent assessment with similar import, see Wagemans (1991, pp. 8–12).
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final and complete. That this difficulty is irremediable is predicted by the 
material theory of induction.

Appendix 4.A. Reynolds Analogy

The General Idea
In the dynamic analysis of systems with moving fluids, analogies have 
been found between three of the most important types of processes. These 
three processes, often called the “unit operations” of chemical engineer-
ing, are momentum transfer, heat transfer, and mass transfer.

The simplest and most studied instance is a fluid (gas or liquid) flow-
ing in a cylindrical tube. As the fluid flows through the tube, it is resisted 
by friction with the wall of the tube. At the center of the tube, the fluid 
moves with the greatest velocity and therefore has the highest momentum 
density. At the wall of the tube, friction brings the fluid to a halt so that 
the outermost layer of fluid has no momentum. This frictional slowing is 
understood as a momentum transfer process. Momentum from the inner 
part of the fluid passes to its outer surface, where it is lost to friction. This 
loss of momentum must be compensated by an applied force if the fluid is 
to continue flowing. That applied force creates a pressure difference along 
the length of the tube.

Heat transfer can arise in the same system. The tubes might be in 
the boiler of a steam engine. Hot flue gases from the fire pass through a 
bundle of tubes that are surrounded by a jacket of boiling water. Heat is 
transferred from the gases in the tubes, through the tube walls into the 
water. To illustrate mass transfer, we might imagine that the gases contain 
some contaminant that is to be scrubbed out. The inner surface of the 
tube carries some absorbing solution. In the mass transfer operation, the 
contaminant passes from the gas into the solution.

The analogies arise from the idea that the mechanisms of the three 
processes are the same, such that they are governed by the same quanti-
tative laws. This simple idea has proven to be difficult to verify in all gen-
erality. The earliest proposals for implementing the analogies proved to 
work only under very restrictive conditions. In spite of the early failures, 
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the idea of the analogy has proven appealing and generated a literature of 
many different and more complicated implementations.

Our interest is the underlying logic used with these analogies. We can 
recover this well enough by looking at the Reynolds analogy. This is the 
proposition that the mechanisms of momentum and heat transfer are the 
same. Texts differ in their statements. Here are a few selected at random:

Reynolds postulated that the mechanism for transfer of mo-
mentum and heat are identical. (Foust et al. 1960, p. 173)

Reynolds suggested that momentum and heat in a fluid are 
transferred in the same way. He concluded that in geomet-
rically similar systems, a simple proportionality relation 
must exist between fluid friction and heat transfer. (Kakaç 
and Yener 1995, p. 203)

Reynolds proposed that the laws governing momentum and 
heat transfer were the same. (Glasgow 2010, p. 156)

These statements are strong and it is not entirely clear how they are 
grounded. 

The Original Reynolds Analogy
Reynolds’ authority is routinely invoked. Reynolds’ (1874) original note 
certainly proposed some connection between the rate of heat transfer and 
internal motions in a fluid. However, it is unclear whether he intended a 
complete identity of both mechanism and law as asserted above. His an-
alysis was not conducted in the context of the modern theory of transport 
phenomena, and his paper does not give the quantitative expression now 
attached to the analogy. There are none of the dimensionless numbers we 
shall see shortly: no friction factors or Stanton numbers. Reynolds’ own 
celebrated analysis of fluid flow in pipes was published nine years later. 
Reynolds’ synopsis of his 1874 paper from his later collected papers reads 
as follows:
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The heat carried off by a fluid from a surface proportional to 
the internal diffusion of the fluid near the surface—the two 
causes natural diffusion of the fluid at rest, and the mixing 
due to the eddies caused by visible motion—the combined 
effect expressed by: H = At + Brvt—this affording an expla-
nation of results attained in Locomotive Boilers—experi-
mental verification. (1900, p. xi)9

For later reference, this equation is numbered by Reynolds as (I):

The closest Reynolds came to a direct assertion of analogy arose in con-
nection with a second equation, which he numbered as (II):

where R designated the resistance to fluid flow in the pipe. The essential 
quantitative assumption of Reynolds’ (1874, p. 83) analysis was that “ vari-
ous considerations lead to the supposition that A and B in (I) are propor-
tional to A’ and B’ in (II).” This analogy asserts less than the sameness of 
laws. In drawing an analogy between momentum and heat transfer, the 
temperature difference t is analogous to the velocity v, for each magnitude 
drives the transport. Heat transport arises from a temperature difference, 
and momentum transport arises from the velocity differences of a velocity 
gradient. Under this association, the B term of equation (I) would need to 
be Brt2, which it is not.

There is a way that equations (I) and (II) can be fully analogous, but 
Reynolds did not make these details explicit, so we cannot know if he in-
tended them. We assign dual roles to the velocity v. In its first role, it meas-
ures the fluid flow so that the term rv measures fluid flux. In its second 
role, it drives momentum transport and is analogous to temperature dif-
ference t. We would then suppose that the first appearance of v in the v2 
term of (II) represents fluid flux, and the second v in the v2 term of (II) 

9 H is the time rate of heat passed per unit surface area, t is the temperature difference 
between the surface and fluid, r is the fluid density, v is its velocity, and A and B are constants.
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represents driving force. Then both B terms of (I) and (II) would have the 
analogous form “B (fluid flux) (driving force).”

Reynolds only made explicit use of the more limited analogy. It was 
this analogy that enabled him to determine how large the velocity v needs 
to be for the “B” term of (I) to dominate. The proportionality of the con-
stants enabled Reynolds to argue that this arose under the same condi-
tions for which the B’ term of equation (II) dominated. This, he reported, 
arose for “very small” v.10

There was an immediate practical application of the dominance of 
the B term for commonly arising velocities. When it dominates, the tem-
perature of the discharged fluid is independent of the velocity v.11 That 
means that a locomotive boiler operating with larger flue velocities would 
be equally efficient at withdrawing heat from the flue gases no matter how 
great their flow. This result, Reynolds could report with obvious satisfac-
tion, explained an otherwise surprising fact about boilers: they are “as 
economical when working with a high blast as with a low” (p. 84).

The Modern Reynolds Analogy
If we cannot ground the analogy of modern textbooks in Reynolds’ origin-
al work, there are informal justifications available. There are two regimes 
for fluid flowing in tubes. If the flow is slow or the fluid very viscous, then 
the flow is laminar, and it has the perfectly regular streamlines of slowly 
flowing honey. When the velocity is high, however, these perfect lines are 
disturbed by tumultuous eddies, readily visible if smoke or a tracing dye 
is injected into the fluid. These eddies mix the fluid quite efficiently. They 
will carry the fluid in bulk from the center of the tube to the wall and back. 

10 Reacting to Reynolds’ name, modern readers will likely find it irresistible to associate 
the conditions in which the A and B term dominate as regimes of laminar and turbulent flow, 
respectively. However, Reynolds’ (1883) celebrated study of laminar and turbulent flow was 
published nine years later and supports different relations. In it, Reynolds (p. 975) reported that 
previous experiments had adhered to laws i = v2 or i = Av + Bv2, where i is a pressure term. He 
corrected these laws by setting the pressure term proportional to v in the laminar regime and to 
v1.723 in the turbulent regime.

11 When the B term dominates, it follows from (I) that the heat H withdrawn is 
proportional to the mass flux rv. So doubling the mass flux will just double the heat withdrawn, 
which entails that there is no change in the temperature reduction of each unit of mass of the flue 
gases passing through the boiler.
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In this process, they transport both the momentum and heat of the fluid, 
making it plausible that the same law governs both transports. This is, at 
best, a weak grounding, for we proceed with little more than a caricature 
of turbulence and ignore a laminar region in the fluid that will be at the 
tube’s inner surface. Since the plausibility argument can be given at best 
for turbulent flow, some authors limit assertion of the Reynolds analogy 
to turbulent flow. This is so with John Kay and Ronald Nedderman (1974, 
pp. 143–44), who also sketch the above grounding. 

Whether the argument is well-grounded or not, the goal is to gener-
ate a quantitative relation from the analogy. To do this, we need to find 
quantitative measures of both momentum and heat transfer. In the case 
of fluid flow in tubes, the pressure difference DP is an easy-to-measure 
manifestation of the momentum transfer process within the tube. This 
pressure difference will depend on many variables: the average speed of 
the fluid v, the length of the tube L, its diameter D, as well as the physical 
properties of the fluid, such as its density r. If we seek general regularities 
that govern this pressure difference, it turns out that we can accommodate 
many of these variables by considering a dimensionless number formed 
from these variables. The most commonly used is a dimensionless num-
ber, the friction factor12

We need not linger over why this particular combination of variables is 
chosen. It will be sufficient for our purposes to treat f as a generalized meas-
ure of pressure difference and thus a measure of momentum transport.

In the case of heat transport, we are interested in the time rate q that 
heat is transmitted to the tube walls. The total rate will vary with the area 
of the walls A, and the temperature difference DT between the tube wall 
and the fluid mean temperature that is driving the transport. To accom-
modate these variables, the goal of analysis is usually a heat transfer co-
efficient h, where

12 The definitions of these dimensionless numbers can sometimes differ in constant 
factors. I follow the conventions of Alan Foust et al. (1960).
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Since the heat capacity at constant pressure CP, mean velocity v, and fluid 
density r can also affect the process, it is most convenient to embed the 
heat transfer coefficient in the dimensionless Stanton number

Once again, we need not linger over why the number is presented in this 
way. We need only treat the number as a generalized measure of the rate 
of heat transport.

Determining just how much momentum and heat are transported out 
of the tube under nominated conditions is not easy. If the flow is turbulent, 
we cannot determine this from first principles. However, if we assume 
with the modern Reynolds analogy that the same process transports both, 
then whatever the amounts may be, they are closely connected. A fairly 
straightforward if tedious computation (given in the next section) finds 
this connection to be expressed as an equality between the two dimen-
sionless numbers that measure momentum transport and heat transport:

This is the quantitative statement of the Reynolds analogy. It is an empir-
ical claim that can be tested quite readily. It turns out only to hold under 
quite limited conditions. It holds as a relatively poor approximation for 
gases in turbulent flow, but fails for liquids and fluids in laminar flow. See 
Glasgow (2010, pp. 156–57) for a brief historical sketch of the discovery of 
the analogy’s limits and of efforts to improve it.

Generating the Quantitative Relation
Now we will consider more closely why the two numbers St and f were 
chosen to be as they were. Following Alan Foust et al. (1960, p. 173), we can 
generate the quantitative expression for the Reynolds analogy, f/8 = St, as 
follows. The context is a fluid of density r flowing with mean velocity v in a 
tube of diameter D and length L. Momentum, heat, and, in general, other 
quantities are transferred to the tube wall. It is assumed that this transport 
of an unspecified quantity is governed by the relation
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The “flux at wall” is the time rate of transport of the quantity per unit wall 
area. The two concentrations are just the amount per unit volume of the 
quantity, respectively, at the wall and averaged over the whole fluid. The 
real point of the equation is to define the general transport coefficient K, 
whose values will vary with any change in the physical properties of the 
fluid and geometry of the tube.

The supposition is that this equation holds for both heat and momen-
tum transport so that we can define a coefficient Kheat and Kmom for each. 
The quantitative expression of the Reynolds analogy arises from setting 
the two coefficients equal.

For the case of heat, the “flux at wall” is q/A, where q is the total rate of 
heat transport from the fluid, and A is the tube wall area. The concentra-
tion of heat is just rCPT. Hence, we can write

The second equality obtains if both r and CP vary negligibly over the sys-
tem. In general, this assumption fails; however, for common engineering 
applications, it holds quite well in a wide range of cases. If we compare this 
last equation with the definition of the heat transfer coefficient h,

We can then determine that

where St = h/rCPv is the Stanton number defined earlier.
For the case of momentum, we proceed as follows. The total pressure 

force acting on the fluid is (pressure drop) x (flow area) = DPpD2/4. By 
Newton’s second law, this quantity is the total rate of loss of momentum 
from the fluid. All this momentum is lost through transport to the tube 
wall, since friction from the wall surface is the only other force acting on 
the fluid. The tube wall has area LpD. Hence, 

The momentum concentration is (mass density) x velocity. At the wall, 
the velocity is zero, since the fluid is halted by friction with the tube wall. 
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Thus, the momentum density at the wall is zero. The mean momentum 
density is just rv. Combining and substituting into the general transport 
equation used to define K, we recover

so that

where f = (D/L)DP/(rv2/2) is the friction factor defined earlier.
We now express the Reynolds analogy in the setting equal of the two 

coefficients13

from which we recover the quantitative expression for the Reynolds 
analogy:

13 It may seem odd at first to set Kheat and Kmom equal rather than merely proportional; 
for they pertain to the transport of different quantities—heat and momentum—where each is 
measured by its own system of units. Just this reason would preclude us setting rates of heat and 
momentum transport equal, for the equality would fracture if we merely changed our units for 
measuring heat from calories to BTU. However, this will not affect the coefficients K; for they are 
insensitive to unit changes in the quantity transported. If we change the numerical value of the 
heat flux by moving our units from calories to BTU, there will be a corresponding change in the 
heat concentrations, so that the value of Kheat remains unchanged.
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5

Epistemic Virtues and Epistemic Values: 
A Skeptical Critique1

5.1. Introduction
Epistemic virtues or epistemic values, we are told, play a major role in our 
assessments of evidence in science. There is something quite right about 
this notion; and there is something quite wrong about it. My goal in this 
chapter is to explain each.

In brief, what is right about the notion of epistemic virtue or value is 
that criteria such as simplicity and explanatory power do indeed figure 
overtly in the evidential assessments made by scientists. Any comprehen-
sive account of inductive inference must have a place for them. A material 
theory of induction accommodates them by treating them as surrogates 
for further background facts that ultimately do the epistemic work.

What is wrong about the notion is the words used to express it. The 
problem is simple enough to be described here fully at the outset. The 
terms “virtue” and “value” have prior meanings and rich connotations. 
These prior meanings conflict with the idea that the criteria they label are 
successful epistemically—that is, that they do guide us closer to the truth. 
Unless we erase these prior meanings and connotations, we tacitly adopt 
a form of skeptical relativism about inductive inference. More specifically, 
when we use the terms in this context, we place the criteria on the wrong 
side of two distinctions—that is, on the side that indicates that the criteria 
do not serve their epistemic purpose.

1 I thank Heather Douglas for helpful discussion that informed this chapter.
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The first distinction is between means and ends. In a non-skeptical 
view, the goal of inductive inference in science is to get closer to the truth. 
The criteria that guide us are means to this end. Values and virtues are 
commonly understood to be things that we esteem in their own right. 
They are ends. If we now label the criteria as ends, we are tacitly discount-
ing their function as means. We are, in effect, indicating that scientists 
prize simplicity for simplicity’s sake, thereby overlooking that simplicity 
is sought in an epistemic context as an intermediate that, we hope, brings 
us closer to the truth.

The second distinction is between things that are imposed by outside 
conditions on a community versus those that a community freely chooses 
for itself. Criteria that guide a community toward true theories cannot 
be freely chosen, or at least they cannot be freely chosen if they are to 
be successful guides. The world constrains powerfully which criteria suc-
ceed. If we choose guides that breach these constraints, we will be guided 
poorly. We should not rely on the reading of entrails or astrological signs 
as guides to the truth, for our world is not such that they succeed. If we 
choose guides that are better adapted to the world, we will enjoy the suc-
cess of modern science. If one holds that such criteria can be freely chosen, 
one forfeits the difficult and delicate adjustment of the criteria to the world 
that is needed if they are to be successful guides to truth. This is the view 
of a skeptic, much as skeptics about astrology believe that astrologers can 
freely choose the predictive significance of each star sign, for these skep-
tics hold that no choice leads to a successful prediction.

Facts are traditionally distinguished from values. We may not know 
what the facts of the matter are in a particular case, but a factual claim 
is either true or false; it cannot be both. And if two people disagree on a 
factual claim, then at least one of them is wrong. It is not so with values. 
(And the same may be said of values that underwrite our judgment of 
what is virtuous). Two people can legitimately hold contradicting values. 
There is no corresponding necessity that at least one of them is wrong. 
They choose their values as they please and, while each may try to argue 
for the superiority of his or her values, ultimately they can legitimately 
agree to disagree.

When we label criteria for theory choice as “values” or “virtues,” 
the choice of language connotes that they are freely chosen. This is 
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incompatible with the idea that the criteria are successful, for whether a 
criterion is successful is not a matter of our choice. It is imposed by the 
world, and the successful criteria are to be discovered or inferred from 
suitable analysis, not stipulated as conventional choices. In this second 
way, the terms “value” and “virtue” for the criteria conveys the skeptical 
view.

In the following, Section 5.2 reviews a standard and celebrated in-
stance of the use of epistemic values: the supplanting of geocentric by 
heliocentric astronomy. Section 5.3 describes how the material theory of 
induction can accommodate inductive inferences in which epistemic val-
ues or virtues are invoked. These values, the theory asserts, are convenient 
surrogates for more complicated background facts that provide the war-
rant for the inferences. A common way that epistemic virtues enter into 
scientific discourse is reviewed in Section 5.4. Bare hypothetico-deductive 
confirmation is too permissive in how it accords evidential support. 
Demanding in addition the presence of certain epistemic virtues provides 
a way of restricting its permissive scope.

Section 5.5 looks at an early instance of the present confusion over 
values in philosophy of science. In 1953, Richard Rudner advanced an 
influential argument, summed up in the title of his paper “The Scientist 
Qua Scientist Makes Value Judgments.” I respond that Rudner’s paper 
establishes no such thing. It shows only something few doubt: that sci-
entists qua members of society make ethical value judgments. Finally, 
Section 5.6 turns to Thomas Kuhn’s highly influential 1973 Matchette 
Lecture, “Objectivity, Value Judgment, and Theory Choice.” In it, Kuhn 
laments that his critics have misread his writings as espousing a radical 
skepticism about the rational grounding of science. While he promises 
to set the record straight, Kuhn proceeds with an account that invites the 
same criticism. Kuhn’s paper introduces characteristics used in theory 
choice and soon redescribes them misleadingly as values. The narrative 
focuses on such questions as how different scientists may assign different  
weights to different values when those values compete. Whether and how 
these values might be truth conducive in theory choice, however, is never 
addressed.
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5.2. The Classic Example: Ptolemy versus Copernicus
A celebrated example has long figured prominently in the epistemic vir-
tues literature. In the sixteenth and early seventeenth century, astron-
omers were weighing competing celestial systems. Should they follow the 
traditional geocentric system of Ptolemy? In this system, the sun, moon, 
and planets were held to orbit the earth in motions that were compounds 
of circular motions. Or should they follow the heliocentric system of 
Copernicus? In this view, the earth with its orbiting moon was like the 
planets. All orbit the sun.

Both systems were quite successful at the routine task of astronomy 
of predicting just when each celestial body would appear in each place 
in the sky. This purely descriptive task is known as “saving the appear-
ances” or “saving the phenomena.” Since the Copernican account was 
constructed from more recent observations, it fared somewhat better at 
this task. However, it was well within the reach of Ptolemaic methods to 
equal it, if only some Ptolemaic astronomer was willing to put the effort 
into tinkering with the system.

The decision between the systems was made on other grounds. There 
were competing considerations. The difficulty with the Copernican hy-
pothesis was making physical sense of an earth that was supposed to be 
careening through the heavens. The great appeal of the Copernican sys-
tem was that it qualitatively simplified Ptolemy’s system. The Copernican 
system acknowledged that our view of the planets came from a moving 
platform that takes one year to return to the same spot. Our moving van-
tage point gives the illusion of further circular motions by the planets. 
Since these illusory motions resulted from a single origin, the motion of 
our vantage point, the illusory motions are highly correlated. Crudely put, 
the planets appear to wobble in synchrony because we view them from 
a wobbling platform. With this insight, Copernicans could then identify 
certain correlated motions within the Ptolemaic system as being just these 
projections. The projections could be separated from the true motions of 
the planets themselves. This gave the Copernicans a powerful advantage, 
for they could explain the coordination among these motions as necessi-
ties of a heliocentric system, whereas Ptolemaic astronomers could only 
ascribe them to arbitrary coincidences within the geocentric system.
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The greater simplicity and harmony of the Copernican system carried 
the day. The victory depended on a strong appeal to aesthetic sensibilities. 
This is reflected in Copernicus’ own dim assessment of the geocentric sys-
tem in his Preface to On the Revolutions of the Heavenly Spheres:

[The geocentric astronomers’] experience was just like some 
one taking from various places hands, feet, a head, and oth-
er pieces, very well depicted, it may be, but not for the rep-
resentation of a single person; since these fragments would 
not belong to one another at all, a monster rather than a 
man would be put together from them. ([1543] 1992, p. 4)

Later in the Preface, Copernicus exults over the harmony of his system, 
listing how coincidences of the Ptolemaic system are explained by his 
system:2

In this arrangement, therefore, we discover a marvelous 
symmetry of the universe, and an established harmoni-
ous linkage between the motion of the spheres and their 
size, such as can be found in no other way. For this per-
mits a not inattentive student to perceive why the forward 
and backward arcs appear greater in Jupiter than in Saturn 
and smaller than in Mars, and on the other hand greater in 
Venus than in Mercury. This reversal in direction appears 
more frequently in Saturn than in Jupiter, and also more 
rarely in Mars and Venus than in Mercury. Moreover, when 
Saturn, Jupiter, and Mars rise at sunset, they are nearer to 
the earth than when they set in the evening or appear at a 
later hour. But Mars in particular, when it shines all night, 
seems to equal Jupiter in size, being distinguished only by 
its reddish color. Yet in the other configurations it is found 
barely among the stars of the second magnitude, being rec-
ognized by those who track it with assiduous observations. 

2 For an account of how Copernicus understood notions of harmony and symmetry in 
this context, see Goldstein and Hon (2008, chap. 5).
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All these phenomena proceed from the same cause, which 
is in the earth’s motion. ([1543] 1992, p. 9)

We are to be repulsed by the monstrous Ptolemaic system and captivated 
by the harmony of its heliocentric competitor. While each can in principle 
perform equally well at saving the appearances, it is these aesthetic con-
siderations, Copernicus argued, that should lead us to favor his system.

In so far as we characterize these factors as aesthetic, they are vague. 
Beauty, as the popular saying goes, is in the eye of the beholder. There 
are many ways that the Copernican system might be said to be aesthet-
ically superior. It may merely be simpler in requiring fewer independent 
hypotheses. Or we may judge the heliocentric system to be more harmoni-
ous in locating the centers of more of the gross motions in the sun. Here, 
we understand harmony as appealing to some sense of beauty, perhaps 
captured in some aesthetic of parsimony or perfection of balancing parts. 
Or we may judge the superiority to lie in the way the systems relate to 
the evidence supplied by the celestial appearances. While both systems 
save the appearances, the Copernican system does a better job of this. It 
attributes certain coordinated motions in the appearances of all planetary 
motions to the singular cause of our earth’s motion. Or we may judge 
the Copernican system to be better tested by the appearances. For the ap-
parent motion of one planet will enable us to fix our earth’s motion. We 
must then find this motion reflected in the apparent motions of the other 
planets on pain of refuting the Copernican hypothesis.

Whichever account of the superiority of the Copernican system 
we choose, this superiority is expressed in the same general way. The 
Copernican system in its relation to the evidence of the appearances is 
more virtuous than the Ptolemaic. The virtue is of a special type. It is epi-
stemically potent. The system that possesses the epistemic virtue is better 
supported by the evidence. 

5.3. Epistemic Virtues and the Material Theory of 
Induction
How can the possession of these virtues be epistemically potent and 
strengthen the inductive support provided by evidence? This is the 
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principal question to be addressed here. Are we to seek some general prin-
ciple of inductive logic that affirms greater inductive support to simpler, 
more harmonious hypotheses that explain better or enter into relations of 
overdetermination?

The material theory takes a quite different approach. It allows that 
some such principles work more-or-less well in some domains. But any 
such principle will always have a limited scope, and eventually we shall 
pass beyond its domain of applicability to examples where it fails. The 
material theory dictates that there can be one answer to the question of 
the origin of its epistemic power. Ultimately, the properties that are com-
monly called epistemic virtues must be surrogates for background facts or 
assumptions. They provide the warrant for the inductive inference.

Below, I will try to locate a little more precisely how these properties 
can enter into accounts of inductive inference. In the next chapter, I will 
give a more detailed analysis of one of the best-known properties, simpli-
city, and I will show how its inductive power—in so far as it has any—de-
rives from its role as a surrogate for background facts or assumptions.

5.4. Repairing Hypothetico-Deductive Confirmation
There are no universal rules for inductive inference. Correspondingly, 
there are no universal rules governing the nature of the properties often 
called epistemic virtues and how they enter into evidential relations. But 
there are broad and common circumstances in which these properties 
play a reasonably well-defined role. They arise as part of efforts to repair 
an excessively permissive account of inductive inference, namely hypo-
thetico-deductive confirmation.

In this account of confirmation, we have cases of hypotheses, hypoth-
eses with auxiliary assumptions or theories that deductively entail cer-
tain evidential statements. The truth of these evidential statements is then 
taken to support the hypotheses that entailed them. The idea is familiar 
and examples abound. Big Bang cosmology predicts a three-degree-kelvin 
cosmic background radiation as a residual of the inferno of the early uni-
verse. Starting with celebrated measurements by Arno Penzias and Robert 
Wilson in 1965, the existence of this thermal background radiation was 
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confirmed and eventually judged to provide strong evidence for Big Bang 
cosmology.

This bare account has had a troubled history. Both geocentric and 
heliocentric systems can do a good job of entailing the observed motions of 
celestial objects. This means that they save the phenomena. Whether this 
provided evidence of their respective systems’ truth was the divisive issue 
of the sixteenth and early seventeenth century. In the most famous case 
of forgery known to science, Copernicus’ publisher Osiander introduced a 
spurious preface to Copernicus’ celebrated work in 1543. There, Osiander 
argued that Copernicus’ hypotheses “need not be true nor even probable”; 
they “merely provide a reliable basis for computation,” which means that 
they should be regarded as nothing more than a reliable means for astron-
omers to predict the observable motions of celestial objects. He provided 
a quite powerful argument against reading truth into the hypotheses that 
saved the phenomena. It was an elementary fact of the astronomy of his 
time that two different constructions could yield the same observable mo-
tions. He gave the widely known example of the equivalence of an eccen-
tric circle and a suitably designed deferent-epicycle. Successfully saving 
the phenomena would favor each equally so that pragmatic considerations 
directed the choice of construction: “the astronomer will take as his first 
choice that hypothesis which is the easiest to grasp” ([1543], 1992, p. xvi).

The difficulties for this bare notion of hypothetico-deductive con-
firmation remain today. We see them most easily through the following 
consideration. Let A and B represent two propositions whose truths are 
quite independent of one another. One gets a good approximation of this 
condition by drawing the propositions from widely different domains. 
Proposition A may be drawn from astronomy, for example, and B may 
be some proposition in economics. We can form the following deductive 
inference:

Hypothesis: A and B
_____________________________

Evidence: A

The hypothesis deductively entails the evidence. But does the truth of 
the evidence now supply inductive support to the hypothesis as the 
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hypothetico-deductive scheme indicates? Clearly the hypothesis (A and 
B) gets no inductive support from the evidence A beyond the simple fact 
that A is itself a logical part of the hypothesis. For the hypothesis to gain 
inductive support from the truth of the evidence in the sense intended by 
the hypothetico-deductive scheme, the support of the evidence A for itself 
as a logical part of the hypothesis would somehow have to carry over to the 
other logical part of the hypothesis B. There is no connection that carries 
the support from A to B since the two are, by supposition, independent.

In cases of this type, the hypothetic-deductive scheme fails completely. 
But what about the cases in which it does work? They will be distinguished 
by the obtaining of further conditions that provide a bridge between A 
and B over which the inductive support can pass. The display of proper-
ties often called epistemic virtues provides a way of showing that these 
further conditions hold. Merely saving the phenomena—merely entailing 
true observations—is not enough. It must be done the right way. We have 
already seen in the example of Copernican astronomy that there are many 
ways of characterizing just what the right way may be. We may look to 
special properties of the hypotheses themselves, which may be simple 
or harmonious. More realistically, we may compare properties. Of two 
hypotheses equally able to save the phenomena, we accord more support 
to the simpler or more harmonious one. Alternatively, we may identify 
a property of the relation between the hypothesis and the evidence. An 
explanatory relation is highly prized, and the better the evidence is ex-
plained the more support accrues to the explainer.

Conversely, we may find some relations defective. Such is the case with 
ad hoc hypotheses specifically contrived to conform to the evidence. This 
means that they get no inductive support from it. In early 1916, Einstein 
had completed his general theory of relativity, and, in a review article on 
his new theory, Einstein accused his predecessor, Newton, of just such ad 
hocery. Newton’s theory distinguishes inertial motions from non-inertial 
motions. In Einstein ’s view, it provides no causal account of the differ-
ence. Rather, the distinction is simply posited by declaring a preferred 
“Galilean space” in which an inertially moving body is at rest. As he put it, 
“The preferred Galilean space … is however a merely ad hoc cause and not 
an observable thing” (1916, p. 771). Einstein promised that his new theory 
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would provide the observable cause. The distribution of observable masses 
would determine which were the inertial, Galilean spaces.

5.5. Non-Epistemic Values
So far, I have identified how the properties often called epistemic values 
and virtues can have a role in inductive inference. This is the part that the 
epistemic values literature gets right. I now pass to the part it gets wrong. 
I have already outlined the troubles in the opening of this chapter: the 
terms “virtue” and “value” introduce a covert skepticism about inductive 
inference through their prior meanings and connotations. Here, I identify 
the work of Thomas Kuhn as most responsible for the present misidentifi-
cation of epistemic criteria. He was aided in establishing the misidentifica-
tion, I believe, by an earlier tradition in philosophy of science. That earlier 
tradition challenged the standard notion that scientific practice was free 
of value judgments, where the values at issue were of the more familiar 
ethical type, such as the valuing of human life.

In 1953, Richard Rudner published an article in the journal Philosophy 
of Science, of which he would later become editor-in-chief, whose title and 
main claim were that “The Scientist Qua Scientist Makes Value Judgments.” 
Rudner’s argument maintained a distinction between the strength of evi-
dential support for some hypothesis and the decision by some scientist to 
accept it. Values did not enter into the determination of the strength of 
support; they entered into the decision to accept the hypothesis. He wrote:

In accepting a hypothesis the scientist must make the de-
cision that the evidence is sufficiently strong, or the prob-
ability is sufficiently high to warrant the acceptance of the 
hypothesis. Obviously our decision regarding the evidence 
and respecting how strong is “strong enough,” is going to be 
a function of the importance, in the typical ethical sense, of 
making a mistake in accepting or rejecting the hypothesis 
… How sure we need to be before we accept a hypothesis will 
depend on how serious a mistake would be. (1953, p. 2; em-
phasis in original)
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While Rudner did not explicitly delineate the sort of values he had in mind, 
he introduced two examples that clarified them. In his first example, he 
suggested that our values could slow our acceptance of a hypothesis that 
a drug was free of a lethal contaminant, since an error would have fatal 
consequences. In the second example, he wondered correspondingly how 
high a probability the scientists of the Manhattan project would need to 
accept that the detonation of the first atom bomb would not trigger a plan-
et-destroying chain reaction.

Rudner’s analysis is at best exaggerated and at worst dependent on an 
equivocation.3 There are two problems. First, and less seriously, the type 
of ethical value judgments Rudner describes are rarely made in scientific 
practice. The types of hypotheses assessed by scientists are overwhelm-
ingly mundane and bereft of dire apparent human import. Decisions over 
lethal contaminants in drugs and, especially, planet-destroying chain re-
actions are uncommon. In the latter case especially, the hypothesis of a 
dire chain reaction could only arise after scientists over many decades had 
accepted a plethora of hypotheses in quantum theory, chemistry, and en-
gineering, all remote from the ethically fraught hypothesis. In these and 
many other cases, the scientists could not anticipate the long-term conse-
quences of their discoveries. When Niels Bohr presented his 1913 model of 
the atom, which played a foundational role in the development of modern 
quantum theory, was he to anticipate that this theory would ground the 
development of nuclear fission bombs two decades later and, as a result, 
alter his threshold of acceptance?

To claim that the “scientist qua scientist” makes value judgments ad-
mits no gradation. It makes no distinction between the scientist, for whom 
fraught ethical value judgments are rare and challenging moments, and 
the judge in a court of law whose day-to-day work requires ethical value 
judgments routinely. At best, Rudner established that, on rarer occasions, 
scientists make ethical value judgments in their work.

The second problem is more serious. It pertains to this last conclu-
sion. Rudner’s argument equivocates on the term “scientist.” There is a 
narrower and a broader sense. In the narrower sense, a scientist is merely 
someone who investigates nature, reporting what bearing the evidence 

3 For a more extensive analysis of the weaknesses of Rudner’s argument, see Levi (1960).
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has, with indifference to the broader human ramifications. Virtually all 
the work of scientists proceeds in this mode. Scientists find strong support 
in the evidence for the hypothesis that electrons are spin-half particles. In 
agreement with Rudner’s supposition, ethical value judgments do not en-
ter into the assessment of how strongly evidence supports the hypothesis. 
The hypothesis is accepted, and this is done without any consideration of 
the human import of the hypothesis, for none is apparent. This work is the 
province of the scientist in this narrower sense. It requires no ethical value 
judgments to be made.

This narrowness continues when scientists evaluate hypotheses that 
may have human import, such as Rudner’s examples that a particular 
preparation procedure produces a contaminant-free drug or that an atom 
bomb will not trigger a planet-destroying chain reaction. Mere acceptance 
of hypotheses like these will not have any human import. The import only 
arises when the acceptance of the hypothesis will lead to consequences in 
the larger society. The scientist may need to decide whether to endorse the 
procedure in a published manual of procedures for drug preparation. Or 
the scientist may need to advise the principals of the Manhattan Project 
on the dangers of their planned Alamogordo atom bomb test.

That is, the human import only arises when the scientist has ceased to 
act as a scientist in the narrower sense. The scientist is now acting in the 
broader sense of someone who practices science and monitors the import 
of his or her work within the wider human society. When operating in this 
broader sense, scientists should be aware of the human consequences of 
their actions, and they should moderate their actions accordingly. In this 
broader sense, scientists make ethical value judgments in many ways that 
pertain to their engagement with the larger society. Who do they hire to 
work in their lab? Who do they fire? Are the safety precautions and pro-
cedures in the lab adequate to protect the lab staff? Should they purchase 
cheap, possibly stolen materials? Should the discharge from their lab be 
allowed to contaminate a nearby stream? 

That ethical quandaries arise for scientists is a direct result of the 
broader role taken by scientists. It is not specifically a result of their doing 
scientific work. It is a result of their doing something, whether science or 
not, that impinges on the broader society.
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Hence, Rudner simply got it wrong. Scientists qua scientists do not 
make ethical value judgments. Scientists qua members of society make 
ethical value judgments.

5.6. Kuhn’s Obfuscation
While Rudner may have equivocated on the term “scientist,” he is not re-
sponsible for the conflation of epistemic criteria with values. This distinc-
tion belongs to Thomas Kuhn. His 1973 Matchette Lecture “Objectivity, 
Value Judgment, and Theory Choice” launched the present popularity of 
the broadened scope of values talk in the philosophy of science.

The origins of the lecture lie in Kuhn’s earlier, wildly successful book 
The Structure of Scientific Revolutions. This work brought us the notion 
that revolutions in science are akin to religious conversions and that they 
carry us between paradigms that are incommensurable, defying rational 
comparison. The attempts to compare paradigms rationally become circu-
lar since the means of rational evaluation, Kuhn assured us, resides within 
one or other paradigm. As a result, we are told that “paradigm choice can 
never be unequivocally settled by logic and experiment alone,” and that 
“as in political revolutions, so in paradigm choice—there is no standard 
higher than the assent of the relevant community” (1970, p. 94).

These are strong claims sure to raise the hackles of anyone who sees 
science as aspiring to rationally grounded discoveries about the world. The 
world does not adopt some state merely because some community agrees 
it has. Yet Kuhn has declared communal assent to be the highest standard, 
which means it cannot be overruled by logic and experiment. Curiously, 
Kuhn (1973, p. 321) professed to be dismayed by critics whom he quoted 
as accusing him of making theory choice “a matter of mob psychology.” 
This last description is at worst a colorful overstatement of the view Kuhn 
expressed in The Structure of Scientific Revolutions in the academically 
muted “no standard higher than the assent of the relevant community.” 
Kuhn (1973, p. 321) responded in the Matchette Lecture that these assess-
ments of his views “manifest total misunderstanding.” He will set the re-
cord straight.

This is a reassuring start. His celebrated book, it seems, did not state 
clearly what Kuhn really thought about theory choice. Since many of its 
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skeptical assertions were unequivocal, we must assume that he did not 
mean literally what he said. Or perhaps he expressed his views in a mislead-
ing way that invited misinterpretation. We can now learn what he really 
meant. Perhaps he merely meant that communal assent follows when one 
paradigm is favored over another according to some epistemically sound 
criteria. The superiority consists in conformity to these rationally ground-
ed criteria and not in communal assent. Rather, we are to suppose that the 
relevant community is sufficiently astute to recognize this conformity so 
that we outsiders can use their assent as a reliable indicator of the superior 
choice. This is one possible clarification that would escape the charge of 
relativism. We are ready for some such clarification.

What followed in the Matchette Lecture, however, was simply a repeat 
of what was wrong in The Structure of Scientific Revolutions. Someone ex-
pecting an account of the rational basis of theory choice in science finds 
nothing of the sort.

The account begins with a non-exhaustive list of the characteristics 
that “provide the shared basis for theory choice” (p. 322; emphasis in ori-
ginal). The list comprises accuracy, consistency, scope, simplicity, and 
fruitfulness. It is not hard to give an account of how these characteristics 
can be rationally grounded. Consistency is the easiest. If a theory fails to 
have it—that is, if it is an inconsistent theory—then at least some of its 
propositions must be false. If we seek truth, we should avoid inconsistency. 
Accuracy refers to agreement between the consequences of the theory and 
the results of observation and experiment. This characteristic shows con-
formity of theory with known facts and, clearly, the better that conformity 
the better the facts weigh in the theory’s favor. The remaining character-
istics are not so straightforward but are certainly within the compass of 
further analysis. The following chapter, for example, treats simplicity from 
the perspective of a material theory of induction.

Simple affirmations of this type would preclude the impending mis-
understanding that Kuhn holds these characteristics to be merely the pref-
erences of some particular group of people at some time in history. Yet no 
such affirmations are made. Rather, the text moves as rapidly as possible 
to the question of how scientists weigh the force of the different criteria 
when they conflict and, eventually, how they change over time. We are 
only five pages into the lecture when we find a lengthy treatment of how 
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individual differences between scientists have to be considered to explain 
why different scientists may weigh the criteria differently. It is a curious 
development in an account that is supposed to display that Kuhn does not 
hold the skeptical relativism of which he is accused. A simple answer to 
the accusation is to explain why he thinks these criteria are good guides to 
the truth after all. Instead, the focus shifts to the flaws and weaknesses of 
the criteria and how other, extra-rational factors are needed.

A charitable reader may still imagine that Kuhn’s criteria form the 
basis of a rationally grounded system and not merely the predilections of 
some group. Perhaps Kuhn found the point too obvious to mention. This 
charity is hard to maintain. Some ten pages into the article (p. 330), what 
were initially labeled “characteristics” or “criteria” are relabeled “values” 
or “norms.” The transformation is not benign. It is justified by the specious 
claim that “the criteria of choice with which I [Kuhn] began function not 
as rules, which determine choice, but values, which influence it” (p. 331). 
The term criteria is quite properly used to label factors that only influence 
a choice, and it is a better term to use in so far as it is free of the tenden-
tious connotations of “value.” As I noted earlier, the connotations of the 
terms “value” and “norm” contradict the idea that Kuhn’s criteria are the 
basis of a rationally grounded account of theory choice

First, there is the distinction between means and ends. A character-
istic can readily be understood as an intermediate in a fuller account. 
Selecting for it can be a means to some other end, such as getting clos-
er to the truth. The term value has different connotations. It is normally 
understood to designate something valued in its own right. It is itself an 
end or a goal. When theory choice is described as a “value judgment,” as 
in the paper’s title, the normal understanding is that the choice is made to 
realize the values in question as an end. In effect, we are told that we seek 
consistent or simple theories because we value consistency and simplicity 
as an end and not because we regard them as an intermediate means for 
getting closer to the truth.

Second, there is the distinction between that which is imposed on the 
community by the outside world and that which is chosen freely by the 
community. In calling the criteria “values,” Kuhn indicates that they are 
of the second type. For we are not forced by reason alone to the values we 
adopt. We choose them and enjoy considerable freedom in the selection. 
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In foreign policy, we may debate whether to go to war. The debate becomes 
irresolvable when we find that the debating parties proceed from differ-
ent values. The pacifists, we find, base their view on the value judgment 
that killing is wrong in all circumstances. The militarists make a value 
judgment that some killing is warranted to preserve sovereignty. We can 
debate the facts and expect agreement from reasonable people. But if we 
differ in our values, we have arrived at an irresolvable end. Analogously, if 
our theories are guided by values that we can choose freely, then debates 
over the correct choice is correspondingly futile. There is no right choice. 
This contradicts the idea that these criteria are epistemically successful, 
for the successful criteria must be discovered. They cannot be chosen as 
communal conventions.

When Kuhn relabels the characteristics or criteria as “values” and, oc-
casionally, “norms,” he is inviting the simple confusion that he thinks they 
are free choices of a community and sought as worthy ends in themselves, 
much as these communities may choose to value life, liberty, self-sacrifice, 
compassion, or the ability to play football well. Kuhn’s examples of values 
do nothing to dispel the confusion. He writes, “improving the quality of 
life is a value,” and he adds, “freedom of speech is a value, but so is preser-
vation of life and property” (p. 330).4 Each of these is readily identifiable as 
an end that may be freely chosen. A dour religious sect that values depriv-
ation and suffering will not value the improvement of quality of life; and 
they may also be indifferent to the preservation of both life and property. 
For they believe better awaits in the world to come. A highly authoritarian 
society may not value freedom of speech, since they regard it as contraven-
ing their values of obedience and respect of authority. Lest Kuhn leave any 
doubt that others may choose different values, the paragraph ends with 
the remark that most of us have “an acute consciousness that there are 
societies with other values and that these value differences result in other 
ways of life, other decisions about what may and may not be done” (p. 331).

This freedom of choice in our values conforms with the troublesome 
assertion in The Structure of Scientific Revolutions: “As in political revolu-
tions, so in paradigm choice—there is no standard higher than the assent 
of the relevant community.” The language mirrors Rudner’s tendentious 

4 Kuhn offers these examples as part of a discussion of how values may conflict.
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claim of the role of social values in theory acceptance. In both cases, “val-
ues” determine what the scientists accept. The supposed misunderstand-
ing of Kuhn’s book is invited again.

Is it too much to ask for Kuhn to answer the accusation of skeptical 
relativism by giving the rational grounding of his criteria? He suggests 
that it is too great a demand. He dismisses  the search for an “algorithm” 
that could determine theory choice as “a not quite attainable ideal” (p. 
326). What of the extraordinary power of science to “repeatedly produc[e] 
powerful new techniques for prediction and control”? Kuhn replies: “To 
that question, I have no answer at all, but that is only another way of say-
ing that I make no claim to have solved the problem of induction” (p. 332).5 
Here, Kuhn seeks to escape the burden of displaying an account of the 
rationality of theory choice that shows how its choices guide us closer to 
the truth. He seeks to escape it with a dilemma: either give an algorithm 
for theory choice and solve the problem of induction or give nothing at 
all. It is a false dilemma. There is a path between its horns. One can seek 
to show that the criteria he lists are conducive to the truth at least in some 
cases. This can be done without providing an algorithm for theory choice 
or without solving the problem of induction. The criterion of consistency, 
as I remarked above, is easy. Lose consistency and we know we are farther 
from the truth. I will argue in the next chapter that the criterion of sim-
plicity is really a surrogate for specific facts that do guide us well, locally.

In sum, what are we to make of Kuhn’s Matchette Lecture? As far as I 
can see, it is a muddled paper by a well-meaning but confused scholar. He 
has failed to see that his notion of rationality is a radically skeptical one, 
and he is irked and baffled when his critics point it out to him. If that were 
all there was at issue, the paper would be best left and forgotten. However, 
that is not all there is. This paper has since become the locus classicus of 
a new literature on values in science. It has legitimated the mislabeling of 
the criteria for theory choice as “epistemic values” or “epistemic virtues.” 
There is a banal fact that scientists use criteria in choosing among theories. 
That banality is now redescribed in language whose connotations convey 

5 Also Kuhn writes: “Though the experience of scientists provides no philosophical 
justification for the values they deploy (such justification would solve the problem of induction), 
those values are in part learned from that experience and they evolve with it” (p. 335). 
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a skepticism about the rational grounding of those choices. There is no 
treatment of how these criteria might bring us closer to the truth or even 
mention that they do so. Rather, theories are chosen because scientists 
value consistency and simplicity, much as a religious body might value 
piety.

The effect is to group together the use of these benign criteria with 
Rudner’s tendentious claim that scientists qua scientists make ethical value 
judgments. The blurring of the distinction between criteria and values in-
vites a fallacy. Scientists do use criteria like consistency and simplicity in 
theory choice. Misdescribe this banality as scientists choosing theories by 
value judgments, and we appear to have established that values permeate 
the apparently value-neutral content of scientific theories. This rhetorical 
subterfuge, whether intentional or not, is avoided simply by reverting to 
the neutral language of “criterion” and “characteristic.”

The confusions and conflations of Kuhn’s Matchette Lecture have 
exercised considerable influence. They were endorsed by the otherwise as-
tute President of the Philosophy of Science Association Ernan McMullin 
in his Presidential Address.6 McMullin argued that the epistemic criteria 
at issue really were values. He based this extraordinary conclusion on the 
same fragile grounds as Kuhn: they influence but do not determine the 
outcome. McMullin wrote,

These criteria clearly operate as values do, so that the theory 
choice is basically a matter of value-judgment. Kuhn puts it 
this way:

The criteria of [theory] choice function not as rules, 
which determine choice, but as values which influ-
ence. Two men deeply committed to the same values 
may nevertheless, in particular situations, make dif-
ferent choices, as in fact they do. (1982, p. 16) 

While criteria may be like rules in so far as they influence but do not deter-
mine outcomes, they are unlike values in the two senses I have outlined: 

6 McMullin was President in 1981–82. Kuhn was himself later President in 1989–90.
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criteria are means, not ends; criteria are imposed, not chosen. Their rela-
beling as values is unsupportable.

McMullin persisted, designating “epistemic values” as those “which 
are presumed to promote the truth-like character of science” (p. 18). They 
are distinguished from non-epistemic values, such as the political, mor-
al, social, and religious. It is encouraging that the distinction appears to 
be maintained cleanly. Epistemic values are distinguished as those whose 
choice is “likely to improve the epistemic status of the theory, that is, the 
conformity between theory and world” (p. 19; emphasis in original). This 
is a serviceable standard for delineating epistemic criteria, however they 
are named. Yet such caution is ineffective when the distinction is ridden 
over, rough shod, by such claims as “Value judgment permeates the work 
of science as a whole” (p. 18).7

Finally, one may object that the issue is merely one of connotation and 
that, after Kuhn, the terms “value” and “virtue” have lost the connotations 
that trouble me. If that is so, why not revert to the neutral language? This 
reversion would, no doubt, be resisted. For it would break the connection 
between the provocative but mistaken role for values in science supposed 
by Rudner and the benign but common role for criteria like consistency 
in theory choice. The literature in “science and values” would become the 
heterogeneous literature in “science, criteria for theory choice and ethic-
al values” and Kuhn’s paper, “Objectivity, Value Judgment, and Theory 
Choice,” would become “Objectivity, Criteria-Based Judgment, and 
Theory Choice.” The misleading connotations do persist and do matter.
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6

Simplicity as a Surrogate1

6.1. Introduction
The idea is found almost everywhere, from the most prosaic to the most 
abstruse settings. Choosing the simpler option speeds you to the truth. 
In ordinary life, when the lights go out, we choose the simpler hypothesis 
that the electrical power has failed. We discard the more complicated hy-
pothesis that every light bulb malfunctioned at the same time and, worse, 
that each malfunctioned for an independent reason. In cosmology, we 
choose the simpler hypothesis that the same physical laws obtain here as 
in distant places and epochs, even though we cannot rule out that they 
may differ in parts quite remote from us.

Do these judgments implement a universal principle of inductive in-
ference? It says: 

If two hypotheses are each adequate to the phenomena, the 
simpler is more likely true. 

My goal in this chapter is to deny the efficacy of any such universal prin-
ciple of inductive inference. For the material theory of induction entails 
that no such rules are efficacious. To explain the popularity of appeals to 
simplicity, I will argue that good invocations of simplicity are really veiled 
references to background facts or assumptions whose content functions to 
license the relevant inductive inference. The apparently singular appeal to 

1 My thanks to Fellows in the Center for Philosophy of Science, Fall 2012, for discussion 
of an earlier draft of this chapter.
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simplicity actually masks an appeal to such a diversity of context-depend-
ent facts that no univocal meaning can be attached to it.

This is the sense in which simplicity is a surrogate. In so far as it is 
epistemically efficacious, the short and snappy invocation of simplicity is 
really a surrogate for background facts or assumptions. These background 
facts do the real epistemic work and, commonly, are much harder to 
capture in a comparably short slogan. There will be cases in which these 
backgrounds resemble one another so that a common idea of simplicity 
appears to be invoked. However, the extent of these cases will always be 
limited. As we move farther afield, we will encounter cases in which the 
backgrounds differ sufficiently for the similarity to fail. In general, there is 
no well-specifiable, universally applicable, epistemically efficacious prin-
ciple of simplicity in inductive inference.

The analysis of this chapter is a deflationary analysis of simplicity that 
runs counter to the celebration of simplicity in the scientific literature. The 
analysis does have a small pedigree in the philosophical literature. It is the 
view of simplicity long defended by Elliott Sober. Sober summarizes his 
view (in emphasized text) accordingly:

Whenever a scientist appeals to parsimony to justify the 
conclusion that one hypothesis is more reasonable than 
another in the light of observational data, substantive as-
sumptions about the world must be involved. In practice, 
parsimony cannot be “purely methodological.” (1988, p. 40)

And more compactly: “Appeal to simplicity is a surrogate for stating an 
empirical background theory” (p. 64).

The following section, 6.2, provides a brief illustration of how appar-
ently epistemically efficacious invocations of simplicity are really indirect 
appeals to background facts. Section 6.3 brackets off two cases in which 
simplicity offers only pragmatic gains. These are the cases in which sim-
plicity is urged as an efficient search heuristic and in which simplicity is 
demanded merely to give a compact summary of past experiences.

The two sections that follow develop and deflate two primary senses 
of simplicity. The first principle, discussed in Section 6.4, expresses sim-
plicity in a count of entities or causes. The classic statement is Ockham’s 
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razor: “Entities must not be multiplied beyond necessity.” It fails as a 
principle of parsimony, I will argue, since there is no clear way to count 
the number of things to be minimized. The principle is reinterpreted as 
a truism of evidence, that one should not infer to more entities than the 
evidence warrants, where this evidential warrant is understood materially. 
The second principle of parsimony, discussed in Section 6.5, requires us to 
infer to hypotheses whose description is simple. This principle fails as an 
independent principle since modes of description vary. These variations 
greatly affect the descriptive simplicity of the hypotheses. This form of 
the principle can only guide us if we fix the mode of description, and the 
guidance will be good only if that mode is properly adapted to the prevail-
ing facts.

Section 6.6 will examine in more detail the most popular illustration 
of simplicity in the philosophical literature: curve fitting. The invocation 
of simplicity in standard curve fitting, I argue, is a surrogate for specific 
background facts. These facts include the obtaining of a particular model 
of how error in data confounds some true curve; that the parameteriz-
ation used is suitably adapted to the background facts; and that, in the 
strongest cases of this adaptation, the hierarchy of functional forms fitted 
corresponds to background assumptions on the presence, likelihood, and 
strength of certain processes. Ascending the hierarchy is not authorized 
by some abstract principle that tells us to proceed from the simpler to the 
more complex. Rather, it is a successive accommodation of the curves fit-
ted to the most likely or strongest processes and then to those less so. The 
concluding two sections, 6.7 and 6.8, illustrate this last adaptation of the 
hierarchy in the examples of fitting orbits to observed positions in astron-
omy and the harmonic analysis of tides.

6.2. How It Works: The Birds
Just how can simplicity serve as a surrogate for background facts? Here 
is an easy illustration. Imagine that you are walking on a sandy beach 
washed smooth by the ocean waves. As you walk over a clear expanse of 
smooth sand, you notice a track left by a bird (Fig. 6.1).
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Figure 6.1. Bird tracks.

The prints are clear and unmistakable. You can just see how the bird wad-
dled over the sand—left, right, left, right—leaving the prints. But why as-
sume that it was just one bird? Perhaps the left foot prints were made by 
a one-legged bird that hopped awkwardly over the sand. Then a second 
one-legged bird, this time having only a right leg, pursued it, leaving the 
right footprints in just the right place to simulate the waddle of a single 
two-legged bird. Or perhaps there was a large flock of one-legged birds, 
each of which touched down on the sand just once, all perfectly coordin-
ated to leave the track.

Each hypothesis explains the track; however, we do not take the vari-
ous, one-legged bird hypotheses seriously. How might we defend this 
judgment? The one-bird hypothesis is by far the simplest. In ordinary 
discourse, merely declaring it might be a sufficient defense. If our meth-
odology is at issue, then just declaring that it is the simplest might not 
be enough to secure it. If we need more, we can turn to the great Isaac 
Newton. At the start of Book 3 of his magisterial Principia, he asserted 
four “Rules of Reasoning in Philosophy” that would guide subsequent an-
alysis. The first two rules are

1. We are to admit no more causes of natural things than 
such as are both true and sufficient to explain their 
appearances. To this purpose the philosophers say that 
Nature does nothing in vain, and more is in vain when 
less will serve; for Nature is pleased with simplicity, and 
affects not the pomp of superfluous causes.

And

2. Therefore to the same natural effects we must, as far as 
possible, assign the same causes. As to respiration in a 
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man and in a beast; the descent of stones in Europe and 
in America; the light of our culinary fire and of the sun; 
the reflection of light in the earth, and in the planets. 
(Newton [1726] 1962, p. 398; emphasis in original)

These two rules remain the clearest and firmest pronouncement of a meth-
odological principle of parsimony in science.

Applied to the birds, Rule 1 tells us immediately that we should use the 
one-bird hypothesis, for it is a truth that there are two-legged birds and 
their behavior is sufficient to explain the tracks. We do not need the many-
bird hypothesis, so it should not be admitted. Thus, we conform with Rule 
2 by assigning the same cause, a single bird, to the many footprints.

So far, all is well. Simplicity has provided the principled justification 
for our intuitive judgment. That will not last, however. We now proceed 
farther down the beach and come to a place where the smooth sand is 
criss-crossed by very many tracks (Fig. 6.2).

Figure 6.2. More bird tracks.

We would normally posit that many birds alighted on the sand, each 
leaving just one track. However, there is another hypothesis: the tracks 
were left by just one, very busy bird. It waddled over the sand; flew to 
another spot; waddled some more; and so on, until the final set of tracks 
was formed.
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A mechanical application of Newton’s rules leads us directly to the 
one-busy-bird hypothesis. We are, as before, assigning the same cause, 
one bird, to the same effects, the one set of tracks. Few of us would accept 
this outcome. We would be satisfied with the one-bird hypothesis for the 
single track but expect a good analysis to return a many-bird hypothesis 
for the case of many tracks. We would surely reason something like this. 
In the case of the single track, we rule out the many, one-legged bird hy-
pothesis because we know that one-legged birds are rare and, if they were 
on the beach, it is unlikely that they would follow each other around in just 
the way needed to produce a single track. For the case of many tracks, we 
know that it is possible for one bird to be very busy and produce the mul-
tiple tracks. However, we rarely if ever see such a lone, busy bird, whereas 
flocks of birds producing tracks like this are quite common.

These further reflections show that our initial analysis was not merely 
based on the invocation of simplicity. We chose the one-bird hypothesis 
for the single track on the basis of our knowledge of birds. It is a shared 
knowledge, so we generally feel no need to explain in tedious detail why 
we rule out other possible but unlikely hypotheses: two one-legged birds 
hopping, many one-legged birds alighting at once, a mutant four-legged 
bird, and so on. We can dismiss all of these far-fetched notions with a 
breezy wave towards the simplest hypothesis.

In short, what we offer as a conclusion governed by some general 
principle of parsimony is really a conclusion dictated by our knowledge of 
background facts. We use an appeal to simplicity as a convenient way of 
circumventing the need to explain in detail these background facts, whose 
details can become quite convoluted. My claim here is that all epistemic-
ally efficacious invocations of simplicity have this character.

6.3. Pragmatic Justifications of Simplicity
Let us return to the standard view that treats a preference for simplicity as 
a methodological principle of universal character. What justifies it? What 
precisely does the principle assert? My interest in simplicity is restricted to 
the case in which simplicity functions epistemically as a marker of truth; 
we are to choose the simpler hypothesis or theory because, we are assured, 
it is more likely to be true. I will argue below that a principle of this form 
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has no precise content and no good justification. However, before we pro-
ceed, we need to dispense with two distracting special cases that lie out-
side our immediate concern. In these cases, simplicity is sought merely for 
pragmatic reasons. 

6.3.1. Simplicity for Economy of Search
In seeking to understand some new phenomenon, scientists commonly 
deal with many hypotheses or theories. How should they go about search-
ing among them and testing them? A common recommendation is that 
they should start with the simplest hypothesis or theory. They are the eas-
iest to deal with and, if incorrect, likely to be refuted by new evidence 
sooner than a more complicated one.

In the 1920s, it was found that distant galaxies recede from us at a 
speed that increases with distance. In 1929, Hubble proposed that the 
speed of recession was linearly proportional to the distance. In principle, 
he could have fitted a complicated, tenth-order polynomial function to his 
data. The linear dependency, however, was easier to deal with formally. If 
it was the wrong relation, new data would likely show the error much fast-
er than with a more complicated function. A tenth-order polynomial is 
able to contort itself to fit a larger range of data so that considerably more 
data may be needed to refute it.

This sort of circumstance is common. One of the simplest hypotheses 
concerning an ailment is that it is caused by a specific pathogen. Famously, 
in the mid-nineteenth century, John Snow was able to trace the cause of a 
cholera outbreak in London to tainted drinking water drawn from a public 
water pump on Broad Street. More recently, the cause of AIDS—acquired 
immune deficiency syndrome—has been identified as the HIV virus. Once 
the simple hypothesis was pursued, it was readily affirmed. Were definite 
pathogens not responsible, the simple hypothesis could likely have been 
ruled out fairly quickly by the appearance of cases in which no exposure 
to the conjectured pathogen was possible. Matters are quite different with 
ailments such as cancer. Multiple factors can make a cancer more likely, 
including carcinogenic chemicals, ionizing radiation, certain viruses, and 
even specific genes. Dealing with this multiplicity of causal factors and 
discerning which are operative when is considerably more difficult.
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These simple observations were incorporated into analyses of scien-
tific discovery. Karl Popper (1968, chap. 7) argued that science proceeds 
through a continuing cycle of the conjecture of new hypotheses and their 
refutation. He identified the simpler hypotheses with the more falsifiable. 
It follows that the cycle advances faster if the scientists investigate more 
falsifiable hypotheses—that is, simpler hypotheses. A mathematically 
more sophisticated analysis of the role of simplicity in heuristic search 
has been provided by Kevin Kelly (2007). In the context of a formal learn-
ing theoretic analysis of the evidence-guided search for hypotheses, he 
showed that favoring simpler hypotheses is a more efficient way of getting 
to the truth.

How are these considerations relevant to our present concerns? One 
might ground the favoring of simplicity in searching in two related sup-
positions: that nature is ontically simple or that nature is descriptively sim-
ple in our languages. In both cases, further discussion must be deferred 
to later sections of this chapter, where I argue that both suppositions are 
epistemically efficacious only in so far as they make indirect appeals to 
background assumptions.

These assumptions, however, are not needed to ground the heuristic 
recommendation. It is still good advice to investigate the simplest hy-
pothesis first in a world that is indifferent to the simplicity of hypotheses. 
Whether the world is more likely to give us a linear function or a tenth-or-
der polynomial, the linear function will still be dealt with more easily and 
more quickly. Whether ailments are more likely to be caused by a single 
pathogen or by many factors, it is still most expeditious to check the single 
pathogen hypothesis first.

In short, simplicity can remain a good heuristic in hypothesis search-
ing without a need for nature to be governed by a general principle of 
simplicity or parsimony.

6.3.2. Simplicity as Mere Economy of Expression
Ernst Mach famously held the view that scientific laws were merely com-
pact summaries of our experience. In an 1882 address to the Imperial 
Academy of Sciences in Vienna, he said: 
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“the goal which it [the intellect] has set itself is the simplest 
and most economical abstract expression of facts” (Mach 
1898, p. 207; emphasis in original). 

The idea can be put crudely as follows. Galileo asserted that the distance 
fallen by a given body varies in accordance with the square of time of fall. 
In Mach’s view, all that Galileo is allowed to assert is that each pair of 
distances and times we have measured for falling bodies conforms to this 
relation.

If this is all that is asserted, then the role of simplicity is merely one 
of convenience. One seeks the least troublesome way of summarizing the 
facts at hand. In more modern terms, the exercise is essentially one of data 
compression. We could report all the numerical data pertaining to the fall 
of many bodies; or we could report merely that these data all conform to 
Galileo’s relation without loss of anything that matters.

This may seem like an extreme view that would be well outside the 
philosophical mainstream nowadays. But much engineering practice still 
conforms to it. This is because engineering commonly deals with systems 
dependent on many variables, and the systems are sufficiently complicated 
that a fundamental analysis is precluded. To deal with this problem, the 
behavior of the system is measured experimentally under widely varying 
circumstances and the collected data reduced to as compact a form as 
possible.

One of the best-known examples is the treatment of fluid flow in 
pipes. Even this simple problem involves many variables: the fluid’s speed, 
density, and viscosity; the pressure drop in the pipe; and the pipe’s diameter 
and surface roughness. Once the flow becomes turbulent, this empirical 
approach is the only tractable one. Moody (1944) presented a now famous 
chart summarizing the outcomes of many experiments (see Figure 6.3).
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Figure 6.3. Moody chart.2

In this one chart, one can read the pressure drop associated with the flow 
of fluid of specified speed, density, and viscosity in a pipe of a specified 
diameter and surface roughness.

In so far as the chart merely summarizes the outcomes of experiments 
already performed, it is free of entanglement with the concerns of this 
chapter. One need make no reference to background facts when one re-
ports that a simple formula generates a curve that happens to pass through 
the data points that are near enough. I will complain shortly of the ambi-
guity in the notion of simplicity. This ambiguity is untroubling here. We 
can use any formula that generates a curve that fits the data well enough. 
The choice is purely pragmatic.

But this purely pragmatic use of simplicity is an extreme case. I believe 
that it is rarely—and possibly never—realized in all purity. The examples 

2 Moody Diagram from http://en.wikipedia.org/wiki/File:Moody_diagram.jpg, released 
under the GNU Free Documentation License.
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above do not realize it fully. The Moody chart is a summary of past experi-
ence. But it is also a great deal more. Its primary use is as an instrument 
of prediction. The presumption is that if an engineer constructs a piping 
system with flow rates, fluid densities, and so on, which match conditions 
covered by the chart, then the relevant curve will reflect the pressure drop 
that will be found. That can only happen if the chart is properly adapted to 
broader facts about fluid flow in pipes in general.

These facts have the character of simplicity assumptions. We must 
assume that the variables included are all that matter. Temperature does 
not enter into the chart explicitly; it is assumed that thermal effects are 
fully captured by the unrepresented dependence of density and viscosity 
on temperature. We must assume that the curves fitted to the data points 
interpolate correctly between them so that the chart makes good predic-
tions for cases whose precise combination of variables have never been 
observed.

To the extent that the descriptions seek to go beyond past experience, 
they seek the type of epistemic success to which the subsequent discussion 
applies.

6.4. Principles of Parsimony: Ontic Simplicity
The notion that parsimony can successfully guide us epistemically has 
many expressions, and one might despair of categorizing them all suc-
cessfully. There is, however, a broad division between ontic simplicity and 
descriptive simplicity. I will discuss ontic simplicity first and then turn to 
descriptive simplicity.

In the ontic version of the principle, we are guided to the truth by 
favoring accounts that posit the fewest entities or processes in the world. 
The locus classicus of this notion is “Ockham’s razor.” Its now universal for-
mulation is that “Entities must not be multiplied beyond necessity” (entia 
non sunt multiplicanda praeter necessitatem). Curiously, this formulation 
is not found in the writings of the fourteenth-century scholastic, William 
of Ockham. His closely related pronouncements include “It is useless to 
do with more what can be done with fewer” and “A plurality should not 
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be assumed without necessity.”3 It has been a historical puzzle to locate 
the source of the popular formulation.4 Another puzzle is that Ockham’s 
name should be so exclusively attached to this maxim of simplicity, for it 
was an idea that, according to Maurer (1999, p. 121), was used commonly 
from the thirteenth century, after being gleaned from Aristotle.

The greater puzzle is why modern thinkers would look to a four-
teenth-century scholastic for this sort of guidance. His understanding of 
the demand of parsimony was rather different from its modern scientific 
use. In Ockham’s view, it was not binding on God. As Maurer (1999, p. 
120) reported, Ockham felt that “God is not bound by it; he does many 
things by more means which he could do by fewer, and yet this is not done 
uselessly, because it is God’s will.”5

The better-formulated statement of the sentiments of Ockham’s razor 
are Newton’s two rules of reasoning quoted in 6.2. The notion is advanced 
explicitly as a rule of reasoning; and Newton provided justifications for it: 
“Nature does nothing in vain” and “Nature is pleased with simplicity, and 
affects not the pomp of superfluous causes” (p. 398). The justifications are 
dressed in anthropomorphic garb. Nature, surely, is never literally pleased 
or displeased. If we abstract the anthropomorphism, Newton is enjoining 
us to infer to the simpler case of fewer causes because the world is simpler 
and harbors fewer causes. This is a factual claim about the world.

These justifications seem routine. We find something similar reported 
in Aquinas (1945, p. 129) (writing before Ockham’s birth): “If a thing can 
be done adequately by means of one, it is superfluous to do it by means 
of several; for we observe that nature does not employ two instruments 
where one suffices.”

3 Quoted from Maurer (1999, p. 121). In Latin, these pronouncements are frustra fit per 
plura quod potest fieri per pauciora and pluralitas non est ponenda sine necessitate.

4 See Thorburn (1918).
5 My reaction to this puzzle is that we have fallen into introducing a defective principle 

of parsimony with the faux dignity of a pedigreed Latin maxim in the hope that it will deflect a 
skeptical demand for justification. We may be unprepared to justify why a two-entity hypothesis 
is better than a three-entity hypothesis. But we can plant the idea that it is what everyone thinks 
and has done since the fourteenth century as a way of stalling skeptical challenges. On a superficial 
survey of its use, it appears that this subterfuge is working pretty well.
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6.4.1. The Difficulties of Ontic Simplicity
The ontic version of the principle of parsimony outlined above faces many 
difficulties. The most immediate is that we have no general prescription 
for how to count entities, processes, or causes to which the principle is 
applied. It is not hard to find a sufficiently severe ambiguity as to com-
promise the principle.

How can we count entities when we compare a continuum and a 
molecular theory of gases? The continuum theory represents the gas as a 
single, continuous fluid. The molecular theory represents it as a collection 
of numerous molecules, of the order of 1024 for ordinary samples of gases. 
Do we count one entity for the continuum gas and 1024 for the molecular 
gas so that the molecular gas posits many more entities? Or do we in-
vert the count? A continuum is indefinitely divisible into infinitely many 
parts.6 The molecular gas consists of finitely many molecular parts. Has 
the continuum now infinitely many more parts than the molecular gas?

This discussion in terms of entities can be converted into the causal 
conception of Newton’s rules. What causes the pressure exerted by a gas 
jet impinging on a surface? Do we count the impact of the continuum 
gas as one cause? Or do we count infinite causes for the infinitely many 
impacts of its infinitely many parts?

What of the justification for this ontic principle? Newton asserts the 
world is simpler in employing fewer causes. This assertion is empty in so 
far as the counting of causes is ill-defined. However, even setting that con-
cern aside, the claim is unsustainable. Nature is not simple. Traditional al-
chemical theories posited three or four elements in an attempt to account 
for chemical appearances. We now know that this count is far too low. 
A tractable model of chemistry requires over ninety elements. Perhaps 
nature is pleased with chemistry, but surely not for the simplicity of the 
count of elements.

The existence of isotopes is especially damaging to Newton’s justi-
fication. For one can explain the chemistry of carbon quite well just by 

6 In statistical physics, this gives a continuous entity, such as a field with infinite degrees 
of freedom, and is responsible for the “ultraviolet catastrophe” of classical electromagnetic fields. 
Correspondingly, a molecular gas has finite degrees of freedom as a result of its finite number of 
molecules.
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assuming that there is one element, carbon. Hence, according to Newton’s 
rules, we should infer to there being just one carbon element since nature 
“affects not the pomp of superfluous causes.” That is, we should infer to 
the one element and not to the existence of multiple types of chemically 
identical carbon, because that is the way nature is. Yet that is not the way 
nature is. Carbon exists in multiple, chemically identical isotopes, car-
bon-12, carbon-13, and carbon-14. The recommendation to infer to just 
one type of carbon may well be good advice as far as the chemistry of 
carbon is concerned. I do not wish to impugn this recommendation or 
to suggest that an inductive rule is defective because it sometimes leads 
us astray. This is part of the risk we take whenever we carry out inductive 
inference. Rather, the issue here is the justification. While the recommen-
dation may be good, it cannot be justified by a supposition that factually 
there is just one type of carbon. Factually, this is false.

6.4.2. Rescue by the Material Theory: The Principle as an 
Evidential Truism
This ontic form of the principle of parsimony is troubled. Yet it has figured 
and continues to figure prominently in successful science. There must be 
something right about it. The clue to what is right lies in the ambiguous 
qualifications found in every formulation. We are not to multiply entities 
“beyond necessity”; we are to admit no more causes than are “sufficient 
to explain…”; we are to assign the same cause “as far as possible.” These 
qualifications mean that the principle is not self-contained. Something 
more supplies the sense of necessity, possibility, and sufficiency.

Newton’s formulation gives us the clearest indication of what that 
something is. We are not to proceed beyond that which is “sufficient to ex-
plain the[ir] appearances.” This gives us some flexibility. We can add to the 
causes we admit as long as they are sufficient to explain the appearances. 
We are not to go beyond that. Since we routinely infer inductively to that 
which we count as explaining the appearances, this amounts to telling us 
to infer to no more than that for which we have inductive authorization. 
Understood this way, the principle is revealed to be a truism of inductive 
inference, which says, “We should not infer to more than that for which we 
have good evidence.” It is a corollary of another truism: “We should infer 
inductively only to that for which we have good evidence.”
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How did an inductive truism become enmeshed with the muddle of the 
metaphysics of simplicity? The key relevant fact is that the truism is not an 
independent inductive principle; it is a meta-inductive principle. That is, it 
is not a principle of an inductive logic. Rather, it is a principle about how 
other inductive logics should be used. That this is so is harder to see if one 
conceives of inductive inference formally. The principle is entangled with 
assertions about how the world is factually. If one understands inductive 
inference materially, however, this entanglement is expected. Moreover, it 
clarifies how the original principle can be a good epistemic guide.

We can see this entanglement in Newton’s first use of his Rules 1 and 
2. In Book 3 of Principia, Proposition 4 Theorem 4 asserts that the force 
of gravity that draws objects near the earth’s surface is the same force that 
holds the moon in its orbit. He assumes that the force acting on the moon 
intensifies with a decreasing orbital radius according to an inverse square 
law, as it does with other celestial objects. It follows that were the moon 
to be just above the earth’s surface, it would fall to earth with the same 
motion as ordinary bodies fall by gravity. On this point, he wrote:

And therefore the force by which the Moon is retained in 
its orbit becomes, at the very surface of the Earth, equal to 
the force of gravity which we observe in heavy bodies there. 
And therefore (by Rule 1 & 2) the force by which the Moon 
is retained in its orbit is that very same force which we com-
monly call gravity; for were gravity another force different 
from that, then bodies descending to the Earth with the 
joint impulse of both forces would fall with a double veloci-
ty… ([1726] 1962, p. 408)

Newton here invokes his rules to complete the inference. However, the 
inference is already fully controlled by a factual presumption: that the 
matter of the moon is the same as the matter of the earth and, if brought 
to the surface of the earth, would behave like ordinary terrestrial matter.

This factual assumption authorizes Newton’s conclusion, and he gives 
the reason. Were there to be some additional celestial force acting on 
the matter of the moon but not on ordinary terrestrial matter, then the 
moon would fall with double the motion of ordinary terrestrial matter. 



The Material Theory of Induction188

This contradicts the assumption that the matter of the moon behaves just 
like that of the earth. This is a kind of simplicity assumption: contrary 
to ancient tradition, there is no difference between terrestrial and celes-
tial matter. But the comprehension and use of this assumption make no 
appeal to abstract metaphysical notions of simplicity. The assumption is 
a specific factual statement and it powers the inductive inference, as the 
material theory requires.

We also see this entanglement in the illustrations Newton supplies for 
his rules. To illustrate Rule 2, he considered the “light of our culinary fire 
and of the sun” (p. 398). We are to assign the same cause to both. We now 
know that this is an erroneous conclusion. Culinary fires generate light 
from combustion; the sun generates light by a different process, nuclear 
fusion. What makes the inference appear unproblematic for Newton is 
that he is really relying on a tacit background assumption: that it is very 
unlikely that there is a process that produces intense light other than com-
bustion. This fact powers the inductive inference.

In short, the ontic formulation of the principle of parsimony fails as a 
universal principle of inductive inference. It is too vague to be applied uni-
vocally, and efforts to give it a foundation in a supposedly general, factual 
simplicity of the world flounder. Its successes, however, can be understood 
to the extent that it is the meta-inductive principle that one should infer 
inductively to no more than that for which one has good evidence. The as-
sertions of simplicity are veiled invocations of relevant facts that authorize 
the inductive inference, in accord with the material theory.

6.5. Principles of Parsimony: Descriptive Simplicity
The descriptive versions of the principle of parsimony do not directly ad-
dress the numerical simplicity of entities or causes. Instead, we are en-
joined to favor the simplest description of processes pertaining to them. It 
may not be possible to effect an absolute separation between the descrip-
tive and the ontic versions of the principles of parsimony. For descrip-
tive simplicity is tacitly supposed to reflect some sort of ontic simplicity. 
However, the explicit focus on language introduces sufficient complica-
tions to necessitate a separate analysis.
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The best-known application of descriptive simplicity is curve fitting. 
In its simplest form, we are given a set of data points—that is, many meas-
ured values of a variable x and a variable y. These are presented as points 
on a graph, as shown below. We then seek the curve that fits them best. It is 
routine in curve fitting to start with a constant relation, then a linear one, 
then a quadratic, and so on, evaluating the fit of the curve as we proceed 
to higher order polynomials, as shown in Figure 6.4.
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Figure 6.4. Polynomial curve fitting.

The fit will always improve as we increase the order. The higher the poly-
nomial order, the larger the repertoire of curves available, and hence the 
more likely we are to come close to the data points.

Eventually, however, this greater flexibility will cause trouble. For the 
data is routinely assumed to be a compound of the true curve sought and 
confounding error. If the true law sought is merely a linear curve, the error 
will scatter the data around the true straight line. Higher order polynom-
ial curves will have little trouble adapting to the random deviations due 
to noise. This will lead the fitted curve to deviate from the true curve as it 
responds to the vagaries of the noise. Figure 6.5 shows the best fit of linear 
and eighth-order polynomial curves to a data set.
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Figure 6.5. Overfitting.

The apparently better fit of the higher-order curves is spurious. This phe-
nomenon is known as “overfitting.”

The primary burden in curve fitting is to find a balance of the two ef-
fects: the simplicity of the curves that fit less well must be balanced against 
the better fit of more complicated curves that overfit. The simplicity of a 
curve is derived from its description. The polynomial family consists of 
smaller, nestled families of curves:

Constant: y = a

Linear: y = a + bx

Quadratic: y = a + bx + cx2

Cubic: y = a + bx + cx2 + dx3

Quartic: y = a + bx + cx2 + dx3 + ex4

And so on.

That is, the formulae that describe the curves have more parameters as we 
proceed to the less simple, higher-order polynomials. The constant curve 
has one parameter, a. The linear curve has two parameters, a and b. The 
quadratic curve has three parameters, a, b, and c. And so on. Built into the 
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practice of curve fitting is a simplicity postulate: favor those curves whose 
descriptions require fewer parameters.

The preference for simpler descriptions has been applied more broad-
ly. Perhaps its best-credentialed proponent is Albert Einstein. The laws of 
the fundamental theories of physics employ constants. Newton’s theory of 
gravitation employs the gravitational constant G. Einstein’s special theory 
of relativity employs the speed of light c, and his general theory employs 
both c and G. Quantum theory employs Planck’s constant h, as well as 
numerous quantities characteristic of the various particle interactions, 
such as the charge of the electron e. The standard model of particle physics 
now employs nearly twenty such constants. Some of these constants can 
be absorbed into the system of units used. The speed of light c can be 
suppressed merely by measuring distance in light years; then the speed of 
light reduces to unity.

Einstein grounded his hope for a physics free of all further constants 
in a belief in the simplicity of nature:

If one considers this [suppression] done, then only “dimen-
sion-less” constants could occur in the basic equations of 
physics. Concerning such, I would like to state a theorem 
which at present cannot be based upon anything more 
than upon a faith in the simplicity, i.e., intelligibility, of na-
ture: there are no arbitrary constants of this kind; that is to 
say, nature is so constituted that it is possible logically to 
lay down such strongly determined laws that within these 
laws only rationally completely determined constants occur 
(not constants, therefore, whose numerical value could be 
changed without destroying the theory). (1949, p. 61–63)

While the freedom from these constants reflects something factual in the 
structure of the world, Einstein expressed it in terms of the descriptions 
of that structure—that is, in terms of the constants appearing in the equa-
tions that describe it. Just as curve fitting should favor smaller numbers of 
parameters, Einstein favored laws with the fewest arbitrary parameters.

These sentiments come from Einstein later in his life. By then, he 
had abandoned his earlier allegiance to positivistic approaches. He had 
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become a mathematical Platonist, and that was a doctrine, he assured us, 
he had learned from his experiences in physics.7 His 1933 Herbert Spencer 
lecture, “On the Methods of Theoretical Physics,” offered an explicit and 
powerful manifesto:

Our experience hitherto justifies us in believing that nature 
is the realisation of the simplest conceivable mathemati-
cal ideas. I am convinced that we can discover by means 
of purely mathematical constructions the concepts and the 
laws connecting them with each other, which furnish the 
key to the understanding of natural phenomena. Experi-
ence may suggest the appropriate mathematical concepts, 
but they most certainly cannot be deduced from it. Expe-
rience remains, of course, the sole criterion of the physi-
cal utility of a mathematical construction. But the creative 
principle resides in mathematics. In a certain sense, there-
fore, I hold it true that pure thought can grasp reality, as the 
ancients dreamed. ([1933] 1954, p. 274)

Einstein continued to detail how we could use mathematical construc-
tions to make discoveries in physics:

The physical world is represented as a four-dimensional 
continuum. If I assume a Riemannian metric in it and ask 
what are the simplest laws which such a metric can satisfy, I 
arrive at the relativistic theory of gravitation in empty space. 
If in that space I assume a vector-field or an anti-symmetri-
cal tensor-field which can be derived from it, and ask what 
are the simplest laws which such a field can satisfy, I arrive 
at Maxwell’s equations for empty space.

7 For an account of precisely how Einstein’s experience with general relativity led him to 
this, see Norton (2000).
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The recipe is one of descriptive simplicity. In each context, one writes the 
simplest admissible equations and thereby recovers the law.8

6.5.1. The Difficulties of Descriptive Simplicity
The difficulty with any principle expressed in terms of descriptions is that 
it can be rendered incoherent by merely altering the descriptive system 
used. In so far as the simplicity principle of curve fitting only requires 
us to favor the curves with fewer parameters, it is unsustainable. Simply 
rescaling the variables used can overturn its judgments completely, as will 
be illustrated in the following section.

The idea that we get closer to the truth by writing mathematically sim-
pler laws has the imprimatur of Einstein. However, it is unsustainable for 
the same reasons that trouble curve fitting. Judgments of just what is de-
scriptively simple are too malleable. Einstein’s own general theory of rela-
tivity illustrates the problem. When the theory first came to public notice 
after the eclipse tests of 1919, it was notorious for its abstruse difficulty. The 
eminent astronomer George Ellery Hale confided in a correspondence:9

I confess that the complications of the theory of relativity 
are altogether too much for my comprehension. If I were 
a good mathematician I might have some hope of forming 
a feeble conception of the principle, but as it is I fear it will 
always remain beyond my grasp.

The New York Times of 19 November 1919 reported an incredible tale, re-
flected in the partial headline “A book for 12 wise men”: 

When he [Einstein] offered his last important work to the 
publishers he warned them there were not more that twelve 

8 The technical details are as follows. The simplest non-trivial structure in the derivatives 
of the metric tensor gik is the Riemann curvature tensor, Ri

kmn. Its vanishing requires the flatness 
of space-time, which is too restrictive. The vanishing of its unique first contraction, Rik, is the 
Einstein gravitational field equation for empty space. The vector field is the vector potential Ai, 
and the tensor field mentioned is the Maxwell field tensor Ai;k – Ak;i. Setting its divergence to zero 
returns the source-free Maxwell equations.

9 9 February 1920. Quoted in Clark (1984, pp. 299–300).
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persons in the whole world who would understand it, but 
the publishers took it anyway.

The fable took root. It is repeated in the publisher’s introduction to Hendrik 
Lorentz’s (1920, p. 5) popularizations of relativity theory.

As the decades passed, general relativity was absorbed into main-
stream physics and opinions began to migrate. By the 1970s, the standard 
textbook for the theory came to a startlingly different conclusion:

“Nature likes theories that are simple when stated in co-
ordinate-free, geometric language.” […] According to this 
principle, Nature must love general relativity, and it must 
hate Newtonian theory. Of all theories ever conceived by 
physicists, general relativity has the simplest, most elegant 
geometric foundation […] By contrast, what diabolically 
clever physicist would ever foist on man a theory with such 
a complicated geometric foundation as Newtonian theory? 
(Misner et al. 1973, pp. 302–03)

How is a reversal of this magnitude possible? The key is the centrality of 
“coordinate-free, geometric language.” One finds general relativity to be 
the simpler theory when one adopts the appropriate language. As a result, 
the principle of descriptive simplicity, as enunciated by Einstein, is incom-
plete. Without a specification of the right language to be used, it can give 
no direction at all.

Perhaps one might hope that mathematics would provide the natural 
descriptive language for our science and, in particular, for our physics. A 
cursory glance at the interplay of mathematics and science shows things 
to be different. There is no unique language for physical theories. New 
physical theories commonly appear mathematically difficult and even 
messy. This is followed by efforts by mathematicians and the scientists 
themselves to simplify the presentation and manipulations of the theory. 
As I have argued elsewhere (Norton 2000, pp. 166–68), what results are 
new mathematical methods and new formulations of the theories that be-
come successively simpler.
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Newton’s development of his mechanics employed the ancient meth-
ods of Euclidean geometry. His contemporaries required considerable 
insight and facility in geometry to follow and emulate his difficult demon-
strations and proofs. Over the centuries, Newton’s theory was re-expressed 
in terms of algebraic symbols and calculus. Many of what were once ab-
struse results became natural and simple. Quantum mechanics developed 
in the first quarter of the twentieth century. The theory that resulted in the 
late 1920s was a complicated mess of different approaches and techniques: 
matrix mechanics, wave mechanics, Dirac’s c- and q-numbers. Subsequent 
efforts showed all of these theories to be variant forms of a single theory 
that found its canonical mathematical formulation in von Neumann’s 
1932 classic, Mathematical Foundations of Quantum Mechanics. Even 
Einstein’s general relativity benefited from this reformulation. His origin-
al methods did not include the now key notion of parallel displacement. 
This notion was introduced in response to the completion of the theory by 
the mathematician Tullio Levi-Civita in 1917.

6.5.2. Rescue by the Material Theory: Adaptation of Language 
as a Factual Judgment
As discussed above, we must acknowledge that there is something right 
in the idea that descriptive simplicity is a guide to the truth. The real epi-
stemic work is done in finding and developing a language or descriptive 
apparatus appropriate to the system under investigation. What makes an 
apparatus appropriate is precisely that the truths concerning the system 
find simple expression in it. Then, it is automatic that seeking simple asser-
tions in the language or descriptive apparatus leads us to the truth.

That is, the principle of descriptive simplicity guides us to the truth in 
so far as the language we use is properly adapted to the background facts. 
Hence, what is really guiding us is not some abstract notion of simplicity 
but merely the background facts as reflected in our choice of descriptive 
language. This inductive guidance from background facts is, of course, 
precisely what is called for by the material theory of induction. This idea 
will be illustrated with the example of curve fitting in the next section.
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6.6. Curve Fitting and the Material Theory of 
Induction
As a mode of discovery, curve fitting is based on the idea that fitting a sim-
ple curve to data can guide us to the truth. The material theory of induc-
tion requires that these inductive inferences are warranted by background 
facts. Here, I will describe in greater detail the character of these back-
ground facts. We will see that the vague and incomplete injunctions to 
seek the simpler curve translate into more precise constraints, expressed 
in terms of these background facts. The characteristics of background 
facts found in many but not all cases of curve fitting can be grouped under 
three headings, as below.

6.6.1. The Error Model
When curve fitting is used to seek some underlying truth or law, the pre-
sumption is that the data to which the curve is fitted have been generated 
by a standard error model of the form:

Error laden data = true curve + error noise.

That curve fitting operates with data produced by this model is so familiar 
that it is easy to overlook its importance. The techniques of curve fitting 
are designed to strip away confounding noise. Thus, the assumption of 
the standard error model must be true if these techniques are to guide us 
towards the truth.

A quick way to see its importance is to consider the curve-fitting prob-
lem shown in Figure 6.6. We seek the value of the quantity a that gives the 
best fit of y = 1/[log(x) − a] to the data.



1976 | Simplicity as a Surrogate

0 20 40 60 80 100

0.25

0.30

0.35

0.40

0.45

y

x

1/[log(x)-1]

1/[log(x)-0.41]
1/log(x)

0.50

Figure 6.6. A curve-fitting problem.

The optimum value turns out to be the value shown, a = 0.41.
Superficially, the problem looks traditional. However, this curve-fit-

ting problem does not conform to the standard error model. The data rep-
resent the density of prime numbers between x = 10 and x = 100. The first 
datum at x = 10 reports the number of primes between 1 and 10. There are 
four of them: 2, 3, 5, and 7, so that y = 4/10 = 0.4. The prime number theor-
em assures us that the density y(x) approaches 1/log(x) for large x. A cor-
ollary is that the density also approaches 1/[log(x) – a] for some constant 
a, for the two quantities, 1/log(x) and 1/[log(x) − a] approach one another 
for large x. The curve-fitting problem is to ascertain which value of a gives 
the best-fitting curve for values of x in the range 10 to 100 covered by the 
data. The result is 0.41, as shown.10

Instead of the standard error model, this problem conforms to a 
non-standard error model in which truth and error are permuted:

True data = error laden curve + error noise.

10 This is specifically for primes in the range specified. The optimum value for all primes is 
a = 1.
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This means that, epistemically, the exercise is different. We are not seeking 
truth. We already have the complete truth in the data that report the true 
density of prime numbers. Instead, we are seeking a summary that has the 
least deviation from the truth, where the notion of “least deviation” is one 
we can choose conventionally. In this case, I chose a fit that minimized the 
sum of squared deviations.

Engineering applications, such as the Moody diagram above, illustrate 
a second way that we may deviate from the standard error model. In so far 
as we are merely seeking a compact summary of past experience, there is 
no real error model in use at all, for there is no hidden truth sought. Our 
ambitions, however, are rarely so limited. For example, as noted above, the 
Moody diagram is typically not intended merely as a compact historical 
report. It is also intended as a predictive tool. To the extent that this is the 
case, the standard error model is presumed.

But the practice is somewhat protected from the full rigors of the 
model since engineering practice rarely requires perfectly exact prediction 
of pressure drops in pipes. A prediction correct to within a few percent is 
more than sufficient for most applications. This affords great protection 
when we seek predictions for conditions that interpolate between those 
used to create the original chart. Fitting just about any family of curves 
will interpolate to the requisite level of accuracy. In effect, we are con-
forming the data to a weaker model:

Error laden data = near enough to true curve + error noise.

Near enough to true is good enough for interpolation.
This protection is lost when we seek to extrapolate to new conditions 

outside those used to create the diagram. For then two curves that each 
interpolate among the data equally well may diverge markedly when we 
extend beyond the condition in which the data were collected. Then we 
need to find which is the true curve on pain of uncontrolled errors en-
tering our predictions. This divergence is illustrated in Figure 6.4 above. 
The polynomials in the figure interpolate the data comparably well in the 
range of x = 0 to x = 10. They diverge rapidly outside the range in which 
the data were collected, giving markedly different results in the range x = 
10 to x = 12.
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6.6.2. The Parameterization
Descriptive simplicity can only be a good epistemic guide to the truth, 
I have argued, if the language of description is chosen so that the truths 
correspond to simple assertions. In the case of curve fitting, this condition 
translates into a matching with background facts of the parameterization 
used and the family of its functions from which the curves are drawn.

We are free to rescale the quantities used to describe our measure-
ments; and we do. We may compare cars by their speeds or, equivalently, 
by the times they take to cover some fixed distance. Since one parameter 
is the inverse of the other, fitting some family of curves to speed will gen-
erally give different results from fitting the same family of curves to times. 
This reparameterization is common. In acoustics, we measure loudness 
of sounds in decibels, which is a logarithm of the power of the sound. In 
astronomy, we measure the apparent magnitude of the stars on a scale that 
is the logarithm of the intensity (that is, the energy flow per unit area).

To see how the parameterization we choose makes a difference, we 
will develop an example in which the data are generated by a true linear 
relation y = x, as in Figure 6.7. The data have been simulated with very 
little noise, so the best-fitting straight line11 comes close to y = x. 

11 The best-fitting straight line is y = −0.000403379 + 0.996917 x. It is not shown in Figure 
6.7 since it is too close to the true curve y = x to be separated visually.
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Figure 6.7. Data generated from true curve y = x.

Rescaling the x variable to z = sin−1(x) means that the true curve will be 
rescaled to y = sin(z). However, a polynomial curve fit between y and z will 
never return this curve, for y = x is equivalent to a polynomial of infinite 
order in z:

A curve-fitting algorithm that proceeds up the family of polynomials in 
z will necessarily halt at some finite order and so cannot return the true 
curve. Finding polynomials of the best fit for the rescaled data of Figure 
6.7 shows how poorly the polynomial fit performs. The best-fitting linear, 
quadratic, cubic, and quartic polynomial curves interpolate the data well. 
However, as Figure 6.8 shows, they fail immediately on extrapolation be-
yond the domain x = 0 to x = 0.9 in which the data was generated.12

12 The domain x = 0 to x = 0.9 corresponds to z = 0 to z = sin−1(0.9) = 1.12. The largest x 
shown, x = 1, corresponds to z = sin−1(1) = p/2 = 1.57.
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Figure 6.8. Failure of polynomial curve fit on reparameterized data.

The problem is the same in the reverse direction. If y = z is the true curve, 
then this true curve corresponds to an infinite polynomial if we param-
eterize the data using x, for

for |x| < 1. Once again, ascending the family of finite polynomials will 
never return the true curve.

Choosing the right parameterization and family of curves amounts 
to properly adapting them to the background facts. If the attenuation of 
the intensity I(r) of some signal with distance r is due to an absorptive 
medium, then the signal attenuates as I(r) = I(0) exp(−lr), for some con-
stant l. The exponential dependence of I(r) amounts to another infinite 
order polynomial in r. If we rescale, the relation reduces to a simple linear 
dependence of the logarithm of I(r) on r, for then the attenuation follows 
log I(r) = constant – lr. If, however, the attenuation is due to spreading 
in space, signal intensity will attenuate according to I(r) = A/r2, for some 
constant A. This corresponds to log I(r) = A − 2 log(r), which once again 
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corresponds to an infinite order polynomial of r. However, if we use both 
log I(r) and log(r) as our parameters, then the true curve is linear and its 
slope, −2, conveys the fact that the attenuation follows an inverse square 
law.

Perhaps the clearest example of this adaptation of the parameters and 
curves to the background facts arises when we have processes that are per-
iodic in time. We should then use the time t as the parameter. The family 
of curves to be fitted should not be polynomials, since they are not period-
ic. Rather, we should use the family of periodic trigonometric functions, 
sin(t + a), sin(2t + b), sin(3t + c), etc., where the a, b, c, … are constant phase 
factors. We learn from Fourier analysis that this family is sufficiently rich 
to represent all periodic curves of likely interest to curve fitters.

6.6.3. The Order Hierarchy
We must have an adaptation of the descriptive language to background 
facts if descriptive simplicity is to be an effective guide to truth. In im-
portant cases, the adaptation can be especially tight. Curve fitting pro-
ceeds with some collections of families of curves, such as the constant, 
linear, quadratic, etc. In these important cases, the families of curves fitted 
correspond directly to particular processes. Then, fitting a curve from a 
family farther up the hierarchy corresponds to the inclusion of more pro-
cesses in the account developed of the phenomena. Further, the adapta-
tion has to be such that curves fitted earlier in the procedure correspond 
to stronger or more probable processes.

This adaptation will be illustrated in the following two sections with 
the cases of fitting trajectories to celestial objects and the harmonic analy-
sis of the tides.

6.7. Fitting Orbital Trajectories
The standard method of curve fitting is to find the curve that minimiz-
es the sum of the squares of deviations of the curve from the data. This 
“least-squares” technique was introduced around the start of the nine-
teenth century in astronomy to assist the fitting of orbits to celestial ob-
jects in our solar system. This application illustrates a tight adaptation 
of the curve-fitting method to the background assumptions that are the 
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surrogates of simplicity. The family of curves fitted reflects the particular 
trajectories that background assumptions select. Moreover, ascending the 
order hierarchy reflects a pursuit of trajectories according to their likeli-
hood and the strength of the processes that form them.

6.7.1. Ellipses, Parabolas, and Hyperbolas
When a new celestial object—a new planet or comet, for example—is sight-
ed, an astronomer’s first task is to find the orbit that fits the positions seen. 
Astronomers do not follow the generic curve-fitting procedure of seeking 
first to fit a straight line and then proceeding up through higher order 
polynomials. Rather, the family of curves chosen is provided by gravita-
tion theory. The initial model is provided by the “one-body problem”: the 
motion of a free body attracted to a central point by a force that varies 
inversely with the square of distance r to the point. That is, the attracting 
force is k/r2 for a suitable constant k. The familiar result, given early in any 
text on celestial mechanics,13 is that the trajectory is one of the three conic 
sections: an ellipse, a parabola, or a hyperbola.

Select polar coordinates (r, q ) in the plane of the orbit with the origin r 
= 0 at the center of force in the sun and set q = 0 at the perihelion, the point 
of closest approach to the sun in the orbit. A single formula that covers all 
three curves is

where e is the eccentricity and L is the semi-latus rectum that, loosely 
speaking, fixes the width of the figure. (More precisely, it is the distance 
from a focus to the curve along a line perpendicular to the major axis.) We 
pass among the conic sections with equal semi-latus recta by changing the 
eccentricity e. A circle is e = 0, an ellipse is 0 < e < 1, a parabola is e = 1, and 
a hyperbola is e > 1.14

13 I happen to be using Sterne (1960, §1.3) here.
14 The semi-latus rectum is related to the semi-major a by L = a(1 − e2) for both an ellipse 

and an hyperbola if we adopt the convention that a is positive for an ellipse and negative for a 
hyperbola.
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Figure 6.9 shows trajectories of the three types of conic sections with 
equal semi-latus rectum: 

semi-latus
rectum L ellipse

e = 0.8

parabola
e = 1

hyperbola
e = 1.2

Figure 6.9. Conic sections with equal semi-latus rectum.

Once the semi-latus rectum L and eccentricity e are fixed, so too is the or-
bital motion. Kepler’s area law affirms that the radial line from the center 
of force to the object sweeps area at a constant rate with time t. That is the 
areal velocity h = r2dq/dt is constant. This areal velocity is related to L by  
h = √(kL) . Hence, the angular speed of the object in its orbit, dq/dt, is fixed 
once the trajectory is fixed.

Consider once again the default straight line of generic curve fitting. 
This familiar default is precluded by the background assumptions of 
gravitation theory. It can arise for objects in the solar system if they are 
moving at speeds much greater than those normally encountered. Then, 
the object will follow a hyperbolic trajectory with a very large eccentricity 
that is practically indistinguishable from a straight line.
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The three conic sections provide the basis for the family of curves 
employed. When we allow for perturbations produced by gravitational at-
tractions from other objects in the solar system, as we shall see below, the 
family is enlarged by allowing a slight motion in the curve. For example, 
the major axis of the ellipse along which the object moves may rotate 
slowly. Representing that slow rotation introduces further parameters and 
provides the full family of curves used in virtually all accounts of orbital 
motion.

Fitting an orbit to a celestial object involves moving up this hierarchy 
of curves until a suitably close fit is obtained. One might try describing 
this ascent as guided by some principle of parsimony that would require 
starting with the simplest curve and then moving up to more complicated 
ones; however, it is hard to see just which abstract notion of simplicity here 
would lead us to identify conic sections as the simplest case. Straight lines, 
the common starting point in general hierarchies of simple curves, are an 
extreme case never implemented in this celestial mechanics. Fortunately, 
no such notions of simplicity are needed to explicate the procedures used. 
The selection of curves and their order are guided by background assump-
tions on the likelihood of certain trajectories and on the likelihood and 
strength of processes that modify them in prescribed ways.

6.7.2. Comets
A simple illustration is provided by the methods used to fit orbits to newly 
discovered comets—that is, it is a simple illustration if we limit ourselves 
to the methods routinely used in the nineteenth century. The methods 
then customary were described by James Watson (1861, pp. 163–69). They 
depend essentially on the following background fact: comets typically 
have very eccentric orbits, and we get to observe them when they are in 
the vicinity of the sun. As Figure 6.9 above suggests, it becomes quite dif-
ficult there to separate the ellipses and hyperbolas with eccentricity close 
to unity from each other and from a parabola.15 This fact leads to the pro-
cedure described by Watson:

15 The details: If the trajectory is a parabola with semi-latus rectum L, then the distance to 
the sun at perihelion is L/2. For a very eccentric ellipse or hyperbola, e is close to 1; that is e = 1 − e, 
where e is small. (It is positive for an ellipse and negative for an hyperbola.) Hence 1 − e2 = 1 − (1 − 
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It is therefore customary among astronomers, when a com-
et has made its appearance unpredicted, to compute its or-
bit at first on the supposition that it is a parabola; and then, 
by computing its place in advance, find from a comparison 
of the actual observations, whether this hypothesis is the 
correct one. Should it be found to be impossible to represent 
the observed positions of the comet by a parabola, an ellipse 
is next computed and when this also fails, recourse is had to 
the hyperbola, which, provided the previous computations 
are correct in every particular, will not fail to represent 
the observations within the limits of their probable errors. 
(1861, p. 164)

In other words, the known fact of the high eccentricity of comets directs a 
choice of a parabola to fit the initial data. Astronomers then collect more 
data and move to a nearby ellipse and then hyperbola if the deviations 
from the parabola are sufficient.

The sequence of shifts reflects a definite physical assumption about 
the energy of the comet. Adopting an ellipse amounts to assuming that 
the comet’s total energy—kinetic plus potential—is negative so that it is 
bound to the sun and can never escape. Adopting the hyperbola amounts 
to assuming a positive energy sufficient to enable the comet to escape the 
sun’s gravity. The case of the parabola is the intermediate case of zero 
energy, which is the minimum level at which escape from the sun’s gravity 
is possible. Watson does not mention it in his text, but I believe the deci-
sion to try an ellipse after a parabola rather than a hyperbola reflects the 
prevalence of comets bound in elliptical orbits. Such comets will return 
periodically and thus are more likely to be seen by us. Adopting the hyper-
bola amounts to assuming that the comet will pass just once through our 
solar system, so that this is our one chance to see it. If the orbit is elliptical, 
we will have many chances. 

There is a small element of arbitrariness in the procedure. Instead 
of fitting a parabola initially, astronomers could have chosen an ellipse 

2e + e2) ≈ 2e to first order. Hence the semi-latus rectum L = a(1 − e2) ≈ 2ae. The distance to the sun 
at perihelion is a(1 − e) = ae ≈ L/2, which agrees with the parabolic case.
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with an eccentricity imperceptibly different from unity. (Such a trajectory 
would be near indistinguishable from a parabola in the vicinity of the 
sun.) Whichever is chosen as the first curve, the choice is driven by the 
background physical assumption that the comet is just on the energetic 
edge of being gravitationally bound to the sun permanently. Further data 
then directs a decision to one side or the other, within or beyond the edge. 
The selection of the curves fitted reflects this background physics.

6.7.3. Perturbed Orbits and New Planets
The conic sections discussed so far are grounded physically in Newton’s 
law of gravity through the one-body problem. However, they are not the 
complete family of curves fitted to bodies moving in our solar system. 
Very careful measurements show that a planet will trace out an almost 
perfectly elliptical orbit only over the shorter term. If it is tracked over the 
longer term, however, deviations will appear. They are sufficiently small 
that they can be represented as changes in the elliptical orbit that the plan-
et is following. If, for example, the axis of the ellipse rotates in the plane of 
the orbital motion of a planet, then the orbit actually traced out takes on 
the flower-petal shape seen in Figure 6.10. It is an advance of the planet’s 
perihelion, its point of closest approach to the sun, with each orbit of the 
sun. Or at least this is the shape traced out if we depict an advance that is 
unrealistically fast for any planet.
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Figure 6.10. Advancing perihelion motion of a planet.

In general, the small deviations from the perfect elliptical orbits are 
represented by slow changes in the six Keplerian elements that charac-
terize each elliptical orbit. The first two elements are the most familiar: 
the semi-major axis and eccentricity specify the shape of the ellipse. The 
remaining elements locate that ellipse in space and place the planet on 
it at the appropriate time.16 The families of curves associated with these 
perturbed elliptical orbits are the ones fitted to the observed positions of 
the planets.17

These perturbed ellipses are initially fitted to the planets because 
they are found to fit. However, from the earliest days of Newtonian gravi-
tation theory, the challenge has been to locate the physical cause of the 

16 The inclination and longitude of the ascending node locate the orientation of the 
orbital plane holding the ellipse in relation to the reference plane, which is usually the ecliptic. 
The argument of the periapsis locates the orientation of the orbit’s major axis in the orbital plane. 
Finally, the mean anomaly at epoch fixes the position of the planet in its orbit at one time. (If that 
position is known, the dynamics of gravitation theory can be used to determine its position at 
other times.)

17 Our moon’s motion is greatly perturbed so that this approach is less successful for it, 
and other methods are used in the historically troublesome lunar theory. See Brown (1896, p. 66).
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perturbation, which is almost invariably sought in the perturbing gravi-
tational influence of bodies other than the sun. Jupiter, the most massive 
of the planets, is a common source of perturbations. It exerts a large per-
turbing influence on Mercury for example. The axis of Mercury’s orbit 
advances and the ellipse is more eccentric when Jupiter is in line with this 
axis. The axis regresses and is less eccentric when Jupiter is perpendicular 
to the axis.18

The need to give a physical foundation for the perturbed ellipses fit-
ted is uncompromised. One might initially find that some perturbed el-
lipse fits the motion. However, that fit remains tentative until the physical 
basis is located. Only then can astronomers know how well the perturbed 
ellipse will continue to fit the planet’s motion. More importantly, the 
perturbations to the ellipse can be adjusted according to the subsequent 
movements of the perturbing body.

Perhaps the most vivid illustration of the need for a physical basis for 
the changing elements of a planet’s ellipse arises in the celebrated discov-
ery of the planet Neptune. The need for the physical basis is inverted to 
become a means for discovery, in this case, of a new planet. By the early 
nineteenth century, the orbit and perturbations of the planet Uranus had 
been established. However, not all of the perturbations could be explained 
by the gravitational action of known planets. In 1845, John Adams and 
Urbain Le Verrier independently pursued the possibility of another hither-
to unknown planet outside the orbit of Uranus that would be responsible 
for the perturbations. They predicted the position of this planet. After an 
easy telescopic search in 1846, the planet was found and was eventually 
given the name Neptune.

That astronomers require the variant curve forms to have a physic-
al foundation is seen most clearly when these efforts fail. The orbit of 
Mercury was also well established in the nineteenth century, and the bulk 
of its perturbations could be accounted for by the gravitational effects of 
the other planets. However, they could not be accounted for complete-
ly. Recalling the success with Neptune, Le Verrier (1859) proposed that 
these further perturbations could be accounted for by another new planet 

18 Or so Airy (1884, p. 113) reported.
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orbiting closer to the sun than Mercury. The new planet, which had come 
to be known as Vulcan, was never found.

This failure was discouraging. Nonetheless, astronomers could not 
abandon the idea that the perturbations were generated by some attractive 
mass somewhere. By the end of the century, many proposals were under 
investigation. Simon Newcomb’s (1895) treatment became the authorita-
tive analysis. Its sixth chapter assessed a list of possible locations for new 
masses that might account for the anomalous motion of Mercury. They 
included masses located in a slight non-sphericity of the sun, in rings of 
masses or groups of planetoids inside Mercury’s orbit, or planetoids be-
tween the orbits of Mercury and Venus, and the possibility of masses asso-
ciated with the zodiacal light, a diffuse glow seen around the sun.

More intriguing was a proposal by the astronomer Asaph Hall (1894). 
If the force of gravity does not dilute as the inverse square 1/r2 with dis-
tance r, but dilutes slightly faster, then the orbit of a planet would trace 
an ellipse that would advance slightly, as Mercury’s was observed to do. 
Hall noted that a very slight adjustment to the exponent in the inverse 
square was all that was needed to accommodate the anomalous motion 
of Mercury. He found that 1/r2.00000016 would suffice. Newcomb (1895, 
pp. 118–21) gave a more precise 1/r2.0000001574. None of these proposals 
survived Newcomb’s scrutiny and that of other astronomers.19

What is interesting for our purposes in Hall’s hypothesis is that it al-
tered the default repertoire of curves to be fitted to planetary motions. The 
one-body problem no longer gives a fixed conic section as the simplest 
curve. Rather, under Hall’s modified law of attraction, it gives very slowly 
rotating ellipses for bound orbits. These become the default curves to be 
fitted to planetary motions. The choice has a physical grounding in Hall’s 
modified law of attraction.

While Hall’s hypothesis did not survive scrutiny, that a law slightly 
different from Newton’s prevails in the solar system soon proved to be the 
way to accommodate the anomalous motion of Mercury. In November 
1915, as Einstein was completing his general theory of relativity, he discov-
ered to his jubilation that the new theory predicted precisely the anomalous 

19 The continuation of this episode, including Einstein’s successful account of the motion 
of Mercury, is discussed further in the chapters on inference to the best explanation.
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advance of the perihelion of Mercury. He computed an advance of forty-
three seconds of arc per century, noting that the astronomers’ values lay 
in the range of 40–50 seconds. With the adoption of Einstein’s theory, it 
became automatic to include a relativistic correction to the Newtonian 
orbits; that is, under the physical grounding of Einstein’s theory, the de-
fault curves to be fitted to planetary motions became very slowly rotating 
ellipses.

6.8. Harmonic Analysis of Tides
On an oceanic coast, the sea level rises and falls periodically, with about 
two high tides and two low tides each day. Beyond this crude description 
are many variations. There is some variability in the timing of highs and 
lows; and there is considerable variation in just how high and low the tides 
get. This variability is also somewhat periodic over longer time scales, but 
the exact cycles are hard to pin down precisely by casual inspection of 
some portion of a tide’s history.

Accurate tidal prediction is important and even essential for coastal 
navigation. Since the ebb and flow of the tide can produce considerable 
currents in coastal estuaries and bays, reliable advance knowledge of 
the tides can be the difference between easy and hard exits from a port. 
Reliable tidal prediction can make the difference between a successful re-
turn to one’s home port or running aground in unexpected low water.

These factors make reliable long-term tidal prediction highly desir-
able. Since the behavior of the tides varies so much from place to place, 
the problem of prediction is best tackled as a curve-fitting problem. Start 
with a good history of tides at each place on a coast. For each, find the 
curve that best fits the history and use it for prediction. Since the tides are 
periodic phenomena, one would expect that the families of functions to be 
fitted are based on the periodic trigonometric functions: sines and cosines 
of time. The natural method is straightforward Fourier analysis, which is 
the celebrated mathematical method for representing periodic functions 
in terms of sine and cosine harmonic constituents. To apply it, we would 
assume that the dependence of the water height on time t is given by the 
series:
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with the series continued as far as needed. We know from the theory of the 
Fourier series that any credible behavior of the tides over some nominated 
time can be represented arbitrarily closely by this expression. We merely 
need a suitable scaling for t, a suitable selection of the a and b coefficients, 
and the inclusion of enough terms from the series.

While this is the obvious approach, in the past century and a half 
of work on tides, I have found no serious effort to provide this sort of 
analysis. The core difficulty, I conjecture, is that the dominant harmonic 
constituents present do not have the frequencies 1, 2, 3, … of the gener-
ic Fourier analysis. Combinations of these dominant constituents could 
still be captured by Fourier analysis with components of frequency 1, 2, 
3, …. However, a large number of these components would be needed to 
represent accurately the summation of a few dominant harmonics whose 
frequencies are not in this set.

Instead, from the first moments, a physical basis has always been de-
manded for the harmonic constituents fitted to observed tidal histories. 
William Thomson (later Lord Kelvin) introduced the method of fitting 
harmonic constituents to tidal histories in 1867. Writing in his report to 
the British Association (Thomson 1869), he noted that previous methods 
had merely recorded the times of high and low water. He proposed that 
fuller records be kept to which harmonic constituents would be fitted. The 
particular constituents he proposed were drawn directly from the back-
ground theory of the origin of the tides in the gravitational interaction of 
the earth, sun, and moon.

The elements of this theory are widely known. The moon’s gravity 
pulls on the waters of the earth’s oceans. The pull is stronger than the 
average on the side of the earth nearer the moon and weaker on the side 
farther from the moon. The net effect is an elongation of the oceans into 
a spheroid that bulges away from the earth on both sides in line with the 
earth-moon axis, as shown in Figure 6.11.
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Figure 6.11. Tidal bulge of oceans raised by the moon.

The earth rotates daily under this bulged shape. As a location on earth 
passes a bulge, the location registers a high tide. Since there are two bulges, 
each location registers two high tides and two low tides each day. The cycle 
is only roughly daily since it completes when a point on the earth returns 
to its original position in relation to the moon. The moon orbits the earth 
once a month and moves in the same direction as the earth rotates. So 
to return to its starting position in relation to the moon, the earth must 
rotate slightly more than the full rotation of twenty-four hours. It requires 
roughly twenty-four hours and fifty minutes. In this time, two tide cycles 
are completed. Half of this process gives us the most important harmonic 
constituent: the “principal lunar semidiurnal [= half-daily],” written as 
M2, where the 2 denotes two cycles per day. It has a period of about twelve 
hours and twenty-five minutes.

Superimposed on this semidiurnal cycle is another semidiurnal cycle. 
It results from the gravitational attraction of the sun on the waters of the 
oceans. The sun’s attraction also distorts the ocean waters into a spher-
oid elongated along the line of the earth-sun axis, or so it would if there 
were not greater distortions due to the moon’s gravity. The bulge produced 
would be a little less than half that raised by the moon. It takes twenty-
four hours exactly for a point on the earth to return to a position with the 
same relation to the sun. There are once again two bulges passed in this 
time, so we cycle between them each twelve hours. This contributes an-
other harmonic constituent, the “principal solar semidiurnal” S2, whose 
period is twelve hours.

That these two harmonic constituents have periods that differ by 
about twenty-five minutes is of the greatest consequence for the tides. At 



The Material Theory of Induction214

the full or new moon, when the sun and moon align, the two bulges add 
and we have especially high tides, known as the “spring” tides. They are 
so named since more waters are imagined as springing forth. The effect is 
shown in Figure 6.12.

Figure 6.12. Spring tides.

Each twelve hours, the high water of lunar semidiurnal cycle will lag be-
hind that of the solar semidiurnal cycle by about twenty-five minutes. This 
lag accumulates. After about a week, at the time of the half moon, the 
tidal bulges of the moon and sun are aligned roughly perpendicularly. The 
outcome is a lowering of the high tide and an elevation of the low tide, 
producing the more modest “neap” tides of Figure 6.13.
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Figure 6.13. Neap tides.

The combining of the two cycles to produce this further cycle of spring 
and neap tides is shown in Figure 6.14.

50 10 days

neap neap

spring spring

M2+S2

solar
S2

lunar
M2

15 20 25 30

Figure 6.14. Spring and neap times from combining harmonic 
constituents.
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This is one of the most important outcomes of the combining of the tidal 
harmonic constituents.

One might expect that there is little more to the harmonic analysis 
of the tides. What we have seen so far is adequate for an informal under-
standing of the gross behavior of the tides. It associates tidal levels with 
the phases of the moon in a qualitatively correct way. However, it falls far 
short of what is needed for successful quantitative prediction of the tides. 
Many more physical factors must be considered.

The sun and moon also move to the north and south, carrying their 
tidal bulges with them. In the course of a solar year, the sun completes one 
cycle around the ecliptic, moving between 23.5o north and 23.5o south of 
the stellar equator. The moon’s monthly motion carries it along a plane 
that is inclined at about 5o to the plane of the ecliptic. Its resultant motions 
carry it north and south of the stellar equator, between maximum elon-
gations from the stellar equator that vary from 18.5o to 28.5o. As the sun 
and moon change their longitude, they carry with them the tidal bulges 
that they raise. This affects the heights of the tides and does it differently 
at each location on the earth.

If the sun and moon are directly over the equator, the two tidal bulges 
will pass symmetrically over some fixed terrestrial location on the equator 
in the course of a day. In so far as these processes are concerned, suc-
cessive tides will have equal height. If, however, the sun and moon have 
moved together to a position far to the north, then the two tidal bulges 
will be shifted towards different hemispheres. One will be massed in the 
northern hemisphere and the other in the southern hemisphere. As a re-
sult, a point on the earth away from the equator will meet with deeper 
and shallower portions of the successive bulges, adding a diurnal (daily) 
cycle to the semidiurnal cycles so far mentioned. In extreme cases, the sun 
and moon pass overhead sufficiently far from the equator that, at some 
locations, one bulge may be missed entirely. These locations experience a 
single high tide per day. That is, their tides are on a diurnal cycle.

There are further complications. The size of a tidal bulge depends on 
the distance of the earth from both the sun and moon. Since the orbits are 
elliptical, the sun and moon approach and recede from the earth as they 
complete their cycles, annually and monthly, respectively. In addition, this 
cyclic effect is compounded by the perturbations induced by the sun on 
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the moon’s orbit. These perturbations alter the eccentricity of the moon’s 
ellipse, which introduce further variation in the distance of the moon 
from the earth. All of these astronomical effects happen on regular cycles, 
readily predictable in advance. They are incorporated into tidal analysis 
by adding more harmonic constituents of the appropriate form.

These astronomical effects may seem overwhelming. However, they 
are merely the most reliably regular of the influences on the tides. If the 
earth were a perfectly smooth spheroid, a tidal bulge of the ocean would 
wash over it as a uniform wave. However, the earth is not a perfect-
ly smooth body and all sorts of irregularities in its surface obstruct the 
uniform passing of the tidal wave. These obstructions are great in coastal 
areas, which is precisely where we are seeking predictions. The problems 
are compounded if we wish to predict tides in bays and estuaries. For the 
rising and falling of a tide will be delayed by the need for water to flow in 
and out of the bay as the tidal wave passes. Enclosed bodies of water have 
their own natural frequencies with which water oscillates to and fro within 
them. The coming and going of tidal waves couples with these oscillatory 
processes, all of which are represented by further harmonic constituents.

The shallow-water constituents are of two types: overtides and com-
pound tides. The first are the analog of harmonic overtones in music. For 
example, the principal lunar semidiurnal M2 consists of two high tides 
per day. It raises shallow-water overtides M4 and M6 with four and six 
peaks each day. Compound tides arise with a frequency that is the sum 
or difference of the components from which they are derived. The shal-
low-water terdiurnal MK3 is derived from the principal lunar semidiurnal 
M2 and the lunar diurnal K1. It sums their two and one peaks per day to 
give three peaks.

Finally, meteorological facts can have a major influence on tides. 
Strong winds can materially affect them. These factors, however, are the 
hardest to address. Accurate weather prediction is difficult even a day in 
advance, whereas tide tables are prepared years in advance. There is some 
small effort to allow for these meteorological effects by means of the solar 
components, SA, SSA, and S1; that is, the solar annual, solar semi-annual, 
and solar diurnal, which have periods of a year, half a year, and a day.20

20 For further discussion of these harmonic components, see Shureman (1958, pp. 39–48).
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In sum, the harmonic analysis of tides is complicated and difficult, 
even when we seek a sound physical basis for the harmonic constituents. 
Many are needed. This was already apparent to William Thomson (1869, 
p. 491), who initially listed twenty-three constituents. Many more can be 
needed. The most difficult locations for prediction are complex estuaries, 
such as Anchorage, Alaska and Philadelphia, Pennsylvania. An adequate 
analysis requires over one hundred harmonic constituents (Hicks 2006, p. 
40). The United States National Oceanic and Atmospheric Administration 
(NOAA) employs a standard set of thirty-seven constituents for its tidal pre-
dictions for coastal regions in the US. Here is an illustration of their use.

Table 6.1 shows the harmonic constituents used by NOAA for 
Annapolis, Maryland, in the Chesapeake Bay:21

Table 6.1. Harmonic constituents used by NOAA for tidal predictions 
at Annapolis, Maryland.

Constituent 
Symbol

Constituent Name Amplitude Phase Speed

1 M2 Principal lunar semidiurnal 0.457 291.6 28.9841042

2 S2 Principal solar semidiurnal 0.071 319.5 30

3 N2 Larger lunar elliptic 
semidiurnal

0.095 270.5 28.4397295

4 K1 Lunar diurnal 0.194 356.7 15.0410686

5 M4 Shallow water overtides of 
principal lunar

0.012 58.3 57.9682084

6 O1 Lunar diurnal 0.157 6 13.9430356

7 M6 Shallow water overtides of 
principal lunar

0.011 159.6 86.9523127

8 MK3 Shallow water terdiurnal 0 0 44.0251729

9 S4 Shallow water overtides of 
principal solar

0 0 60

10 MN4 Shallow water quarter 
diurnal

0 0 57.4238337

11 NU2 Larger lunar evectional 0.021 268.5 28.5125831

21 Amplitude is measured in feet, phase in degrees, and speed in degrees per hour. 
Source: http://tidesandcurrents.noaa.gov/data_menu.shtml?stn=8575512%20Annapolis,%20
MD&type=Harmonic%20Constituents. Accessed August 10, 2012.
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Table 6.1. (continued)

Constituent 
Symbol

Constituent Name Amplitude Phase Speed

12 S6 Shallow water overtides of 
principal solar

0 0 90

13 MU2 Variational 0 0 27.9682084

14 2N2 Lunar elliptical semidiurnal 
second-order

0.013 246.7 27.8953548

15 OO1 Lunar diurnal 0.006 347.3 16.1391017

16 LAM2 Smaller lunar evectional 0.011 318 29.4556253

17 S1 Solar diurnal 0.065 290.5 15

18 M1 Smaller lunar elliptic diurnal 0.011 1.2 14.4966939

19 J1 Smaller lunar elliptic diurnal 0.011 340.9 15.5854433

20 MM Lunar monthly 0 0 0.5443747

21 SSA Solar semiannual 0.119 44.5 0.0821373

22 SA Solar annual 0.338 128.4 0.0410686

23 MSF Lunisolar synodic 
fortnightly

0 0 1.0158958

24 MF Lunisolar fortnightly 0 0 1.0980331

25 RHO Larger lunar evectional 
diurnal

0.012 29 13.4715145

26 Q1 Larger lunar elliptic diurnal 0.025 331.6 13.3986609

27 T2 Larger solar elliptic 0.004 318.3 29.9589333

28 R2 Smaller solar elliptic 0.001 320.6 30.0410667

29 2Q1 Larger elliptic diurnal 0.004 15.1 12.8542862

30 P1 Solar diurnal 0.065 348.8 14.9589314

31 2SM2 Shallow water semidiurnal 0 0 31.0158958

32 M3 Lunar terdiurnal 0 0 43.4761563

33 L2 Smaller lunar elliptic 
semidiurnal

0.033 308.1 29.5284789

34 2MK3 Shallow water terdiurnal 0 0 42.9271398

35 K2 Lunisolar semidiurnal 0.021 317.9 30.0821373

36 M8 Shallow water eighth diurnal 0 0 115.9364166

37 MS4 Shallow water quarter 
diurnal

0 0 58.9841042

These thirty-seven constituents fix the family of thirty-seven component 
functions whose sum is to be fitted to the tidal history in Annapolis. Each 
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consists of a cosine wave whose amplitude, phase, and speed are to be 
determined either from background assumptions or by fitting to the tidal 
history. The resulting parameters, given in the last three columns of the 
table, are used to compute NOAA’s tidal prediction. Figure 6.15 shows the 
result of combining them for the week of 7 August 2014.22

Figure 6.15. Tidal prediction for Annapolis, 7–13 August 2014.
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7

Simplicity in Model Selection

7.1. Introduction
In philosophical analyses, simplicity is most commonly introduced as a 
rather abstruse metaphysical notion whose application in theory appraisal 
is important but troublesome. For the invocation of simplicity seems to 
require the highest level of human insight, as opposed to the mechanical 
application of an unambiguous, even algorithmic rule. Hence, it was quite 
a revelation in the philosophy of science literature when Malcolm Forster 
and Elliott Sober (1994) pointed out that the model selection literature 
in statistics had succeeded in incorporating a simplicity condition into 
rules for model selection that are applied mechanically—that is, without 
the need for higher-level human insight.

This example of model selection is important and interesting. 
However, my sense is that Forster and Sober were too optimistic in just 
what they thought we could learn from it. They passed too readily from 
the case of model selection to broader morals pertaining to other cases in 
which there were invocations of simplicity, such as the decision between 
Copernican and Ptolemaic astronomy. This was an overreach. The model 
selection literature shows how simplicity considerations arise in solving 
a quite specific problem: the discerning of the true relation obscured by 
random, statistical noise. The simplicity considerations in Copernican 
and Ptolemaic astronomy are not dependent essentially on error noise. 
There is a loose similarity between the two cases, but much more needs to 
be said before general morals can be recovered from the one case of model 
selection.
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My goal in this chapter is more modest. Instead of seeking to recover 
universal claims about simplicity from the example of model selection, I 
merely want to show how the literature on model selection provides an 
important illustration of the central claim of the last chapter: that there is 
no epistemically potent, universal principle of parsimony, and that sim-
plicity considerations in theory appraisal are really surrogates for back-
ground facts. I will look at hypothesis selection governed by the Akaike 
Information Criterion (AIC), discussed by Forster and Sober. The criter-
ion directs us to evaluate a hypothesis by determining how likely it makes 
the data at hand. The danger of overfitting is greater the larger the hypoth-
esis space of the model from which the hypothesis is drawn. The criterion 
directs us to correct for this overfitting by subtracting the dimension of 
the hypothesis space from the statistic that expresses the likelihood of the 
data. This correction is its notable property, for it rewards models for their 
simplicity. However, I will argue, the criterion provides no comfort for 
metaphysicians of simplicity, for the following reasons:

•  The criterion is deduced from straightforward assumptions 
about the systems investigated. These assumptions include 
no posit of simplicity and no principle of the parsimony of 
nature.

•  The criterion deduced is simply a formula used to weight 
the performance of various models in narrowly specified 
conditions. No general principle of parsimony is inferred 
such as could be applied elsewhere.

•  Considerations of simplicity need not enter into 
the discussion at all. They arise only because we 
metaphysically minded readers see a particular formula 
and find it comfortable to interpret one term in the 
formula as a reward for simplicity (or punishment for 
being complicated). 

Finally, we shall see that the simplicity correction is merely a surrogate for 
a correction derived from a background assumption. The most potent of 
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the governing assumptions is that the data are generated by a hypothesis 
in the model being tested.1 This assumption proves strong enough to allow 
us to estimate how much overfitting the model permits and, as a result, to 
correct for it in an especially simple way. We then interpret this correc-
tion as what simplicity requires, although the notion played no role in its 
generation.

The chapter will introduce model selection and the AIC, which is one 
of many such criteria. For our purposes of identifying how generally sim-
plicity considerations enter model selection, it is as good as any.2 Sections 
7.2 to 7.5 will introduce model selection and try to explain how the criter-
ion is able to generate the simplicity correction. In Section 7.6, we will turn 
to a fully worked out example of the criterion in action and then conclude 
with an account of its relation to the material theory of induction.

7.2. Model Selection
Model selection deals with data generated by a probabilistic system. A 
model consists of a set of hypotheses such that each is a candidate de-
scription of the probabilistic system. A primary application is the example 
of curve fitting discussed in the last chapter. There, as we saw, data were 
generated by a function confounded by statistical noise. The models were 
the different families of functions that could be fitted: linear functions, 
quadratic function, and so on, and their associated error distributions. 
However, these methods can deal with more general cases, and they can 
be applied whenever data are generated probabilistically. If, for example, 
one samples the heights, weights, genders, and so on of a population, the 
resulting data are generated by a probability distribution that covers these 
features of the population. In this case, the models are sets of possible dis-
tributions, and the parameters sought are means, variances, covariances, 
and other parameters of the distributions.

1 For a good account of the Akaike Information Criterion, see Konishi and Kitagawa 
(2008, chap. 3) and especially their Section 3.3 for an account of additional terms needed if the 
truth is not assumed to be one of the hypotheses being tested.

2 There is, for example, an extended version of the Akaike criterion modified to correct 
for small data sets and large numbers of parameters (Burnham and Anderson 2004). Other related 
criteria include the Bayes Information Criterion (BIC), which arises in a Bayesian analysis of 
model selection (Wasserman 2000).
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The model selection literature seeks ways of looking past the statistical 
noise in the data to the true system that generated it. For any particular 
data set, one can always find a better fitting model by sacrificing simpli-
city. The more complicated models fit better since they can conform to 
confounding statistical noise. The larger the model—that is, the more hy-
potheses it contains—the greater its ability to conform to the data and the 
greater the danger of overfitting. The remedy is to forgo some goodness of 
fit in favor of a simpler model.

A crude illustration is the problem of identifying the daily arrival 
times of a bus. We may find the bus to arrive at 11:58, 12:04, and 12:02 on 
successive days. These data are accommodated well enough by the hypoth-
esis that the bus arrives roughly at 12:00. However, if we allow more com-
plicated descriptions, we can find a hypothesis that fits the data perfectly. 
We might propose that the bus arrival times cycle successively through 
11:58, 12:04, and 12:02, thereby eliminating any mismatch between our 
hypothesis and the data at hand. Informally, we would judge the improve-
ment in fit to be spurious, a result of overfitting, and revert to the “roughly 
12:00 arrival” hypothesis as simpler.

7.3. Maximum Likelihood Criterion
The AIC is an elaboration of another simpler criterion, the Maximum 
Likelihood Criterion (Akaike 1974). Assume we have a probabilistic sys-
tem that produces data, and we wish to infer back to the properties of the 
system. We identify the properties through the parameters characteristic 
of the system. These would be the coefficients in the functions we fit to 
the data in curve fitting; or they might be means and variances if we are 
trying to find the population parameters from the data of a population 
sample. To start, we presume some model—that is, some set of hypotheses 
indexed by the sorts of parameters we believe are characteristic of the sys-
tem. In curve fitting, the model would be, say, a linear or quadratic curve 
confounded by error noise. Different parameters in the model pick out 
different hypotheses that will make the data actually recovered more or 
less probable. This conditional probability is called the likelihood L:

L = P(data | model parameters).
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Which parameters should we choose? An obvious choice would be those 
parameters that make the data most probable; that is, we choose to maxi-
mize the likelihood L, and the resulting parameters are known as “max-
imum likelihood estimators.” It turns out to be convenient not to work 
with the likelihood L directly but with its logarithm, log L. Since the loga-
rithm function is strictly increasing, maximizing L is equivalent to maxi-
mizing log L. And maximizing log L is equivalent to minimizing –log L. 
This gives us

Maximum Likelihood Criterion: seek the parameters that 
maximize log L—that is, that minimize –log L.

This criterion works well until we try to use it to compare models with dif-
ferent numbers of parameters. You might expect that we can compare two 
models by looking at the maximum log-likelihood each supplies. What 
if best-fitting hypothesis H of model M1 yields a higher log-likelihood of 
the data than does best-fitting hypothesis K of model M2? It would seem 
straightforward that we should pick the H of model M1 over the K of mod-
el M2.

This straightforward conclusion is too hasty, because the log-likeli-
hood delivered by one model can be spuriously inflated by overfitting. For 
example, in curve fitting, if we use a model with linear functions y = A + 
Bx, we fit just two parameters, A and B, as well as any parameters charac-
terizing the error noise distribution. If we move to a model with quintic 
equations y = A + Bx + Cx2 + Dx3 + Ex4 + Fx5, these two parameters are 
replaced by six parameters, A, B, C, D, E, and F. The larger number of 
parameters in the second model gives it more flexibility, and that gives it 
an unfair advantage over the first model. The data is generated probabilis-
tically and, as a result, it will not perfectly reflect the probabilistic system 
that generated it. A sample mean will typically differ slightly from a popu-
lation mean. A maximum likelihood estimator can increase the likelihood 
of the data by tracking these slight deviations. Selecting the sample mean 
as the estimator for the population mean will render this particular data 
set more probable than selecting the true population mean. This unwant-
ed effect is overfitting, once again. As the number of parameters in the 
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model grow, the model becomes more flexible and the extent of overfitting 
increases. 

7.4. Akaike Information Criterion
How can we guard against overfitting? Qualitatively, we might seek to 
protect ourselves by favoring simpler models—that is, models with fewer 
parameters. This solution is correct at the level of vague generality, but it 
does not translate into a quantitative procedure with a precise justification 
that would tell us just when to abandon the models with more parameters. 

Hirotugu Akaike approached the problem by considering not just 
performance with the particular data at hand. Instead, he asked that we 
choose estimators that perform well on average over all of the data sets 
that might be produced by the probabilistic system. The reason is that 
overfitting produces estimators that work well for one data set to which 
they are tuned, but they will generally fare worse for others that the prob-
abilistic system may produce. A model with a larger set of parameters is 
more flexible and thus more likely to be overfitted to the data. So, if we 
seek models that perform well on average, we must penalize the perform-
ance of models with larger numbers of parameters to compensate for the 
inflation in their performance due to overfitting. What Akaike found was 
that the requirement of best performance on average over all data sets led 
to a remarkably simple correction to the Maximum Likelihood Criterion. 
That is, he found that overfitting inflates the log-likelihood of the data by 
the dimension d of the parameter space. We correct the log-likelihood 
function for overfitting merely by subtracting this dimension d from it. 
This yields the following results:

Akaike Information Criterion (AIC): seek the parameters that 
maximize log L – d—that is, they minimize3 –log L + d.

The penalizing factor d automatically favors models with lower numbers 
of parameters. It expresses in quantitative form the qualitative notion that 
we should favor the simpler model over the more complicated one.

3 Akaike’s original proposal was to minimize − 2log L + 2d, but I have dropped the factor 
of two since it confounds the simplicity of the formula without any gain.
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7.4.1. How It Works: The Essential Assumption
The AIC works by asking not merely how well the estimator performs 
with the particular data set at hand. Rather, it asks how the estimator per-
forms on average with all possible data sets, and it rewards and penalizes 
the various models accordingly. For example, if we suspect a population 
is exactly 50% female, we would not be surprised to find that there are 
fifty-seven females in a random sample of one hundred people. We might 
be tempted by this datum to posit that 57% of the population overall is 
female. The posit would make the datum of fifty-seven females in the sam-
ple more probable than the supposition that 50% are female. However, 
we would likely hesitate. How representative is this one sample, we would 
wonder. What might happen if we were to draw another random sample 
of one hundred, and another, and another? Over the repeated samplings, 
if the 50% hypothesis is correct, we would find a range of sample results 
scattered around fifty females. The hypothesis of 57% would perform 
poorly over this range and, on average, the true hypothesis of 50% female 
would perform best.

The AIC arises when we correct the performance of an estimator for 
how it is likely to perform on average over all possible data sets. The great 
difficulty with this correction is that we do not know the full properties of 
the true probabilistic system; so, it would seem, we cannot know what all 
possible data sets are. It is true that we cannot know this without further 
assumption. We must assume something more. Otherwise, the analysis 
would be performing impossible magic.

The key assumption of the analysis is that the true probabilistic system 
lies within the model under consideration, where a model is simply some 
collection of hypotheses.4 So if we are fitting a linear curve y = A + Bx 
to data, then we assume that some values of A and B are the true values 
of the system. The remarkable thing about Akaike’s analysis is that this 
assumption is sufficient to allow the analysis to proceed. We do not need 
to know which values of A and B are the true values. We merely need to 
assume that there are some values of A and B that coincide with the truth.

4 This is an awkwardness of the application of AIC. This assumption can fail for at least 
some of the models we may compare. It must fail, for example, for all but one, when we compare 
models with disjoint sets of hypotheses.
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What results is a correction to the Maximum Likelihood Criterion 
of impressive simplicity. This simplicity comes at a cost, for it arises only 
after we have made strong assumptions about the background system and 
our sampling of it. In addition to the assumption noted above, we also 
assume that the data set is sufficiently large for the central limit theorem 
of statistics to be applicable. Nonetheless, it is striking that such a simple 
correction formula is possible under any conditions. The penalizing fac-
tor d merely records the dimension of the space of parameters. The two 
parameters A and B of the linear functions provide two dimensions; the 
six parameters A, B, C, D, E, and F of the quintic functions provide six 
parameters. Nothing else in the details of the space matters.

7.4.2. Kullback-Leibler Discrepancy, Predictive Accuracy and 
the Truth
The foregoing discussion has been kept as simple as possible, so the tech-
nical note of this section is required for those who want it. The charac-
terization of how the AIC works will at first seem different from the way 
the criterion is normally motivated. Akaike (1974) and later authors (e.g., 
Zucchini 2000; Konishi and Kitagawa 2008, chap. 3) employ what is vari-
ously called the Kullback-Leibler discrepancy or the Kullback-Leibler in-
formation. In seeking to identify a probabilistic system, we seek to identify 
the probability that the system assigns to each possible outcome datum 
x, where the datum x is a vector, since it will generally consist of several 
numbers. This true but unknown probability is labeled as the probability 
density g(x). The models we fit are also probability densities over the same 
space of possible outcomes, f(x | q q ), where the vector valued qq is the set of 
parameters characterizing the model. The Kullback-Leibler discrepancy is

It measures how closely the model f(x | qq) comes to the target g(x). It 
achieves its minimum value of 0 when g(x) = f(x | qq) almost everywhere. 
The goal is to find the f(x | qq) that achieves this minimum value. Since the 
target g(x) is fixed, this goal is equivalent to maximizing the integral
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This integral computes a measure of average performance. The term log 
f(x | qq) is the log-likelihood of some particular datum x. The density g(x) 
tells us how frequently this datum will appear in repetitions of whatever 
procedure or experiment generates the data. So the integral is the average 
log-likehood of a datum over many repetitions. Selecting a parameter qq 
that maximizes the integral identifies that density f(x | qq) that will have the 
best performance on average in the sense that it renders the data we expect 
in multiple repetitions most probable.

The f(x | qq) that is selected by this performance criterion is commonly 
described as selecting the probability density that has the best “predictive 
accuracy.” In general, it will not be the distribution that makes the data 
at hand most probable. This distribution may have been eliminated by a 
penalty for a larger number of parameters. However, the one selected will 
have the property of making the accumulated data most probable over 
numerous repetitions of the procedure. Since these procedures have yet to 
happen, this feature is labeled “predictive accuracy.”

While predictive accuracy is a desirable goal, it is less than the goal of 
finding the truth. False theories can enjoy considerable predictive accur-
acy. The Demeter-Persephone myth of ancient Greece successfully pre-
dicted endless repetitions of fertile and barren seasons. Also, some model 
selection problems may preclude prediction. At an archaeological site, for 
instance, we may collect and map the positions of bone fragments. We 
want to know if their spatial distribution has one or two peaks, which 
would correspond to one or two sources. In this problem, we are indiffer-
ent to prediction, since there are no further bone fragment locations to be 
predicted. All we really want is the true distribution. 

In the particular case of the AIC, we can see that the maximization 
is a condition that will return the true probability distribution to us. For 
the AIC proceeds from the assumption that the true distribution g(x) co-
incides with one of the distributions in the model. That is, 

for qq0 the true parameter value. Then we seek to optimize the integral
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and this integral achieves its maximum value when we set f(x | qq) = f(x | qq0).5

The common justification of the AIC is that it selects the probability 
distribution that has the greatest predictive accuracy. We can now see that 
this undersells the criterion. It is designed to seek the true probability dis-
tribution. Its justification should be given in terms of truth not predictive 
accuracy.

7.5. How It Works: An Oversimplified Analogy
That the AIC can correct for overfitting may seem mysterious and even 
magical. It is not so. The correction results from implementing a prosaic 
standard: seek the best performance over all data on average. The correc-
tion does not explicitly set out to reward simplicity. That is does so is mere-
ly a consequence of the analysis. A greatly oversimplified analogy shows 
that this sort of correction is far from mysterious.

In this analogy, we will consider the near trivial problem of fitting 
linear, quadratic, cubic, and higher-order polynomial curves to data with-
out error. That is, the fitted curve must pass through all the data points 
without error. We seek a criterion that directs us to the unique curve ap-
propriate to the data. We might initially choose “number of hits” as a scor-
ing criterion. This is not a good criterion, however. For if we have three 
data points for (x, y): {(0, 0), (1, 1), (2, 2)}, then the straight line y = x scores 
three hits. But so do many cubic curves (as shown in Fig. 7.1) and so do 
many more quartics.

5 This follows since the Kullback-Leibler discrepancy I(g:f ) has its minimum value of 
zero when g(x) = f(x) almost everywhere.
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Figure 7.1. Linear and cubic curve fits.

They score equally—three hits—but they are not equally successful. We 
discount the cubic and quartic curves, since they are not uniquely select-
ed. Cubic curves y = A + Bx + Cx2 + Dx3 have four free parameters, and 
thus many cubic curves can hit just three data points, but there is only one 
that can hit four. Quartic curves have five free parameters. Many can hit 
three data points, but only one can hit five.

If our interest is uniqueness, instead of counting the number of hits, 
we should assess whether the number of hits are sufficient to ensure a 
unique curve. This leads to the new score:

Score = Number of hits – Number of parameters.

We have uniqueness if this score is greater than or equal to zero. For each 
of the d parameter families of curves mentioned above return a unique 
curve only when they have a curve that hits d or more points.

This new score discriminates the linear model from the others in the 
above case. The linear curve has a score of 3 – 2 = 1, the cubic 3 – 4 = –1, 
and the quartic 3 – 5 = –1. Only the linear curve has a score greater than 
or equal to zero.
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The example is elementary, but it presents two features of model se-
lection methods. First, the score was not derived from a metaphysics of 
simplicity that demands that more complicated models must be penalized 
for their lack of simplicity. Rather, all models were held to the same stan-
dard: the scoring rewards them only when they produce a unique curve. 
The result of this requirement was an automatic penalizing of the more 
complicated models. Second, the success of the scoring system depends 
on background assumptions. In this case, the curve scoring zero or more 
is assured to be unique only if the true curve lies in the same model. In 
the example, if the true curve were actually in the cubic model, then the 
uniqueness of the straight line y = x for the linear model would be insuffi-
cient to assure us that we have found the unique curve. Since we have only 
three data points, it could be any of the curves in the cubic model.

7.6. A Coin Tossing Illustration of the Akaike 
Information Criterion
That the simple correction of the AIC suffices does seem too good to be 
true. That it does suffice, under the right conditions, is found merely by 
working through the statistical analysis that leads to the result. Since this 
analysis is quite difficult, I have provided a simple application of AIC 
below and in the Appendix to display the full analysis and show how it is 
that a correction merely in the dimension of the parameter space d can be 
deduced from the requirement of maximizing average performance.

The example pertains to coin tosses. Let us say that we toss N coins 
and find n heads. What is the chance p of a single toss coming up heads? 
Our estimation problem is to find that chance. Let us consider models 
with differing numbers of parameters. Each model assumes independence 
of the tosses.

7.6.1. Zero-Parameter Model
The simplest model just posits that our best estimate of p,  , is 1/2. It is a 
rather inflexible model since it allows only one value, but just that is what 
makes it a zero-parameter model. The likelihood L of n heads in N tosses 
in this model is
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So we have the log-likelihood log L0(1/2) = N log (1/2). AIC directs us to 
maximize:

where no dimensional correction is applied since d = 0.

7.6.2. One-Parameter Model and Its Problems
The next simplest model has one parameter, p, which is the chance of a 
heads. The log-likelihood of n heads in N tosses is

and (as shown in the Appendix) the value of p that maximizes the log-like-
lihood is

This model already admits a small amount of overfitting. If, for example, 
the true value of p is 0.5 = 1/2 and we have N = 100 tosses, then n is less 
likely to be 50 exactly. Rather, it will be somewhere in the neighborhood 
of 50, say n = 42 or n = 55. Choosing  = 0.42 or 0.55 in these two cases 
will produce log-likelihoods that exceed the log-likelihood returned by 
the zero-parameter model, even though in this case our supposition is that 
the zero-parameter model happened to have hit upon the true value of p.

Here are the values. The zero-parameter model yields

The one-parameter estimators do better when employed with the data sets 
to which they are tuned:

The one-parameter estimators yield greater (i.e., less negative) log-likeli-
hoods than does the presumed true zero-parameter estimator.

The estimators  = 0.43 or 0.55 have performed better in these two 
cases of n = 43 or n = 55 since they have been tuned specifically to these 
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two cases, respectively. They each perform worse than the zero-parameter 
model, however, if we reverse cases and use  = 0.42 for the case of n = 55 
and use  = 0.55 for the case of n = 0.42:

That is, successes of  = 0.43 or 0.55 are inflated by overfitting to the 
specific data at hand. They will perform worse if we employ them with 
other data sets to which they are not tuned.

7.6.3. One-Parameter Model Repaired
These effects indicate how we can correct our assessments for overfitting. 
We give up the goal of merely maximizing log-likelihood for the data at 
hand. Instead, we seek to optimize the log-likelihood over all possible data 
sets, appropriately weighting each set for its probability. Finding the es-
timators that perform best by this standard is the basis of the AIC. This 
fundamental idea is important enough to bear restatement: 

Seek the estimator that gives the best log-likelihood when 
averaged over all possible data sets.

To proceed, we need to know which are all possible data sets. For that, we 
assume

There is a single true chance of a heads, p*, within the hypotheses 
of the one-parameter model.

As I noted above, this is the non-trivial assumption of the analysis, for 
it says that the truth lies somewhere within our present one-parameter 
space of hypotheses.6 Our calculations are also greatly simplified with the 
assumption that the number of tosses N in each data set is very large. This 
means the central limit theorem of statistics can be called up to assure us 

6 It could fail in many ways. The true chance of heads my vary with different tosses; or 
there may be correlations between successive toss outcomes.
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that the number of heads n is normally distributed around a mean of p✳N 
with a variance N p✳(1 − p✳).

Let us fix some particular maximum likelihood estimator  = p that 
is derived from one data set. We can ask how the log-likelihood of that 
particular value p will fare over all possible data sets. That is, we compute 
the expectation

where the Appendix gives the computation.
We are interested not just in the performance of one particular esti-

mator p, but in all. So we now average over all estimators. Since  = n/N, we 
know that  will inherit its distribution from n. It is normally distributed 
about a mean p✳ with variance p✳(1 − p✳)/N. The expectation over all data 
and over all  yields

The first term on the right is the average log-likelihood using the true 
chance p✳ over all data:

The average in (1) is the quantity that measures the success of the max-
imum likelihood estimators in the one-parameter family. It tells us how 
their log-likelihoods fare on average over all possible data sets and thus is 
corrected for overfitting. We compare this quantity with the correspond-
ing quantity from other families in choosing our final estimate. We read 
from (1) that the maximum likelihood estimators fare slightly worse over-
all than the true value p✳, indicating that we have successfully corrected 
the overfitting of the maximum likelihood estimators.

However, we are not yet in a position to use (1) since we do not know 
the value of Eall data(log L1(p✳)). We need to have some estimate of it since 
it will vary from parameter space to parameter space and thus affect our 
choices. We will not be able to determine it exactly. The true value p✳ is 
precisely what is unknown and sought. However, there is an indirect way 
that we can recover a good estimate of Eall data(log L1(p✳)). We use the 
fact that for each particular data set, the maximum likelihood estimator  
tuned to that data set will always outperform the true value p✳.
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The extent of overperformance will vary from case to case and will 
be unknown to us in any particular case; however, we can compute its 
average. To do this, we average over a different set from the one used in (1). 
That is, we average over pairs of data sets and the estimator best tuned to 
the data set. In so doing, we look at a data set and the estimator tuned to 
it and compare that estimator’s log-likelihood with that of the true value 
p✳; and we repeat for many cases. The average that results is expressed by 
the expectation

The AIC is recovered by combining equations (1) and (2). Equation (2) tells 
us that, on average in the data sets for which it is computed, the log-like-
lihood  will yield a log-likelihood greater by 1/2 than that of the true 
chance p✳ averaged over all data. Hence, we can use log L1( ) − 1/2 as 
an estimator of Eall data(log L1(p✳)). Inserting this into (1), we find that 
log L1( ) − 1/2 − 1/2 = log L1( ) − 1 is an estimator of the quantity we 
seek to optimize, Eall , data(log L1( )). That is, log L1( ) − 1 is an estima-
tor of the average log-likelihood of , averaged over all possible data sets. 
Maximizing this quantity log L1( ) − 1 is what AIC calls for in the case of 
a one-dimensional parameter space.

7.6.4. d-Parameter Model
It might seem that a major step must be taken from this last case of a 
one-parameter model to the case of a d-parameter model. However, all the 
hard work has already been done in computing the one-parameter case. It 
is a small step to a d-parameter case. To get there, we divide the N tosses 
into d subsets of tosses. We posit different true chances, p✳

1 for the first M1 
tosses, p✳

2 for the next M2 tosses, …, p✳
d for the final Md tosses. We have 

now introduced a d-parameter model, with parameters p1, p2, …, pd. Each 
subset of tosses can be treated as a separate one-dimensional parameter 
space problem. So, in each subset of tosses Mi, we estimate the average of 
the maximum likelihoods of i by computing log L1( i) − 1. The estimate 
for the average maximum likelihood associated with all d parameters is 
just the sum of these individual estimators, that is
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But this last quantity is just the quantity to be maximized in applying the 
AIC in the d-dimensional parameter space of a d-parameter model.

The result still depends upon restrictive assumptions: all of the Mi 
must be large enough for the central limit theorem to take effect; and we 
have assumed that some set of values for pi expresses the truth exactly. 
What the calculation also shows is that the character of the parameter 
space is of lesser importance. The particular magnitudes of the subsets 
Mi played no role in the final result. They can each be different in size, as 
long as they are each large enough to support an application of the central 
limit theorem. All that matters is that they open new dimensions in the 
parameter space. It is this fact that enables the criterion to be expressed so 
simply in terms of the parameter space dimension only.

7.6.5. Akaike Information Criterion Computed
The analysis is specific enough for us to be able to use AIC to compare 
the zero and one-parameter models in a context in which we have an in-
dependent, intuitive grasp of the competing factors. For one hundred coin 
tosses, if the coin is fair so that the chance of a head is 1/2, we expect the 
number of heads to lie in the range 40 to 60.7 When do we choose the 
hypothesis from the zero- or one-parameter models?

For the zero-parameter model, the quantity maximized in the AIC is

For the one-parameter model, it is

where n is the number of heads and  = n/100. If we plot these two quan-
tities as a function of n, we find Figure 7.2. 

7 The mean number is 50 and the standard deviation is , so the two 
standard deviation interval is 40–60 and will contain the outcome with probability 0.954.
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Figure 7.2. Comparing the zero- and one-parameter models.

We see in Figure 7.2 that the zero-parameter model returns a higher value 
when n lies between 43 and 57, so we choose the zero-parameter estimator 

 = 1/2 for those values. Otherwise, when n falls outside this range, we 
choose the one-parameter estimator  = n/100. 

Here is how we can interpret these results. When we have a datum 
n = 49, the outcome is close enough to the expected value n = 50 of the 
zero-parameter model that we prefer the zero-parameter model. The 
one-parameter model would give us  = 0.49 and, as a result, a log-likeli-
hood of the data slightly greater than that of  = 1/2. However, the gain is 
due to overfitting and not sufficiently great to lead us to switch from the 
zero-parameter value of  = 1/2. If, however, the outcome were to be n = 
40, then the situation would be reversed. The one-parameter model gives 
us  = 0.40 and a log-likelihood for the data that so exceeds the one from  
= 1/2 that we switch to the one-parameter model. These decisions conform 
with what our vaguer notions would dictate in this case.

7.7. Relation to the Material Theory of Induction
The main ideas of the connection between the AIC and the material theory 
of induction have already been reviewed above. I collect them and develop 
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them here. The material theory of induction denies that there is any uni-
versal schema for inductive logic. A candidate for such a schema is the idea 
that we should choose the simpler hypothesis over the more complicated. 
We have already seen the difficulty with positing this as an independent 
rule. We still lack any universal characterization of what is simple. At best, 
we can identify the simpler cases on an ad hoc basis according to the do-
mains we encounter. The schema also raises the deeper issue of whether 
it requires us to presume some sort of metaphysics of simplicity. It would 
assert that the world is, essentially, parsimonious. Are we willing to ac-
cept this metaphysics of simplicity? If not, how do we justify the universal 
schema just described?

The material theory of induction asserts that we should not accept this 
simplicity schema as universal. Rather, it asserts that any schema for in-
ductive inference is warranted by facts, and the schema is applicable only 
in the domains in which those facts obtain. In the case of the AIC, the 
essential posit is that the true hypothesis lies somewhere among the hy-
potheses of the model that we seek to fit. This assumption in turn gives us 
sufficient access to all possible data sets that the true probabilistic system 
may generate for us to correct for overfitting by the models.

The derivation of the criterion makes no prior supposition of parsi-
mony or simplicity of the world. It merely asks that we choose estimators 
that perform well over all possible data sets, not just the ones to which they 
were initially tuned. The AIC then follows. That there is any connection to 
simplicity understood as a general and abstract notion is an interpretation 
we supply after the analysis is complete. We look at the correction factor d 
applied to the log-likelihood. It reminds us of a vaguer idea that we find it 
apt to penalize more complicated models with larger numbers of param-
eters. So it may seem to us that the criterion is somehow vindicating some 
broader metaphysics of simplicity. This is an illusion and a mistake. The 
success of the criterion supplies nothing of the sort. We make a mistake in 
connecting a statistical data analysis procedure, grounded in quite specific 
assumptions about a given case, to some ill-formulated and dubious meta-
physics of simplicity.

The following consideration shows how dependent the approach is on 
the selection of models and how little it can be said to understand deeper 
notions of simplicity and complexity. Consider two models. The first is a 
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two-parameter model with parameters p1 and p2. Call the model M2(p1, 
p2) and assume that the AIC directs us to select the particular hypothesis 
with parameters 1 and 2, chosen since they maximize the penalized 
log-likelihood log L2(p1, p2) – 2. Now consider a second, one-parameter 
model M1 defined by

where the log-likelihoods of the two models will be related by

It is immediately clear that the AIC will direct us to favor the one-par-
ameter model M1 over the two-parameter model M2. We can readily find 
values for which the one-parameter model’s penalized log-likelihood out-
performs that of the two-parameter model. For example, if in both we set 
p1 to the same value 1 returned for the two-parameter model, we find

since 
From our elevated perspective, we know that the case is an unfair 

contrivance. The model M1 is really just the same as M2 with one of its 
parameters artificially hidden by the contrivance of setting it to the esti-
mator value in advance. We would want to say that it is unfair to ask any 
method to do well against examples precisely contrived to confound them. 
But that is the point. Calling up some higher perspective, we know that 
the example is contrived. The AIC analysis itself has no way of knowing 
that. All it can know is that there are two models, a one-parameter M1, and 
two-parameter M2, which it treats by its rules. The method has no access 
to which model is really simple and which is maliciously contrived to look 
simple and has no provisions for treating them differently.

Finally, Forster and Sober’s introduction of the AIC into the philoso-
phy of science attracted some spirited responses. For example, Scott De 
Vito (1997) argued that it could not overcome the language dependence 
brought by “grue-like” problems. Wayne Myrvold and William Harper 
(2002) pointed out cases in which the AIC failed to pick hypotheses that 
successfully extrapolate.
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These are all worthy complaints in so far as they are leveled against 
the idea that the AIC has somehow vindicated a broader metaphysics of 
simplicity. Once one realizes that the real power and proper ambitions of 
the AIC analysis are much more modest, however, these concerns pass. 
Forster (1999) has responded that variant, grueified descriptions cannot 
change the dimension of the parameter space that is central to the AIC 
analysis. Also, I will note here, we can only expect the hypothesis selected 
by an AIC analysis to fare well in extrapolations if the true hypothesis 
lies within the models considered. Counterexamples in which the AIC 
selection fails in extrapolation are easily found by contriving examples in 
which the true hypothesis lies outside the models. Failure of extrapolation 
then is untroubling since the AIC approach, properly understood, has no 
power to estimate a truth that lies outside its compass. Understood mater-
ially, an AIC analysis can only achieve ends authorized by the assumptions 
made in the analysis. These assumptions fall far short of the positing of a 
metaphysics of simplicity that can provide universal guidance whenever 
philosophical issues of simplicity are raised.

Appendix 7.A. Computations for the Akaike 
Information Criterion in a Simple Coin Tossing 
Problem
A coin is tossed N times, where N is very large, and the outcome of n heads 
is reported as the data. In the one-parameter model, we assume that the 
probability of a heads in each toss is equal to some undermined prob-
ability p, so that the probability of a tails is (1 − p). With independence 
of the tosses, it now follows that the probability of n heads in N tosses is  
(p)n(1 − p)n−N. Hence, the one-parameter log-likelihood is

The maximum likelihood estimator is that value of p that maximizes this 
likelihood. That is,  solves the equation

which leads to
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Thus, the log-likelihood of any data set with n heads according to this 
estimator is

We now seek to assess how well some particular estimator, say  = p, fares 
when we consider all possible data sets. We assume that the true value of 
p is p✳ and that n/N will differ from its mean value p✳ by an amount d. 
Writing n/N = p✳+ d, we have

We now average this quantity over all possible data sets. The number of 
heads n/N is distributed about the mean p✳. Hence, d = n/N − p✳ has a 
mean of 0 and vanishes under the expectation operator Eall data. Thus we 
find:8

This expectation depends explicitly on the value of  = p. To suppress it, 
we now average over the possible values of . Writing  = p✳+ D where we 
now assume that D is small, we have

We expand the two log terms in a power series:

8 This computation does not require the assumption that N is large and that n is normally 
distributed.



2457 | Simplicity in Model Selection

After substituting, multiplying terms and saving terms up to D2, we have

The quantity D is a random variable that inherits its probability distribu-
tion from n. When N is large, n is normally distributed9 with a mean p✳N 
and a variance Np✳(1 − p✳). Since  = n/N and D =  − p✳ = n/N − p✳ it 
now follows that  is a standard normal variable with 

mean 0 and variance 1. Hence,  is chi-squared distributed 

with one degree of freedom. This distribution has the property that its 
mean is unity. Hence, taking the expectation of Eall data(log L1(  )) over 
all values of  , we recover:

To identify the first term on the right-hand side, note that the likelihood of 
n heads according to the correct chance p✳ is

We also have the expectation

so that

Combining, we have

of the main text.
To arrive at (2) we compute the behavior of log L1( ) over the data sets 

to which each  is tuned. To limit ourselves to these data sets, we set n/N 
=  in

9 This follows since the exact distribution of n is a binomial distribution with these 
same parameters. The central limit theorem tells us that this distribution approaches a normal 
distribution of the same mean and variance for large N.
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and write  = p✳+ D as before, so that

Expanding the log terms as a power series in D as before, multiplying out 
terms and saving terms up to D2, we have

From above, we have that D is a standard normal variable with mean zero 
and N D2/(p✳(1 − p✳)) is chi-squared distributed with one degree of free-
dom and thus has a mean of 1. Hence, we recover the expectation:

The quantity to be maximized in the AIC is recovered from (1) and (2) as 
described in the main text.
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8

Inference to the Best Explanation: The 
General Account

8.1. Introduction
This chapter and the next address the inductive inference form known as 
“inference to the best explanation” or “abduction.” The main idea is that 
a theory or hypothesis must do more than merely accommodate or pre-
dict the evidence. If it is to accrue inductive support from the evidence, it 
must explain it. Since multiple explanations are possible, we are enjoined 
to infer to the best of them. This means that greater explanatory prow-
ess confers greater inductive support. In 1964, Arno Penzias and Robert 
Wilson found puzzling residual noise in their radio antenna that turned 
out to be cosmic in origin. Subsequent investigation showed it to be ther-
mal radiation of 2.7 degrees kelvin. The radiation was explained by Big 
Bang cosmology as the much diluted and cooled thermal radiation left 
over from the hot Big Bang over 1010 years ago. The competing steady-
state cosmology and other now less well-known models could provide no 
comparably strong explanation. Cosmologists inferred to Big Bang cos-
mology as the best explanation.

Inference to the best explanation, however, has proven to be an es-
pecially troublesome case for my project. The difficulty does not lie with 
the material theory of induction. The difficulty lies with inference to the 
best explanation itself as an inductive inference form. Beyond the simple 
sketch just given, its elaboration is noticeably thin in the literature. 

This thinness persists in spite of efforts to deepen our understanding 
of the inference form. A starting point is the notion of explanation itself in 
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science. The general literature in philosophy of science has sought to ele-
vate the notion beyond mere psychological satisfaction with some theory 
or hypothesis. It has become a core notion in philosophy of science and 
a subject of intense philosophical scrutiny. As far as abductive inference 
is concerned, the hope has been that this scrutiny will reveal something 
in the nature of explanation that makes it peculiarly potent in powering 
abductive inferences, and that this in turn will enable a more precise state-
ment of the general rule of abduction. This expectation has set the scene 
for decades of frustration. Philosophical analysis of explanation has failed 
even to find a univocal sense of explanation at work in science. Instead, 
it has found multiple, competing senses of explanation. This multiplicity 
indicates that the notion is a loose one—an umbrella concept covering 
several disparate notions. They have no common core, such as might 
power a formal, inductive inference schema. As a result, the literature has 
provided no universal, formal account of abductive inference. Even the 
best developed accounts offer only superficial descriptions that use terms 
like “explains” and “loveliest” without precise, formal definitions.

Most of the analysis of this and the next chapter, then, is devoted to an 
attempt to do better at understanding just how the inferences designated 
as abductive work. These efforts draw on a series of canonical examples of 
abduction in science, described in the next chapter. My initial hope was 
that these examples would reveal the secret ingredient in good explana-
tions that rewards explanatory prowess with inductive support. I would 
then seek its material underpinning. The plan has failed, and the secret 
ingredient has proven elusive. The inductive support proved time and 
again to come indirectly through weaknesses of competing explanations 
as opposed to from some special virtue of the preferred explanation. This 
has led to the curious notion developed in this chapter of “inference to the 
best explanation without explanation.”

The upshot is that inference to the best explanation is an overrated 
argument form. Its strength is its visceral appeal. We apply it when we 
have a hypothesis or theory that fits the evidence in a strikingly satisfying 
manner. It just feels right, even if that feeling is created retrospectively 
from sanitized textbooks accounts. What remains is to move our affection 
for the argument form from psychology to reason. That is, we need to find 
a unified account of just how the inference works and what warrants it.
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If explanatory prowess is what powers the argument, then there is 
good reason to suspect that no such unified account can be given. For we 
have to hope that a heterogeneous notion of explanation can somehow 
underwrite a homogeneous inductive power. In this case, inference to the 
best explanation will remain merely a label for a heterogeneous group of 
inferences powered more by visceral intuitions than good reasons.

In coming to these conclusions, I join a persistent, minority tradition 
in the philosophy of science that has deprecated the importance of explan-
ation in inferences identified as abductive. The conclusions conform with 
those of Timothy Day and Harold Kincaid:

In short, appeals to the best explanation are really implicit 
appeals to substantive empirical assumptions, not to some 
privileged from of inference. It is the substantive assump-
tions that do the real work. (1994, p. 282)

They associated this view with the similar approach to arguments based 
on simplicity advocated by Elliott Sober (1980) and also developed here 
in Chapters 6 and 7. Bas Van Fraassen’s (1977; 1980, chap. 5) pragmat-
ic deflation of explanation is well known. More recently, William Roche 
and Elliott Sober (2013) made their main claim clear in the title of their 
paper: “Explanatoriness is evidentially irrelevant, or inference to the best 
explanation meets Bayesian confirmation theory.” Kareem Khalifa et al. 
(2017) argued that inference to the best explanation does not provide a 
fundamental argument form. Rather, its instances are reducible to other 
inferences, and these are not unifiable by a simple scheme.

Section 8.2 below recalls the identification of abduction as an argu-
ment form by scientists, most notably, Charles Darwin. Sections 8.3 to 
8.6 provide a brief survey of the philosophical literature on inference to 
the best explanation. This literature is so large that the survey is necessar-
ily brief and incomplete.1 The survey yields the unhappy result that this 

1 For another overview, see Igor Douven (2016). I also do not explore the literature that 
investigates the inference to the best explanation from a Bayesian perspective, such as Valeriano 
Iranzo (2008) and Leah Henderson (2014). The reason is that Bayesian analysis cannot be applied 
everywhere, as later chapters in this book will show. Thus, the Bayesian analysis has at best narrow 
applicability.
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literature has done a poor job of developing inference to the best explana-
tion as a general argument form. There are three problems.

First, the basic concepts invoked remain imprecisely defined. Worse, 
efforts to explicate these concepts trigger a death spiral of multiplying 
problems: clarifying one concept requires the introduction of several new 
ones that in turn require their own clarifications.

Second, the selection of illustrative examples is commonly poor. 
Examples in science are often just named or glossed hastily and claimed 
to support some favored conclusion. We shall see in the next chapter that a 
closer examination of canonical examples commonly returns conclusions 
at variance with the existing literature. Most importantly, explanation will 
be shown to play a minor role in them.

Third, there is a strong tendency to employ illustrative examples that 
involve human action. They are poor surrogates for the corresponding sci-
entific examples. In the case of examples involving human action, it is ob-
vious immediately that the favored explanation is correct and that the ex-
ploration of alternatives is, at best, a perfunctory exercise. There really are 
no credible, competing explanations for the origin of bootprints in freshly 
fallen snow. We might try to suppose that the snow just happened to settle 
into the shape of boot, complete with a boot’s characteristic tread pattern. 
But the thought is too strained to bear serious consideration. Scientific 
examples are quite unlike this. It is far from obvious that the Big Bang is 
the unique, credible explanation of the cosmic background radiation. As 
we shall see in the next chapter, the real work in the examples involves 
establishing with some effort that no other explanation can likely succeed.

This unsatisfactory situation is resolved, I will argue in this chapter 
and the next, if we abandon the search for a single, unified formal account 
of these inferences. Instead, if we approach the examples materially, on a 
case-by-case basis, we then find that there is commonly a clear warrant for 
the inferences in background facts, as required by the material theory of 
induction. We also see some similarities in how these facts are deployed to 
provide the warrant, and it is these similarities that sustain the sense that 
inferences somehow belong together. The similarities, however, are not 
strong enough to support a formal schema, but just a loose resemblance. 
Most importantly, once we have found the warrant for the inferences in 
background facts, we have enough warrant; there is no longer any need to 
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search fruitlessly within the very notion of explanation itself for some uni-
fying, special constituent that confers inductive powers upon explanation.

What remains is to identify the loose similarities that connect the 
inferences commonly identified as abductive or as inference to the best 
explanation. Drawing on the inventory of examples in science in the next 
chapter, the similarities are summarized in Section 8.7. Abductions or in-
ferences to the best explanation in actual science are carried out in two 
steps with some distinctive notion of explanation playing no role in either.

The first is a comparative step. The favored hypothesis or theory is 
shown to do better than one or more foils. We are to prefer—but not ne-
cessarily infer to—the better of them. We might call this “Preference for 
the better explanation.” The way the favored hypothesis or theory does 
better turns out to be simple. While the preferred hypothesis or theory 
accommodates the evidence, the foil might just be contradicted by the 
evidence. Or the foil might require additional posits, which do not them-
selves have evidential grounding. This lack amounts to what I will call 
the incurring of an “evidential debt” not taken by the favored hypothesis 
or theory. It is then easy to see how the evidential judgments of this first 
step are supported by material facts, for the still elusive general notion of 
explanation plays no role. We prefer the theory that is not contradicted by 
the evidence, or the theory that accommodates the evidence without overt 
lacunae of support in its individual parts.

The second step is more fraught. We are to suppose that better is best, 
and that best is good enough to warrant commitment. Preference becomes 
commitment. This step is commonly grounded in a presumption that no 
other theory can do better than those explicitly considered. The presump-
tion is so hard to justify that this second step is often left tacit and some-
times even omitted completely. For the step commonly relies merely on 
our human imaginative powers to sustain the conclusion that there is no 
better account just beyond our horizon. Kyle Stanford (2006) has effect-
ively and powerfully described this problem of “unconceived alternatives.”

Section 8.8 presents a conjecture on why inference to the best explana-
tion rose in prominence historically as an argument form in the twentieth 
century. Section 8.9 offers a concluding comparison of the formal and ma-
terial approaches to abduction.
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8.2. Scientists Explain
What gives inference to the best explanation solid credentials in philoso-
phy of science is that scientists themselves often advertise the explanatory 
prowess of their theories and suggest it provides support for their theories. 
Here are two prominent examples. 

Upland geese, Darwin (1876, pp. 142–43) reported, rarely go near 
water, but they have the same webbed feet that are of great utility to aqua-
tic birds. This curious fact, Darwin noted, is readily explained by natural 
selection as a residual from ancestral aquatic geese. It is poorly explained 
by the hypothesis of independent creation. Why create geese with this un-
necessary feature? Darwin made observations like this the explicit driver 
of his argument in On the Origin of Species. He concluded the final chapter 
of his book with a defense of the argument form, not just in biology but in 
ordinary life and the other sciences:

It can hardly be supposed that a false theory would explain, 
in so satisfactory a manner as does the theory of natural 
selection, the several large classes of facts above specified. It 
has recently been objected that this is an unsafe method of 
arguing; but it is a method used in judging of the common 
events of life, and has often been used by the greatest nat-
ural philosophers. The undulatory theory of light has thus 
been arrived at; and the belief in the revolution of the earth 
on its own axis was until lately supported by hardly any 
direct evidence. It is no valid objection that science as yet 
throws no light on the far higher problem of the essence or 
origin of life. Who can explain what is the essence of the at-
traction of gravity? No one now objects to following out the 
results consequent on this unknown element of attraction; 
notwithstanding that Leibnitz formerly accused Newton of 
introducing “occult qualities and miracles into philosophy.” 
(1876, p. 421)

In late 1915, Albert Einstein’s general theory of relativity was still a highly 
speculative theory, operating at a level of abstraction and mathematical 
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complexity remote from the other physical theories of his time. He needed 
an evidential coup to secure the theory. It came in mid-November 1915, 
when Einstein discovered to his delight that his new theory predicted the 
anomalous motion of Mercury. In a paper entitled “Explanation of the 
Perihelion Motion of Mercury from the General Theory of Relativity,” he 
wrote:

In the present paper, I find an important confirmation of 
this most radical theory of relativity; that is, it turns out that 
the secular rotation of Mercury’s orbit in the direction of 
the orbital motion, discovered by Leverrier, which amounts 
to about 45” in a century, is explained qualitatively and 
quantitatively, without having to posit any special hypothe-
sis at all. (1915, p. 831)

This success was so striking that it is one of the most used illustrations in 
subsequent work in confirmation theory. We shall return to both exam-
ples below.

The two examples of Darwin and Einstein make at least a prima facie 
case that there is an interesting inductive argument form at hand that is 
somehow associated with a notion of explanation. One would expect that 
logicians and philosophers of science would be able to seize upon these 
clues and deliver a rigorous and logically tight account of the argument 
form. Alas, the brief survey below of the philosophical literature reveals 
one that is stalled in preliminary and inadequate sketches of the argument 
form. Worse, its prospects are limited at the outset by a near-universal 
aversion to real examples in sciences. Instead, the literature favors exam-
ples in which the best explanation involves some human action, which 
makes the examples quite unlike the corresponding inferences in real sci-
ence. The sections that follow will elaborate on this grim assessment.

8.3. Peirce and Abductive Inference
The philosophical literature attributes the first explicit discussion of ab-
ductive inference to Charles Peirce. The much-quoted statement on this 
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comes from Peirce’s 1903 Harvard Lecture, “Pragmatism as the Logic of 
Induction”:

Long before I classed abduction as an inference it was rec-
ognized by logicians that the operation of adopting an ex-
planatory hypothesis—which is just what abduction is—
was subject to certain conditions. Namely, the hypothesis 
cannot be admitted, even as a hypothesis, unless it be sup-
posed that it would account for the facts of some of them. 
The form of the inference, therefore, is this:

The surprising fact, C, is observed;

But if A were true, C would be a matter of course, 

Hence, there is reason to suspect that A is true. 

Thus, A cannot be abductively inferred, or if you prefer the 
expression, cannot be abductively conjectured until its en-
tire content is already present in the premises, “If A were 
true, C would be a matter of course.” (1932, p. 189)

What is curious is the myopia in crediting Peirce. For Darwin’s On the 
Origin of Species was already a tour-de-force of abduction. The inference 
form is used throughout the book.2 As we saw in the passage quoted from 
Darwin above, he was aware of the distinctive character of the argument 
form he was using and offered a defense of it as something used generally 
in common life and other great scientific discoveries.3 What more can we 
ask? The inference form is identified explicitly at the same time as it is 
used repeatedly and powerfully in the canonical demonstration of one of 
science’s greatest discoveries. In contrast, Peirce’s development is labored. 

2 In the final edition (Darwin 1876), the word “explain” appears 108 times and 
“explanation” 44 times.

3 What of Charles Lyell’s Principles of Geology? It contains a template for Darwin’s 
argument in On the Origin of Species, and Darwin studied it and drew inspiration from it. While 
we and, presumably, Darwin saw the argument form there, I will argue in the next chapter that, 
curiously, Lyell did not.
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While it has the superficial appearance of a logical schema, key terms are 
not given precise definitions. Just what is meant by “surprising” and “a 
matter of course”?4

8.4. Harman’s Inference to the Best Explanation
Peirce’s treatment also conforms to the nineteenth-century tradition of 
combining inductive methods with discovery methods. John Stuart Mill’s 
methods were as much a way of discovering the causes of some phenomena 
as they were of supporting them inductively. The same is true of Peirce’s 
account of abduction. This procedural aspect is lost by the time of Gilbert 
Harman’s (1965) paper “Inference to the Best Explanation,” from which 
the now popular label derives. His account of the inference is as follows: 

In making this inference one infers, from the fact that a cer-
tain hypothesis would explain the evidence, to the truth of 
that hypothesis. In general, there will be several hypotheses 
which might explain the evidence, so one must be able to re-
ject all such alternative hypotheses before one is warranted 
in making the inference. Thus one infers, from the premise 
that a given hypothesis would provide a “better” explana-
tion for the evidence than would any other hypothesis, to 
the conclusion that the given hypothesis is true. (1965, p. 89)

The account remains remote from a serviceable formal schema. What “ex-
plain” might mean is not made clear, and “better” is presented in scare 
quotes. Harman concedes that formulating a more precise account is an 
open problem:

There is, of course, a problem about how one is to judge that 
one hypothesis is sufficiently better than another hypothe-
sis. Presumably such a judgment will be based on consider-
ations such as which hypothesis is simpler, which is more 

4 Peirce’s work is littered with citations of Darwin. I have not ascertained whether any of 
these credit Darwin’s priority. Certainly, the credit is not given prominently.
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plausible, which explains more, which is less ad hoc, and so 
forth. I do not wish to deny that there is a problem about 
explaining the exact nature of these considerations; I will 
not, however, say anything more about this problem. (p. 89)

The paper is short, a mere eight pages. It has no well-developed examples, 
but many are mentioned by brief allusion. The only example from science 
is in this one sentence: “When a scientist infers the existence of atoms and 
subatomic particles, he is inferring the truth of an explanation for various 
data which he wishes to account for” (p. 89). Otherwise, all the examples 
mentioned pertain to human action:

“a detective … decides that it must have been the butler” 
(p. 89)

“we infer that a witness is telling the truth” (p. 89)

“we infer from a person’s behavior to some fact about his 
mental experience” (p. 89)

“I read … that Stuart Hampshire is to read a paper at Princ-
eton tonight” (p. 92)

“obtaining knowledge from an authority” (p. 93)

“knowledge of mental experience gained from observing 
behavior” (p. 93) 

8.5. Thagard’s Criteria
Paul Thagard’s (1977) analysis is an exception to my dismal assessment of 
the philosophical literature on inference to the best explanation. It excels 
both in the range of real examples from science and in its dedication to 
clarifying just how inference to the best explanation works.

The range of examples deployed to illustrate and support the paper’s 
claims is impressive. It includes

Darwin’s long argument in his On the Origin of Species;



2578 | Inference to the Best Explanation

Lavoisier’s case for the oxygen theory of combustion;

The wave theory of light, as developed by Huygens in the 
seventeenth century; and by Young and Fresnel in the nine-
teenth century;

Newton’s explanation of the motion of planets and satel-
lites;

Halley’s Newtonian prediction of the return a comet;

Young’s account of di-polarization;

Fresnel’s account of polarization through transverse waves;

General relativity’s treatment of the anomalous perihelion 
motion of Mercury, the gravitational bending of light, and 
the gravitational red shift of light; 

Quantum mechanics and its success with atomic spectra, 
magnetism, the solid state of matter, the photoelectric, and 
the Compton effect.

The list is so long as to be too ambitious for a single paper. The accounts 
given are brief and often amount to mere mentions. However, the laudable 
principle sustained is that Thagard’s account is responsible to these real 
examples from science.

Thagard also recognizes that the inference form is in urgent need of 
elaboration and clarification; and he takes up the project. From the per-
spective of the material theory of induction, the project is ill-fated. For the 
arguments labeled “abductive” or “inference to the best explanation” form 
at best a loose unity. The individual arguments differ so much in their 
details that they can be grouped together only as long as the argument 
form is imperfectly specified. This means that any applicable notion of ex-
planation must be kept vague enough so that it can be applied everywhere. 
Efforts to remove the vagueness in the notions of “explanation” and “bet-
ter explanation” will require further notions and possibly many of them, 
if the existing range of individual arguments is to be accommodated. 
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Matters will get worse the further these efforts go, for each solution will 
generate new problems. An explosion of difficulties will be triggered. Yet 
the results of these efforts can never be secure. All it takes to overturn 
them is a new, troublesome instance of an abductive inference.

This fate befalls Thagard’s project, as we shall now see. The project 
begins with a brief definition:

To put it briefly, inference to the best explanation consists 
in accepting a hypothesis on the grounds that it provides 
a better explanation of the evidence than is provided by al-
ternative hypotheses. We argue for a hypothesis or theory 
by arguing that it is the best explanation of the evidence. 
(p. 77)

Here, the key term “explanation” is left undefined. This serious oversight 
persists throughout the paper, until on the concluding page (p. 92) we find 
a begrudging admission that “Explanation is a pragmatic notion.” Instead 
of defining the term, explicit analytic efforts are devoted to clarifying 
when one explanation—whatever the term may mean—is better than an-
other. The clarification depends on three criteria: consilience, simplicity, 
and analogy. The difficulty, however, is that evaluations based on these 
criteria may pull in different directions. And so we see the multiplication 
of problems. The project has now replaced the problem of clarifying one 
notion with the problem of clarifying three notions.

The notion of consilience, drawn from the work of William Whewell,5 
is given the following gloss: “one theory is more consilient than another 
if it explains more classes of facts that the other does” (p. 79; emphasis in 
original). The problem then is to specify how we are to count classes of 
facts so that “more” has an unambiguous meaning. Of course, there is no 
simple solution, and the analysis stalls with inevitable difficulty: “In in-
ferring the best explanation, what matters is not the sheer number of facts 
explained, but the variety, and variety is not a notion for which we can 

5 Here, Thagard draws on his earlier (1977) where he identified Darwin’s use of Whewell’s 
notion.
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expect a neat formal characterization” (p. 83). The notion of consilience 
then further mutates into a static and a dynamic notion.

The threat to a cogent notion of consilience is that any account can 
be made to embrace more facts if we are willing to make it more compli-
cated. This is where Thagard’s second criterion, simplicity, plays a role. 
Simplicity, he proposes, is measured by size and nature of auxiliary hy-
potheses needed by some theory to explain the facts. The fewer there are 
of these auxiliaries, the simpler and better the explanation. Needless to 
say, trying to give a more precise account of simplicity leads to further 
problems and the wry conclusion: “As has often been remarked, simplicity 
is very complex” (p. 88).

Finally, the third criterion, analogy, enters apparently through no 
pressing conceptual need but simply because the examples driving the an-
alysis use it. Analogies, we are told, function to improve the explanations 
used. We have seen in Chapter 4 that efforts to explicate analogical infer-
ence face a similar difficulty of multiplying problems. Thagard’s analysis 
only begins to probe this difficulty. After abandoning a classic definition 
of analogy, Thagard offers an alternative. If, for some entity A, property 
S explains why it has properties P, Q, and R, then we can project to other 
cases. That is, if another entity B has properties P, Q, and R, then we may 
“conclude that B has S is a promising explanation of why B has P, Q, and R” 
(p. 90). Of course, this characterization is only as good as the characteriza-
tion of the notion of explanation, for which essentially nothing is offered.

At the end of the paper we are left with the unresolved problem of how 
to trade off the criteria:

Consilience and simplicity militate against each other, since 
making a theory more consilient can render the theory less 
simple, if extra hypotheses are needed to explain the addi-
tional facts. The criterion of analogy may be at odds with 
both consilience and simplicity, if a radically new kind of 
theory is needed to account simply for all the phenomena. 
(p. 92)

Leaving the problem unsolved means that we cannot unambiguously 
apply the rule of inference to the best explanation. Far from recovering a 



The Material Theory of Induction260

universally applicable rule of inductive inference, we have failed even to 
arrive at an unambiguous rule.

The material theory of induction was introduced in response to the 
pervasiveness in formal accounts of inductive inference of difficulties like 
these. Seeing the burden of multiplying problems drag down his account, 
I truly sympathize with Thagard’s concluding lament, “Application of the 
criteria of consilience, simplicity, and analogy is a very complicated mat-
ter” (p. 92).

8.6. Lipton’s Monograph
Peter Lipton was the most prominent of recent proponents of inference 
to the best explanation, and his 2004 monograph has become a canon-
ical source. His two works (2000, 2004) provide no formula or schema 
that would improve on those of Darwin, Peirce, Harman, or Thagard. But 
his detailed elaboration maps out just how open the problem set aside by 
Harman and Thagard remains. We have no notion of explanation or better 
explanation sufficiently well developed to convert what Lipton (2004) re-
peatedly calls the “slogan” of inference to the best explanation into formal 
schema.

Take the notion of explanation. Efforts to clarify it lead to the same 
multiplying problems we saw in Thagard’s project. This is due to the fact 
that there are multiple competing accounts of explanation. Some of these 
accounts are surveyed in Lipton (2004, chap. 2). To explain a phenomenon 
might mean to subsume it under a covering law; or to display the factors 
that increase its probability; or to display the causes that bring it about. 
Again, an explanation may unify many phenomena, hitherto thought dis-
parate. Each of these notions captures a sense of explanation applicable in 
some circumstance. A fully elaborated schema of abduction would then 
need to accommodate all of these further notions. What is a law as op-
posed to a general proposition? What is the origin of the probabilities? 
Just what do we mean by “cause”? How do we distinguish unification from 
mere conjunction? Needless to say, each of these is an unfinished project 
in its own right. 

Prudently, Lipton does not take on the challenge of finding a schema 
that would embrace all of these senses of explanation. Rather, he develops 
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the causal model of explanation, perhaps because it fits best with his 
favorite, elaborated example of Ignaz Semmelweis and his discovery of the 
cause of childbed fever (2004, chap. 3). However, Lipton concedes (2004. 
p. 3) that he can provide no analysis of the notion of causation and uses it 
as an unexplicated term.6

We press on. How are we to judge which explanation is better? We 
could, Lipton argues, adopt the most likely explanation. However, this 
would reduce abduction to a circularity: the most likely explanation 
would then be the one most likely to be true. Lipton introduces a dis-
tinct characteristic to replace “likeliest”: we should infer to the “loveliest” 
explanation (p. 59, p. 121). According to Lipton, this would then guide 
us to the likeliest explanation. What makes an explanation “lovelier” is, 
loosely, that it provides the most understanding (p. 59). This derives in 
turn from what Lipton identifies as “explanatory virtues,” which include 
“mechanism, precision, scope, simplicity, fertility or fruitfulness, and fit 
with background belief” (p. 122) as well as “unification” (p. 139). Once 
again, the singular problem of determining the lovelier explanation has 
multiplied into many, unresolved problems. We are quite far from any 
account of the virtues that would allow them a place in a formal schema 
of inductive inference.

Lipton does introduce what are, for present purposes, two important 
extensions to the notion of inference to the best explanation. The first is the 
recognition that an explanation must rise to some minimal level of success 
before we are authorized to infer to it. As a result, he is willing to relabel 
inference to the best explanation as “Inference to the Best Explanation if 
the Best is Sufficiently Good” (2004, p. 154) and “inference to the best of 
the available explanations, when the best one is sufficiently good” (2000, 
p. 187). Second, Lipton introduces a contrastive notion. It is restricted to 
causal explanation and its key assertion is the following:

Difference Condition: to explain why P rather than Q, 
we must cite a causal difference between P and not-Q, 

6 For a pessimistic view of any general account of causation that might serve his 
purposes, see Norton (2003).
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consisting of a cause of P and the absence of a correspond-
ing event in the case of not-Q. (p. 42)

I will argue below the importance in all cases of distinguishing compara-
tive judgments of which are better explanations from the absolute judg-
ment that some explanation is best.

Unfortunately, Lipton’s treatment of examples is superficial, with one 
exception. Many examples are named, but mostly there is little or no ex-
planation of the content of the example. This is a serious problem, since we 
shall see in the next chapter that closer examination of canonical exam-
ples leads to conclusions other than those drawn by Lipton. Equally ser-
iously, many of the examples are drawn from ordinary human situations. 
These are sufficiently unlike important examples in science that reliance 
on them is dangerous if one’s goal is to understand inferences in science.

I have prepared a compendium of examples from science as a way of 
assessing their distribution over types:7

A drought may explain a poor crop.

The Big Bang explains background radiation.

Stress, fatigue, etc. explains bridge collapse.

Velocity of recession explains galactic red shift.

Kinetic theory of gases explains thermal phenomena.

Natural selection explains the traits of plants.

Electronic theory explains current flow.

Echolocation explains bat navigation.

The same side of the moon faces us.

Why the planets move in ellipses.

7 This list is a mix of quotes and paraphrasing. No page numbers are given since many 
examples are repeated over many pages.
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Why leaves turn yellow in November.

Prior syphilis explains why someone contracted paresis.

Freudian wish-fulfillment explains a slip.

A field explains the deflection of a particle.

Chomsky infers language structure.

Lightning and thunder.

Perturbations in the orbit of Uranus explained by Neptune.

Mendeleyev predicts new elements.

Song employed by sparrows.

 A double-blind test of a drug’s efficacy.

Gregor Mendel’s peas.

Millikan’s oil drops. 

Finally, there is an example from relativity theory: 

We are more impressed by the fact the special [sic] theory of 
relativity was used to predict [sic] the shift in the perihelion 
of Mercury than we would have been if we knew that the 
theory was constructed in order to account for that effect. 
(p. 172)

Others examples are essentially dependent on human actions and thus 
unlike real examples in science:

Why you didn’t come to the party (headache).

Peculiar tracks in the snow in front of my house (snow-
shoes).
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A magician intuits the numbers I am thinking of.

I see a supposedly vacationing friend at the supermarket.

The rattle in the car.

Praise and punishment by Israeli airforce instructors.

Why a three-year-old threw his food on the floor.

Why Lipton went to see Jumpers rather than Candide.

Why Able rather than Baker got the philosophy job.

“Why did you order eggplant?”

Why Kate rather than Frank won the prize.

Why my horse won rather than yours.

Why Lewis went to Monash rather than Oxford in 1979.

A door opening triggers a bomb.

Why all men in the restaurant are wearing paisley ties.

The butler did it.

The patient has measles.

My front door has been forced open.

Why is my refrigerator not running.

Whether my car will start tomorrow.

Sherlock Holmes’ dog that did not bark.

Movement of the mouse causes the movement of the cursor.

A crossword puzzle.

Successful navigation by means of a map.
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Still others are intermediate between the two types of cases:

Sticks in a bunch thrown in the air more likely horizontal.

A spark causes a fire, but oxygen does not.

Why mercury rises in a thermometer.

Why people feel heat more when humidity is high.

Kuhn infers normal science is governed by exemplars.

Opium puts people to sleep.

Data from flight recorder of crashed plane.

Kahneman and Tversky’s “Linda the Bank Teller”; people 
told of a taxi involved in a hit-and-run accident.

A sympathetic powder that can cure wounds at a distance.

Methods of predicting future performance on the London 
Metal Exchange.

Persistence forecasting of the weather.

A scan of the lists indicates that the potentially misleading human exam-
ples have as much presence as the scientific examples.

Finally, we have one extended example in Lipton’s text. It is the iden-
tification of the cause of childbed fever by Semmelweis in the 1840s in a 
Vienna maternity hospital. The primary narrative spans seventeen pages 
(pp. 74–90). The example is well known in philosophy of science through 
its inclusion in Hempel’s (1965; chap. 2) widely read and highly accessible 
Philosophy of Natural Science. In brief, the maternity hospital had two div-
isions and, alarmingly, the death rate from childbed fever was markedly 
higher in one than in the other. Over a period of several years, Semmelweis 
checked all manner of differences between the two divisions in search 
of the cause. None was found until Semmelweis finally realized that the 
doctors and medical students in the higher mortality division only were 
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delivering babies after performing autopsies elsewhere. He guessed that 
cadaveric material on the doctors’ hands was the cause of the childbed 
fever. His guess was confirmed when he required the doctors to disinfect 
their hands with chloride of lime before delivering in the maternity ward, 
whereupon the differential death rate disappeared.

The case is a classic example of dedicated scientific detective work and 
the powerful use of evidence. However, as a case study intended to display 
the merits of inference to the best explanation specifically, the case study 
is a failure. For that, what is needed is a case study in which the evidential 
relations depend quite specifically on the distinctive merits peculiar to 
inference to the best explanation. It would do so in a way that makes it un-
likely that any other account of inductive inference could do as well. This 
is not that case study, for explanation plays little if any role in the analysis. 
Rather, Semmelweis’ investigation and analysis is a near perfect example 
of the application of Mill’s methods.

The clearest application comes in the identification of the cause. Mill’s 
method of difference applies when we have two instances, one in which 
the phenomenon of interest occurs and one in which it does not. If they 
differ only in one circumstance, that is the cause. This is precisely the case 
of Semmelweis. In the key experiment, the only change associated with 
the drop in mortality was that the doctors were disinfecting their hands 
from cadaveric material with chloride of lime. The eliminated cadaveric 
material was the cause.

We can see in Semmelweis’ own narrative how his analysis was driven 
by just such considerations. 

As mentioned, the commissions identified various endem-
ic factors as causes of the greater mortality rate in the first 
clinic. Accordingly, various measures were instituted, but 
none brought the mortality rate within that of the second 
clinic. Thus one could infer that the factors identified by the 
commissions were not causally responsible for the greater 
mortality in the first clinic. I assumed that the cause of the 
greater mortality rate was cadaverous particles adhering to 
the hands of examining obstetricians. I removed this cause 
by chlorine washings.
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Consequently, mortality in the first clinic fell below 
that of the second. I therefore concluded that cadaverous 
matter adhering to the hands of the physicians was, in real-
ity, the cause of the increased mortality rate in the first clin-
ic. Since the chlorine washings were instituted with such 
dramatic success, not even the smallest additional changes 
in the procedures of the first clinic were adopted to which 
the decline in mortality could be even partially attributed. 
(2008, pp. 7–8)

Clearly all that was at issue in Semmelweis’ analysis was to find the dif-
ference that made a difference and identify it as the cause. Of course, 
one could embed Semmelweis’ analysis in a larger narrative replete with 
discussion of how the cadaveric material explained the childbed fever, 
as Lipton did. However, this is unnecessary; Semmelweis’ own analysis 
makes no essential use of explanatory notions.

The brief remarks above already indicate how well Semmelweis’ meth-
odology is captured by Mill’s methods. Scholl (2013) has given a more 
thorough analysis of Semmelweis’ methodology and finds extensive use 
of Mill’s methods, including Mill’s method of agreement and concomi-
tant variation. Scholl (2015) argued for the failure of Lipton’s attempts to 
impugn the understanding of Semmelweis’ analysis as an application of 
Mill’s methods. 

8.7. Inference to the Best Explanation without 
Explanation: Two-Step Reconstruction
What do inferences commonly labeled abductive or inference to the best 
explain have in common? The examples of the next chapter are loosely 
bound together by a simple two-step scheme. The scheme does not re-
quire a sophisticated notion of explanation. Mere accommodation is all 
that is needed. Here, we may conjecture that Lipton was not just unlucky 
in choosing as his major example a case in which explanation proved to 
play no special role. While the Semmelweis example was an especially 
poor choice, it also reflects a problem that will be repeated in every ex-
ample we will examine in the next chapter: the more closely we look at an 
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example, the less important is the role of explanation as a distinct notion 
of philosophers.

Step 1. Preference for the better explanation.

What the examples developed in the next chapter have in common 
is that they all involve a comparison of a favored theory or hypothesis 
with one or more foils. The favored hypothesis is adequate to the evidence, 
most commonly in the sense that it deductively entails the evidence. The 
foils—that is, the alternatives—are judged inadequate in one of two ways:

1. Contradiction: the evidence at hand may directly 
contradict the alternative; or the evidence supplemented 
by specific background facts may contradict the 
alternative.

2. Evidential debt: to accept the alternative requires us 
to accept further assumptions for which we have no 
evidence.

The essential point is that the favoring invokes no explanatory notions, 
unless one accepts that the notions invoked here are a full—if thin—ac-
count of explanation. If the disfavoring consists of the alternative facing 
contradictions, it is simple logic. We prefer the logically consistent over 
the inconsistent. If the disfavoring is driven by evidential debt, a simple 
test will show that the presence of the evidential debt is fully responsible 
for the disfavoring. In the next chapter, in the case of the explanation of 
the anomalous perihelion motion of Mercury, we will see that if the evi-
dential debt could have been discharged, a fully admissible hypothesis 
would have resulted.

Step 2. From comparative to absolute: better is best.

This first step just gives a reason to prefer one hypothesis or theory 
over another. This is not enough if we are to commit to the preferred hy-
pothesis as the inference scheme requires. We need more and that comes 
from an assumption that no other hypothesis or theory can do better.
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Under any account of inference to the best explanation—material or 
otherwise—this is the fragile step. Whereas the comparative judgments of 
Step 1 are explicit in the scientists’ narrative, this absolute judgment is not.

How can this step be warranted? The surest case arises when back-
ground assumptions assure us that the hypotheses or theories we have 
considered are exhaustive. Then, there are no more credible candidates 
left, so the best of those considered must also be the best. These back-
ground assumptions are the assumptions that warrant the inference.

The most difficult case is the most common. It is when the inference 
from better to best is made, even though scientists have no clear grasp 
of the full range of hypotheses or theories possible. Then, at worst, the 
inference is unwarranted. Or, more charitably, there may be a tacit me-
ta-argument at work. The argument works not at the level of theories but 
of theorizers. The assumption is that the theorizers are sufficiently invent-
ive and perspicacious to have surveyed the full range of hypotheses or 
theories applicable, and that they have considered the most credible. Once 
again, the best of those considered then must be the unqualified best. 
These background assumptions over the power of theorizers warrants the 
inference from better to best.

8.8. Why Inference to the Best Explanation?
Given that that the full two-step inference faces such difficulties, why has it 
come to prominence over the last century or so? It is because it has helped 
theorists solve a vexing evidential problem. In earlier theorizing, theor-
ists were often in the happy position that they could infer fairly directly 
from evidence to a theory. Newton, for example, could infer quickly from 
Kepler’s third law of planetary motion to an inverse square law of gravita-
tional attraction for the planets. He spoke confidently of deductions from 
the phenomena. While that now sounds extravagant, Newton’s inferences 
from the phenomena employed background assumptions that made them 
deductive.8 Even as late as 1929, Edwin Hubble could arrive at his Hubble 
law for the speed of recession of the galaxies merely by fitting a straight 
line to a plot of velocity-distance data for a subset of his data.

8 See, for example, Harper (2002).
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By Hubble’s time, the happy days of easily supported theories were 
passing. This was especially clear with Einstein’s general theory of relativ-
ity. It was a theory of such enormous complexity that no similar inference 
from phenomena to theory was possible. The gap was just too great. While 
the problem is not as stark, others faced similar problems. Darwin could 
not infer directly from his mass of evidence in natural history to natural 
selection. The relationship between his evidence and theory was just too 
complicated.

How can theorists close the gap? Perhaps a direct inference cannot 
be made from evidence to a theory. But a theorist may sense that a theory 
fits the evidence so well that it must have something right. This sense can 
be viscerally strong and communicated fairly easily by recounting the 
details of the example. It is often expressed compactly by the claim that 
the theory explains the evidence. The task remaining for the inductive 
logician, however, is to take the loosely articulated but viscerally powerful 
sense and translate it into a transparent analysis of just how the evidence 
supports the theory. The project of translating the evidence into a precise, 
general, formal schema remains unfinished and, if the arguments of this 
chapter and book are upheld, will remain so. However, if a material war-
rant is sought on a case-by-case basis, a warrant can be found for each case 
in background facts.

8.9. Conclusion
Does inference to the best explanation provide a serviceable, general 
rule of inductive inference? Its failure to do so can be shown by a simple 
question: If we know that some hypothesis gives the best explanation of 
the evidence, should we infer to it? The answer, of course, is that without 
further details we simply cannot say. When we look more closely at the 
details, the strength of the inference becomes clearer. Since the strength 
of the inductive support can only be assessed, in the end, by looking at the 
details of the case at hand, we can see that inference to the best explana-
tion is not a self-contained rule of inductive inference. It is at best a loose 
guide in urgent need of development. We have seen in this chapter that 
prospects for development are meager. Efforts to develop the rule lead to 
a multiplication of problems. Each solution presents more problems than 
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it solves. The more we try to clarify the general argument form, the less 
clear it becomes.

That inference to the best explanation should be troubled in just this 
way is quite expected according to the material theory of induction. For, 
accordingly, there can be no universal formal rule covering all cases. At 
best, inferences grouped under the label “inference to the best explana-
tion” form a loose unity that dissolves once we look more closely at each 
inference. The most precise assessment of the inductive strength of any 
particular argument comes only when we fully take into account the back-
ground facts that warrant the inference. In the final analysis, all that infer-
ence to the best explanation provides is an indication of a loose similarity 
with other arguments and nothing more.
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9

Inference to the Best Explanation: 
Examples

9.1. Introduction
According to the material theory of induction, there can be no universally 
applicable schema that fully characterizes inference to the best explana-
tion. At best, there are loose similarities that the canonical examples of 
inference to best explanation share. These loose similarities were codified 
in the last chapter (Section 8.7) in a two-step characterization. First is a 
comparative step in which one hypothesis or theory is favored over one 
or more foils. In the second step, this favoring is rendered absolute: we are 
authorized to infer to the favored hypothesis or theory. It was noted in the 
last chapter that this characterization was derived from a compendium 
of canonical examples, which are given in this chapter. Seven examples 
are developed in Sections 9.4 to 9.10. For ease of overview, their fit to the 
general characterization is summarized in a table in Section 9.3. Section 
9.11 presents a general conclusion. First, however, the next section offers 
some reflection on the importance of these examples.

9.2. Examples Matter
What this chapter shows is that taking examples seriously is important. I 
have already lamented in various parts of the last chapter how the present 
literature has often treated its examples too hastily. There are two ways 
that this has obscured evidential relations in examples in science.



The Material Theory of Induction274

First, it is common to employ examples in which human action plays 
an essential role. The appeal of such examples is that the analysis is easiest 
and most compelling. However, the ease is simply because the examples 
are poor surrogates for real examples in science where evidential rela-
tions are commonly less clear. Specifically, the examples involving human 
action mislead us, since, unlike examples in science, the role of the com-
parative foil is minimal. Lipton (2004, p. 6) gives the time-worn example: 
“Faced with tracks in the snow of a certain peculiar shape, I infer that a 
person on snowshoes has recently passed this way.” Once one has seen the 
distinctive imprints left by snowshoes, there is really only one account to 
be given of their origin. We might invent fanciful scenarios just to drive 
home that there is no real choice. Lipton shows how it is done:

Of course, there is always more than one possible explana-
tion for any phenomenon–the tracks might have instead 
been caused by a trained monkey on snowshoes, or by the 
elaborate etchings of an environmental artist—so we can-
not infer something simply because it is a possible expla-
nation. It must somehow be the best of competing explana-
tions. (2004, p. 56)

However, entertaining these alternatives rapidly becomes a perfunctory 
exercise in eliminating the fanciful. We might as well dismiss them as 
comic relief.

Human examples are thus quite unlike real scientific examples. 
Alternative hypotheses or theories in scientific cases are not jokes. 
Prevailing over them, almost invariably, is a greater challenge, as we shall 
see below. The wave theory of light struggled for centuries both with its 
own early weaknesses and the fact that the competing emission theory 
had been delivered by the authority of authorities, Isaac Newton himself. 
Darwin struggled to account for the eye, where his creationist oppon-
ents could readily explain the perfection of its design with their designer. 
The anomalous motion of Mercury’s perihelion could be explained by 
Hugo von Seeliger’s zodiacal light, if only it could be determined that it 
held enough matter. It was essential to Einstein’s general theory of rela-
tivity that this quite prosaic account fail, for nothing in the elegance of 
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Einstein’s theory could protect it if Seeliger’s hypothesis proved workable. 
J. J. Thomson’s particle theory of cathode rays had to overcome Philipp 
Lenard’s ether-wave theory. It is only in retrospect that we see how precar-
ious Thomson’s victory was, for the soon-to-emerge quantum theory did 
attribute wave-like properties to electrons.

Second, much of the literature on inference to the best explanation 
mentions examples in science but does not explore them fully. As a result, 
the literature draws on dangerously oversimplified caricatures and misses 
the real moral of the examples. Superficially, for example, Big Bang cos-
mology provides an account of Arno Penzias and Robert Wilson’s obser-
vation of cosmic background radiation that is rich in explanatory virtue. 
As a result, the inference to the Big Bang looks immediate and irresistible 
and can be drawn without much concern for other accounts. However, if 
one teases out the history, as we will below, one finds that the explanatory 
virtue was initially less clear and less decisive. It took decades before the 
inference was secure; and only popular simplifications of history could 
make the inference seem immediate and irresistible. 

More importantly, the essential and delicate part of the analysis was 
not establishing that Big Bang cosmology could accommodate the result. 
Almost any cosmology could deliver background radiation in one form 
or another. All it needed was to include electrically charged matter; and 
every viable cosmology must do this, else it cannot harbor stars that shine 
in the electromagnetic spectrum. Rather, the burden was first to establish, 
with some effort over years, a particular thermal form for the background 
radiation, and then to argue in some detail why competing accounts could 
not recover it. The evidential success thus looks less like a sudden explana-
tory coup of one theory than a slowly building and widespread failure of 
the competitors. This dynamic is repeated in many examples.

9.3. Synopsis of Examples
In the characterization of inference to the best explanation of the last 
chapter (Section 8.7), the principal burden was to establish superiority 
of the favored hypothesis or theory over a competing foil or foils. In the 
second step, the status of the favored hypothesis or theory is elevated from 
the better explanation to the best. This second step may not always be 
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carried out. The table below indicates in summary how the examples of 
this chapter instantiate this characterization.

Table 9.1. Summary of examples.

Abduction Foil Foil eliminated Generalization 
from better to best

Darwin on the origin 
of species

Independent 
creation

Refuted by traits 
without function

Tacit assumption of 
exhaustive choice

Lyell’s 
uniformitarian 
geology

Geologies using 
presently unknown 
causes

Novel causes incur 
an undischarged 
evidential debt

Known versus 
unknown causes is 
exhaustive

Thomson for 
cathode rays as 
charged particles

Cathode rays are 
processes in the 
ether

Contradiction with 
experiment: ether 
waves would not be 
bent by a uniform 
field

Tacit assumption of 
exhaustive choice

Lenard for cathode 
rays as ether 
processes

Cathode rays are 
processes in matter 

Contradiction 
with experiment: 
cathode rays in 
evacuated tubes

Choice between 
matter and ether 
posed as exhaustive 
dilemma

Einstein’s 
explanation 
of Mercury’s 
anomalous motion

Many; modifications 
to Newtonian 
theory; unobserved 
masses

Contradiction 
with experience; 
undischarged 
evidential debt

Step not taken

Cosmic background 
radiation from the 
Big Bang

Alternative 
cosmologies, 
especially steady-
state cosmology

Empirical failure Taken tacitly

Lavoisier’s oxygen 
chemistry

Phlogiston 
chemistry

Contradiction; 
matter has weight 
(gravity), but 
phlogiston has 
levity

Fact (matter has 
weight) is one of 
many warranting 
facts

Wave theory of light Newtonian 
corpuscular theory

Undischarged 
evidential debt; 
contradiction with 
experiment

Complicated
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9.4. Darwin and On the Origin of Species1

We saw in the last chapter that one of the earliest statements of what we 
now call inference to the best explanation appeared in Darwin’s On the 
Origin of Species. My task here is focused narrowly on the argument as it 
is developed in this particular volume of Darwin’s writings. My concern is 
not how the analysis may be developed in other of Darwin’s writings. And 
my concern is definitely not how we might presently make the case for the 
theory of evolution. The modern case for the evolution of species rests on 
a much larger evidential base and has a greater reliance on supporting sci-
ences, such as Mendelian genetic theory, unknown to Darwin. It resolves 
many of the problems troubling Darwin’s development.

9.4.1. Darwin’s Argument
On the Origin of Species develops what Darwin calls “one long argument” 
(1876, p. 404). It is an argument that cannot be reproduced here with any 
fidelity, for it depends on a lengthy, massively impressive recitation of de-
tailed facts in natural history. They are explained by a wonderfully simple 
process. There is in nature a constant struggle for survival by living beings. 
They grow at a geometrical rate that outpaces the arithmetic growth of 
resources. Favorable variations give their bearers an advantage. Nature 
selects them for survival, just as domestic breeders select commercially 
desirable variations. Those selected flourish, leaving offspring with similar 
characteristics. Darwin offered a simple summary:

This principle of preservation, or the survival of the fittest I 
have called Natural Selection. It leads to the improvement 
of each creature in relation to its organic and inorganic con-
ditions of life. (pp. 102–03)

The development of Darwin’s argument then follows a simple formula. 
Some feature of living beings is displayed and then an account is given of 
how it could arise through natural selection. A reader cannot but be over-
whelmed by the sheer mass of facts in natural history that natural selection 

1 I thank Zina Ward for helpful discussion of this section.
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accommodates. No short selection here can do justice to it. Darwin him-
self tried to convey this in a concluding chapter with a rapid recitation of 
successes:

Many other facts are, as it seems to me, explicable on this 
theory. How strange it is that a bird, under the form of a 
woodpecker, should prey on insects on the ground; that 
upland geese which rarely or never swim, should possess 
webbed feet; that a thrushlike bird should dive and feed on 
sub-aquatic insects; and that a petrel should have the habits 
and structure fitting it for the life of an auk! and so in end-
less other cases. But on the view of each species constantly 
trying to increase in number, with natural selection always 
ready to adapt the slowly varying descendants of each to 
any unoccupied or ill-occupied place in nature, these facts 
cease to be strange, or might even have been anticipated. 
(p. 414)

These successes lead up to what is, for our purposes, the key evidential 
claim: “It can hardly be supposed that a false theory would explain, in so 
satisfactory a manner as does the theory of natural selection, the several 
large classes of facts above specified” (p. 421).2 Darwin does not justify this 
key claim. It is, presumably, offered as self-evident. It is plausible, however, 
that Darwin was following William Whewell. The latter described the 
consilience of induction as arising when one theory proves, unexpectedly, 
to explain more classes of facts; and this, Whewell urged, is a powerful 
indicator of the truth of the theory.3

In spite of its many successes, Darwin’s theory faced serious difficul-
ties. Darwin sought as well as he could to deal with them. They had the 
character of taking on an evidential debt: a supposition needed for the 
theory to succeed but for which evidence was then lacking. Here are two 
examples.

2 This confident claim was not present in the first edition and, presumably, was added as 
part of Darwin’s response to his critics.

3 For elaboration, see Thagard (1977; 1978, sect. 2).
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The first was that there was some doubt that the earth was sufficiently 
old for the extraordinary amount of time Darwin’s theory required for 
natural selection to do its work. Darwin’s best hope was merely to keep the 
problem an open question, still to be decided:

With respect to the lapse of time not having been sufficient 
since our planet was consolidated for the assumed amount 
of organic change, and this objection, as urged by Sir Wil-
liam Thompson, is probably one of the gravest as yet ad-
vanced, I can only say, firstly, that we do not know at what 
rate species change as measured by years, and secondly, that 
many philosophers are not as yet willing to admit that we 
know enough of the constitution of the universe and of the 
interior of our globe to speculate with safety on its past du-
ration. (p. 409)

The second was the absence of intermediates. Darwin’s theory required all 
variation to arise through very slow, small gradations. Yet nature has vast 
gaps between various forms. The evolution of the eye presented a special 
problem, since its perfection as an optical instrument was no naturally 
explained as the handiwork of a creator. Darwin strove for pages to make 
plausible that a light sensitive nerve in some being might eventually de-
velop into an eye. However, in the end, he could do little better than appeal 
to his reader’s indulgence:

He who will go thus far, ought not to hesitate to go one step 
further, if he finds on finishing this volume that large bod-
ies of facts, otherwise inexplicable, can be explained by the 
theory of modification through natural selection; he ought 
to admit that a structure even as perfect as an eagle’s eye 
might thus be formed, although in this case he does not 
know the transitional states. (p. 145)

The foil against which Darwin competed was independent creation: the 
thesis that “species were immutable productions, and had been separately 



The Material Theory of Induction280

created” (p. xiii). On the development of the eye, Darwin was straining 
merely to match independent creation:

It is scarcely possible to avoid comparing the eye with a tele-
scope. We know that this instrument has been perfected by 
the long-continued efforts of the highest human intellects; 
and we naturally infer that the eye has been formed by a 
somewhat analogous process. But may not this inference be 
presumptuous? Have we any right to assume that the Cre-
ator works by intellectual powers like those of man? (p. 146)

Elsewhere, repeatedly, in the volume, Darwin sought to do better than 
the thesis of independent creation. The means depended on assuming just 
what he had suggested we had no right to do. That is, his arguments de-
pended on assuming that a creator would only endow a being with a trait if 
that trait had some useful purpose; and that if there are similarities across 
species, there must be some discernible purpose for them. Guided by this 
assumption, time and again Darwin could point out some feature that had 
no evident purpose, but arose naturally through the slow developments 
fostered by natural selection.

In besting the thesis of independent creation, Darwin was fond of the 
superlative “utterly inexplicable,” using it at least four times:

We can clearly understand these analogies [clustering of 
species], if species once existed as varieties, and thus orig-
inated; whereas, these analogies are utterly inexplicable if 
species are independent creations. (p. 47)

This grand fact of the grouping of all organic beings under 
what is called the Natural System, is utterly inexplicable on 
the theory of creation. (p. 413) 

Such cases as the presence of peculiar species of bats on oce-
anic islands and the absence of all other terrestrial mam-
mals, are facts utterly inexplicable on the theory of inde-
pendent acts of creation. (p. 419) 
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On the view of each organism with all its separate parts 
having been specially created, how utterly inexplicable is it 
that organs bearing the plain stamp of inutility, such as the 
teeth in the embryonic calf or the shrivelled wings under 
the soldered wing-covers of many beetles, should so fre-
quently occur. Nature may be said to have taken pains to 
reveal her scheme of modification, by means of rudimenta-
ry organs, of embryological and homologous structures, but 
we are too blind to understand her meaning. (pp. 420–21)

As the examples of his deprecation of independent creation multiplied, 
Darwin rarely speculated on the details of this competing theory. The 
tacit assumption throughout the volume was that independent creation 
delivered immutable species all of whose traits have a purpose. We find 
an exception when Darwin highlights similarities between equine species:

He who believes that each equine species was independent-
ly created, will, I presume, assert that each species has been 
created with a tendency to vary, both under nature and un-
der domestication, in this particular manner, so as often to 
become striped like the other species of the genus; and that 
each has been created with a strong tendency, when crossed 
with species inhabiting distant quarters of the world, to 
produce hybrids resembling in their stripes, not their own 
parents, but other species of the genus. To admit this view 
is, as it seems to me, to reject a real for an unreal, or at least 
for an unknown, cause. It makes the works of God a mere 
mockery and deception; I would almost as soon believe 
with the old and ignorant cosmogonists, that fossil shells 
had never lived, but had been created in stone so as to mock 
the shells living on the sea-shore. (pp. 130–31)

This is a less visible line of argument in Darwin’s text: that there is some-
thing defective as a theory in positing a process of independent creation.

These thoughts develop into a direct assault on the explanatory vi-
ability of a creator. Thus Darwin writes: “On the ordinary view of the 
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independent creation of each being, we can only say that so it is;—that 
it has pleased the Creator to construct all the animals and plants in each 
great class on a uniform plan; but this is not a scientific explanation” (p. 
383). Further, he adds, “It is so easy to hide our ignorance under such 
expressions as the ‘plan of creation,’ ‘unity of design,’ &c., and to think 
that we give an explanation when we only re-state a fact” (p. 422). To tease 
out Darwin’s objection, imagine that we make up a huge list of species and 
their traits. To add the remark that the creator planned it so adds nothing 
of explanatory value.

To sum up, Darwin’s argument rests on its explanatory prowess with 
a huge array of facts in natural history. The meaning of the term “explan-
ation” is not given. However, the familiar covering law account of explan-
ation fits his usage as well as any: the many facts are explained, since they 
are entailed by his theory. More precisely, the possibility of the specific 
facts is entailed by his theory, for natural selection cannot specifically 
predict every fact that Darwin reports. The strength of the explanation 
resides in the breadth and variety of facts covered. Perhaps this is a quiet 
echo of Whewell’s notion of consilience of induction.

The foil against which Darwin rails is the independent creation of 
each species as immutable productions. His claim of the foil’s explanatory 
defects rests on the tacit assumption that each trait of a living creature 
must have a purpose; and that this is also the case for similarities among 
different species. Without such an assumption, Darwin has no real basis 
for discarding independent creation. Indeed, without it, the thesis is so 
incompletely defined that no evidential test is possible. What in nature 
might then count as favorable or unfavorable evidence? If nothing can 
count as evidence for or against it, then independent creation, Darwin 
suggests, is not an explanatory theory at all.

Darwin’s theory has its difficulties and these require him to take on 
some undischarged evidential debt, such as the supposition of long times 
for natural selection to work and that there were once transitional forms 
no longer in evidence. We are to conclude, however, that the foil of in-
dependent creation is so troubled that Darwin’s theory prevails.
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9.4.2. What Powers the Inference
The delicate but central question in this analysis is just what powers 
Darwin’s inference. Let us review some possibilities for a general account 
that employs a formal principle.

At some intuitive level, there is a sense of beauty and elegance in 
Darwin’s theory that it embraces such a diversity of fact. This gives it the 
ring of truth. This feeling, however, falls well short of what an inductive 
logic—formal or even material—requires. Is the principle that the eviden-
tial support is strong merely if we genuinely and honestly feel it is so? That 
is not a sustainable principle of logic. And how are we to deal with the 
case in which the feeling is not widely shared? This is our case. When 
Darwin announced his theory, the public debate was spirited. Darwin’s 
critics were not swayed.

Might the inference be powered by the general result that Darwin 
himself cites, that the theory “explain[s], in so satisfactory a manner … 
several large classes of facts”? I will continue to take the otherwise un-
defined term “explain” to mean “derive their possibility from a few posits 
of the theory.” As noted above, the situation is more complicated. For this 
is not quite what Darwin’s theory does. The derivation does proceed from 
a few simple posits. However, it also draws on suppositions that are them-
selves in great need of further evidential support. The theory requires an 
extraordinary amount of time for its operations to succeed; and many of 
them, such as the descent of eyes, are presumed possible while required 
intermediate states are not found. They are also presumed. These are evi-
dential debts that, in other examples in this chapter, are sufficient to lead 
to the abandoning of a theory. There are evidential strengths and weak-
nesses to be balanced here before a final decision can be taken. Darwin 
delineates no general inductive principle to which his analysis conforms. 
There is no formal theory provided, even in vague outline, that negotiates 
the complexity of this balancing act. In the absence of a formal theory, a 
formal analysis is unpromising.

The prospects for a material analysis are more promising. For, even 
without a formal theory, Darwin and his sympathetic supporters found 
powerful support for his theory in his evidence. They had only facts to draw 
on. Another promising sign for a material analysis is that contemporary 
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commentators disagreed so pointedly. They had the same evidence and 
arguments before them. If these alone were compelling, then disagreement 
could only come from ineptitude in logic. If, however, background factual 
assumptions also bear crucially on the cogency of the argument, then 
matters improve; for if we allow that different commentators harbored 
different background assumptions, then the disagreement is intelligible. 
We need attribute no inductive fallacies to the disagreeing commentators.

We can see how material facts could underwrite Darwin’s confidence 
in his theory if we presume that Darwin found his analysis to establish 
two facts:

1. It is possible that the variety of species arose from descent 
with modification through natural selection.

2. It is unlikely that any other admissible account can 
accommodate the origin of species.

These facts combined are sufficient to warrant acceptance of Darwin’s 
theory. His account is possibly right; no others are; therefore, his has to be 
right. No formal principle of induction is needed.

The first fact is demonstrated by the massive weight of Darwin’s many 
examples. The second fact is essential, for without it merely establishing 
possibility is insufficient. Unfortunately, establishing this second fact is 
more difficult. This is because the only other account given serious analy-
sis in Darwin’s volume is independent creation. He does cast significant 
doubt on independent creation. It is contradicted by many arbitrary facts 
in natural history for which a creator would have no evident purpose. 
Darwin even calls into doubt whether independent creation counts as an 
explanatory theory at all.

What is left open is the question of whether there are still other theor-
ies possible that may do as well or better than Darwin’s. Of course, it is 
hard for us to imagine what these still better theories might be. But that 
our imagination fails is poor proof that there are no such theories. Perhaps 
Darwin expects us to proceed from a background assumption that we have 
no reason to expect that any theory could do justice to the wealth of facts 
in natural history. So merely finding one is so extraordinary that we can 
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stop searching. Or perhaps we might suppose that Darwin poses a dilem-
ma for us: either species descended from other pre-existing forms, or they 
did not. Darwin’s theory and independent creation are, we are to suppose, 
the strongest version of each horn. Perhaps, when Darwin’s theory bests 
independent creation, that is enough to establish that Darwin’s theory is 
not just the better of the two but the best of all.

9.5. Lyell’s Principles of Geology
Charles Darwin was influenced greatly by the uniformitarian geologist 
Charles Lyell. Before Darwin left for his formative voyage on the Beagle in 
1831, its captain, Robert Fitzroy, gave Darwin a copy of Volume 1 of Lyell’s 
Principles of Geology (1830). Subsequently, in November 1832, Darwin re-
ceived Volume 2 (1832) through the mail in Montevideo. The volumes had 
a profound impact on Darwin, who had been recruited as the voyage’s 
naturalist to work in both geology and zoology.

For our purposes, what is striking in Lyell’s Principles of Geology is 
that it provides a near perfect template for the argument that Darwin later 
developed. Lyell’s concern was to overturn earlier accounts of the origin 
of the earth’s geological features. These earlier accounts supposed that 
modern features were formed by presently unknown geological processes 
typically of far greater violence than those now observed. These were the 
“catastrophist” theories, as Whewell soon called them. They corresponded 
to Darwin’s foil of independent creation, for both presumed extraordin-
ary occurrences in the past to explain present features: for Lyell, present 
geology; for Darwin, the diversity of species. Lyell sought to replace 
these catastrophist theories with a uniformitarian geology, such as James 
Hutton had defended before him. In it, present day geological features 
are explained by very slow geological processes now in operation, acting 
over a long time. Correspondingly, Darwin sought to explain the diversity 
of species by means of natural selection, which employed slow processes 
present now, acting over a long time.

The connection to explanation is in the title of Lyell’s three-volume 
work: Principles of Geology, Being an Attempt to Explain the Former 
Changes of the Earth’s Surface, by Reference to Causes Now in Operation. 
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The words “explain” and “explanation” appear throughout the text.4 
Lyell’s overarching argument is an inference to the best explanation. 
Present causes acting slowly over a long time are a better explanation of 
present geological features than past cataclysms and are, presumably, the 
best explanation.

Since inference to the best explanation was not then a recognized 
mode of argumentation, we would expect that Lyell might provide some 
defense of it. How do we bridge the gap between a hypothesis that explains 
well and the truth of the hypothesis? Darwin was sensitive to the need to 
defend his method of argumentation and repeatedly introduced commen-
tary in its defense. Lyell, however, gave no indication that he saw the need 
to defend his mode of argumentation. As far as I can see, the first two vol-
umes of Principles of Geology contain no methodological analysis, beyond 
chance remarks and colorful reprimands for the errors of past theorists. 
It is only in the first chapter of Volume 3 that Lyell gave a more extended 
defense of his methods. There, he summarized his approach:  

In our attempt to unravel these difficult questions, we 
shall adopt a different course, restricting ourselves to the 
known or possible operations of existing causes; feeling as-
sured that we have not yet exhausted the resources which 
the study of the present course of nature may provide, and 
therefore that we are not authorized, in the infancy of our 
science, to recur to extraordinary agents. We shall adhere 
to this plan, not only on the grounds explained in the first 
volume, but because, as we have above stated, history in-
forms us that this method had always put geologists on the 
road that leads to truth,—suggesting views which, although 
imperfect at first, have been found capable of improvement, 
until at last adopted by universal consent. (1833, p. 6)

This was contrasted with the catastrophist foil:

4 In Volume 1, they appear together nearly 100 times.
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On the other hand, the opposite method, that of speculat-
ing on a former distinct state of things, has led invariably 
to a multitude of contradictory systems, which have been 
overthrown one after the other,—which have been found 
quite incapable of modification,—and which are often re-
quired to be precisely reversed. (pp. 6–7)5

As with Darwin, the strength of Lyell’s case rests ultimately on a massive 
compilation of illustrations of how presently acting causes could gener-
ate the geological features now observed. Conveniently for us, in this first 
chapter of Volume 3, Lyell selected three examples to illustrate the dif-
ferences of the two approaches. The first example concerned fossil shells 
and bones. The former view accounted for them as “fashioned into their 
present form by a plastic virtue, or some other mysterious agency” (p. 4). 
Lyell instead sought their origin in biological processes just like those in 
action today. The second example concerned the origin of basalt and sim-
ilar rocks. The former view attributed it to aqueous processes, while Lyell 
could point to igneous processes now in action that create such rocks. The 
third example concerned the occurrence of fossil shells in rocks in high 
mountains. The former view sought some unusual process that might dry 
up oceans and drop their level. Lyell replaced this with processes that ele-
vate land above an otherwise fixed sea level.

In all this, Lyell treated the uniformitarian view as little removed from 
providing an explanation of some process by directly observing its cause, 
as opposed to speculating on a novel cause not presently in evidence. He 
complained of the catastrophists that “they felt themselves at liberty to 
indulge their imaginations, in guessing at what might be, rather than in 
inquiring what is” (p. 2; emphasis in original). And he added, 

It appeared to them more philosophical to speculate on 
the possibilities of the past, than patiently to explore the 

5 The idea of employing just processes now acting is appealing in the abstract. However, 
it can quickly run into trouble. The steady-state cosmology of the mid-twentieth century was a 
uniformitarian cosmology that led its proponents to wild speculation, such as the continuous 
creation of matter. The Big Bang theory, its catastrophist competitor, won the day.
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realities of the present, and having invented theories under 
the influence of such maxims, they were consistently un-
willing to test their validity by the criterion of their accor-
dance with the ordinary operations of nature. (p. 2)

Lyell’s text becomes more polemical, heaping scorn on the catastroph-
ists: “Never was there a dogma more calculated to foster indolence, and 
to blunt the keen edge of curiosity, than this assumption of the discord-
ance between the former and the existing causes of change” (pp. 2–3). This 
stands is stark contrast to Darwin’s cautious defense of his use of causes 
presently in operation. While we can see nature selecting favorable vari-
ations among living beings in processes now in operation, Darwin first 
offered a lengthy discussion of selection by domestic breeders to convince 
us of the potency of selection. Perhaps Lyell’s task was less formidable. He 
needed only to establish that processes now in operation might eventually 
produce a mountain, not an eye.

How does this bear on the concerns of this chapter, namely the war-
ranting of abductive inferences? In the formal approach, the fact that some 
hypothesis or theory explains what is observed is confirmatory in virtue 
of the special character of explanation. Unlike Darwin, Lyell saw no spe-
cial explanatory relationship between his theory and the geological facts 
it accommodates that would require any circumspection. The theory, in 
Lyell’s telling, does little more that instruct us merely to observe the causes 
directly.

The warrant for Lyell’s argument for uniformitarianism is readily 
found in background facts—that is, materially. In analogy with the ma-
terial warranting of Darwin’s argument in On the Origin of Species, we can 
assume that Lyell seeks to establish two facts:

1. It is possible that present geological features arose over 
long time periods from causes now operating.

2.  It is unlikely that any other admissible account can 
accommodate their origin.
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These two facts are sufficient to warrant acceptance of Lyell’s uniformitar-
ianism. His theory is possibly correct; no others are; therefore, his has to 
be correct.

The first fact is established by the wealth of examples in Lyell’s account. 
The second proves a great deal easier to establish than the corresponding 
fact in Darwin’s warrant. For Darwin’s foil was specifically the thesis of 
independent creation. And that left open the possibility of many other 
theories excluded from explicit analysis. Lyell, however, has two cases that 
are exhaustive. Either present geological features arose from causes now 
in operation, or they did not. The first case is Lyell’s uniformitarianism. 
The second is a theory that must speculate on presently unknown causes 
or known causes but of presently unknown intensity.

Lyell has a direct and telling objection to theories of this second type: 
they take on an undischarged evidential debt. If fossil shells were formed 
by some plastic virtue or mysterious agency, then we are owed independ-
ent evidence that such virtues and agencies exist. If high mountains were 
thrown up suddenly by cataclysmic forces, we are again owed independent 
evidence that such forces existed. Lyell’s theory takes on no corresponding 
evidential debt. We are assured of the existence of the causes he employs 
since they are in operation now. Perhaps his only evidential debt is that 
enough time has passed for these causes to produce the geological features 
we see now.

9.6. Thomson’s Electron
J. J. Thomson’s “Cathode Rays” (1897) marks a turning point in physics. 
Thomson identified the rays produced in a cathode ray tube as beams of 
negatively charged particles of a fixed charge-to-mass ratio. These par-
ticles would soon carry the name “electron” and would be the first fun-
damental particles of a menagerie of particles that would be discovered in 
the twentieth century.

Describing the achievement as a discovery makes it sound like a 
“look-see” event, such as the discovery that one has bats in one’s attic. It 
was less that and more the identification by astute reasoning of the nature 
of a phenomenon long observed and probed. It was also the resolution of a 
debate between English and German physicists over the nature of cathode 
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rays. Are these cathode rays beams of matter? Or are they waves in the 
ether? Thomson identified them as matter: particles charged with negative 
electricity. Lenard, Hertz, and others identified them as waves in the ether.

For our purposes, the interesting point is that both sides employed 
abductive inferences. It was a duel of abduction, won by Thomson. Below, 
we will look at the abductive inference deployed on both sides. We shall 
see that they are fully controlled by background assumptions. Key to the 
arguments of both sides is an assumption of exhaustion: that the two 
alternatives they considered—matter or waves—were exhaustive. For 
Thomson, the assumption was tacit. For Lenard, it became explicit: find-
ing trouble for both matter and waves presented a troubling dilemma for 
Lenard, which was resolved only by a new, third option.

Each side had to establish that their account fit the experimental re-
sults—and, preferably, that they did so very well. But that alone did not 
suffice. Each side also needed to demonstrate that the competing account 
was untenable. Each claimed the other’s account was refuted by the ex-
periment. The assumption of exhaustion then did the critical work of al-
lowing the step from the adequacy of each side’s account to its truth. The 
course of the debate was controlled by the assumptions of exhaustion,

9.6.1. Thomson: Cathode Rays Are Charged Particles
Let us begin with the much-told story. Thomson’s argument6 in his 
“Cathode Rays” (1897) depended on the extensive series of experiments 
reported in his paper. In brief, Thomson showed that cathode rays are de-
flected by electric and magnetic fields in perfect agreement with the basic 
law of electrodynamics that we now know as the Lorentz force law. That 
the charges are negative is also affirmed by directing the rays at a metal 
vessel, which then becomes negatively charged. Perhaps the most power-
ful part of Thomson’s argument was that the experiments with magnetic 

6 In his 1906 Nobel lecture, Thomson used the words “argument” and “proof” to describe 
the case he made:

The arguments in favour of the rays being negatively charged particles are primarily 
that they are deflected by a magnet in just the same way as moving, negatively 
charged electrified particles…. The next step in the proof that cathode rays are 
negatively charged particles was to show that when they are caught in a metal vessel 
they give up to it a charge of negative electricity. (1906; emphasis added)
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and electric deflection both yielded the same value for the characteristic 
mass to charge ratio m/e for the particles. This same ratio was recovered 
whatever the material of the cathode emitting the rays.7

There are many details here that could be pursued. Thomson’s ex-
periments were delicate and the detailed development of his case sophis-
ticated. For our purposes, what matters is that Thomson’s charged particle 
hypothesis fit his experimental results wonderfully well. He summed this 
up in a much-quoted passage:

As the cathode rays carry a charge of negative electricity, are 
deflected by an electrostatic force as if they were negatively 
electrified, and are acted on by a magnetic force in just the 
way in which this force would act on a negatively electrified 
body moving along the path of these rays, I can see no es-
cape from the conclusion that they are charges of negative 
electricity carried by particles of matter. (1897, p. 302)

Thomson does not use the word “explains” or “explanation” here. Unlike 
Darwin and Lyell, the words are barely used at all. However, we can iden-
tify Thomson’s overall argument as an inference to the best explanation.

The difficulty of Thomson’s argument was that his summary estab-
lished only that this particle theory fit wonderfully well. Nothing in his 
summary established that other accounts could not do as well. One might 
think it excessive to demand anything more of Thomson, for there seems 
to be no gap at all in Thomson’s argument. However, there is a gap. In a few 
decades, with the rise of quantum theory, propagating electrons turned 
out to be waves after all. They might not be waves in a nineteenth-century 
ether. They were waves of quantized particles, so they had wavelike prop-
erties nonetheless. More importantly, the waves had exactly the properties 
that Thomson found so compelling: they carried a negative charge and 
were deflected by electric and magnetic fields just as Thomson found.

7 In Norton (2000, §3.2), I described this part of Thomson’s analysis as employing 
“overdetermination of constants,” an argument strategy that was employed elsewhere to good 
effect. I also noted (§3.3) that the overdetermination of constants by itself is not sufficient to rule 
out competitors, which is the issue the present text now turns to address.
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9.6.2. Lenard: Cathode Rays Are Waves
The explicit burden of establishing that no other account could do as well 
was carried by Thomson’s arguments against the competing view. That 
view was that cathode rays are a form of radiation in some way akin to 
light or Röntgen rays (also called X-rays). The then prevalent theory repre-
sented such radiation as a wave propagating in the all-penetrating ether.

The wave account was defended by Philipp Lenard,8 student and 
protégé of Heinrich Hertz, who had died prematurely in 1894 at the age of 
36. Lenard (1894) posed the problem as one of deciding whether the rays 
are “processes in matter or processes in ether.” These were the only two 
possibilities allowed by late-nineteenth-century physics. A discharge tube 
could contain ordinary matter and ether; there was no third possibility. 
So a process such as a cathode ray must be a process within one or both of 
these. Processes in matter, we would learn, are akin to the propagation of 
sound, which is carried by the material substance of air. It is quite plaus-
ible that cathode rays are something comparable. The electric potential 
might ionize the gas molecules that are then driven as a ray through the 
tube by electrical attraction. Processes in the ether are akin to light propa-
gation, which is carried by the ether. If of this form, cathode rays would 
correspondingly be carried as waves in the ether. Any matter present, such 
as air, would act only as an interference and impede the wave.

The posing of the problem is critical to the further analysis, since it 
reduces the analysis to deciding between two cases. It is the key assump-
tion of exhaustion. Lenard proposed to decide between the two by means 
of an experiment in which cathode rays are propagated in a vacuum. He 
explained:

[It affords] the possibility of carrying out the very same fun-
damental experiments, that had decided for light and sound 
whether these latter are processes in matter or processes in 
ether. (1894, pp. 226–27)

8 And alas soon to be a leading light of the anti-semitic, German science movement of the 
Nazi era.
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Light can propagate in a fully evacuated space without obstruction since 
ether remains. Sound propagation is suppressed entirely, since its material 
carrier has been eliminated.

Lenard then reported the results of the experiment, which favored the 
ether process:

Therefore cathode rays also propagate in spaces whose con-
tained matter is only in that extreme dilution in which all 
known processes in it disappear. One cannot ascribe the 
mediation of the intensive processes observed to the re-
mainder of the matter, which is more or less completely dis-
tant and without influence, but only to the ether, which we 
cannot remove from any space. If this is accepted, then our 
experiment on the nature of cathode rays decides that they 
are processes in the ether. (1894, p. 248)

At first pass, this argument is an abduction: the best explanation of the 
propagation of cathode rays in a vacuum is that they are ether waves. A 
more careful analysis, however, shows that explanation as a primitive no-
tion plays no essential role. It is really an eliminative argument. The rays 
are either material processes, like sound, or waves in the ether like light. 
The rays cannot be the first since they persist in a vacuum. Therefore, by 
elimination, they must be the second. 

Conveniently for us, Lenard then reports others who shared the ether 
process view, thereby giving a contemporary list of those whom Thomson 
(1897, p. 293) would later identify merely as “German physicists” in the 
opening of his celebrated “Cathode Rays” paper. They are Heinrich Hertz, 
Eilhard Wiedemann, and Eugen Goldstein.

What comes in Lenard’s next paper of the same year is still more 
interesting. The celebrated quote from Thomson’s “Cathode Rays” paper 
above purports to show that cathode rays are beams of charged particles, 
because they behave in just that way (e.g. “are acted on by a magnetic force 
in just the way in which this force would act on a negatively electrified 
body,” p. 302). It is easy for us to read that now as compelling. We might 
ask, what explains that the rays behave as if they are streams of particles? It 
is that they are streams of particles! This is easy hindsight. In 1894, Lenard 
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could dismiss this argument. He began his second paper on cathode rays 
of 1894 by noting that cathode rays are deflected by magnetic fields, just 
as would beams of charged particles: “Here the behavior of cathode rays 
agrees with the behavior of a stream of massive, negatively charged par-
ticles, projected from the cathode” (1894a, p. 23). Lenard then discounted 
this agreement as superficial:

This agreement between cathode rays and radiating mat-
ter—which one finds again in other phenomena of radia-
tion and which has even been seen by many physicists since 
Crookes’ experiments to hold generally—can nonetheless 
only be superficial, if the result drawn earlier [footnote cita-
tion to Lenard 1894], that cathode rays are processes in the 
ether, was justified.

Lenard’s dismissal is not casual. The main point of his paper is to present 
experimental results that establish the dismissal. He proceeded then to 
describe the experiments and their results:

That the agreement is in fact only superficial seems now 
to me to be shown especially well in the following exper-
iments, in which the agreement fails completely, when cir-
cumstances, which must be of the greatest influence on the 
speed of radiating matter, turns out to be completely with-
out influence on the magnitude of the magnetic deflection 
of cathode rays.

The experiments show that the magnitude of the mag-
netic deflection is not at all influenced by the medium in 
which the radiation is observed; rather the deflectability 
of one and same kind of cathode rays remains always im-
mutably the same, in all gases, with all pressures, with each 
intensity of radiation and even then, if the latter [rays] have 
passed through a metal wall pushed in front. (pp. 23–24)

The inference against the particle account depends on the same analysis 
as Lenard’s earlier paper. If cathode rays are streams of matter, then they 
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cannot persist in a vacuum, where there is no matter, just as there can 
be no sound waves. Since they depend so much on the matter present, 
we would expect changes in the matter present to change the amount of 
deflection of cathode rays by magnetic fields. Yet no such effect is found.

In short, Lenard had asserted three year’s before Thomson’s celebrated 
paper that successful explanation of magnetic deflection by the particle 
theory is not enough. It is an insufficient basis for inferring to the particle 
theory that can be overruled by the failure of the theory to fit other ex-
perimental facts. Lenard claimed that it has been so overruled by his latest 
experiments. He then recalled another experiment by Hertz. It also pre-
cluded the deflected cathode rays merely being a beam of charged particles 
acted on directly by a magnet:

The deflection of cathode rays is, according to Hertz’ exper-
iments, not an effect of the magnet on the rays themselves, 
but an effect of the latter on the medium through which 
they radiate; the rays propagate differently in a magnetized 
medium than in a non-magnetized medium. For if the forc-
es act between the magnet and the rays themselves, then the 
magnet must also be deflected by the cathode rays, if the 
magnet is made movable; this is not the case. (1894a, p. 32)9

The basis of the experiment is elementary electromagnetism. If cathode 
rays are beams of charged particles, then they behave electromagnetically 
much the same as a current in a wire. A current carrying wire creates 
magnetic effects. Oersted had found a magnetic needle deflected in the 
vicinity of such a wire. Correspondingly, we should find magnetic effects 
in the vicinity of cathode rays. Yet when Hertz sought them, he found 
none. His delicately balanced magnet was undeflected.

With the failure of the particle theory now assured, Lenard turned to 
a brief elaboration of the ether theory. How is it that a magnetic field can 

9 The footnote “Hertz, Wied. Ann. 19. p. 799 f. and 805 f. 1883” is to those parts of Hertz 
(1883) where Hertz reports the negative result of this experiment. Hertz (1883, p. 807) also draws 
the same conclusion as Lenard: “the magnet acts on the medium, but cathode rays propagate 
differently in magnetized than in an unmagnetized medium.”
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deflect a cathode ray? The means, Lenard explained, is indirect. The mag-
netic field affects the ether and, indirectly through that effect, the cathode 
rays are carried by the ether.

The medium, however, whose magnetic alteration is shown 
through the curvature of the rays, is, as a result of our ex-
periments, the ether itself. For the curvature is found to be 
fully independent of the nature and the density of any pon-
derable medium present; in particular, it was also observed 
in the highest vacuum.10

Therefore, through their curvature, cathode rays give 
an immediate indication that the state of the ether between 
magnetic poles is mutable, as is required by the theory of 
mediated action at a distance. (1894a, pp. 32–33)

This is the ether-wave theorists’ account of the magnetic deflection of 
cathode rays. It became the key target of Thomson’s argument against the 
ether-wave theory.

9.6.3. Thomson: Cathode Rays Are Not Waves
Thomson’s celebrated “Cathode Rays” paper of 1896 begins by posing the 
problem as a decision between two theories of the constitution of cath-
ode rays (p. 293): they are “some process in the aether” (“according to the 
almost unanimous opinion of German physicists”); or they are “wholly 
material … particles of matter charged with negative electricity.” He 
continued:

It would seem at first sight that it ought not to be difficult 
to discriminate between views so different, yet experience 
shows that this is not the case, as amongst the physicists 
who have most deeply studied the subject can be found sup-
porters of either theory.

The electrified-particle theory has for purposes of re-
search a great advantage over the aetherial theory, since it 

10 To Lenard (1894, pp. 244 and 246).



2979 | Inference to the Best Explanation: Examples

is definite and its consequences can be predicted; with the 
aetherial theory it is impossible to predict what will happen 
under any given circumstances, as on this theory we are 
dealing with hitherto unobserved phenomena in the aether, 
of whose laws we are ignorant.

The paper then proceeds to recount the well-known experiments that lead 
up to the conclusion already quoted earlier. Almost the entire paper and 
its argumentation are devoted to showing that the charged particle view 
fits the experiments. He addresses several objections from the ether-wave 
theorists to the particle theory that can be answered experimentally.11 
However, there is no sustained effort to show that the ether-wave theory 
cannot perform just as well experimentally as the particle theory. His 
argument to this effect is so tersely stated as to be impossible to follow if 
read in isolation. In the introductory paragraph of the ether process theory 
of cathode rays, we find the following passage: “in a uniform magnetic 
field their course is circular and not rectilinear—no phenomenon hitherto 
observed is analogous” (p. 293). The difficulty is not of an experimental 
character but of a theoretical one, and presumably this is why it was not 
elaborated in the heavily experimental “Cathode Rays” paper. Fortunately, 
Thomson had already elaborated the point in his presidential address the 
previous year to the Sixty-Sixth Meeting of the British Association for the 
Advancement of Science. There, he expressed his skepticism: 

Also I think very difficult to account for the magnetic deflec-
tion of the rays. Let us take the case of a uniform magnetic 
field: the experiments which have been made on the mag-
netic deflection of these rays seem to make it clear that in a 
magnetic field which is sensibly uniform, the path of these 
rays is curved; now if these rays were due to ether waves, 
the curvature of the path would show that the velocity of 

11 He shows experimentally that the electric charge is deflected with the rays. Hence, they 
are not merely a distracting secondary effect—“no more to do with the cathode rays that a rifle-
ball has with the flash when the rifle is fired” (p. 294). He corrects Hertz’s experimental result that 
cathode rays are undeflected by electric fields by repeating the experiment more carefully (p. 296).
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propagation of these waves varied from point to point of 
the path. That is, the velocity of propagation of these waves 
is not only affected by the magnetic field, it is affected dif-
ferently at different parts of the field. But in a uniform field 
what is there to differentiate one part from another; so as to 
account for the variability of the velocity of wave propaga-
tion in such a field? The curvature of the path in a uniform 
field could not be accounted for by supposing that the ve-
locity of this wave motion depended on the strength of the 
magnetic field, or that the magnetic field, by distorting the 
shape of the boundary of the negative dark space,12 changed 
the direction of the wave front, and so produced a deflec-
tion of the rays. (1896, p. 702)

Thomson here issues quite a fundamental challenge to the wave theor-
ists. The widely recognized experimental fact of cathode rays is that they 
are deflected by magnetic fields. The standard mechanism through which 
waves are deflected is refraction, as manifested by light. When a light wave 
moves through a medium in which its speed becomes variable, the wave 
is bent. The amount of bending is recovered by the Huygens construction 
of elementary wave optics. The most familiar example is the bending of a 
light ray striking the surface of the lens. The effect results fully from the 
difference of the speed of light in air and glass. It is faster in less dense air 
and slower in more dense glass.

Lenses alter the direction of light propagation abruptly. A gradual 
deflection arises with the phenomenon of mirages. Air closer to a heated 
desert surface is less dense than air at higher altitudes. So the speed of 
light is faster closer to the ground. The effect is that light grazing the de-
sert surface is deflected upwards. Someone looking at the deflected light 
sees the blue of the sky but coming from the direction of the ground. The 
resulting illusion of water is a mirage.

12 In an incompletely evacuated cathode ray tube, there is a dark space in front of the 
cathode before the cathode rays strike the gas in the tube and trigger light emission. I have been 
unable to discern precisely Thomson’s argument concerning it.
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Figure 9.1 shows how the bending occurs. Light propagates from left 
to right. The wavefront AA’ is vertical. Since the wavefront’s speed is fast-
er closer to the ground, the subsequent wavefront BB’ has been turned 
upward.

A B

B‛A‛

Figure 9.1. A mirage: refraction bends light. 

Thomson’s point is that the refractive bending of waves depends essentially 
on differences in wave speed at different places. A uniform magnetic field, 
however, is the same everywhere. Hence, Thomson maintains, the effect it 
has on cathode ray wave propagation must be the same everywhere. There 
can be no differential alterations in the wave speed and thus no bending of 
the ray by diffraction. This conclusion would continue to hold even if we 
allow that the magnetic field might, in some circumstances, induce aniso-
tropic speeds of propagation on the wave; that is, speeds that are different 
in different directions. Such anisotropy can arise for light propagation in 
anisotropic media. The corresponding anisotropy cannot arise here, how-
ever. The cathode rays are deflected in a plane perpendicular to the uni-
form magnetic field. The uniform magnetic field is isotropic in this plane.

The charged particle view of cathode rays has no trouble bending the 
rays. If the charges in the rays have the same initial velocity and start per-
pendicular to the direction of a uniform magnetic field, then the charges 
are deflected into a circular orbit in a plane perpendicular to the direction 
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of the field, as shown in Figure 9.2. This is the “circular course” mentioned 
by Thomson (1897, p. 293).

B
F

F

v

v

B

B

B
F

v

Figure 9.2. Moving charge deflected by a uniform magnetic field.

The electrodynamical details are simple. The force F on a charge e of mass 
m moving at velocity v in a magnetic field B is

F = ma = e v x B,

where the force produces acceleration a. This acceleration is orthogonal to 
the direction of the B field,13 so the trajectory remains in a plane perpen-
dicular to the direction of the B field. The acceleration a is also orthogonal 
to the velocity v,14 which entails that the scalar speed v = |v| is constant.15 
Since the scalar acceleration a and scalar speed v remain the same in a 
uniform B field, the curvature of the trajectory must be the same every-
where; that is, it is a circle.

9.6.4. “The Dilemma of Accelerated Molecules and Ether 
Processes” Resolved
In 1906 Thomson was awarded a Nobel Prize for “his theoretical and ex-
perimental investigations on the conduction of electricity by gases.” The 

13 Since a • B = (e/m) (v x B) • B = (e/m) v • (B x B) = (e/m) v • 0 = 0.
14 Since a • v = (e/m) (v x B) • v = −(e/m) (B x v) • v  = −(e/m) B • (v x v) = −(e/m) B • 0 = 0.
15 Since (d/dt) v2 = 2 v • (dv/dt) = 2 v • a = 0. To maintain a circular course, we must neglect 

energy lost by radiation, else v will decrease with energy loss.
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year before, Lenard was awarded a Nobel Prize “for his work on cathode 
rays.”16 In his Nobel Prize lecture (1906), Lenard conceded to Thomson, or 
at least appeared to concede. The lecture is a boisterous history of his work 
on cathode rays. He describes the apparently irresolvable dilemma posed 
by cathode rays prior to Thomson’s celebrated work of 1897:

For we knew already that the rays are processes in the ether 
and not material, so it had to appear as downright amaz-
ing, that nonetheless they mimicked accelerated, negative-
ly electrified gas molecules so deceptively. Nothing known 
had led us out of this dilemma of accelerated molecules and 
ether processes. (Lenard 1906, p. 18)

He then reported Thomson’s experiments as decisive and announced the 
resolution of the dilemma: 

The solution of the dilemma therefore was this: The rays 
are not accelerated, electrically charged molecules, but they 
are simply accelerated electricity. Something we had never 
believed we had seen: electricity without matter, electric 
charge without charged bodies. We have found that, there-
fore, in cathode rays, as already placed in our hands. We 
have, in some measure, discovered electricity itself. (p. 19; 
emphasis in original)

In short, Lenard is defending his longstanding denial that cathode rays are 
material processes. They are not matter, but pure electricity, an option not 
considered in the original analysis.

This was not Thomson’s view. He did not offer his experiments as 
finally delivering “electricity itself.” Rather, the rays were matter, still, but 
in a new and very finely divided state:

16 Nobel prize citations from http://www.nobelprize.org/nobel_prizes/physics/
laureates/1905/ and http://www.nobelprize.org/nobel_prizes/physics/laureates/1906/
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Thus on this view we have in the cathode rays matter in a 
new state, a state in which the subdivision of matter is car-
ried very much further than in the ordinary gaseous state: a 
state in which all matter—that is, matter derived from dif-
ferent sources such as hydrogen, oxygen, &c.—is of one and 
the same kind; this matter being the substance from which 
all the chemical elements are built up. (Thomson 1897, p. 
312)

9.6.5. Electrons Are Waves After All
While the nature of cathode rays seemed secure in the wake of Thomson’s 
celebrated experiments, the success was short-lived. With the coming of 
quantum mechanics, electrons were identified as having a dual wave- and 
particle-like character. Their wave-like character was affirmed experi-
mentally by Clinton Davisson and Lester Germer (1927). They found that 
cathode rays, scattered off a crystal of nickel, produced diffraction pat-
terns. The wavelengths of the associated waves conformed with the quan-
tum formula for de Broglie waves.17

Thus, Thomson’s abduction arrived at the wrong conclusion. I state 
this not to impugn Thomson’s abduction. It is as good as any. Rather, my 
point is that his inference arrived at the wrong result, because it is depend-
ent completely on background assumptions that proved to be incorrect. 
This can happen with any inductive inference, for they all depend on 
background assumptions. The material theory requires this for all induct-
ive inferences. The presence and importance of the background assump-
tions become quite visible, however, when we try to diagnose where the 
induction went astray. 

In Thomson’s case, the fatal intermediate conclusion was that a propa-
gating wave could not also be deflected by a magnetic field in just the same 
way as a beam of charged particles. In quantum theory, neglecting spin, 
an electron can be represented by the same Hamiltonian as is used for 
an electron in classical physics. In the quantum case, this Hamiltonian 

17 J. J. Thomson’s son, “G. P.” (George Paget), also conducted experiments of this type, 
affirming the wave character of electrons.
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is inserted into the Schrödinger equation to provide an account of an 
electron as a propagating wave. A standard theorem in quantum theory, 
Ehrenfest’s theorem, assures us that the electron wave is deflected by the 
electromagnetic field just as classical electrons are, as long as the wave 
packet of the quantum electron is confined to a small region in which 
the electromagnetic field does not appreciably change. Hence, quantum 
electron waves will also be able to traverse Thomson’s “circular course” in 
a uniform magnetic field.

The details of Ehrenfest’s theorem for the electromagnetic case are 
straightforward but tedious. Working through them provides no special 
illumination.18 A smaller observation gives a good sense of precisely which 
assumption ultimately brought grief to Thomson’s abduction. He rejected 
the possibility that cathode ray waves could be deflected by a uniform 
magnetic field. The key assumption was that a magnetic field could only 
deflect the waves by the familiar mechanism of refraction—that is, by dir-
ectly altering the velocity of propagation of the waves and having a differ-
ent alteration in different parts of space. A uniform magnetic field could 
not do this, since its effects must be everywhere the same.

What Thomson had overlooked is that the magnetic field might couple 
to a propagating wave in other ways. Associated with each magnetic field 
B is a vector potential A by the relation B = ∇ x A. The Schrödinger equa-
tion allows for the effects of magnetic fields on charged quantum particles 
by coupling the particles to the magnetic field through the vector poten-
tial.19 The A field associated with a uniform B field is shown in Figure 9.3.20 

18 See Schiff (1968, pp. 177–79) for the derivation. The exact solution for the motion of 
charge in a uniform magnetic field is given in Landau and Lifshitz (1965, pp. 424–27), but it is 
unilluminating.

19 More precisely, using the “minimal coupling” prescription, the momentum operator 
p = −i(h/2p)∇ in Schrödinger’s equation is replaced by p − eA = −i(h/2p)∇ − eA.

20 If we align the constant B field with the z axis of a Cartesian coordinate system, so 
that B = (0, 0, Bz), then a compatible vector potential is A = −(1/2) r x B = (1/2) Bz(−y, x, 0). Since 
A is determined up to a gauge transformation only, other representations are possible, such as 
A = Bz(−y, 0, 0) in the “Landau gauge.” The first, however, displayed in Figure 9.2, preserves the 
rotational symmetry of the B field about the z axis and conveys the handedness in the field. 
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Figure 9.3. Vector potential A associated with constant magnetic 
field B.

The integral lines associated with the vector field traces out a circle with 
the preferred direction of rotation in the figure. When a negatively charged 
quantum wave packet is coupled to a uniform magnetic field through the 
vector potential A, it will trace out circular trajectories with the same 
sense of rotation. Its speed, however, is unaltered by the A field.

The clue that such coupling is possible is present already in the classical 
analysis. For one might also ask how a uniform magnetic field can deflect 
a classical moving charge to the left or right. If it is uniform, should not 
both directions be treated alike? They are not treated alike by the magnetic 
field once a moving charge is present. A negative charge moving horizon-
tally in an upward pointing magnetic field is deflected to the left, as shown 
in Figure 9.2. This is due to the magnetic field vector having what used to 
be called an “axial” character. This means that it changes sign under mir-
ror reflection of space. (The cross product operator x and curl operator ∇x 
have similar transformational properties.) The vector potential A encodes 
more clearly how the magnetic field is prepared to deflect charged, moving 
particles. This preferred sense of rotation of A will be replicated by the 
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velocity v of the deflected charge: the velocity v is linearly related21 to the 
A field by v = −2(e/m)A. For a negatively charged electron, e is a negative 
number. Therefore, v and A agree in direction and relative magnitude.

9.7. Einstein and the Anomalous Perihelion of 
Mercury
In November 1915, an exhausted Einstein was putting the finishing touch-
es onto his general theory of relativity. It was the result of eight years of 
labor. The final three years had been tense. Einstein had settled on and 
published an erroneous version of the theory in 1913. Over the next two 
years, he had alternated between confidence in the theory and despair over 
it until he finally found and resolved his errors. In the midst of this reso-
lution, he also found that his theory accounted for a recalcitrant anomaly 
in planetary astronomy.

According to Newtonian gravitational theory, a planet orbits the sun 
in an elliptical orbit that is re-entrant. This means that in each planetary 
year the planet will trace out the same ellipse in space. The familiar results 
hold exactly only for a two-body system of a very massive sun and a single 
planet. If other planets are present, their gravitational attraction will de-
flect the original planet’s motion away from the re-entrant ellipse. In our 
solar system, these alterations are very slight and manifest as a very slow 
rotation of the ellipse of the planet’s orbit. In the early twentieth century, 
careful calculations had accounted for nearly all of these motions in the 
planets. The prominent exception was Mercury. The residual, unaccount-
ed for motion of the axis of its orbit was a rotation in the direction of the 
planet’s motion. The planet’s perihelion, the point of closest approach to 

21 For the classical particle, the scalar speed v satisfies |e|vBz = mv2/R, where R is the 
radius of curvature of the trajectory. Hence, v = (|e|/m) Bz R. The two varying components vx 
and vy of the constant scalar speed v will oscillate harmonically as the charge orbits in a circle. 
If we locate the origin of the Cartesian coordinates at the center of this circle, we have v = (e/m) 
Bz (y, −x, 0), so that v is a function of a position in space. Then v = −2(e/m)A follows. Different 
initial positions and velocities for the charge will locate the center of the orbit elsewhere. The 
appropriately matched vector potential is recovered by a gauge transformation of the original A 
field. To relocate the origin to (x0, y0, 0), transform A to A’ = A − (1/2) Bz (−y0, x0, 0) = −(1/2) Bz(−
(y − y0), (x − x0), 0). This is a gauge transformation since B = ∇ x A = ∇ x A’.
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the sun, had an unaccounted for advance of roughly 40 seconds of arc per 
century.22

In the passage quoted at the start of this chapter, Einstein reported with 
delight that his new theory called for a slight correction to the Newtonian 
motions that matched exactly this anomalous motion of Mercury. It pro-
vided, as the title of the paper asserted, an “Explanation of the Perihelion 
Motion of Mercury from the General Theory of Relativity.”

For our purposes, three aspects of Einstein’s claims are important and 
developed in the subsections that follow.

9.7.1. Mere “Confirmation” not “Inference to…”
First, Einstein and subsequent commentators did not carry out a complete 
inference to the best explanation. They claimed only, as Einstein wrote 
(1915, p. 831), “an important confirmation” of the theory. Max Born’s popu-
larization of relativity from the 1920s (1922, p. 254) added, “it [Einstein’s 
theory] is thus already confirmed in advance by Leverrier’s calculation 
[of Mercury’s motion].”23 Wolfgang Pauli (1958, pp. 168–69), in his 1921 
authoritative review article, was more cautious. The question of Mercury 
arose as a “check by experiment” of consequences of Einstein’s theory. The 
agreement of theory and observation constituted “a great success.”

All these affirmations noticeably fall short of an authorization to infer 
to the theory, as inference to the best explanation allows. The reason is not 
complicated. There is no such authorization perceived in this result. The 
gap between the theory and observation is too great to be closed complete-
ly even by as striking a success as this.

Hermann Weyl explained the evidential situation quite well in his 
celebrated Space-Time-Matter, after reviewing general relativity’s success 
with Mercury and in two other astronomical tests:

22 The earlier history of this problem is discussed in Chapter 6.
23 The German is “Genau diesen Betrag aber fordert die Einsteinsche Theorie; sie ist 

daher durch Leverriers Rechnungen bereits im voraus bestätigt.” Unfortunately, the later English 
translation (Born 1962, p. 348) mangles the German and translates this sentence as “But this is just 
the amount required by Einstein’s theory. The confirmation of this result of Einstein’s mechanics 
was therefore actually anticipated by Le Verrier’s calculation.” That is, the translation mistakenly 
reports the predicted motion of Mercury confirmed, not the theory predicting it, as in the 
German.
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The actual deviations from the old theory are exceedingly 
small in our field of observation. Those which are measure-
able have been confirmed up to now. The chief support of 
the theory is to be found less in that lent by observation 
hitherto than in its inherent logical consistency, in which 
it far transcends that of classical mechanics, and also in the 
fact that it solves the perplexing problem of gravitation and 
of the relativity of motion at one stroke in a manner highly 
satisfying to our reason. (1921, p. 247)

While we now have more observational and experimental support for 
general relativity, I believe Weyl’s assessment still applies well today. The 
strongest support for the theory derives from our aesthetic appreciation 
of the theory.

9.7.2. Preference for the Better Explanation
While the complete “inference to…” is absent, what is present in this ex-
ample is quite a thorough implementation of the comparative step: the 
preference for the better explanation. This is embodied in two facts rec-
ognized in the literature. First, all other explanations of Mercury’s anom-
alous motion in the literature had been contradicted by the evidence. 
Second, other explanations might be possible. However, the suggestion 
was that these other explanations would likely take on undischarged evi-
dential debt, for example, by introducing parameters with arbitrarily set 
values. Einstein’s explanation was distinctive in not requiring any arbi-
trary parameters.

When Einstein announced his successful explanation of Mercury’s 
anomalous motion, it was very convenient that his colleague, the astron-
omer Erwin Freundlich, had just published an extensive survey of the 
problem of Mercury’s anomalous motion. Einstein (1915, p. 831) cited 
Freundlich’s account in a footnote to this announcement as support for 
the failure of Newton’s theory to offer an explanation of Mercury’s anom-
alous motion: “E. Freundlich has recently written a noteworthy paper 
(Astr. Nachr. 4803, Bd. 201 June 1915) on the impossibility of satisfac-
torily explaining the anomalous motion of Mercury on the basis of the 
Newtonian theory” (1915, p. 831). Freundlich’s paper listed four ways the 
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astronomers had then tried to explain the anomalous motion. He conclud-
ed that none succeeded: “in the explanation of the existing contradiction 
between theory and experiment, we have progressed no further than since 
the time of Newcomb” (1915, p. 51). His final, concluding sentence is the 
following: “How the anomalies of these inner 4 planets really come about 
has unfortunately up to now not been answered thoroughly” (p. 56).

Freundlich cited Simon Newcomb, whose study (1895) of the motion 
of the four inner planets was then authoritative. Newcomb provided an 
extensive examination of various hypotheses advanced to explain the 
anomalous motion of Mercury and for smaller anomalies in the other in-
ner planets (1895, chap. 6). Freundlich then provided an update.

The first candidate was the supposition of as yet unknown planets 
between the sun and Venus. Freundlich deferred to Newcomb’s (1895, 
pp. 112–15) analysis where he considered the possibility of a single planet 
or multiple planets in a ring. He was unable to find a suitable configura-
tion that would accommodate the known anomalies. The celebrated but 
failed supposition of the nineteenth century—that of a single new planet, 
Vulcan—did not even bear mention by name. The possibility was dis-
missed by Newcomb casually: “But I conceive that a planet of the adequate 
mass could not have remained so long undiscovered” (p. 115).

The second candidate was of a flattening of the sun, presumably as a 
result of its rotation. The deviations from sphericity would then lead to 
gravitational effects that could explain the anomalies. The possibility was 
ruled out, however, since the flattening would have to be much greater to 
get the desired effect than is compatible with observations of the sun.

The third candidate was a proposal by Asaph Hall (1894) that the force 
of gravity might not dilute with distance r as an inverse square 1/r2 but 
very slightly faster as 1/r2+d where d is a very small number. Newcomb 
reported that d = 0.0000001574 would suffice to create the anomalous 
advance of Mercury’s perihelion. The proposal failed, Freundlich noted, 
since a value of d sufficiently large to accommodate Mercury’s anomal-
ous motion would produce effects in our moon’s motions that would be 
incompatible with observation and Brown’s then successful theory for the 
moon’s motions.

The fourth candidate was a proposal by Seeliger. The zodiacal light 
is a halo of light around the sun. It is presumed due to some diffuse 
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distribution of matter that extends as far as the orbit of Mars. The pro-
posal was that the gravitational action of the matter in this halo might 
account for the anomalous motion of Mercury. The principal content of 
Freundlich’s paper (1915) was to show that this possibility contradicted 
other evidence of the zodiacal light. His analysis was complicated. Merely 
finding the mean density of the postulated distribution was not enough. 
Non-uniformities made a difference. Matter within the orbit of Mercury 
would produce an advance in the planet’s motion; and matter outside its 
orbit would retard it. Freundlich compared the sorts of densities of matter 
needed and their distribution with other possible properties of the zodi-
acal light, including how a distribution of massive dust might impede the 
motion of the planets, including the earth. His conclusion was that these 
other properties forced a much smaller density of matter in the zodiacal 
light than needed to account for the anomalous motion of Mercury.

In sum, at the start of 1915, all concrete proposals for accounting for 
the anomalous motion of Mercury had been contradicted by further evi-
dence. Freundlich’s analysis left open the possibility that there might still 
be some as yet undiscovered account that would explain the phenomen-
on. There proved to be one theory that could do this. Freundlich’s paper 
was written shortly before Einstein perfected his theory and discovered 
that it accounted for the anomalous motion of Mercury. Might there be 
still others? Neither Einstein nor responsible commentators at that time 
asserted flatly that no other theory could accommodate the anomalous 
motion of Mercury. However, they commonly pointed to a single feature 
of Einstein’s explanation that they deemed of great significance.

Other accounts of the motion of Mercury had all required additional 
suppositions. If extra masses were invoked, their positions and distribu-
tions in space needed to be specified. If alterations to Newton’s inverse 
square law of gravity were invoked, then the alterations would add extra 
parameters, such as Hall’s d above. Einstein’s theory, however, required no 
such additional hypotheses or parameters. Einstein (1915) pointed to this 
at the outset with his remark that the explanation succeeds “without hav-
ing to posit any special hypotheses.” Pauli (1958, p. 169) noted, “Compared 
with Seeliger’s explanation, Einstein’s has at least the advantage that no 
arbitrary parameters are needed.” In 1922, Born also remarked, “This 



The Material Theory of Induction310

result is of extraordinary importance; for no new arbitrary constants enter 
into Einstein’s formula” (1962, p. 348).24

Just how does this feature of Einstein’s theory come to favor it? They 
do not say. However, among the ideas developed in this chapter, there is 
an obvious reading. The introduction of extra, arbitrary parameters or 
constants means taking on an evidential debt. One must eventually pro-
vide independent evidence for them, just as one must find independent 
evidence that there is a planet Vulcan perturbing the motion of Mercury. 
Until that is done, Einstein’s explanation is better supported in the sense 
that it has no such undischarged evidential debt.25

Hence, I take the repeated remark to suggest that any other explana-
tion of the anomalous motion of Mercury is likely to need such extra arbi-
trary parameters and thus to be weaker than Einstein’s. That is, we should 
not expect a serviceable competitor to Einstein’s theory to emerge sooner 
or perhaps even later. This oblique suggestion is far from a clearly asserted 
advance from the comparative Step 1 to the absolute Step 2, which is to 
say from a preference for the better to the inference to the best. It merely 
gestures in that direction.

9.7.3. Why Loveliness as an Explanatory Virtue Is Overrated
This example enables us to mount an interesting test of a core motivation 
of inference to the best explanation. The idea is that successful explana-
tions gain inductive support because there is something special in the ex-
planatory relation itself. We saw above that Lipton identified explanatory 
virtues that would underwrite an inference to the loveliest explanation. Of 
all theories in modern physics, general relativity is distinctive in the praise 
it receives for its immense conceptual simplicity and scope. It is, by any 
measure, a lovely theory. So we might expect that the inductive support 
it accrues form its account of Mercury’s motion would derive from this 
loveliness.

24 “Dieses Resultat is von ausserordentlichem Gewichte; denn in die Einsteinsche Formel 
gehen keine, neuen, willkürliche Konstanten ein” (1922, p. 254). This time, the English translation 
(Born 1962, p. 348) is accurate.

25 For an account that does not employ the notion of undischarged evidential debt, see 
Norton (2011). 
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But we can see quite quickly that loveliness has little to do with the 
support it accrues. The support depends almost entirely on the failure of 
competing theories to account for Mercury’s anomalous motion. A simple 
thought experiment reveals just how little the loveliness matters. Imagine 
that the nineteenth-century astronomers had discovered a new planet, 
Vulcan, in just the place expected from Mercury’s anomalous motion. The 
discovery would be celebrated as a great triumph of Newtonian physics. It 
would be a replication of the great success of the discovery of Neptune on 
the basis of then anomalous motions in the planet Uranus.

In this thought experiment, the tables are turned. The Newtonian 
theory strains initially to explain the anomaly by taking on the evidential 
debt of a supposition of a hitherto unseen planet. The Newtonian theory is 
at a disadvantage. When independent, optical observation finds the plan-
et, however, the evidential debt is discharged and the Newtonian theory 
prevails. General relativity, however, then finds itself in great difficulty. 
For the anomaly in Mercury’s motion has disappeared, but general rela-
tivity still requires an additional advance of the perihelion of 43 seconds 
of arc per century, beyond what is predicted by the fullest Newtonian ac-
count. The observed motion of Mercury, in this fable, now threatens to 
refute general relativity.

Of course, were this fable really to have happened, it is unlikely that 
this one misadventure would have overturned general relativity. The over-
all decision would come from a balancing of a greater body of evidence. 
Mercury’s observed motion would weigh against the theory and the love-
liness of its treatment of Mercury would have no inductive import at all.

There is a real coda to this fable. In 1918, Weyl extended Einstein’s gen-
eral theory of relativity in a manner quite in keeping with the loveliness 
of Einstein’s original theory. Einstein’s theory had incorporated gravity 
into the metrical structure of space-time. Weyl elaborated that structure 
slightly to allow it to incorporate electromagnetism as well. Einstein was 
enthusiastic about the theory and praised it strongly to Weyl in corres-
pondence. However, Einstein also saw an empirical problem. According to 
Weyl’s theory, atomic emission spectra could not retain sharp lines, which 
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contradicted experience. The loveliness of the theory could not overcome 
the observational problem and Einstein opposed the theory.26

In sum, loveliness figures prominently in our thought about theor-
ies. But its importance is overrated. What matters more are the evidential 
failures of competing explanations and, if one’s own theory suffers such a 
failure, loveliness cannot rescue it.

9.8. Cosmic Background Radiation
The discovery in the 1960s that our universe is permeated with a 2.7 de-
gree kelvin bath of thermal radiation seemed tailor made for an abductive 
inference. For the thermal radiation is readily explained as the residue of 
the intense heat radiation of the Big Bang. The fit is so natural that I used it 
in the opening section of the last chapter to introduce the idea of inference 
to the best explanation. It looks like a safe example for philosophy of sci-
ence textbooks. Ian Hacking sums it up in a paragraph, headed Inference 
to the Best Explanation:

Each of the arguments we’ve just looked at is an inference to 
a plausible explanation.

If one explanation is much more plausible than any oth-
er, it is an inference to the best explanation.

Many pieces of reasoning in science are like that. Some 
philosophers think that whenever we reach a theoretical 
conclusion, we are arguing to the best explanation. For 
example, cosmology was changed radically around 1967, 
when the Big Bang theory of the universe became widely 
accepted. The Big Bang theory says that our universe came 
into existence with a gigantic “explosion” at a definite date 
in the past. Why did people reach this amazing conclusion? 
Because two radio astronomers discovered that a certain 
low “background radiation” seems to be uniformly distrib-
uted everywhere in space that can be checked with a radio 

26 For a brief account of this episode, see Norton (2000, pp. 153–54)
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telescope. The best explanation, then and now, is that this 
radiation is the result of a “Big Bang.” (2001, p. 16)

This compressed account makes the inference look all but instantaneous, 
much as we infer instantly that the slender cables just glimpsed explain the 
magician’s levitation.

The reality of the example is more complicated in two ways.

9.8.1. The Thermal Character of the Radiation
First, the discovery of the cosmic background radiation is routinely at-
tributed to work by Arno Penzias and Robert Wilson (1965). They found 
residual radiation with a cosmic source while measuring radio waves that 
bounced off balloon satellites. While this is celebrated as the moment of 
discovery, merely finding cosmic radiation is not the inductively potent 
result. For charged matter is posited in all cosmological theories, and such 
matter readily produces electromagnetic radiation. Without it, the stars 
cannot shine in the electromagnetic spectrum. To distinguish among the 
theories, a more distinctive property is needed. The distinctive property 
in this case is that the radiation has a thermal character with a black-body 
spectrum and a temperature of 2.7 degrees kelvin—that is, 2.7 degrees 
above absolute zero.

That there should be such thermal radiation was long suspected by 
cosmologists who worked with the idea of a “Big Bang” or, as they then 
preferred to call its radiative part, the “primeval fireball.” They included 
the physics research group of Dicke, Peebles, Roll, and Wilkinson, work-
ing at Princeton University, not far from Penzias and Wilson’s Crawford 
Hill Laboratory in New Jersey. The group had begun its own efforts to 
detect the thermal radiation, only to find itself scooped by Penzias and 
Wilson’s chance discovery.

Penzias and Wilson had measured the cosmic radiation at one wave-
length only, 7.4 cm. While their results were compatible with black-body 
radiation of a temperature 3.5K +/− 1.0K, it did not establish it. What was 
needed were measurements taken across a larger range of wavelengths 
or frequencies to show that the distribution of radiant energy across the 
range matched the quite precise functional form of the black-body curve.
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The early history is filled with collections of reports of measurements 
aiming at establishing this match. Steven Weinberg’s (1972) text includes a 
table (Table 15.1, p. 512) with reports of thirty-one measurements of vari-
ous types. He still found that the discrimination between black-body and 
gray-body radiation rests entirely on one type of mountain top radiom-
eter measurement; and that these are contradicted by rocket and balloon 
borne measurements (pp. 516–17).

This difficulty, in addition to the second concern below, allowed only a 
cautious celebration of the result. Weinberg (1972, p. 506) could give only 
a begrudging summary report: “It is widely, though not unanimously, be-
lieved, that the microwave radiation background discovered in 1965 is just 
this left-over radiation.”

The evidential difficulties were eventually resolved. The definitive re-
sults were delivered by NASA’s COBE satellite. As an index of the com-
pleteness of resolution, we can note that Weinberg’s (2008) text leads with 
the COBE results in the first paragraph of its Preface:

November 1989 saw the launch of the Cosmic Background 
Explorer Satellite. Measurements with its spectrophotome-
ter soon established the thermal nature of the cosmic mi-
crowave background and determined its temperature to 
three decimal places, a precision unprecedented in cosmol-
ogy. (p. v)

9.8.2. Competitors27

The second difficulty is that even a thermal spectrum is still not quite 
distinctive enough to be instantly diagnostic of a primeval fireball. The 
trouble is that a thermal spectrum arises whenever radiation comes to 
thermal equilibrium; and there may still be other ways that this spectrum 
can arise. It is too easily gained.

27 The discussion here barely touches the range of alternative accounts of the cosmic 
background radiation that arose in the decades following Penzias and Wilson’s measurements. For 
a survey, see Ćirković and Perović (2018).
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Once again, this difficulty permitted only measured statements of en-
thusiasm over the result. Bruce Partridge wrote a celebratory survey for 
the Spring 1969 issue of American Scientist. There, the cosmic background 
radiation was offered as something a little less than definitive proof of the 
Big Bang, but merely a “new parameter”:

The paucity of data in cosmology explains the excitement 
generated by the discovery of the cosmic microwave back-
ground, which we identify with the primeval fireball in 
which the Universe originated. The expansion of the Uni-
verse has now cooled the fireball to a few degrees Kelvin. 
Measurements of this isotropically distributed microwave 
radiation have given us a new parameter in cosmology, the 
temperature of the radiation field, and also one of the most 
accurate results of observational cosmology, a figure for the 
isotropy of the radiation field. (1969, p. 39)

Big Bang cosmology has the least difficulty in recovering the thermal spec-
trum. Even there, the recovery is indirect. In the very early universe, mat-
ter and radiation come to thermal equilibrium and a thermal spectrum is 
thus imprinted on the background radiation. However, as the universe ex-
pands, matter and radiation eventually decouple. This happens quite early, 
when the cosmos has cooled to around 3,000 kelvin. The photons compris-
ing the cosmic background radiation have propagated to us, unimpeded, 
from this era. Their origins lie in a distant spherical shell surrounding us, 
the surface of last scattering. The trouble is that these photons have been 
underway for much of the history of the entire universe. During that time, 
their frequencies have been greatly reduced by the cosmological redshift 
that in turn derives from the expansion of space. Will the greatly red-shift-
ed distribution still be thermal? A short calculation and some reasonable 
assumptions, such as given by Weinberg (1972, pp. 506–07), show that the 
effect of the redshift is to preserve the thermal character of the radiation 
while merely reducing its temperature.

That Big Bang cosmology can eventually accommodate the thermal 
spectrum of the cosmic background radiation is not decisive. A long sec-
tion in Partridge’s (1969) survey (“B. But Is It the Primeval Fireball?”) 
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grappled with the question of whether the cosmic background radiation 
could arise by other means. Partridge reviewed three other mechanisms. 
In one, short-lived proposal, Kaufman had sought the radiation in emis-
sions from hot intergalactic plasma. Another proposal by Layzer posited 
dust grains heated during galaxy formation as the source.

Partridge’s longest analysis was given to proposals generated in the 
context of steady-state cosmology, then the major competitor to Big Bang 
cosmology. This alternative cosmology proposed that the universe has 
maintained is present state on the large scale for all infinity of time. The 
universe now and the universe any time in the infinite past look much 
the same. Steady-state cosmology was most directly threatened by the 
discovery of the cosmic background radiation. For background radiation 
could not be preserved in a steady state within a universe that has been ex-
panding for infinite time. The cooling and diluting effect of the expansion 
would eradicate it.

Proponents of the steady-state theory, Hoyle, Narlikar and 
Wickramasinghe, rose to the challenge and sought to account for the 
radiation within their theory in terms of the reradiation of starlight from 
interstellar grains. Partridge found severe difficulties for the proposal. 
Nonetheless, his assessment of the overall evidential situation was quali-
fied to the point of awkwardness as “personal bias”:28

Also, it is only fair for me to announce my personal bias in 
advance: I believe the fireball picture to be consistent with 
all the experimental data, and to be the simplest theoreti-
cal explanation of these data. In making this judgment, and 
in writing this section, I have kept in mind four questions. 
Can the suggested model for the background radiation ex-
plain its intensity? Can it explain the observed spectrum? 
Can it explain the isotropy of the radiation? And finally, 
does it survive the cutting edge of Ockham’s razor: is it sim-
ple, useful, and not ad hoc? (1969, p. 43)

28 I have also given this quote at greater length since it is the only place in reading 
these early sources in which I found notions of explanation entering explicitly with the word 
“explanation.”
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For our purposes, the important point is that the assessment is com-
parative. It is restricted completely to Step 1 (“Preference for the Better 
Explanation”).

In subsequent literature, the assessments remained comparative, but 
the comparisons quickly reduced to standard Big Bang cosmology ver-
sus just the flagging steady-state theory. Jim Peebles’ 1971 text, Physical 
Cosmology, retained Partridge’s hesitancy. In a list of eight points of evi-
dence for cosmology, the sixth reads:

(6) The Universe may contain a Primeval Fireball, black-
body radiation left over from a time when the Universe was 
dense and hot (Chapter V). If this is substantiated by further 
measurements it will be direct evidence that the Universe 
really is expanding and growing less dense, in agreement 
with the Lemaître cosmology (but not the original Steady 
State model). (1971, p. 26)

Twenty years later, doubt about the thermal character of the background 
radiation had gone. However, Peebles still made the case for the eviden-
tial bearing of the measurements comparatively. The evidence favors Big 
Bang cosmology because no other account can accommodate it; and the 
only other account considered is its old nemesis, steady-state cosmology. 
Peebles wrote:

The thermal form of the spectrum of this radiation is con-
sidered to be almost tangible evidence that the universe ex-
panded from a state considerably denser than it is now, be-
cause it is exceedingly difficult to see any other way to make 
the spectrum so close to thermal. Consider for example the 
classical Steady State theory, in which the mean density of 
the universe is constant in time. (1991, p. 19)

Peebles proceeded to dismantle the mechanism through which the steady-
state theorists sought to replicate the measured cosmic background radia-
tion. Radiation, it is supposed, is created cosmically along with baryons in 
the steady-state cosmology. Its spectrum is shifted to a thermal spectrum 
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by absorption and re-emission. This absorption corresponds to a certain 
degree of opacity of space. But the degree required directly contradicts the 
observed transparency of space.

The same, comparative assessment is repeated in greater detail in 
Peebles’ later 1993 authoritative text, Principles of Physical Cosmology (pp. 
203–06). He concluded for the absorptive mechanism:

The point of this calculation is that if the universe were pos-
tulated to be opaque enough at radio wavelengths to have 
caused the radiation background to relax to the observed 
very nearly thermal spectrum of the CBR, space would be 
predicted to have been too opaque to have allowed the ob-
servations of distant radio sources. (1993, p. 204)

Peebles then examined the character and density of dust needed for the re-
laxation mechanism with results once again unfavorable to the proposal.

The comparative assessment seems now to have acquired the status of 
the standard textbook formulation of the evidential import of the cosmic 
background radiation. Here it is in a more recent cosmology textbook: 

The Hot Big Bang theory therefore gives a simple explana-
tion of this crucial observation. In the Steady State theo-
ry, all radiation is supposed to originate in stars and so is 
at high frequency and is not a perfect black-body; one has 
to resort to a thermalizing mechanism such as whiskers 
of iron, which somehow managed to thermalize this into 
low-energy radiation in the recent past without preventing 
us from seeing distant objects. It has never been satisfacto-
rily demonstrated that this can be achieved even allowing 
the ad hoc assumptions that the Steady State scenario re-
quires. (Liddle, 2003, p. 80)

9.8.4. Success through Failure of the Competitors
The measurements of the cosmic background radiation do provide good 
evidence for Big Bang cosmology. This review brings into sharper focus 
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how they do it. The accounts above of the success identify no special ex-
planatory relation beyond mere accommodation. Big Bang cosmology, 
with suitable auxiliary assumption, entails the existence of a thermal 
radiation background. Beyond this accommodation, there is no special 
explanatory coup through which we can make some philosopher’s no-
tion of explanation central to the evidential relation. Thermal radiation 
is something that can arise easily in any account that hosts energized 
charged matter and sufficient time for thermal equilibrium to be estab-
lished. Nothing in the analysis provided by Big Bang cosmology indicates 
that it is the only theory that can accommodate the result.

Nonetheless, this exclusivity does turn out to be evidentially deci-
sive. It is not established by examining how Big Bang cosmology explains 
the cosmic background radiation. Rather, it is established by examining 
how competitors to Big Bang cosmology fail to accommodate the result. 
The decisive fact is not so much about Big Bang cosmology, but about its 
competitors. Big Bang cosmology can accommodate the result, where no 
known competitor can. Big Bang cosmology wins the day by default.

The explicit discussion of evidential import is restricted to this com-
parative result, fully within Step 1 of the present account (“Preference for 
the Better Explanation”). Step 2—acceptance that the evidence supports 
Big Bang cosmology specifically and absolutely—is left tacit. That Big 
Bang cosmology bests its strongest competitor, the steady-state theory, is 
stressed and, presumably, this victory is intended to lead us to believe that 
there is no better alternative possible.

In any case, over half a century after Penzias and Wilson’s observa-
tion, the origin of the cosmic background radiation is no longer open to 
serious dispute in the cosmology literature: it is described without apology 
or qualification as a thermal residue of an early hot universe. Serious con-
sideration is now given to the slight deviations from isotropy in the radi-
ation, for they are now the key to understanding structure formation in 
cosmology.
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9.9. Oxygen and Phlogiston

9.9.1. The Theories Compete
The establishment of Antoine Lavoisier’s oxygen chemistry has been pre-
sented as a canonical instance of inference to the best explanation. A closer 
look will show that an intrinsic explanatory virtue had little to do with the 
establishment of the theory. Rather, the decisive inferences of both Step 1 
and Step 2 were warranted by a quite specific fact: that matter has weight.

Oxygen chemistry ascended in the late eighteenth century, when 
Lavoisier’s oxygen theory competed with the phlogiston theory as the 
correct account of many chemical processes. Combustion illustrates the 
competition. The oxygen theory portrayed the combustion of a metal as its 
combination with oxygen from the air to form an oxide, then commonly 
called a “calx.” 

metal + oxygen  calx

The phlogiston theory took all metals to be a compound of a calx and 
phlogiston; and the combustion of a metal to be the decomposition of this 
compound into a calx and liberated phlogiston.

metal  calx + phlogiston

There was a close similarity of structure in oxygen and phlogiston chem-
istry. Just about any reaction accommodated by one was mirrored by a cor-
responding reaction in the other. To see how the reactions of each theory 
pair up, you just need to think of phlogiston as a kind of “anti-oxygen.” 
Then you can convert a reaction of oxygen chemistry into one of phlogis-
ton chemistry and vice versa. In the phlogiston combustion reaction, for 
example, substitute anti-oxygen for phlogiston, and then move it from the 
right-hand product side to the left-hand reactant side, dropping the “anti” 
prefix. What results is the oxygen combustion reaction. Much of oxygen 
and phlogiston chemistry were mirror images of each other.

Thagard (1978) presented the triumph of oxygen theory as a canonical 
case of inference to the best explanation. He quoted his translation of a 
confident assertion by Lavoisier in support:
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I have deduced all the explanations from a simple principle, 
that pure or vital air is composed of a principle particular to 
it, which forms its base, and which I have named the oxygen 
principle, combined with the matter of fire and heat. Once 
this principle was admitted, the main difficulties of chemis-
try appeared to dissipate and vanish, and all the phenomena 
were explained with an astonishing simplicity. (pp. 77–78)

While we know that, in the long run, oxygen won out, the situation at the 
time of the debate was not so clear. Precisely because oxygen and phlogis-
ton chemistry were, to a large measure, intertranslatable; the two theories 
had considerable overlap in scope. It was not clear that oxygen’s explana-
tory powers were greater. Thomas Kuhn made this fact a celebrated point 
of debate in the question of the cumulativity of science, when he used it to 
illustrate what is now called “Kuhn loss”:

The much-maligned phlogiston theory, for example, gave 
order to a large number of physical and chemical phenom-
ena. It explained why bodies burned—they were rich in 
phlogiston—and why metals had so many more properties 
in common than did their ores. The metals were all com-
pounded from different elementary earths combined with 
phlogiston, and the latter, common to all metals, produced 
common properties. In addition, the phlogiston theory 
accounted for a number of reactions in which acids were 
formed by the combustion of substances like carbon and 
sulphur. Also, it explained the decrease of volume when 
combustion occurs in a confined volume of air the phlogis-
ton released by combustion “spoils” the elasticity of the air 
that absorbed it, just as fire “spoils” the elasticity of a steel 
spring. (1996, pp. 99–100)

Whatever its other explanatory virtues, oxygen chemistry could not pro-
vide an explanation for the common properties of metals, as phlogiston 
chemistry could.
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9.9.2. Weight and Levity
What turned the tide in oxygen’s favor and formed the basis of Lavoisier’s 
case for oxygen was weight. When a metal burned to form a calx, the calx 
weighed more, while the air above lost one sixth of its volume; and when 
the calx was reduced back to metal, in the case of mercury calx, it lost 
weight and returned just the missing portion of air. These gains and losses 
of weight could be explained by the phlogiston theory, if we assume that 
phlogiston had negative weight—that is, “levity” as opposed to “gravity.” 
This now seems a curious assumption, but it saves the phenomena. When 
a metal forms a calx, it loses the levity of phlogiston. This is a loss of a 
negative weight. Taking away a negative has the effect of adding a positive. 
It results in a calx that weighs more that the metal.

Phlogiston chemistry fails if we deny the admissibility of levity and 
insist on the background fact that matter must have weight. John Herschel 
summarized the failure a few decades later:

So far as weight is concerned, it makes no difference wheth-
er a body having weight enters, or one having levity escapes; 
but there is this plain difference in a philosophical point of 
view, that oxygen is a real producible substance, and phlo-
giston is no such thing: the former is a vera causa, the latter 
an hypothetical being, introduced to account for what the 
other accounts for much better. (1840, p. 301)

More picturesquely, Herschel characterized the question of weight as the 
crucial factor in deciding between the two: “of two possible roads the 
wrong was chosen; and a theory obtained universal credence on the credit 
of great names, ingenious views, and loose experiments, which is nega-
tived, in every instance, by an appeal to the balance” (p. 300; emphasis in 
original). His language is reminiscent of Francis Bacon’s “crucial instan-
ces,” which Bacon had described with an analogy to signposts directing us 
at branches in a road.29

29 A portrait of Francis Bacon is on the title page of Herschel’s Preliminary Discourse.
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Herschel’s account leaves unsupported his conclusion that levity-bear-
ing phlogiston cannot be a real substance. William Whewell (1847, pp. 
409–11) laid out a more elaborate case. He too based the decision in favor 
of oxygen chemistry in this fact about matter. The levity of phlogiston was 
“rejected by all the sounder philosophers,” he wrote, and “It is assumed, 
it appears, that all matter must be heavy.” He proceeded to a quite general 
argument that deduced the heaviness of matter from the very idea of sub-
stance. Part of his argument returned to phlogiston:

For if weight is not the criterion of the quantity of one el-
ement, phlogiston for instance, why is weight the criterion 
of the quantity of any other element? We may, by the same 
right, assume any other real or imaginary element have lev-
ity instead of gravity; or to have a peculiar intensity of grav-
ity which makes its weight no index of its quantity. We can 
now reassess just how the decision in favor of the oxygen 
theory was taken.

While Lavoisier had boasted of the explanatory prowess of his oxygen 
theory, at the time of the decision there was little to choose between the 
explanatory capacities of oxygen and phlogiston chemistries. What was 
decisive, however, was a fact: matter has weight. This fact was compat-
ible with oxygen chemistry but not with phlogiston chemistry, in so far as 
phlogiston was supposed to be material.30

Once again, we see the two-step structure emerging for the inference. 
The first step is a comparative one between oxygen chemistry and the foil 
of phlogiston chemistry. The decision is not derived from some superior, 
intrinsic explanatory virtue in the favored oxygen explanation. Rather, the 
foil is rejected because of a logical incompatibility with a background fact: 
matter has weight. Oxygen chemistry thereby prevails.

This same fact mediates in the second step: that we should not just pre-
fer oxygen chemistry over phlogiston chemistry, but that we should infer 
to and accept oxygen chemistry. There are many component inferences 

30 I pass over the rather great awkwardness for Lavoisier that he had also allowed caloric, 
the matter of heat, into his table of elements, even though no sensible weight for it had been found.
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and further factual assumptions required for the second inference. But 
the course of each component is unremarkable. A full accounting would 
need to look at many different chemical changes. Here is how one pro-
ceeds. When a metal calx transforms into a lesser weight of metal and 
a released gas, we read directly that this is a decomposition of the calx 
into its constituent metal and the gaseous component, oxygen. The further 
assumptions needed to make this inference from the observation of a few 
instances to the generality would include: that matter is conserved, so that 
any weight lost must reappear in the matter of the gas; and that the calx is 
a pure substance all of whose samples have the same properties. Then the 
behavior of one sample can stand for all.

9.10. The Wave Theory of Light
Darwin referred to the wave theory of light (“undulatory theory”) as one 
established by the same abductive methods as he used in On the Origin of 
Species (1876, p. 421). Thagard (1978, pp. 77–78) mentioned the theory as 
one of his canonical scientific examples of inference to the best explan-
ation. As a result, one might expect that it would be straightforward to 
reconstruct the abductive inference. Matters prove otherwise. The wave 
theory evolved slowly into its modern form, only gradually acquiring 
evidential support in a temporally extended process of great complexity. 
While the fuller evidential case cannot even be sketched here, we can see 
enough of it to know that it conforms to the pattern already seen. The 
two-step character is present. The explanatory prowess of the wave theory 
was almost invariably compared with the foil of Newton’s corpuscular 
theory, which gave it real competition. The latter was vanquished eventu-
ally either by its need to take on undischarged evidential debt or by direct 
contradiction with experiment. The second step long remained fraught. 
At any moment, the explanatory achievements of the wave theory were 
threatened by new, as yet unexplained optical phenomena. The complexity 
of the example derives from a pair of coupled circumstances.

First, the wave theory of light is a misnomer. There is a long history 
of theories that attribute wave-like properties to light, extending back to 
the seventeenth century in the work of Hooke and Huygens. However, the 
theories adopted many forms as they developed, sometimes adapting to 
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then-current developments in other sciences. The earliest theories simply 
presumed light to be a propagation in some medium, akin to sound propa-
gation in air. Later theories retracted this, for sound waves are longitud-
inal rarefactions and compressions, whereas light waves proved to be an 
oscillation that was transverse to the direction of propagation. Ultimately, 
light was absorbed into electromagnetic theory as the propagation of a 
wave-like disturbance in the electromagnetic field.

Second, the behavior of light was examined carefully in many experi-
ments. As a result, the range of experimental results to be accommodated 
by a theory of light was large and growing. They included results on the 
speed and direction of light propagation, its decomposition into colors, 
reflection, refraction in media, colored bands in thin plates (“Newton’s 
rings”), the polarization of light, stellar aberration, various interference 
patterns, including fringes around shadows, double refraction in crystals, 
and more. The character of the wave-like motion attributed to light de-
veloped in concert with these developments.

The history of the establishment of the wave theory is a history of 
its competition with the Newtonian corpuscular theory, also known as 
the emission theory. The competition was quite real. In the seventeenth 
century, the wave theory was rudimentary. It was based, according to 
Huygens (1690, p. 11), on the supposition that light is “some motion im-
pressed upon the matter which lies in the intervening space” and that the 
motion “is propagated, as that of sound, by surfaces and spherical waves.” 
The explanatory successes of Huygen’s theory are now well known. His 
constructions enabled the recovery of familiar processes of reflection and 
refraction.

9.10.1 Early Competition of Wave and Emission Theory
Huygen’s theory faced considerable explanatory competition from 
Newton’s corpuscular theory. The latter supposed that light consisted of 
very small corpuscles, moving very quickly. The theory was ontologically 
frugal. Both posited the existence of matter. For the corpuscular theory, 
the matter posited was the light seen. For the wave theory, vastly more 
matter needed to be supposed in the form a space-filling, all-pervading 
substance in which light would propagate as vibrations.



The Material Theory of Induction326

Newton’s theory could deal quite effectively with the same phenom-
ena as wave theory. In this respect, Newton’s theory had advantages. Light 
propagates in straight lines. Wave propagations in media, such as sound, 
do not propagate linearly but follow tortuous pathways according to alter-
ations in the medium and its motion. This issue, according to Shapiro 
(2002, p. 232) remained Newton’s principal objection to the wave theory 
throughout his life. There were other explanatory advantages of the emis-
sion theory. The equal angles of reflection of light matched perfectly with 
the behavior of bodies undergoing elastic collision. Newton had found 
that white light decomposes into rays of definite colors and that these rays 
were quite fixed in their color. It was not altered by reflection, refraction 
and other like processes. This constancy was easily accommodated into 
an emission theory by assuming that the different colors correspond to 
different types of corpuscles with stable characters. It was less clear that 
mere vibrations in some unseen, all-pervading substance could provide 
the same stability.

9.10.2. The Emission Theory Weakens
The tide began to turn against the Newtonian theory with the work of 
Thomas Young in the early nineteenth century followed by its develop-
ment by Augustin Fresnel. Both were able to account for many optical 
effects arising from the constructive and destructive interference of light 
waves. Newton’s theory could accommodate such effects to some extent. 
The most celebrated of these effects was “Newton’s rings”; that is, rings of 
light and dark that form in the small, intervening space when a lens sits on 
a flat sheet of glass. Newton’s account was complicated and depended on 
“fits of easy transmission and reflection.”

The details are too complex for recapitulation here. What is relevant, 
however, is William Whewell’s assessment in his History of the Inductive 
Sciences, written from the perspective of someone close to the episode. In 
spite of Newton’s status as a national hero, Whewell was quite scornful of 
Newton’s hypotheses:

The colors of thin plates. Now, how does Newton’s theory 
explain these? By a new and special supposition;—that of 
fits of easy transmission and reflection: a supposition, which, 
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though it truly expresses these facts, is not borne out by any 
other phenomena. But, passing over this, when we come to 
the peculiar laws of polarization in Iceland spar, how does 
Newton’s meet this? Again by a special and new supposi-
tion;—that the rays of light have sides. Thus we find no fresh 
evidence in favor of the emission hypothesis springing out 
of the fresh demands made upon it. (1858, p. 89; emphasis 
in original)

In present terms, the problem was not that Newton’s account was in-
compatible with experiment. Rather, it required an undischarged eviden-
tial debt in the form of the hypotheses identified by Whewell.

One might imagine that the explanatory advantage of the wave theory 
was absolute by this time. But it was not. The theory still required a 
medium of unusual properties. Since light propagates in empty space, the 
medium—the luminiferous ether—must be all pervasive. It must be en-
tirely unaffected when ordinary matter is evacuated from a vessel, where 
such evacuation would completely suppress sound propagation. As late as 
1873, Tyndall could report of the persistence of doubt over this assump-
tion of the medium. He wrote of David Brewster (1781–1868), a celebrated 
pioneer in optical science:

In one of my latest conversations with Sir David Brewster he 
said to me that his chief objection to the undulatory theory 
of light was that he could not think the Creator guilty of so 
clumsy a contrivance as the filling of space with ether in 
order to produce light. (1873, pp. 47–48)

9.10.3. Wave Theory Triumphs
Thus the competition proceeded. It is quite hard to locate simple cases of 
explanatory competition between the emission theory and wave theory 
suitable for a brief exposition here. Humphrey Lloyd reported one such 
case. By the time of Lloyd’s writing, it had been ascertained experimental-
ly that the speed of light was the same everywhere in empty space, what-
ever the source of the light. Lloyd found it incredible that all the different 
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processes that accelerate the corpuscles into propagating light should pro-
duce exactly the same speed. More puzzling to him was that they could 
retain that speed when the gravity of celestial objects would slow them 
down. He reported Laplace’s computation that the gravity of a star 250 
times as great as our sun but of the same density would stop the motion of 
light entirely. There was a desperate rescue possible:

The suggestion of M. Arago seems to offer the only way of 
escaping the force of this objection. It may be supposed that 
the molecules of light are originally projected with different 
velocities, but that among these velocities there is but one 
which is adapted to our organs of vision, and which produc-
es the sensation of light. (1873, pp. 11–12)

The constancy of the speed of light, however, followed naturally if light is 
a wave propagating in a medium. The speed depends only on the elasticity 
and density of the medium, which are assumed to be constant. 

We see in this simple example that the wave theory accommodates the 
constancy of the speed of light fairly well. The accommodation depends on 
a special hypothesis, the uniformity of the medium. Since the constitution 
and nature of the medium remained uncertain, the wave theory account 
was not without its problems. The emission theory, however, was in great 
trouble. Any reasonable mechanics of the era for corpuscles predicted 
many speeds. That only one was observed was a refutation. The emission 
theory could be protected, but only by taking on a dubious hypothesis 
about our vision—that is, by taking on quite a significant evidential debt.

A decisive turning point came with experiments around 1850 that dir-
ectly measured the speed of light in media. When light propagates from 
a less dense to a more dense medium, it is refracted towards the denser 
medium. The effect is the basis of how optical lenses work. It is explained 
quite differently by wave and emission theories. The wave theory assumes 
that the speed of light in the denser medium is reduced and that the angle 
of refraction is recovered by a Huygens construction. The emission theory, 
however, explains the refraction towards the denser medium by attractive 
forces that accelerate the light corpuscles into the denser medium. That is, 
the speed of light increases in a denser medium.
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This stark difference of prediction was finally put to the test. The 
wave theory prediction was borne out. Henry Crew, in 1900, reported the 
victory: 

It was in the year 1850 that Fizeau and Foucault measured 
directly the speed of light in air and water, and found the ra-
tio of these speeds numerically equal to the ratio of their re-
fractive indices. This experiment has sometimes been called 
the experimentum crucis of the wave theory; but with scant 
justice we venture to think, inasmuch as no great doctrine 
in physics can be said to rest upon any single fact, though 
modification may be demanded by a single fact. (1900, p. 
xii)

Crew’s caution was prudent. While this result may have ended the emission 
theory’s prospects, the wave theory of 1850 still had obstacles to overcome. 
Its dependence on a medium of uncertain properties—the luminiferous 
ether—would fester and eventually become a focus when Einstein pub-
lished his special theory of relativity in 1905.31

By this time, the wave theory of light was no longer an independent 
theory that would rise and fall according to new experimental results on 
light alone. Since the 1860s, light had been identified as a wave propagating 
in an electromagnetic field so that the success or failure of the wave theory 
became intimately tied to that of electromagnetic theory. A fuller account 
of the final victory of the wave theory would have to include an account of 
the rise of electromagnetic theory upon which it came to depend.

By the turn of the century, the complex, lingering competition between 
emission and wave theories of light was reducible to a few brief sentences 
in the opening pages of a textbook. Walker summarized the situation:

The emission theory is lacking in simplicity, and over-
crowded with hypotheses; moreover it contradicts the facts 

31 More relevantly, Einstein also published a startling result in 1905 concerning light. His 
light quantum hypothesis asserted that the energy of high frequency light was spatially localized 
into points, which was quite reminiscent of Newton’s tiny corpuscles.
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in an important particular, for it leads to the result that the 
propagational speed of light is greater in a dense medium, 
such as water, than it is in air, whereas direct experiments 
show that the reverse is the case. (1904, pp. 1–2)

This summary serves us quite well, for it encapsulates the failures of the 
Newtonian foil in the first step of abductive inference. The emission theory 
is defeated by the undischarged evidential debt of special hypotheses and 
by contradiction with experiment. The second step—the elevation of the 
wave theory from the better explanation to the best and the one to which 
we infer—is too complex to gloss here.

9.11. Conclusion
The standard philosophical account of inference to the best explanation 
tells us that we may infer to some hypothesis or theory because that hy-
pothesis or theory displays some powerful and distinctive explanatory 
prowess. This chapter has examined canonical examples in real science 
and found something different. The favored theory or hypothesis does not 
gain favor because it implements some philosophically distinctive notion 
of explanation. The evidential successes are more successes of accommo-
dation, albeit at times noteworthy ones. The real evidential challenge for 
proponents of a favored hypothesis or theory is to display the evidential 
failure of competitors. The favored theory or hypothesis does not so much 
prevail because of its own intrinsic virtue; it prevails by default because 
of the evidential failure of its competitors. The failures of these competi-
tors are not explanatory failures. The failures are simpler and come in two 
modes. Either the competitor is contradicted by the evidence; or it must 
take on an evidential debt—that is, make suppositions for which there is 
insufficient evidential support.

As a result, it was possible in the last chapter (Section 8.7) to charac-
terize these inferences in loose and general terms as “inference to the best 
explanation without explanation.” The emphasis in the examples on com-
parison led the characterization to have two steps. The first and dominant 
step is comparative: one hypothesis or theory is favored over a compet-
ing foil. This step is clearly discernible in the examples above. The second 
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step is logically very strong. It dispenses with comparisons: “favoring” is 
replaced by “inferring to.” However, it has little explicit presence in the 
examples. The second step, if taken at all, is made tacitly. The competing 
foils are defeated and that is enough to let the victor ascend.
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10

Why Not Bayes

10.1. Prelude
A central proposition of this book is that there are no universal rules 
for inductive inference. The chapters so far have sought to argue for this 
proposition and illustrate it by showing how several popular accounts of 
inductive inference fail to provide universally applicable rules. Many in 
an influential segment of the philosophy of science community will judge 
these efforts to be mistaken and futile. In their view, the problem has been 
solved, finally and irrevocably.

This segment of the community represents “Bayesians” who work in 
what has come to be called “Bayesian epistemology.” Its central idea is that 
issues of belief and inductive inference are to be treated solely by means of 
the probability calculus. The central structure is a conditional probability 
measure P(A | B), the probability of proposition A against the background 
proposition B. The term “Bayesian” derives from an easily proven theorem 
in the probability calculus, Bayes’ theorem:

The theorem provides the central engine for inference in Bayesian epis-
temology. The inference starts with some prior belief or inductive strength 
of support for a hypothesis H on the background B, P(H | B). Learning evi-
dence E leads the prior probability to be updated to the posterior probabil-
ity P(H | E & B), which now incorporates the full import of the evidence 
E. This posterior probability is computed via Bayes’ theorem using the 
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auxiliary quantities, the “likelihood” P(E | H & B) and the “expectedness” 
P(E | B) = P(E | H & B) P(H | B) + P(E | −H & B) P(−H | B).

This is the barest sketch of the core notions of the Bayesian approach, 
which is now so widely known as not to require further elaboration. There 
is much more to the general Bayesian approach and there are many vari-
ant forms. Recalcitrant cases that do not easily fit with the core notions in 
their bare form are treated by “imprecise probabilities.” The imprecision 
derives from replacing a single probability measure by a set of measures, 
or by replacing an additive measure by a superadditive measure. These 
are conceived of as providing a generalized probabilistic analysis. In more 
recent scholarship, Bayesian epistemology has been subsumed under the 
heading of “formal epistemology,” whose leading idea is that epistemic 
problems are to be addressed by formal and mathematical methods. There 
is little real change, however, as far as belief and inductive inference are 
concerned. Probability measures remain the principal instrument used to 
treat them.

For present purposes, the core commitment of the Bayesian tradition 
resides in a single idea: 

It’s all probabilities.
Here just what “probabilities” mean can be construed differently ac-

cording to one’s interpretive inclinations. However, this general concep-
tion is taken to solve the essential problems addressed in this book. There 
are universal rules, the Bayesian tradition holds. They are axioms of the 
probability calculus. Once this is recognized, all that remains are the finer 
details of determining just how they are to be applied to each problem. The 
big problem is solved.

The purpose this chapter and the remaining chapters of this book is to 
explain why I am dissatisfied with this Bayesian solution. 

10.2. Introduction
The case against the universality of probabilities will be made in this 
chapter in two parts. The first part will apply the general argument de-
veloped in Chapter 2 against the idea that any calculus—probabilistic or 
otherwise—can be universally applicable. The core of the argument can be 
summed up in the following:
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Any logic of induction must restrict what happens in ways 
that go beyond logical consistency. Hence, a logic of induc-
tion is applicable in some domain if the facts of that domain 
match the factual restrictions of the logic of induction. Since 
there is no universally applicable factual restriction, in gen-
eral, different domains require different inductive logics.

This argument will be developed more fully in Sections 10.4 and 10.5 
and will conclude that any calculus of induction must eventually reach a 
boundary to its domain of applicability beyond which it fails.

I will argue in Section 10.6 that efforts to develop theories of imprecise 
probabilities are misplaced attempts to disguise these boundaries. They 
use an additive measure merely as adjuncts to simulate the non-additive 
inductive logic of a new domain. In foundational terms, they mislead by 
fostering the impression that “it’s all probabilities” even when the logic 
simulated is inherently non-additive.

As a foil for further analysis, Sections 10.7, 10.8, and 10.9 will present 
an extreme but simple example of such a non-additive inductive logic. The 
example is the relation of “completely neutral support,” which is derived 
from the principle of indifference and illustrated by Richard von Mises’ 
example of different mixtures of wine and water. Section 10.10 reviews 
the extent to which theories of imprecise probability can accommodate 
completely neutral support. In so far as they do not accommodate it, they 
are inadequate; in so far as they do, they are superfluous. Any success in 
this one case merely postpones the inevitable failures of a probabilistic 
logic, I argue, that must eventually arise when it seeks to accommodate 
more exotic logics.

The second part of the case against the universality of probabilities 
is a general rebuttal of the many proofs offered in the literature as dem-
onstrating the necessity of probabilities. These proofs come in different 
guises. One of the oldest and best known is Frank Ramsey and Bruno de 
Finetti’s Dutch book argument. It is used to infer that non-probabilistic 
distributions of belief are “incoherent,” which is a form of irrationality. All 
such proofs must fail and they must fail in the same way, for this reason:
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A proof of necessity of probabilities is a deductive argument 
whose premises must be at least as strong logically as the 
conclusion. Therefore the assumptions of the proof must 
already presuppose the necessity of probabilities or some-
thing logically stronger. Hence, by dominance we are better 
off simply presupposing the necessity of probabilities at the 
outset and forgoing the proof.

This general argument is developed in Sections 10.11 and 10.12. It is used 
to predict that a careful analysis of a proof of the necessity of probabilities 
triggers a regress of reasons. For the assumptions used in the proof will 
always be found to be improperly grounded. Attempts to provide proper 
grounding will require new assumptions that will then also prove to be 
improperly grounded.

The principal illustration of this circularity and the ensuing regress 
of reasons will be the recent efforts to vindicate probabilities by means of 
notions of accuracy and scoring rules. Since the analysis is quite extensive, 
it is postponed until the next chapter. To show that other attempts at vin-
dication fail in the same way, two more examples are given briefer treat-
ment in this chapter. Section 10.13 examines the Dutch book argument. 
It identifies which assumptions already have the axioms of the probability 
calculus built into them and recounts the failure of attempts to remove 
the circularity. Section 10.14 repeats this analysis for a different approach 
developed by Richard Cox (1961) and Edwin Jaynes (2003). There, neces-
sary conditions are identified for strengths of inductive support, and from 
them the computational rules of the probability calculus are recovered by 
functional analysis. We will see that the necessity of the conditions re-
quires further grounding, triggering the now familiar regress of reasons. 
Conclusions in Section 10.15 suggest further directions of exploration.

As a preliminary, in Section 10.3, I will distinguish objective from 
subjective approaches and apologize to the reader for not always distin-
guishing them clearly as the chapter unfolds. 

Finally, before proceeding, I would like to give Bayesian epistemology 
its due. My view is far from a complete dismissal of Bayesian epistemology. 
I view it in the same way as I view all other candidate logics of induction. 
Whether it applies in some domain is determined by the background facts 
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of the domain. These background facts will also determine the variety of 
Bayesianism applicable. Stronger facts will authorize strict Bayesianism 
in which inductive support or, subjectively speaking, beliefs are measured 
by a single probability measure. Weaker facts will authorize a relaxed 
Bayesianism in which these supports are represented by sets of probability 
measures or upper and lower bounds. There are many domains in which 
varieties of Bayesian analysis are authorized and can be applied. In such 
domains, it provides a wonderful instrument.

Bayesian epistemology is formally precise where other accounts floun-
der. Arguments from analogy struggle to separate the strong from the 
weak analogies. Accounts that reward simplicity cannot provide a clear 
and unobjectionable notion of simplicity whose measure translates mech-
anically into inductive strength. In contrast, once the probability space 
is well defined, the Bayesian analysis has no such trouble. Determining 
all its relations is reduced to well-defined computations in the probability 
space. When the system under investigation becomes very complicated, 
other approaches provide little guidance on how apparently conflicting 
evidence is to be combined. The fossil record is best explained by an old 
earth. The earth’s cool temperature is best explained through Newton’s 
law of cooling by a young earth. Using inference to the best explanation, 
to which do we infer? If Bayesians can pass the formidable hurdle of pro-
viding a well-defined probability space, Bayesians can answer the corres-
ponding questions by mechanical computation. For all the information 
needed to trade off competing items of evidence lies within the condition-
al probabilities. Indeed, if any general question about belief or inductive 
support can be translated into a precise query in probability theory, it can 
be decided by a theorem that affirms or denies it.

With virtues as strong as these, it is all too appealing to hope that 
Bayesian analysis can be applied universally. When the inevitable prob-
lems arise, it is easy to dismiss them as the routine teething troubles of 
an infant who will outlive them and grow to boisterous maturity. Once 
that was a defensible attitude. As time passes and the problems remain 
unsolved, we can no longer afford to indulge the universal aspirations. If 
we are to understand what inductive inference is fundamentally, we need 
a different approach.



The Material Theory of Induction340

10.3. Objective and Subjective Bayesianism
My concerns in this book are the objective relations of inductive support. 
Bayesians are also interested in these relations in so far as they expect them 
to be embraced by their analyses in one form or another. What compli-
cates responding to Bayesian ambitions of universality is that Bayesianism 
is not a univocal doctrine. It comes in many varieties.

A major division is between the objective Bayesians, such as Jaynes, 
and the subjective Bayesians, such as de Finetti. The objective Bayesians 
are distinguished by the claim that, in any epistemic situation, there is one 
correct probability distribution applicable. There is, in particular, one cor-
rect prior probability. In this regard, the project of objective Bayesians is 
closest to mine. I am comfortable regarding the objective Bayesians’ con-
ditional probability P(H | E & B) as an attempted expression of the object-
ive strength of inductive support provided by evidence E in background B 
for hypothesis H. As I will remark briefly in the concluding section of this 
chapter, the primary obstacle facing objective Bayesians specifically is that 
the rules needed to define this one correct prior are arbitrary.

Subjective Bayesians permit many probability distributions, con-
strained only by conformity with the axioms of the probability calculus. 
They characterize the freedom in our choice among the probability distri-
butions as a free exercise of opinion. Thus, antecedent to the consideration 
of evidence, we are free to choose any prior probability distribution we 
like. Thus, at best, for a subjective Bayesian the conditional probability 
P(H | E & B) cannot simply express the strength of inductive support ac-
crued to H, since it has no unique value. Rather it is, at best, one of many 
possible mixes of evidential support and opinion. The hope is that even-
tually, in some longer term limit, the balance will move decisively toward 
objective support. There are also many attempts to derive measures from 
confirmatory support from the subjective probabilities.

My principal concern with the subjective approach is that it demotes 
strengths of inductive support to a derived quantity. The primary quan-
tity—the conditional probability—is a measure of belief or credence. 
Strengths of inductive support are to be recovered from them. That 
a notion of belief should be more primitive than a notion of inductive 
support has it the wrong way round. We wish to assess the strength of 
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inductive support evolutionary theory derives from the fossil record or 
what Big Bang cosmology derives from the cosmic background radiation. 
To make this assessment, we should not first have to determine our be-
liefs or credences. These strengths should not be dependent on our beliefs, 
else the objectivity of science is at risk. Worse, the project of assessing 
these strengths of inductive support from the beliefs has proven to be so 
troublesome that no univocal assessment is recoverable from the present 
literature in subjective Bayesianism. It was an approach that was risky and 
has not yet succeeded.

Since there is so much in common between the objective and subject-
ive approaches to Bayesianism, it is impractical in what follows to keep 
them fully separated. There is often no need, since argumentation con-
cerning subjective probabilities can often be adapted to apply to objective 
probabilities, and vice versa. Thus, in this chapter and the chapters that 
follow, I will move freely between treating probabilities as objective rela-
tions of support and subjective credences.

10.4. The Main Failing of Bayesianism
As noted at the outset of this chapter, I have no quarrel with the applica-
tion of Bayesian analysis in specific cases. There are many successful and 
interesting cases that arise when the background facts provide the warrant 
needed. For example, a physical theory may supply the probabilities as the 
physical chances; and the particular conditions of the system may provide 
unambiguous prior probabilities.

My concern is the claim that Bayesian analysis is universally applic-
able to all systems, where it can supply the one, true logic of inductive 
inference. Against this, I will argue that there is a boundary beyond which 
Bayesian analysis fails. The existence of this limit is a corollary of the more 
general claim that there are no universal rules of inductive inference. For 
without the boundary, Bayesian analysis would be providing a universal 
rule of inductive inference. The argument for this general claim was de-
veloped in Chapter 2. It is recapitulated here for the special case in which 
a mathematical calculus is used in one manner or another as a logic of 
inductive inference. The argument applies to all calculi used this way, not 
just to the probability calculus.
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The key premise in the argument is that a calculus of inductive infer-
ence must place limitations on what can happen that is more restrictive 
than logical consistency.1 Otherwise, the calculus is not part of a system 
that implements inductive inferences. If the limitation goes beyond logical 
necessity, then it is by definition a contingent restriction—that is, one that 
may without logical contradiction be true or false. It follows from this that 
there will be some conceivable domains that conform with the restriction 
and some that do not. Whether the calculus in question can be applied in 
some domain as a logic of inductive inference will depend on whether the 
requisite facts obtain. When they do, these facts warrant the use of this 
calculus in this domain.

This consideration applies directly to objective Bayesian approaches, 
for according to them, the probability calculus is the “logic of science.” Or 
so proclaims Jaynes (2003) in the title of his treatise, Probablity Theory: 
The Logic of Science. The consideration also applies to subjective Bayesian 
approaches. While a probability measure for them mixes opinion and 
evidential warrant, the probability calculus does constrain someone to 
conform their beliefs with the evidence. The expectation is that condi-
tionalization on a sufficiently rich body of evidence for some theory will 
lead a subjective Bayesian to mass the probability almost entirely on the 
true theory. Since such a body of evidence is finite but the theory’s scope 
is infinite, this is a form of inductive inference. In this sense, a subjective 
Bayesian is implementing a scheme of inductive inference, although not as 
directly as an objective Bayesian.

We have now concluded that contingent facts warrant the applicabil-
ity of some particular calculus of inductive inference in some domain. We 
might still hope that a single calculus is warranted universally. This would 
happen if it turns out that there is a single, contingent warranting fact 
that obtains in all domains where we might conceivably practice inductive 

1 That it must do this might not be immediately clear. The standard manipulations within 
the probability calculus, for example, are all deductive. Take ten independent tosses of a fair coin. 
If the probability of heads is 1/2 in each toss, then the probability that at least one heads appears is 
1 – 1/210 = 0.999. So far all the reasoning has been deductive. The inductive component only enters 
when we employ an interpretive rule that tells us that outcomes of near unit probability are to be 
expected. Without some sort of interpretive rule like this, the probability is simply a mathematical 
quantity with no import for real things in the world.
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inference. Such a fact was pursued, in effect, in the nineteenth century 
under the guise of a search for a principle of the uniformity of nature. The 
search for such a universally applicable principle failed. As described in 
greater detail in Chapter 2, all candidates either proved empirically false 
or so hedged as to be vacuous.

The facts prevailing in some domain warrant the inductive logic 
applicable there. There is no single warranting fact common to them all. It 
follows that different inductive logics are warranted in different domains. 
This locality does not preclude one domain from being very large. The 
success of probabilistic methods suggests that the domain or domains 
in which they are warranted as a logic of inductive inference are large. 
However, every such domain is bounded and there are others where a dif-
ferent logic is warranted. The logic warranted in these other domains may 
be governed by a calculus. But there may well be domains so irregular 
in their facts that no well-developed calculus can systematize whichever 
inductive inferences are warranted in them.

10.5. Probabilities without Warrants
The need for some sort of warrant for the use of probabilities becomes 
quite apparent if we consider cases in which there is no warrant. What 
results are striking inductive fallacies.

A simple example is provided by Peter Van Inwagen’s (1996, p. 95) 
question “Why is there anything at all?” He notes that there is only one 
possible world with nothing at all. There are infinite other possible worlds 
with something, however, each differing in their configuration of some-
thing. Since we are assuming antecedently to have no basis for knowing 
what there is—if anything at all—we distribute our probabilities roughly 
uniformly over all possible worlds. The result is that all the probability 
mass is attracted to the set of worlds in which there is something. It follows 
that the probability of there being nothing is zero. As Van Inwagen (p. 99) 
concludes, it is “as improbable as anything can be.”

This conclusion is derived fallaciously. Not even the prodigious powers 
of the probability calculus can legitimately extract such a strong conclu-
sion from premises so bereft of content. The fallacy derives directly from 
employing a probabilistic analysis in a context in which no background 
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facts warrant the probabilities. This particular fallacy is unfortunately 
widespread. It is a version of what I have elsewhere called the “inductive 
disjunctive fallacy” (Norton 2010, §4).2

The “doomsday argument”3 provides another illustration of a related 
fallacy. It uses only the evidence that our world has survived for t years. It 
asks after the probability that our world will end in T > t years—“doom.” 
Since our t can equally be any of the total T years of our world, the prob-
ability that our present world has survived for t years is P(t | T) = 1/T. The 
quantity we seek is the posterior probability P(T | t), the probability that 
the world meets its doom after T years, given that it has survived for t 
years. An application of the ratio form of Bayes’ theorem tells us that4

Substitute T1 = t and T2 = 10t, and we recover P(T1 | t) / P(T2 | t) = 10. This 
extraordinary conclusion tells us that doom is ten times more likely right 
now at t than is survival for another ten ages to 10t.

Once again, the analysis delivers too much. The evidence is just that 
our world has survived t years. This is too thin an evidential basis for the 
strong conclusions drawn. They are not a reflection of what the evidence 
authorizes. They are merely artifacts of the use of an unwarranted induct-
ive logic.5 See Norton (2010, §6) for further analysis and for a proposal for 
a reduced inductive logic more appropriate to the problem.

10.6. Mapping the Boundaries: The Fate of Imprecise 
Probability
It is an interesting exercise to map out the boundaries for a probabilistic 
inductive logic. A simple axiom system, such as Andrey Kolmogorov’s 

2 More examples are described in Norton (2010, §4).
3 See Bostrom (2002a, chaps. 6–7) for an entry into the earlier literature on this 

argument.
4 Assume equal prior probabilities P(T1) = P(T2).
5 Bostrom (2002, p. 57) seeks to warrant probabilistic analysis with his “self-sampling 

assumption.” In his view, “One should reason as if one were a random sample from the set of all 
observers in one’s reference class.” Here, “random sampling” implies equal probability of each 
sample drawn. Since it is an assumption without factual basis, it provides no warrant. Rather it 
enables us to identify and name the arbitrary posit that is the origin of the inductive fallacy.
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(1950) celebrated system, guides us to the boundaries.6 The axioms have 
us posit the following set of propositions:7

• non-negativity: we assign a non-negative, real-valued 
probability P(A) to proposition A;

• normalization: we assign a probability of unity P(W) = 1 to 
the universal proposition (tautology) W; and

• additivity: P(A ∨ B) = P(A) + P(B) when proposition A and B 
contradict.

Inductive problems in which each of these fail are well known. This chap-
ter and the next will recount some of them. The “completely neutral sup-
port” relation below violates additivity, as do the indeterministic systems 
of Chapter 15. Normalization and additivity are violated by the infinite 
lottery. That the structure is a real-valued function is violated by the quan-
tum inductive logic of Chapter 16.

That some boundary has been reached is not controversial. What is 
controversial, at least in my mind, is how we should respond to it. I believe 
the correct response is to recognize that we have found the boundaries of 
probabilistic logic; that we should recognize that different logics prevail in 
the domains beyond it; and that we should begin the task of identifying 
them.

The standard response in the literature is different. It is to weaken 
the probability calculus until the generalized calculus has been weakened 
enough to encompass whatever troublesome counterexample has arisen. 
For example, as we shall see shortly, the field of imprecise probability en-
compasses systems that violate additivity by replacing a single probability 
measure with a set of them; or it may employ superadditive measures. This 

6 Kolmogorov’s axioms are simpler since they specify an unconditional probability P(A). 
Conditional probabilities are introduced through the definition P(A | B) = P(A & B)/P(B). This 
approach is more restrictive than providing more complicated axioms directly for conditional 
probabilities. But the simpler approach suffices for the present analysis since the more complicated 
approaches only move the boundaries slightly.

7 More precisely, we posit a Boolean algebra of propositions, which is a set of propositions 
closed under finite or countable disjunction ∨, conjunction &, and negation −.
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is the project of a variety of approaches grouped under the heading of 
“imprecise probability.”8

These approaches are, ultimately, ill-fated attempts to preserve the 
core idea that “It’s all probabilities.” The domains covered are ones in 
which an inherently non-probabilistic inductive logic is warranted. What 
imprecise probability does is to employ an additive calculus to simulate a 
non-additive logic. It thus preserves the illusion that an additive measure 
is somehow still the core of the logic. The better approach would simply 
have been to recognize that a qualitatively distinct logic is required and to 
map out its behavior as a distinct logic.

In any case, the general stratagem of extending the calculus offers 
only temporary respite. For as long as the generalized calculus supports 
inductive inference, it must place restrictions on the systems that go be-
yond mere logical consistency. These are contingent constraints that, re-
calling the argument of Section 10.4 above, will not obtain in all domains. 
Further investigation will reveal new boundaries and new domains be-
yond them, as we will see shortly in Section 10.10 below. 

The standard response leads to an unhappy ending. Each time a cal-
culus is generalized to embrace new examples, it is weakened in the sense 
that it becomes less restrictive. As long as the generalized logic places some 
restrictions on systems beyond logical consistency, the domains in which 
it applies are limited. The need to generalize to embrace unanticipated 
counterexamples will continue. The process of generalization can only 
assuredly terminate when the logic places no restrictions beyond logical 
consistency on its domain. But then it has ceased to be an inductive logic.

10.7. The Principle of Indifference
To make the foregoing concerns more concrete, it will be helpful to de-
velop the simplest case in which the boundaries of probabilistic analysis 
are breached. It is “completely neutral support” and arises when we have 
inductive support that is, in objective terms, maximally uninformative. 
In subjective terms, it corresponds to the case of complete ignorance. This 

8 For an introduction to this literature, see Bradley (2016) and the resources on the 
website of the Society for Imprecise Probability: http://www.sipta.org.
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case has been explored extensively in Norton (2008, 2010) as part of an 
investigation of the import of the principle of indifference. We will first 
recall the principle and its application and then develop the notion of 
completely neutral support in the next section.

The form of the principle that I prefer is the following:

Principle of Indifference. If one has no grounds for distinguishing 
several outcomes, then we should assign equal inductive 
support to them.

The principle in this form is a truism of evidence. It reflects the require-
ment that discriminations in inductive support cannot be made arbitrarily.

The principle applies when we have indistinguishable outcomes. They 
are realized most securely through invariances, which are transforma-
tions that leave the relations of inductive support unchanged. Their use 
is familiar and unproblematic, initially. When we have a fair coin toss, 
our formal analysis is unchanged if we switch the labels on the sides of 
the coin. Whatever grounds we have for favoring heads would remain un-
changed if we reassigned the label “heads” to the other side of the coin and 
similarly reassigned the label “tails.” That is, we would have no grounds 
for distinguishing the outcome of either side. The principle of indifference 
requires us to assign equal support to each. If the relations of support are 
probabilistic, then each side is assigned equal probability.

In the case of a coin toss, the invariance under this permutation of 
the labels is derived from background physical facts: the mechanical 
conditions of tossing are such that they favor both sides equally. One can 
also have a more epistemic version. The coin need not even be tossed. We 
might just imagine it as sitting somewhere, untouched, in a drawer. But 
since our information about the coin is so limited, we have no grounds for 
distinguishing whether it is heads up or tails up.

Invariances like these seem benign until we start to combine them. 
Then they yield the well-known paradoxes of indifference. An early and 
well-known example is presented by John Maynard Keynes (1921, chap. 
4), who also named the principle of indifference. We ask of a man what 
country he may be from:

  France, Ireland, Great Britain   (1)
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Since we have no grounds for discriminating among them, we assign 
equal probability of 1/3 to each. However, the disjunction of two outcomes 
(Ireland or Great Britain) was equivalent to the British Isles at the time 
Keynes first wrote. So we might equally ask of the man:

  France, British Isles    (2)

Since again we have no grounds for discriminating, we assign equal prob-
ability of 1/2 to each. We have now arrived at contradictory assignments. 
For we have assigned both probability 1/3 and probability 1/2 to France as 
the man’s country.

Examples like these are usually used to impugn the principle of indif-
ference. This is a misdiagnosis. The principle is a truism of evidence and 
not readily discarded. It just says that the support for outcomes should not 
differ without a reason. What is overlooked in these efforts to impugn the 
principle is that the real cause of the trouble lies elsewhere. It is the pre-
sumption that relations of inductive support must always be probabilistic. 
These paradoxes of indifference are an early indication that they need not 
always be so.

In recent scholarship, there have been several alterative interpreta-
tions of the import of the principle of indifference on representing the 
neutrality of support. Yann Benétreau-Dupin (2015) draws on the existing 
ideas in imprecise probability and explores representing completely neu-
tral support through sets of probability measures. Benjamin Eva (2019) 
proposes a novel accommodation in which not all degrees of support are 
comparable. 

10.8. Completely Neutral Support

10.8.1. Invariance under Redescription
The transformation from (1) to (2) in the section above is a “disjunctive 
coarsening” of the outcome space. Two outcomes are replaced by a single 
outcome, their disjunction. The reverse transformation is a “disjunctive 
refinement.” If we conceive of these operations as redescriptions of the 
outcomes, Keynes’ example depends on a particular invariance:
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Invariance under redescription. In cases of completely neutral 
support, equality of inductive support over outcomes 
remains under disjunctive coarsening and refinement.

We arrive at the formal representation of completely neutral support by 
applying this invariance to an outcome space that has a finite number of 
mutually exclusive atoms A1, A2, A3, …, An, where an atom is the logic-
ally strongest proposition in the outcome space.9 If our circumstance is 
maximally uninformative concerning these outcomes, then the principle 
of indifference enjoins us to assign equal support to each. Thus we write:

[A | B] = inductive support accrued to proposition A from B.

We then infer:

where I represents the common inductive strength of support.
We can disjunctively coarsen the outcome space by replacing the first 

two propositions A1 and A2 by their disjunction, which we will write as 
A1∨2 = A1 ∨ A2. The new outcome space is A1∨2, A3, …, An and has only 
n − 1 propositions. Proceeding as did Keynes, we remain maximally uni-
formed about these propositions, so we must assign equal support to each. 
That is,

The same strength of support I must be used in both (3) and (4), since they 
have many common terms. For example, both include [A3 | W], so we can infer

Continuing by forming more disjunctive coarsenings of the original out-
come space, it is easy to see that the support offered to any contingent 
disjunctions of atoms10 is the same strength of support I:

9 As before, the outcomes space is a Boolean algebra of propositions whose universal 
proposition or tautology W is the disjunction of all the atoms W = A1 ∨ A2 ∨ … ∨ An. Proposition 
Ai is an atom just if any proposition A that entails it is either Ai itself or the contradiction.

10 This requirement of contingency excludes the tautology W.
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[any contingent disjunction of atoms | W] = I

However, every contingent proposition in the outcome space is equivalent 
to some disjunction of atoms. Thus we arrive at11

The strengths “1” and “0” have been chosen for continuity with the famil-
iar probabilistic case. Their arithmetic properties are not invoked.

This subsection argues for a unique characterization (5) of completely 
neutral support. It is tempting to block the argument at equation (4) by 
asserting that the principle of indifference should only be applied to the 
most refined outcome space, which is (3) in this case. I set aside the ques-
tion of whether this knowledge is adequate to block the argument. For 
either way, the difficulty is easily escaped. It is presumed that we know that 
(3) is the case of maximum refinement. So let us consider the case in which 
we do not know that (3) is the maximum refinement; or that we know 
positively that there is no maximum refinement. Then, the argument for 
completely neutral support goes through.

How might there be no maximum refinement? Such a case arises if 
the propositions represent ranges of some real-valued parameter x (e.g., 
Am might correspond to m ≤ x < m + 1). Then, we can disjunctively refine 
the outcome space by replacing Am by a disjunction B ∨ C, where B cor-
responds to m ≤ x < m + 1/3 and C corresponds to m + 1/3 ≤ x < m + 1. 
Since these intervals can be divided indefinitely, there is no most refined 
outcome space.12 

11 Keeping distinct values for the tautology and contradiction presumes sufficient logical 
knowledge that we can discern them from the contingent propositions. One could also define 
a still more extreme case in which we are maximally ignorant of deductive relations among the 
propositions, so that all the strengths are I.

12 It is tempting to argue that the refinement must divide parameter values into uniform 
intervals. This requirement fails since what may be a uniform division for one scaling of the 
parameter will not be so for another. The wine and water example below illustrates the problem.
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10.8.2. Invariance under Negation
The invariance under redescription of the last section is already well 
represented in the literature. There is a second, less familiar invariance 
that leads to the same result. To see it, consider some proposition A about 
which you know nothing at all. How well supported is it? Now consider 
its negation, not-A. Is the negation any more or any less well supported? If 
there is any doubt, imagine that the first question asked about the prop-
osition not-A, which we initially labeled B. Is not-B any more or less well 
supported than B?

Invariance under negation asserts that the two strengths of support 
are the same, simply because by supposition we have no basis for dis-
criminating between them. Switching their labels makes no difference to 
the strengths of support.

Invariance under negation. In cases of completely neutral 
support, the inductive support for a contingent13 
proposition and its negation are the same.

Let us implement this invariance in the outcome space with atoms A1, A2, 
A3, …, An. Any contingent proposition consists of a disjunction of some 
number of atoms from one to n − 1. For example, the negation of A1 is A2 
∨ A3 ∨ … ∨ An; and the negation of A2 ∨ A3 ∨ … ∨ An is A1; and so on for 
all other possible combinations. If we have a case of completely neutral 
support, we infer from invariance under negation that 

The strengths of support must be distinguished as I1, I1,2, … at this stage, 
since negation invariance by itself is not strong enough to force all the 
strengths to the same value. Their equality, however, can be recovered if 
we add the following condition:

13 A stronger version arises if we cannot discern the tautology and contradiction from the 
contingent propositions. Then the restriction to contingent propositions can be dropped.
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Monotonicity. The strength of support of a proposition is no 
greater than14 that of its consequences. If A entails B, then 
[A | W] ≤ [B | W].

Since A1 entails A1 ∨ A2 and A2 ∨ A3 ∨ … ∨ An is entailed by A3 ∨ A4 ∨ … 
∨ An, we have 

These two inequalities can only obtain if the two strengths are equal:

Proceeding analogously for all the other cases, we recover the equality of 
the strengths of support with the single value I for all contingent propos-
itions. The details of the recovery are straightforward but somewhat tedi-
ous; they are given in Norton (2008, §6.3).

10.8.3. Invariance from Ignorance or Positive Warrant
The representation of completely neutral support has been developed as-
suming that the invariances prescribed can come about in some circum-
stance. It is tempting to invert the argumentation. Since the totality of 
these invariances is incompatible with a probabilistic treatment of induct-
ive support, might we then infer that it is impossible for us ever to be in a 
position in which these invariances are realized? I have argued that suffi-
cient ignorance will realize these invariances. However, my real concern 
here is not ignorance but strengths of support warranted by background 
facts. We might well wonder what sort of facts could realize these invari-
ances. What sort of coin tosses or die throws or other similar machines 
could yield probabilities such that P(A1) = P(A2) = … = P(An) = P(A1 ∨ 
A2) = P(A1 ∨ A2 ∨ A3) = … as required by (5)? Since these probability 
assignments violate the additivity axiom of the probability calculus, no 

14 That is, we assume that there is a partial order “<” defined over the strengths. It is 
transitive and antisymmetric. Monotonicity is widely assumed but unnecessary, and one can 
conceive of logics in which it fails. An example is the specific conditioning logic of Norton (2010a, 
§11.2).
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probabilistic randomizer can realize them, precisely because its mechan-
ism is probabilistic.

This inversion of the argument succeeds only in so far as we are re-
stricted to warrants for support arising from probabilistic randomizers. 
Chapter 15 on “Indeterministic Physical Systems” describes many physical 
systems whose indeterminism is not probabilistic and which realizes the 
two invariances employed above. The inductive logic warranted for these 
systems conforms with completely neutral support (5). However, where 
here I have used the three values 0, I, and 1, in the later chapter I relabel 
these values as imp (“impossible”), poss (“possible”), and nec (“necessary”) 
to reflect better the physical underpinnings of these new cases.

10.9. Von Mises’ Wine and Water
The argument for completely neutral support derives from either of the two 
invariances just stated. It is tempting to try to defeat them by calling upon 
asymmetries in propositions that are not respected by the invariances. For 
example, while there may be no finest disjunctive refinement, there are 
some that are more refined and some that are less so. All negations are not 
the same in their atom counts. The negation of a single atom proposition 
A1 has a different atom count from the negation of a disjunction of n − 1 
atoms, A2 ∨ … ∨ An. These are all asymmetries among the cases that are 
not reflected in the invariances. We may well ask how the invariances can 
be maintained with these asymmetries.

The uniform response to all concerns of this type is merely to reduce 
our knowledge still further, until the symmetries are restored. Then, the 
invariances apply and completely neutral support is recoverable. The 
asymmetries depend on choosing a particular outcome space to describe 
a system’s behavior. A proposition may consist of one atom in one out-
come space but a disjunction of n − 1 atoms in another, where both spaces 
describe the same system. The different atom counts are then immaterial 
to the invariance if we have no way to discern which of the outcome spaces 
is the “right one.”

A version of von Mises’ wine and water example illustrates this effect. 
A goblet contains a mixture of wine and water. All we know is that a ratio 
of x wine to water lies in the interval 0.5 < x < 2. It follows that the ratio of 
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y = 1/x water to wine lies in the interval 2 > y > 0.5. The variables x and y 
each allow the definition of outcome spaces that describe the same physic-
al goblet. The first has atoms15

The second has atoms

The principle of indifference requires us to assign uniform support across 
the atoms:

One might try to adapt probabilities to these equalities, by setting

The adaptation fails since A1 = B2 ∨ B3 so that we end up with a 
contradiction:

A similar contradiction follows from B1 = A2 ∨ A3.
Figure 10.1 illustrates how the atoms in the two spaces are related.

15 To avoid the need to juggle too many “<” and “≤,” I employ the expedient assumption 
that x and y can never adopt exactly the values 0.5, 2/3, 1, 1.5, and 2.
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Figure 10.1. Relations between two outcome spaces for the wine 
and water example.

Instead of trying to impose probabilities where they do not belong, we can 
apply the invariances to arrive at the completely neutral support (5). We 
start with a coarsened outcome space with two outcomes: the ratio of wine 
to water is either greater or lesser than 1. This space can be represented in 
two equivalent ways:

Following the principle of indifference, we assign equal support to each 
outcome:

Implementing invariance under redescription, we disjunctively refine the 
outcome space and expect the equalities to be preserved. There are two 
ways to implement the disjunctive refinement. We can refine B1 = A2 ∨ A3 
and end up with

Since A2 ∨ A3 = B1 we have:
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Or we can refine A1 = B2 ∨ B3 and end up with:

Since B2 ∨ B3 = A1 we have:

In these relations, we have now recovered much of the completely neutral 
support (5) for the two outcome spaces. Continued application of the in-
variances recovers the remainder. For example, applying either invariance 
to the disjunctive coarsening A2, A1∨3 = A1 ∨ A3 returns [A2 | W] = [A1 ∨ 
A3 | W] = I.

Returning to the concerns expressed at the start of this section, there 
is no sense in which one of the outcome spaces A1, A2, A3 or B1, B2, B3 is 
more refined than the other. The first represents a refinement of B1 but not 
A1; and the second represents a refinement of A1 but not B1. The perfect 
symmetry in all the formulae gives us no basis for preferring one over the 
other.

Negation invariance is also implemented automatically. A1 is the 
negation of B1 and vice versa. They are both assigned the same support 
I. The earlier concern that negation invariance might be troubled by an 
asymmetry in atom counts is also not realized. In the A-outcome space, 
A1 is comprised of one atom and B1 is a disjunction of two atoms. In the 
B-outcome space, this is reversed: A1 is a disjunction of two atoms and 
B1 is comprised of one atom. Once again, the perfect symmetry in all the 
formulae gives us no basis for preferring one over the other.

10.10. Imprecise Probabilities Again
The literature on imprecise probability treats the case of completely neu-
tral support or—as they characterize it often in subjective terms—of com-
plete ignorance. In so far as these treatments seek to replicate formally the 
behavior of completely neutral support (5), they do the right thing. The 
invariances show that (5) is the correct representation for the case above. 
There will be room to quibble about the treatments of imprecise probabil-
ity, as I will point out below, but these quibbles are minor in comparison 
to the major concern: namely, that they do not do the right thing if the 
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representation of complete ignorance is intended as part of a case for the 
universality of the particular scheme employed, now conceived of as some 
kind of a generalized probability theory. For I have already described 
above in Section 10.5 how all such efforts are necessarily ill-fated. To the 
extent that the generalized probability theory places restrictions that go 
beyond logical consistency, these restrictions are contingent, and it is 
inevitable that there are systems that contradict these factual restrictions. 
The generalized probability theory must fail to apply to these systems so 
that its aspirations for universality must fail.

Consider a popular approach to imprecise probability that employs 
sets of probability measures to represent credal states. Benétreau-Dupin 
(2015, §3) has given a careful account of them and their prospects in re-
gard to complete neutrality of support. This approach depends on the 
assumption that probability measures can be defined for the system in 
question. Otherwise, sets of the measures cannot be formed. Thus, the 
approach fails when applied to systems with nonmeasurable outcomes, 
such as those investigated in Chapter 14 on “Uncountable Problems”; for 
these outcomes admit no probability measures. The approach also fails 
when applied to infinite dimensional outcome spaces, for they admit 
no non-trivial additive measure, even if the requirement of normaliza-
tion to unity is dropped. We shall see an example of this in Chapter 15 
on “Indeterministic Systems” in conjunction with an indeterminism in 
Newtonian cosmology.

There are lesser technical issues as well. As Benétreau-Dupin (2015, 
§3) points out, it is unclear just which set of probability measures should 
represent completely neutral support. The natural choice is this set of all 
probability measures in the outcome space. However, that set has the un-
appealing property for Bayesians that it is preserved under conditionaliz-
ation so that inductive learning is precluded.

In my view, this representation is needlessly complicated, since it as-
signs no definite probability value to a given outcome. Rather, it assigns 
all values to each outcome and not just as an interval of values, but with 
each value part of one of infinitely many probability measures. There is 
no analog of the simple and adequate ignorance strength I. Worse, a set of 
probability measures violates invariance by negation. This arises because 
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every probability measure is non-decreasing as we pass through chains of 
deductive consequences, such as 

(Contradiction)
 entails (A1)
  entails  (A1 ∨ A2)
   entails (A1 ∨ A2 ∨ A3)
    entails …
     entails (tautology).

Since the contradiction is assigned zero probability and the tautology 
unit probability, the probabilities of these outcomes must, at some point, 
be strictly increasing. That is, this strict increase endows the probability 
measures with a directedness from fewer to greater atom propositions. The 
operation of negation maps the strengths assigned to propositions with 
fewer atoms to those with more atoms and vice versa. That is, the operation 
flips the assignments of inductive strengths with respect to this direction. 
It follows that any assignments of strengths that are directed cannot be 
preserved by negation. Since all measures have such directedness, a set of 
measures cannot be preserved under negation. The invariance is violated. 
Norton (2007, §6) explores this failure as a failure of a duality required by 
the representation of completely neutral support. Benétreau-Dupin (2015, 
§3) has sketched a dissenting view.

Other popular approaches employ some form of superadditivity of 
a measure.16 An early version of this is found in Shafer-Dempster belief 
functions. The “vacuous belief function” (Shafer 1976, p. 22) assigns unity 
to the tautology and zero to every other proposition, including the con-
tradiction. This vacuous belief function does respect both invariances of 
Section 10.8 above. However, it has the awkward feature of assigning the 
same value of zero also to the contradiction. This means that its individ-
ual values do not distinguish complete disbelief, which we must have in 

16 A measure is superadditive if the value assigned to a disjunction of mutually 
incompatible outcomes A ∨ B is greater than the sum of the values assigned to A and B 
individually.
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the contradiction, from complete ignorance, which is presumed for all the 
contingent propositions.

Peter Walley’s (1991) related approach represents a credence in each 
outcome by two numbers, a lower and an upper probability. So-called 
“vacuous upper and lower probabilities” (p. 92) assign a zero lower prob-
ability and a unit upper probability to all contingent propositions. “They 
seem to be,” Walley writes, “the only reasonable models for ‘complete 
ignorance.’” He notes that this representation accords with appropriate 
invariance properties: it is invariant under refinements and coarsenings 
of the outcome space. Walley’s representation, considered in isolation 
from the rest of his system, is unobjectionable. It is equivalent to the rep-
resentation of completely neutral support (5). Wherever strength I appears 
in (5), for example, Walley has the functionally equivalent pair of upper 
and lower probabilities: 0, 1. Unlike the Shafer-Dempster vacuous belief 
function, contingent propositions are distinguished from the contra-
diction in that both lower and upper probabilities of zero are assigned to 
the contradiction.

While this particular representation of complete ignorance is success-
ful, there are other problems with Walley’s system. Notably, he derives his 
quantities in the de Finetti tradition as previsions associated with betting 
scenarios through which some sort of universality of applicability is sug-
gested. My concerns about this betting approach will be addressed below. 

More generally, more exotic problems in inductive inference will 
present continuing challenges to aspirations of universality for all systems 
of imprecise probability. We will see some in the next chapters. It is not 
clear now how these systems would accommodate the different sectors 
of the logic native to an infinite lottery, discussed in Chapter 13. These 
sectors are divided into finite sets of outcomes, infinite-co-infinite sets 
of outcomes, and infinite-co-finite sets of outcomes, each with their own 
distinctive structures. If some form of probabilistic account is to be pre-
served, the three sectors would appear to need both infinitely small and 
infinitely large probabilities. Still more serious is the challenge of recover-
ing the logic native to quantum systems, as sketched in Chapter 16 on 
“Quantum Inductive Inference,” for the basic structure of that logic is not 
a real-valued function but an operator in a Hilbert space.
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As long as theories of imprecise probability implement an inductive 
logic, they will place contingent constraints on the domains to which they 
can apply. This means that we should always expect new systems to arise 
to which their inductive logic does not apply. The cycle of extension and 
counterexample can continue without end, unless the theory of imprecise 
logic is so weakened by generalization that it places no factual restriction 
on the domains to which it applies. However, the theory would then cease 
to implement an inductive logic. It would implement only the requirement 
of logical consistency.

10.11. All Proofs of the Necessity of Probabilities Are 
Circular
One of the more appealing aspects of the Bayesian approach is that its 
proponents have systematically taken on the burden of demonstrating 
that their approach is the uniquely correct one. The efforts at proof go 
back at least as far as the “Dutch book” arguments of Ramsey (1926) and 
de Finetti (1937) and their expansion by Leonard Savage (1954). Other 
approaches include the identification of necessary conditions and their 
consequences through representation theorems, such as developed by 
Cox (1961) and Jaynes (2003). More recent approaches, such as recounted 
by Richard Pettigrew (2016), focus directly on the notion of accuracy as 
measured by scoring rules.

The literature is energetic. Existing approaches are subject to continu-
ing amendment and expansion, and new approaches are offered. Optimists 
will see this as a proper and ever-improving response to a worthy prob-
lem of the first order. My reaction is more pessimistic. The ferment is the 
inevitable outcome when a literature sets itself an unattainable task. No 
proposal proves sustainable, but there is always the hope that a new ap-
proach might escape the problems that beset the last one.

That the goal is unattainable follows from the material approach to 
inductive inference. The proofs seek to establish the necessity of probabil-
ities—that is, that objective degrees of inductive support or subjective de-
grees of belief must be probabilities. It has already been argued in Section 
10.4 that this is a contingent proposition. It may be true or false. It is not a 
necessary truth, demonstrable by pure logic alone. 
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It then follows that all proofs of the universal necessity of a probabil-
istic inductive logic, objective or subjective, must be circular. For all such 
proofs are logical deductions. They start with premises and from them 
deduce the conclusion sought. It is a basic fact of deductive logic that these 
premises must be at least as strong logically as the conclusion sought. Since 
the necessity of probabilities is not an a priori truth of logic, it follows that 
the premises of any demonstration of the necessity of probabilities must 
already contain exactly that necessity as contingent propositions, in one 
form or another.17

From this perspective, there is a simple procedure for undoing all 
purported proofs of the necessity of probabilities: one merely needs to ex-
plore the premises of the proof and uncover the disguised presumption of 
probabilities. No matter how natural and comfortable the proof’s starting 
points, no matter how congenial and convincing they may appear initially, 
the proof will depend on contingent premises that presuppose precisely 
what is to be proved. One then sees that the proofs are, in the best case, 
no better than merely positing probabilities in the first place. In the worst 
case, the premises are logically stronger, so one must assume more than the 
necessity of probabilities in order to derive the necessity of probabilities. In 
this case, one is better off positing probabilities directly in the first place.

There is a dominance argument implicit in these last observations. If 
our interest is to minimize risk of error in an attempt to vindicate prob-
abilities, we are never better off using one of these proofs. That is, directly 
positing probabilities weakly dominates, in a game theoretic sense, any 
justification by a proof. The only possible gain from the proof is a psycho-
logical one: one might find the premises posited by the proof more intui-
tively congenial, even if they risk being logically stronger than the goal.

This way of approaching the proofs casts a different light on the ac-
tivity of the vindicators of probabilities. For nearly a century, their efforts 
have produced a flourishing literature that never quite produces a final, 

17 While I know of no such efforts, one might seek to show the universal necessity of a 
probabilistic inductive logic through a demonstration that itself employs inductive inferences. 
These efforts would face a dilemma. If the inductive inferences used are not probabilistic, it 
is conceded at the outset that some inductive inferences are not probabilistic. If the inductive 
inferences are probabilistic, then it must be shown that this particular probabilistic demonstration 
of the necessity of probabilities is not viciously circular.
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definitive demonstration. Rather, the community of vindicators finds 
itself forever dissatisfied with the latest vindication. Sometimes new av-
enues are explored. Sometimes, the dissatisfaction results in a regress: a 
quest for further demonstrations that would establish the premises of the 
most recent demonstration. The regress cannot end well, for each further 
demonstration faces the same challenge anew: it must find new, contin-
gent premises from which to derive the old ones; and then it will have to 
justify these new premises. If the dissatisfaction is deep enough, it will 
seek another approach. This is a regress of reasons that cannot end in the 
proof sought.

We can now see that the problem is not the result of some maddening 
inability of the vindicators to find just the right premises for their demon-
strations. Rather, it is the inevitable result of the awkward fact that there 
are no premises truly adequate to the task. The best a vindicator can do 
is to proceed from an assumption that probabilists will find intuitively 
appealing, since the assumption is equivalent to or logically stronger than 
the presumption of probabilities. The same assumption will appear arbi-
trary and even uncongenial to someone who is antecedently unconvinced 
of the necessity of probabilities.

The future of the vindication project is easy to predict. Like the circle 
squarers and angle trisectors of old, the vindicators will be trapped per-
petually in the frustrating cycle of promising avenues, proofs that finally 
seem to succeed, and then the unhappy recognition that the latest proof 
falls just short. If they persist, it must be so. The escape from the trap lies 
in the recognition that there is no necessity to probabilities.

Might one worry that this mode of objection is made too easily? If it 
works, might it not be able refute any demonstration of any proposition in 
philosophy? This worry is easily set aside, for this mode of objection ap-
plies only when a deductive proof is offered for a contingent proposition. 
Then, it is cogent and should be applied.

For example, consider a theist who offers a deductive demonstration of 
the necessity of God’s existence, such as Anselm’s ontological argument. 
What reply can be given by a skeptic who holds the assertion of God’s 
existence to be a contingent proposition? The skeptic would proceed as I 
have with the contingency of probabilities. Assuming the steps are valid, 
the skeptic would look at the premises of the theist’s demonstration and 
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expect to find contingent premises that are logically at least as strong as 
the necessity of God’s existence. The theist would be untroubled by the 
display of these contingent premises. They would merely be a reformula-
tion, possibly in a logically stronger form, of what the theist already be-
lieves. The skeptic, however, would object that, precisely because of this, 
the demonstration is no demonstration at all but only assumes what is to 
be proved.

10.12. Illustrations of Circularity
The last section established as a generality that all vindications of prob-
abilities will prove circular, and it predicted a manifestation of this fail-
ure in a regress of reasons. The exercise now is to find the circularities in 
the standard vindications. The literature on vindications is so large that 
it is impractical to cover it all in sufficient detail. Therefore, I have chosen 
to examine a recent, presently popular vindication in greater detail. The 
scoring rule or accuracy-based vindication is driven by a single, intuitively 
appealing idea. It suggests that there is a unique way to distribute our be-
liefs such that we cannot improve their accuracy, whichever circumstance 
may prove to be the true one. The distribution is probabilistic. Treating the 
case adequately, however, has required a separate chapter, which follows 
this one. That chapter illustrates how the presumption of probability res-
ides in the particular choice of the scoring rule used to measures accuracy. 
The choice must be carefully fine-tuned, else the approach fails to return 
probabilities. We will then see how efforts to protect the fine-tuning from 
suggestions of circularity trigger precisely the doomed regress predicted 
above.

Here, we will take a briefer look at two other attempts to vindicate 
probabilities, and we will see that each presumes the very thing sought.

10.13. The Dutch Book Argument

10.13.1. The Betting Scenario
The Dutch book argument or arguments, if we separate out various forms 
of them, derive initially from Ramsey (1926) and de Finetti (1937). They 
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have been a mainstay of the subjective Bayesian approach for decades.18 
The argument begins with the assertion that beliefs must be manifested 
operationally. The method chosen is to offer agents various bets and deter-
mine their beliefs from which bets they accept and refuse. The argument 
then takes on a normative19 burden: if—and only if—the beliefs mani-
fested do not conform with the probability calculus, then it is possible, 
the argument goes, to offer the agent a combination of bets that results in 
a sure loss. This combination is the “Dutch book.” Beliefs that allow this 
sure loss are disparaged as incoherent and reflect the supposed irrational-
ity of non-probabilistic beliefs.

The central structure of the argument is the wager offered. The stake 
S is the sum of money or some other valuable of a similar type associated 
with the bet. The distribution is decided by the presently unknown truth 
or falsity of a proposition A. In a bet “on” A, the agent pays a price qS for 
the possibility of gaining S > 0 if A turns out to be true. Otherwise, if A is 
false, the agent simply loses the price. In sum:

Table 10.1. Payoffs of a bet “on” A (S > 0) and “against” A (S < 0).

Proposition A is true Agent gains S − qS

Proposition A is false Agent gains − qS

This arrangement is reversed for a bet “against” A. It is most simply im-
plemented by selecting a negative S and using the same payoffs as in Table 
10.1. The full analysis requires an additional assumption to which we will 
return shortly:

Existence of a fair bet. For any proposition A, for each agent, 
there is a “fair” betting quotient q such that the agent is 
willing to accept either side of the bet: “on” A or “against” 
A. This betting quotient measures the agent’s strength of 
belief in A.

18 For recent surveys of a very extensive literature, see Hájek (2009) and Vineberg (2016).
19 The normative element is essential. The system so narrowly constrains an agent’s 

possible responses that it is a dismal means of ascertaining beliefs non-coersively.
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The main result is that failing to conform the betting quotients to the 
axioms of the probability calculus allows a Dutch book to be made against 
the agent (Dutch book theorem); and that conforming the betting quo-
tients to the axioms makes it impossible for the Dutch book to be made 
(converse Dutch book theorem). A simple illustration does not even re-
quire the notion of a fair bet. Avoidance of sure loss immediately precludes 
q > 1. For if q > 1, a bet on any proposition A leads to a loss of S(1 − q) < 
0 if A turns out to be true; and a loss of −qS < 0 if A turns out to be false.

10.13.2. The Dubious Presumption
How does this construction presume probabilities? The principal, tenden-
tious presumption is laid out in plain sight at the very start. In requiring 
agents always to express their beliefs in terms of monetary bets—accepted 
or refused—it forces agents to represent their beliefs on a single numerical 
scale. The betting quotient q has to be a real number, else the payoffs S − qS 
and −qS cannot be formed. Since there is so much more detail to come, 
it is easy to treat this presumption as an unimportant preliminary and 
to skip past it. This is a mistake if one wants to understand which are the 
strongest assumptions underlying the Dutch book argument. Once pro-
ponents of the argument can get us to accept that beliefs are measurable 
on a real number scale, most of their work is done.

The arguments for this presumption are weak in relation to the 
strength of what it asserts. De Finetti (1937, p. 139) pretends the assump-
tion is innocuous. It is, he says, “the trivial and obvious idea that the de-
gree of probability attributed by an individual to a given event is revealed 
by the conditions under which he would be disposed to bet on that event.” 
Ramsey (1927, p. 166), however, recognized that the idea is not nearly 
so innocent: “It is a common view,” he conceded, “that belief and other 
psychological variables are not measurable.” He recognized that some-
thing stronger is needed, and he asserted that without some measurement 
protocol meaninglessness threatens: “degree of a belief is just like a time 
interval; it has no precise meaning unless we specify more exactly how it 
is to be measured” (p. 167). Here, Ramsey echoes operationist sentiments 
of growing popularity in the 1920s. Bridgman (1927) was then writing his 
manifesto of operationism. It used special relativity, including its treat-
ment of time, as a motivating example (chap. 1). Perhaps Ramsey’s remark 
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on time alluded to this example. At the same time in psychology, behav-
iorists were urging the elimination of invisible thoughts and ideas in favor 
of observable behaviors.

Nearly a century later, operationism and behaviorism have long since 
fallen from favor. They proved unable to deliver accounts that matched 
the richness of complex physical theories and mental content. The deep-
est problem with operationism was its core assertion. It is, in Bridgman’s 
words: “In general, we mean by any concept nothing more than a set of 
operations; the concept is synonymous with the corresponding set of oper-
ations” (1927, p. 5; emphasis in original). This is a false assertion. Concepts 
are not synonymous with the operations that measure them. Time is not 
the ticking of a clock; or length the laying out of a ruler; or mass the ex-
tension of a spring in a weighing scale; or electric current the deflection 
of a needle in an ammeter. Correspondingly, belief is not the behavior 
of accepting or refusing bets. To reiterate a widespread objection to the 
Dutch book approach: beliefs have cognitive goals concerning learning 
the truth; betting behaviors have pragmatic goals of maximizing one’s for-
tune.20 Supposing otherwise risks oversimplifications comparable to those 
that doomed operationist analyses elsewhere. Here, we might imagine 
the (possibly fictional) enlightened Buddhist who has no material desires. 
Such a figure would, under these operationist strictures, be incapable of 
holding beliefs.

While concepts are not operations, there is still some value in asking 
how something might be measured as long as we do not infer too hastily 
to meaninglessness if the operations prove elusive. What operations might 
measure strength of belief? Here we face the awkward realization that only 
one operation has been proposed: measurement through monetary bets 
accepted or refused. Why must we accept just this? Why is money the 
measure of belief?

The answer is that nothing forces the acceptance in general. However, 
there are quite specific circumstances in which we are forced to make 
money the measure of belief. The most obvious case arises if we are 
wagering in a casino or racetrack. Other cases arise if we are buying or 
selling insurance. We must determine what premium is appropriate as 

20 Recounted in Weirich (2010, p. 246).
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insurance against some uncertain, future harm whose gravity will be 
measured monetarily.21 In the financial futures market, one can buy a con-
tract that allows purchase of some asset at a fixed price at some later date. 
For example, an airline, fearing an increase in jet fuel prices, might buy a 
contract that enables the purchase of jet fuel at present prices but at a later 
date. Whether the later purchase will be made depends on the unknown of 
whether jet fuel prices will rise or fall. Thus, pricing the contract requires 
the same sort of judgments over uncertainties as insurance and wagering. 

Something close to a fair bet is also realized in these circumstances. 
In casinos and racetracks, every wager bought is sold by someone. In in-
surance, every policy bought by someone is sold by someone else. In the 
futures market, every contract bought by one trader is sold by another. 
These transactions would constitute fair bets if we neglect a small spread 
between the buying and selling prices and the house’s small margin in 
casino gambling.

Viewed materially, if we are in any of these circumstances, then prag-
matic goals will force us to reason inductively as the framework of the 
Dutch book argument requires. The facts of the circumstances warrant the 
resulting logic. It provides a nice illustration of how the material theory 
of induction is applied. When we move to other circumstances, how-
ever—when facts of this type are missing—nothing warrants an inductive 
logic in which strengths of support must conform to defensive gambling 
strategies. Viewed materially, Dutch book argumentation fails to establish 
the universal rationality of probabilistic inference precisely because the 
factual presumptions of the Dutch book scenarios do not hold universally.

Alan Hájek (2008) has proposed an amusing device that we can use 
to underscore the dependence of the logic on the background conditions. 
If an agent has incoherent betting quotients, a benevolent bookie can of-
fer the agent a combination of bets that assures a gain, a “Czech book.” 
For example, if the agent’s betting quotient q is greater than one for some 
proposition A, the bookie could offer the agent a bet against A. Since S < 0, 
the agent would make a gain of S(1 − q) > 0 if A turned out to be true; and 
a loss of −qS > 0 if A turned out to be false. That is, if one found oneself in 

21 Starting in 1931, de Finetti had worked for an insurance company. Might this explain 
why he found it trivial that monetarily rewarded betting behavior measures belief?
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the clutches of a benevolent bookie, coherent betting quotients would be 
the only thing preventing the benevolent bookie providing you with an 
assured gain!

10.13.3. The Rationality of Refusing to Bet
A sharper expression of the coercive presumption of the betting scenario 
is provided by a common response to it: it can be an expression of ration-
ality for agents simply to refuse to bet. In the abstract, this refusal may 
seem like a crafty evasion. That it need not be is easier to see if we consider 
how a bookie might seek to force a Dutch book on someone whose beliefs 
conform with completely neutral support (5). Consider the case of three 
mutually exclusive outcomes, A1, A2, and A3, such as those of the wine and 
water problem. An agent whose credences coform with (5) would judge all 
of the following to be equally supported:

Assume per impossibile that there is some bet on A1 that is acceptable to 
the agent as fair. Since the agent regards not-A1 as equally supported, the 
agent will accept as fair a bet on not-A1 with the same payoffs. Since a bet 
“on” A1 is just the same as a bet “against” not-A1, one can see that the two 
net payoffs S(1 − q) and −qS must be numerically equal but different in 
sign.22 For the sake of simplicity, assume that the bet “on” A1 pays a net of 
1 if A1 is true, and −1 if A1 is false. The agent will judge similar bets fair 
for A2 and A3.

The three bets on A1, A2, and A3 combined form the Dutch book in 
Table 10.2:

22 Suppose that the bet “on” A1 pays a net of X > 0, if A1 is true, and Y < 0, if A1 is false. 
Then the bet “against” A1 pays a net of −X < 0, if A1 is true, and −Y > 0, if A1 is false. The bet with 
the same stakes “on” not-A1 pays X > 0, if not-A1 is true, and −Y > 0, if not-A1 is false. These last 
two bets can only be same if X = −Y.
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Table 10.2. Dutch book for an agent with beliefs conforming with 
completely neutral support.

Bet on A1 pays: Bet on A2 pays: Bet on A3 pays: Net payoff

A1 is true +1 −1 −1 −1

A2 is true −1 +1 −1 −1

A3 is true −1 −1 +1 −1

What we cannot conclude from this Dutch book is that the assignments 
of support by the agent are irrational. They were determined as the only 
assignments compatible with the invariances of the system in question. If 
this Dutch book impugns the rationality of these assignments, then all we 
can conclude is that no rational treatment of systems like von Mises’ wine 
and water is possible.

The obvious alternative is to recognize that someone who harbors as-
signments of support like those of (5) should not accept bets in accordance 
with the rules specified in the Dutch book gambling scenario. For such an 
agent’s credences are in conflict with the assumptions of the scenario. The 
irrationality lies not in the assignment of beliefs but in the indiscriminate 
acceptance of bets devised using those rules. Here, I concur fully with the 
assessment of Bacchus et al. (1990, pp. 504–05) who argue “that an agent 
ought not to accept a set of wagers according to which she loses come what 
may, if she would prefer not to lose, is a matter of deductive logic and not 
of propriety of belief.”

10.13.4. Circularity in the Notion of a Fair Bet
Consider again a key assumption in the Dutch book argument: for any 
proposition A, an agent can find a fair bet with payoffs comprising those of 
Table 10.1; and the associated betting quotient q is the strength of belief in 
A. This may seem like a benign preliminary before the real work of assem-
bling a Dutch book begins, but it is not. That assumption in effect already 
has the axioms of the probability calculus built into it, and an excursion in 
repeated betting shows it.

Consider a set of atomic propositions A1, A2, …, An and their Boolean 
combinations over which an agent distributes belief. Imagine that there 
are repeated scenarios in which there is a similar set of propositions over 
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which the agent distributes the same beliefs. Call the corresponding prop-
ositions of the form A1 in each scenario “like propositions”; and so on for 
the remaining A2, …, An. 

The obvious example is provided by the two propositions that a tossed 
coin shows heads (A1) or that it shows tails (A2). The repeated scenarios 
are then just independent tossing of many coins. For another example, 
we might consider the propositions that someone named in a telephone 
directory was born on Monday (A1), or born on Tuesday (A2), or born on 
some Boolean combination of days, such as (not-Monday and not-Friday) 
= (not-A1 & not-A5.) We create scenarios with identical beliefs over like 
propositions by scanning down a list of names in a telephone directory 
and asking for the birthday of each person named.

Since the agent has the same belief in the truth of each of the like 
propositions in the corresponding sets, the agent can execute the same bet 
on each like proposition. That is, the agent’s betting quotient for propos-
ition Ai in each scenario is the same value qi for what the agent judges to be 
a fair bet with the same fixed stake Si in each case.23 Assuming that there 
are Wi wins and N − Wi losses among N bets, we find the following for the 
bets on proposition Ai:

From this, we compute the average payoff per wager in terms of the fre-
quency ri = Wi/N with which the propositions turn out to be true:

To proceed we need to separate two cases. The frequencies ri may or may 
not stabilize to definite limiting values as N grows indefinitely large. In the 
first case, we can define the limiting frequency as

It would be natural to identify the limiting frequency pi with the probabil-
ity of truth among the propositions Ai; for, if there is such a probability, 
the law of large numbers assures us that, with probability one, it will be 

23 What follows is an analysis concerning the atomic propositions. An analogous analysis 
can be applied to the propositions that are Boolean combinations of them.



37110 | Why Not Bayes

revealed as this limit. However, to arrive at the results that interest us, we 
do not need to do this. We can simply treat the pi as parameters that have 
the specific property of importance here. Since they are derived from rela-
tive frequencies, they conform with the axioms of the probability calculus. 
That is, they are non-negative, additive for mutually exclusive outcomes, 
and normalize to unity. For example, the limiting frequencies of truth pi 
among the repetitions of the atomic propositions Ai always sum to unity:

We can now see that the following two propositions are equivalent where 
the same set of betting quotients qi is indicated in each proposition:

(a) There are fair betting quotients qi such that the agent fares 
equally well by making all the bets over Ai “on” bets with 
Si > 0; or by making all the bets over Ai “against” bets with 
Si < 0.

(b) There are betting quotients qi that equal the limiting fre-
quency of truth pi among the propositions Ai (so that these 
betting quotients conform with the axioms of the proba-
bility calculus).

To infer from (a) to (b), note that “fares equally well” means that “on” and 
“against” betting yields the same results concerning payoffs. It follows that 
the limiting average payoff must be unaltered when we merely change the 
sign of Si from positive to negative, where

If we interpret the parameters pi as probabilities, this limiting average pay-
off is just the expected payoff per bet. Now, the limiting average payoff is 
linear in Si. So it can only remain unchanged under an alternation of the 
sign of Si if it is zero. That is, (pi − qi)S i = 0. It follows immediately that 
pi = qi. In other words, we have inferred (b). The reverse inference from 
(b) to (a) follows by taking the steps of the inference in reverse order: pi = 
qi entails that both total and average payoffs are zero so that bets “on” and 
“against” are equally attractive.
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In the second case, there is no stable limit to the frequencies ri as N 
grows indefinitely large. This is an uncommon case, but it can occur. We 
shall see, for example, that it occurs for outcomes of draws from an infin-
ite lottery in Chapter 13. It is the case that is unfavorable to probabilities 
and thus we might not expect that the assumption of the existence of fair 
betting quotients might still drive the quotients toward conformity with 
the axioms of the probability calculus. However, they still do so in the 
following sense.

Since the frequencies ri have no limiting value, there is no unique value 
for them unless we specify the specific number of repetitions N. Once this 
is specified, fairness of the bet on proposition Ai is implemented if the 
agent can pick a betting quotient qi that matches the actual frequency of 
truth ri among the set of like propositions Ai in the N repetitions. For 
then the average payoffs are the same for both “on” and “against” bets. 
Any other value of qi will favor either the bets “on” or “against” the like 
propositions according to whether qi > ri or qi < ri.

As the number of repetitions varies, the particular target set of fre-
quencies of truth ri will vary. But what will not vary is that the target set 
for the betting quotients qi will always be a set of frequencies. Frequencies 
obey the axioms of the probability calculus but with the added restriction 
that they are rational number valued. Thus we have weaker analogs of the 
equivalent propositions (a) and (b) for the same set of betting quotients qi 
in each proposition:

(a’) For some fixed set of repetitions N, there are fair betting 
quotients qi such the agent fares equally well by making all 
the bets over Ai “on” bets with Si > 0; or by making all the 
bets over Ai “against” bets with Si < 0.

(b’) For some fixed set of repetitions N, there are betting quo-
tients qi that equal the frequency of truth ri among the 
propositions Ai (so that these betting quotients conform 
with the axioms of the probability calculus).

The proof of the equivalence of (a’) and (b’) is analogous.
In sum, for both cases, the assumption that there are fair betting 

quotients in the context of repeated betting scenarios is equivalent to 
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assuming that the betting quotients behave like frequencies—that is, 
that they conform with the axioms of the probability calculus. Thus, one 
should not think that the assumption of fair betting quotients is an in-
nocent background assumption. It does not merely provide a context in 
which Dutch book argumentation can prove that credences must conform 
with the axioms of the probability calculus. Rather, conformity with those 
axioms is already tacitly presumed by them. All the Dutch book argumen-
tation does is to make that conformity visible. 

This outcome may be untroubling to someone who already believes 
that credences must be probabilistic. Why be troubled by a demonstra-
tion that just clarifies the probabilist’s commitments? If, however, you are 
someone like me who does not believe that credences must be probabilis-
tic, you will find this result damning. What was supposed to be a demon-
stration of the incoherence of non-probabilistic beliefs turns out to be an 
exercise in circularity. Probabilities are demonstrable simply because they 
were introduced covertly in an assumption of the argument at the outset.

10.13.5. The Regresses Begin
The prediction of the general analyses above is that recognition of weak-
nesses in an attempted proof of probabilities leads to a regress. One form 
is a successive weakening of what is sought to be proved. This form of 
regress is well underway for Dutch book arguments; for it has been long 
recognized in the literature that the assumption of fairness is arbitrary 
and can be discarded without compromise to the rationality of the enter-
prise. This recognition is at least a half century old, extending as far back 
as Cedric Smith (1961). It is the basis of the analysis of Walley’s (1991) 
treatise Statistical Reasoning with Imprecise Probabilities. 

Following Walley (1991, p. 28), it may be quite prudent for an agent to 
refuse to admit any bet over some proposition A as fair. Rather, the agent 
may be willing to accept a bet “on” A with a maximum betting quotient of 
qlower and be willing to accept a bet “against” A with a minimum betting 
quotient of qupper. If the two are equal, then they comprise a fair bet over 
A. If qlower < qupper , then the agent is more cautious in the agent’s betting 
behavior. No Dutch book can be made against such an agent. The agent’s 
belief in A is no longer a single probability but an interval bounded by a 
lower probability equal to qlower and an upper probability equal to qupper.
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That betting quotients qlower < qupper betoken caution becomes most 
evident in the extreme case in which qlower = 0 and qupper = 1. In this ex-
treme case, the agent is willing only to accept individual bets for which no 
loss is possible.24 The interval of probabilities is maximally large, bounded 
by 0 and 1. For this reason, Walley (1991, p. 66) associates this state with 
vacuity or maximum ignorance.

To support this discarding of the necessary existence of fair bets, 
Walley decries what he calls “the Bayesian dogma of precision”—“that 
uncertainty should always be measured by a single (additive) probability 
measure.” He writes:

For example, de Finetti assumes that for each event of inter-
est, there is some betting rate that you regard as fair, in the 
sense that you are willing to accept either side of a bet on 
the event at that rate. This fair betting rate is your personal 
probability for the event. More generally, we take your low-
er probability to be the maximum rate at which you are pre-
pared to bet on the event, and your upper probability to be 
the minimum rate at which you are prepared to bet against 
the event. It is not irrational for you to assess an upper prob-
ability that is strictly greater than your lower probability. 
Indeed, you ought to do so when you have little information 
on which to base your assessments. In that case we say that 
your beliefs about the event are indeterminate, and that (for 
you) the event has imprecise probability.

This work is motivated by the ideas that the dogma of 
precision is mistaken, and that imprecise probabilities are 
needed in statistical reasoning and decision. (1991, p. 3)

There are two ways to understand the import of this relaxation of the con-
ditions of the betting scenarios. The correct way, in my view, is merely to 

24 The agent is willing to make a bet “on” A only if the bet pays a net of S – 0 ⋅ S = S > 0, if 
A is true; and with a payoff of −0 ⋅ S = 0 if A is false. The agent is willing to accept a bet “against” A 
only if the bet pays S – 1 ⋅ S = 0 if A is true; and with a payoff of −1S = −S > 0 if A is false, since S < 0 
for an “against” bet.
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regard the various betting scenarios envisaged as circumstances that may 
or may not arise in different domains. There is no necessity for their im-
plementation everywhere. All we can say is that if an agent is in a circum-
stance in which the assumptions of the scenario are realized, then reason-
ing inductively according to the prescribed system is their best course. 
Such circumstances arise, as noted above, in the insurance and futures 
markets. Indeed, the slight spread between the buying and selling prices 
in both cases suggests that Walley’s imprecise logic is the appropriate one. 

The incorrect way to understand the import of this relaxation is to 
think of it as a successful purging from the Dutch book analysis of an 
unwarranted element—the necessary existence of a fair bet—so that the 
analysis that remains is universally applicable. This would just replace the 
dogma of precision by the dogma of imprecision. For there is no necessity 
in the presumption of strict upper and lower limits on the betting quo-
tients or even that having beliefs requires their operational manifestation 
in betting behavior. With this understanding, we have taken the first step 
in the regressive weakening of what is sought to be proved, as described in 
Sections 10.5 and 10.10 above.

Another sort of regress arises when we retain what is sought to be 
proved, but seek to strengthen the grounds used in the proof. This is how I 
see Savage’s (1954) decision theoretic proof of probabilities. Like the Dutch 
book argument, it seeks to infer from an agent’s preferences to the be-
liefs that must conform with them and thereby show them necessarily to 
be probabilistic. Savage acknowledges (p. 4) inspiration from de Finetti’s 
(1937) work. While de Finetti simply posits certain betting behaviors, and 
his posits are—as we saw above—quite susceptible to challenge, I read 
Savage’s analysis as an attempt to provide a more secure grounding for 
this approach.

Savage’s full theory is based on seven postulates. Since they entail the 
same contingent result that beliefs are probabilities, they must contain that 
contingency in one form or another. Once again, careful scrutiny should 
reveal its presence. Because of the complexity of Savage’s system, detailed 
analysis is precluded here. However, we can discern the direction of the 
analysis by considering just the first postulate. It asserts, in effect, (p. 18) 
that the relation of preference over acts is a total order, which means that 
it is antisymmetric and transitive.
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Consider the transitivity of preference. Accordingly, if you strictly 
prefer A to B and B to C, then you must prefer A to C. (Antisymmetry pre-
cludes you also strictly preferring C to A.) This form of transitivity is im-
portant in the system. It provides an order that, when filtered through the 
other postulates, orders strengths of beliefs and eventually enables them 
to be real valued. Savage provides no argument to preclude intransitivity 
when the postulate is introduced. He merely announces that “the defin-
ition of preference suggests” it (p. 18). If you are antecedently disposed 
towards probabilities, it is quite easy to accept the suggestion and let the 
reasoning lead you to the result you expect. However, if you are not so 
disposed, you will have seen no good reason in the account that precludes 
intransitive preferences. Say I prefer eating apple pie to cherry pie and 
cherry pie to apricot pie. Aside from an unsupported declaration in the 
definition of preference or in notions of rationality, nothing precludes me 
from preferring apricot pie to apple pie. But that would be an intransitive 
set of preferences. 

It was soon recognized that more was needed if the prohibition on 
intransitivity was to be sustained. That is, the regress of reasons continued. 
The instrument that sustains it came to be known as the “money pump” 
argument, which appears in the literature as early as Davidson et al. (1955, 
pp. 145–46). Assume an agent who harbors intransitive preferences, cap-
tured compactly by the obvious notation: A > B, B > C, C > A. Presumably, 
the agent could be induced to trade a C to gain a B, while paying some 
small price, such as $1; and a B to gain an A, for $1; and an A to gain a C for 
$1. The net effect is that the agent has paid $3 to be returned to the original 
C. This, it is supposed, makes the intransitive preferences “irrational.”

Once again, we have an argument that can only be convincing to 
someone who already believes that there is some irrationality in intransi-
tive preferences. Someone who does not believe this will have no trouble 
seeing that the irrationality is not in the intransitivity of the preferences. 
Rather, it lies in the agent engaging in free trading with a second commod-
ity (money) over which the agent’s preferences are transitive. That trading 
behavior is dangerous and should be avoided is all the money pump argu-
ment shows. Patrick Maher puts it well:
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This is such a simple and vivid argument that it is a pity it 
is fallacious. But fallacious it is. The fallacy lies in a care-
less analysis of sequential choice. The argument assumes 
that someone with intransitive preferences will make each 
choice without any thought about what future options will 
be available, yet this is not in general a rational way to pro-
ceed. (1993, p. 36)

10.14. Necessary Conditions
To further illustrate the inevitable failure of the proofs of necessity of 
probabilities described in Section 10.11, consider the approach taken by 
Cox (1961) and Jaynes (2003). The general approach is both elegant and 
appealing. Necessary conditions are laid down for a structure called “i | h” 
(Cox) or “A | B” (Jaynes), which represents the strength of support of the 
first (i or A) afforded by the second (h or B). From them, by some simple 
but powerful functional analysis, the computational rules of the probabil-
ity calculus are derived. 

Precisely because these computational rules can be derived, the as-
sumptions used must be at least as logically strong as them. Since the con-
clusion is contingent, so are the assumptions. Any hope that the assump-
tions might somehow be self-evident will fail under scrutiny. Sustaining 
the proof will then trigger a regress of reasons, each of which fails in the 
sense that the new reasons themselves need further support. We shall see 
this regress begin with Cox first positing the necessary conditions with 
short justifications. The inadequacy of the justifications becomes clear. 
Jaynes then intervenes and provides a stronger justification; and then 
sometimes when that stronger justification proves inadequate, yet another 
is provided, but still without arriving at a satisfactory end point.

There are three necessities: that the strengths are real values and what 
Jaynes calls the sum and product rules. We shall look at each in turn.

First, Cox (1961, p. 1) introduces the idea that the strengths are real 
valued with some rather casual remarks about their measurability. As an 
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analogy, he mentions the measurability of the pitch of a stairway.25 Jaynes 
is rightly not satisfied with such a casual development. He makes the re-
quirement explicit as his first desideratum: “(I) Degrees of plausibility are 
represented by real numbers” (p. 17). Jaynes first seeks to establish that 
it is satisfied by means of his parable of a robot (pp. 8–9) who will com-
pute with the degrees. He then asserts that “desideratum (I) is practically 
forced on us by the requirement that the robot’s brain must operate by the 
carrying out of some definite physical process” (p. 17). Of course, this is 
incorrect. A robot can represent and compute with all sorts of magnitudes 
and relational structures. To presume otherwise suggests willful ignor-
ance, if someone has a minimal understanding of computers. To establish 
that the magnitudes treated are real numbers, we must assume quite an 
extensive list of specific properties, including a transitive order (“greater 
than”) and universal comparability under this order of all the magnitudes.

Tribus (1969, chap. 1) developed a similar account that included the 
parable of the robot. He reports (p. 6) drawing on Cox (1961) and unpub-
lished course notes by Jaynes. He remarks a few pages later:

The only general way in which objects may be compared 
with one another is to assign to the objects a real number. 
The real number system provides the only scale of universal 
comparability. (1969, p. 13)

It is easy to see that one might let this pass if one already believes that the 
strengths of support must be probabilities. Otherwise, it is baffling that 
such a claim could be made.

The regress of reasons continues. Jaynes presumably recognized the 
weakness of the robotic justification and included an Appendix (pp. 656–
59) designed specifically to strengthen it. He noted that if an order on the 
strengths is transitive and universal, then, in the case of a finite outcome 
space, real-valued degrees can be adapted to it. He proceeded to argue rath-
er ineffectively for both transitivity and universality. Counterexamples to 
transitivity can be readily constructed, as in Norton (2007a, pp. 149–50). 

25 Cox’s (pp. 29–34) later remarks on measurement pertain not to whether the strengths 
have real-valued magnitudes, but whether they can be assessed with precision.
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Keynes (1921, chap. 3) long ago realized that we must take seriously the 
possibility of incomparable degrees. More troublesome is that transitivity 
and universal comparability are insufficient to assure that the strengths 
can be fully represented by real numbers.

Cox’s second necessity is expressed as “the probability of an inference 
on given evidence determines the probability of its contradictory on the 
same evidence” (p. 3). Cox’s justification is brief. He gives a few simple 
examples (p. 2) and announces that “in this all schools can agree.” Jaynes’ 
treatment is similarly hasty and incomplete. He declares: “The plausibility 
that A is false must depend in some way on the plausibility that it is true” 
(p. 30). He proceeds immediately to conclude the much stronger result 
that there must be a functional relation of dependence between A | B and 
not-A | B and even that “common sense requires [the function] to be a 
continuous monotonic decreasing function.”

Once again, all these suppositions can pass without objection if one 
already has the goal of additivity of strengths in mind. That is, one might 
imagine that these necessities are simply reduced descriptions of the rule 
in the probability calculus that P(A | B) + P(not-A | B) = 1. If one is not ante-
cedently committed to this rule or something like it, these necessities will 
appear as unfounded stipulations. One need only consider superadditive 
measures to find all the conditions laid down by Cox and Jaynes violated.

Cox’s third necessity is the following:

The probability on given evidence that both of two infer-
ences are true is determined by their separate probabilities, 
one on the given evidence, the other on this evidence with 
the additional assumption that the first inference is true. 
(p. 4) 

The content of this necessity is more easily grasped if we give it in symbolic 
form, as does Jaynes (p. 25). The support for the conjunction of A and B 
on the evidence C, (AB | C) is some function F of two other strengths (B | 
C) and (A | BC):
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To someone remote from probability theory, this functional stipulation 
will appear quite arbitrary. To probabilists, it immediately calls to mind 
the product rule for forming conjunctions:

So, for them, it can pass as reasonable and even natural. Both Cox and 
Jaynes seek to establish this functional dependence by recalling informal 
sequences of inferences. If we are to infer to (A and B) from C, we might 
first establish from the truth of C that B is true. Then we would establish 
from the truth of (C and B) that A is truth and so also that the conjunction 
(A and B) is true. (For later reference, represent this as “C  B  A  
AB.”) This sequence is one way that we might proceed deductively. Cox 
and Jaynes then declare that the functional dependence (6) follows since it 
mimics the same order of steps.

The inference is quite dubious. Indeed, one of the lessons of twenti-
eth-century philosophy of science was that transferring properties of de-
ductive inference over to inductive inference regularly produces incorrect 
rules. For example, if C deductively entails each of A and B separately, then 
C also deductively entails their conjunction. However, the corresponding 
rule for induction fails. C may strongly support each of A and B separately, 
but actually refute their conjunction.

Presumably, because they recognize the inadequacy of the arguments 
for (6), Jaynes and Tribus (1969, chap. 1) embarked on a more elaborate 
demonstration. Its basic supposition is that (AB | C) must be a function of 
some or all of the following four strengths only:

They then argue that the only possibility is (6) or its equivalent form under 
relabeling, (AB | C) = F[(A | C) , (B | AC)]. Locally the argumentation is 
quite cogent. For example, (AB | C) cannot depend functionally on just (A 
| C) and (B | C). For each of A and B may be strongly confirmed by C, but 
C may either confirm or even refute (A and B).

However, the next attempt to buttress the functional dependence of 
(6) fails. For the assumptions are still far too strong, and they are likely 
only unobjectionable if one already accepts the final result. The lacunae 
are both narrow and broad. In a narrow sense, consider the details of the 
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functional dependencies. They infer that (AB | C) can depend functionally 
on (A | C) and (B | AC); or that it can depend functionally on (B | C) or (A 
| BC). These dependencies are analogous to the two deductive pathways 
“C  B  A  AB” and “C  A  B  AB.” Since either individually 
suffices in the deductive case, Jaynes seems to presume that either will also 
suffice in the inductive case. This certainly does not follow, since the an-
alogies between deduction and induction are fragile. They have not ruled 
out the case that both inductive pathways must enter into the functional 
dependence, which would mean that (AB | C) is still a function of all four 
strengths listed.26

Taking a broader, synoptic view, the most obvious lacuna is the as-
sumption that (AB | C) must be a function of the four strengths listed. 
They might be related, but must the relationship be functional? Might 
there not be a more complicated relationship? Perhaps one that involves 
some auxiliary quantity where the strengths (A | C) are derived from 
them? Or might there simply be no definite relation at all? This last possi-
bility would then mimic the situation with superadditive measures. These 
measures decouple the values of (A | C) and (not-A | C), so that there is no 
functional relation between them. Each value of (A | C) may be compatible 
with many (not-A | C) and vice versa.

10.15. Conclusion
The approach taken in this chapter has pursued the two lines of criticism 
indicated. But there are more grounds for hesitation over probabilities 
than those covered in this chapter. In (Norton 2011), I review many of 
these further grounds. Perhaps the best known and most intractable of 
these problems is the problem of the priors. It arises from the need for a 
Bayesian analysis always to provide some prior probability, P(H | B), ante-
cedent to the consideration of evidence. The very fact that priors must be 
provided in this way introduces an arbitrariness into the analysis that has 
been the bane of all forms of Bayesianism. Objective Bayesians try to find 

26 Tribus (1969, pp. 16–17) has an argument against this possibility that appears flawed. 
He seems to argue that it is ruled out since (B | AC) becomes ill-defined when C is not-A. But this 
sort of difficulty is routinely overcome by allowing that in some special cases the function is ill-
defined.
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good reasons for picking a particular prior. Jaynes’ ill-chosen maximum 
entropy principle is an example of this.27 Subjective Bayesians try to avoid 
the problem by demoting the prior probability to mere opinion, which can 
be freely chosen. Theirs has proven to be a poor bargain, since once one 
allows opinion to be mingled with evidential warrant, they prove virtually 
impossible to separate.

The necessity for prior probabilities is a form of incompleteness of 
the inductive logic: the priors always supply inductive content that is be-
yond the reach of the evidence to be considered subsequently. One might 
imagine that it is a problem peculiar to the probability calculus so that 
the best escape is to find another calculus free of the problem. In recent 
work, I have shown that this escape fails. The sort of incompleteness that 
troubles the probability calculus must arise in a large class of calculi of 
induction, which would include all those we would reasonably entertain. 
An informal development of this result is provided in Chapter 12.

What I have sought to establish in this chapter is that the probability 
calculus does not supply a universally applicable logic of inductive infer-
ence. The emphasis here is on universal applicability. I do not doubt the 
utility of Bayesian analysis in specific domains in which background facts 
positively warrant it. My hope is that Bayesians can relinquish the tacit 
commitment to the idea that “It’s all probabilities” and to the notion that 
this idea solves the foundational problems of inductive inference; for then 
we will be able to address these foundational problems anew and, it is to be 
hoped, find better solutions. Readers, of course, will know that I offer the 
material theory of induction as my solution to the foundational problem 
of the nature of inductive inference.

If we are loosening tacit Bayesian commitments, there is a second one 
that can be relaxed profitably. The general view seems to be that the prob-
ability calculus must be accepted or rejected as a whole. Against this, I 
have argued that we can be more selective. In Norton (2007a), I provided 

27 The principle tells us to distribute our prior probabilities as uniformly as the external 
constraints allow. Thus it is an extended form of the principle of indifference. If there are no 
constraints other than conformity with the probability calculus, maximizing entropy reduces to 
choosing the uniform probability distribution required by the original principle of indifference. 
This principle, as we have seen in Sections 10.7, 10.8, and 10.9, is an insecure basis for reasoning 
within the probability calculus since it rapidly produces results that contradict the calculus.
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an axiomatization of the probability calculus using familiar techniques. 
Its novelty was that it was designed explicitly to identify qualitative prop-
erties of support relations that could be employed selectively. The most 
important result was that there was shown to be two components in these 
qualitative properties, that the two could be readily separated, and that 
they could be deployed individually as circumstances demanded.

The first is a property I have called “addition,” which captures the 
additivity of the calculus. It resides in a reciprocal relation between the 
support accorded to a proposition and its negation. Addition is an appro-
priate property when degrees of support span from positive to negative. It 
should be dropped, however, if neutral support is to be represented.

The second property, “Bayes property,” provides the probability cal-
culus with the updating dynamics characteristic of Bayesian analysis. It 
depends on a particular mode of updating in which the import of evidence 
is simply to refute disjunctive parts of the hypothesis that are logically in-
compatible with the evidence, and then to redistribute support uniformly.

Many of the successes of Bayesian analysis can be traced back to these 
properties. Since conditions may favor the use of one but not the other, 
their utility can only be increased if we decide to employ them separate-
ly, for then they can be used more widely. For example, the completely 
neutral support described in this chapter contradicts additivity, but it 
is compatible with the Bayes property. Thus, an extension of the theory 
of completely neutral support will permit updating by a Bayesian-style 
dynamics.
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11

Circularity in the Scoring Rule 
Vindication of Probabilities1

11.1. Introduction
The last chapter argued that all proofs of the necessity of probabilities 
fail. They are deductive arguments for a contingent conclusion. It is that 
probabilities must be used to represent inductive degrees of support or 
subjective degrees of belief. Thus, the proofs must employ premises that 
are deductively at least as strong as or even stronger than the conclusion 
sought. It follows that any proof of the necessity of probabilities can be 
undone merely by examining the premises of the proof and revealing the 
presence of the necessity of probability, in whatever congenial disguise it 
is hidden. The last chapter also predicted that any program of demonstra-
tion of the necessity of probabilities would be trapped forever in a cycle of 
near misses, corrections, and renewed attempts, none of which would ever 
succeed completely, for the program’s goal is unattainable.

The present chapter offers an extended illustration of the claims of the 
last chapter through the recent literature that seeks to demonstrate the 
necessity of probabilities by means of considerations of accuracy alone, 
where accuracy means quantifiable closeness to the truth. This closeness 
is in turn measured by numerical scoring rules, which will become the 
major focus of what follows. If these scoring rule vindications succeed, 
they will have the potential to displace decision-theoretic approaches, for 

1 I thank Joshua Fry, Lee Elkin, and Richard Pettigrew for helpful discussion that 
informed this chapter.
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the scoring rule approach has no need to envisage elaborate scenarios with 
agents adapting beliefs to decisions that maximize utilities. Credences are 
chosen simply by the criterion of accuracy. The approach depends on an 
appealing dominance argument: if our credences are not probabilistic, 
then they will always be dominated by probabilistic credences in the sense 
that, whatever may be the case, we improve accuracy by shifting from 
non-probabilistic credences to probabilistic credences.

The discussion below will proceed within the framework routinely 
employed by the scoring rule literature. Its suppositions include 

•  that credences in any two propositions are always 
comparable; and

•  that the relation of comparison can be captured by a real-
valued degree in the interval 0 to 1.

Both of these suppositions, and others like them, also require justification; 
and attempts to justify them would in turn face just the same issues of 
circularity developed here.

The focus of attention in the analysis below will be the particular scor-
ing rule employed to measure the accuracy of credences. We shall see that 
almost every slight change in the rule undoes the demonstration; and al-
most every larger change leads to a wide variety of alternative results. This 
shows that it is not the general notion of accuracy that drives the proof, for 
accuracy alone gives very little. Rather, everything depends on the delicate 
selection of an accuracy measure tailored to give the desired result. Herein 
lies the circularity. It is in this delicate fine-tuning that the probabilistic 
credences are presumed in disguised form.

The response to this threat of circularity has been a flourishing of at-
tempts to make the choice of the fine-tuned scoring rule seem necessary or 
inevitable or perhaps just natural. We find a regress of reasons that never 
quite terminates successfully; or we find a proliferation of alternatives, 
each of which is replaced by another, without apparent end. This endless, 
frustrating dynamic is just what was predicted by the general argument 
against all proofs of the necessity of probabilities.

The exploration here of scoring rules will necessarily be partial. The 
literature on the topic is so large that a mere chapter can only scratch the 
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surface. The goal is not to review every demonstration. Rather, it is to dis-
play by example how the regress and proliferation of reasons comes about 
in this specific instance. In case after case, we shall see that plausible as-
sumptions that initially appear independent of the assumption of the ne-
cessity of probabilities actually contain the assumption in covert form. An 
ardent vindicator will, no doubt, have further demonstrations that I have 
not discussed and may urge these as finally resolving all difficulties. I can 
only respond with some confidence as I would to a circle squarer or an-
gle trisector: these further demonstrations would in turn succumb under 
scrutiny. For if they are to succeed, they must employ premises logically at 
least as strong as the conclusion sought.

The accuracy-driven demonstration of the necessity of probabilities 
draws on a much larger literature in meteorology, economics, and sub-
jective Bayesianism that uses scoring rules for other purposes. These other 
uses will be sketched in Sections 11.2 and 11.3 below. They include the 
elicitation of true but secret probabilities from subjects who, we are to 
suppose, might otherwise not reveal them. In that context, the adapta-
tion of scoring rules specifically to probabilities is benign, since these uses 
presume explicitly that credences are probabilistic. Use of these adapted 
rules in the newer context of the vindication of probabilities ceases to be 
benign, however, for there we are no longer allowed to presume that all 
credences are probabilities: the circularity of vindication lies precisely in 
that adaptation.

The original form of the accuracy-driven demonstration of the neces-
sity of probabilities will be developed in Section 11.4. It employs a quad-
ratic Brier scoring rule. This rule, we shall see, so favors probabilities that 
it rewards subjects with non-probabilistic credences for lying that their 
credences are probabilities. In Section 11.5, we will see that the success of 
the original accuracy-driven vindication depends on selection of exactly 
the Brier scoring rule and not on any other in its neighborhood. When 
we replace the power of 2 in the Brier score formula by a more general 
exponent n, the slightest change in the exponent—a shift from 2 to 2.01 or 
1.99—is enough to undo the proof. Section 11.6 will reflect on how little in 
the original proof comes from the mere idea of accuracy, as opposed to the 
careful choice of scoring rule. Section 11.7 will review attempts to justify 
the restricted choice of scoring rule.
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Section 11.8 will describe the “strictly proper” scoring rules that have 
been introduced into the larger literature with a different purpose. They 
are a generalization of the Brier scoring rule, contrived to preserve its key 
property of favoring probabilities. Hence, as we will see in Section 11.9, 
the success of strictly proper scoring rules in the dominance proof is to 
be expected. However, the contrived favoring of probabilities is precisely 
how the proof covertly assumes probabilities at the outset. Section 11.10 
will review the inevitable failure of attempts to justify independently the 
restriction to strictly proper scoring rules in the dominance analysis. 
Section 11.11 will remind us once again of the pitfalls of “natural” criteria. 
Section 11.12 has a short conclusion.

11.2. Origins in Frequencies
The present literature on scoring rules has origins in considerations of 
frequencies. Identifying these considerations proves important in under-
standing what otherwise looks like arbitrariness in the systems now used.

In 1950, meteorologist and statistician Glenn Brier addressed a vexing 
problem in systems used to track the reliability of meteorologists’ weather 
forecasts. The systems were leading meteorologists to deliver something 
other than their best forecasts in efforts to improve their ratings. They 
would, as Brier (1951, p. 10) put it, be “‘hedging’ or ‘playing the system.’” 
For example, as Brier and Allen (1951, p. 843) noted, if a temperature 
forecast must be given as a single number, the forecaster may choose to 
report different temperatures according to the statistic that would be used 
to measure the forecaster’s reliability. If it was measured by a count of 
how many predictions proved exactly right, the best strategy was to report 
the most probable temperature. If reliability was measured by mean ab-
solute error, then the best strategy was to report the median temperature. 
If reliability was measured by the root-mean-square error, then the mean 
temperature was best. The forecaster’s best judgment was overshadowed 
by a concern for the performance measure.

Brier’s solution was to propose an assessment system that would not 
reward efforts to play the system: the forecasts are given as probabilities, 
and a “verification score”—later called the “Brier score”—is computed ac-
cording to a scheme in which higher scores represent poorer performance. 
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If there are n possible, mutually exclusive weather conditions, the fore-
caster predicts them with probabilities x1, …, xn. The best forecasts are 
to be given the lowest scores. So, if condition i does not occur, a term in 
xi2 is added to the score. The higher the probability xi is, the more de-
fective the prediction and thus the worse—that is—the higher the score. 
Correspondingly, if condition k arises, a larger associated probability xk 
should contribute less to the score. This is achieved by adding a term (1 − 
xk)2 to the score. The final score P is recovered by averaging this sum over 
the N possible occasions over which the forecaster is scored.

Write xik for the probability predicted on occasion i for condition k. 
The actual outcomes are encoded in the matrix Eik, where Eik = 1 encodes 
occurrence on occasion i of condition k; and Eik = 0 encodes its failure to 
occur. The “verification score” Brier proposed is

At first, the choice of a reward (1 − x)2 for correct predictions and a pun-
ishment of x2 seems arbitrary. One might imagine that almost any de-
creasing or increasing functions of x, respectively, would serve equally 
well. This turns out not to be the case, for the score has an important 
property shared by relatively few other scores, as we shall see in Appendix 
11.B below. The property appears in the case of N occurrences of some 
circumstance for which the same probability forecast xk for condition k 
is appropriate for each occurrence. The frequency fk of the kth condition 
among the N occurrences is given by fk = Si = 1,N Eik/N. For this case, 
Brier (1951, p. 2) described the key property:2 

It is also easy to show that if [f1, …, fn] are the relative fre-
quencies that the event occurred in classes 1, 2, …, [n], then 
the minimum score that can be obtained by forecasting the 
same thing on every occasion is when

In this special case, Brier’s verification score reduces to 2

2 The square brackets indicate minor changes from Brier’s notation to mine.
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The optimal (minimum) score arises when the derivative of P with respect 
to each of the x1, …, xn vanishes: dP/dx1 = … = dP/dxn = 0. An easy calcu-
lation shows the minimum occurs when:

Brier predicted the effect of the use of this score on a forecaster: 

A little experience with the use of the score P will soon con-
vince him that he is fooling nobody but himself if he thinks 
he can beat the verification system by putting down only 
zeros and unities when his forecasting skill does not justify 
such statements of extreme confidence. And in the com-
plete absence of any forecasting skill he is encouraged to 
predict the climatological probabilities instead of categori-
cally forecasting the most frequent class on every occasion. 
(1950, p. 2)

Two features of Brier’s verification score are noteworthy. First, Brier as-
sumed at the outset that the forecasters’ predictions, both private and 
public, are probabilities. There are no weights that do not normalize to 
unity and thus need correction to bring them into conformity with the 
probability calculus. Second, the score is designed to ensure that fore-
casters’ probabilities are well calibrated in the sense that they are given 
the best scores when their forecast probabilities for the conditions match 
the frequencies of the conditions. In this calibration, the probabilities are 
calibrated to the short-term frequencies in N occurrences. These are not 
long-term, infinite limit frequencies, but the actual frequencies in a run of 
N occurrences, where N may be quite small.
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11.3. Eliciting Credences
Brier used his score as a way of matching weather forecasts with short-
term frequencies. Around the same time as Brier’s work, a second litera-
ture sprang up in which the same devices were used for a different pur-
pose.3 The literature addressed a subject who harbored certain credences 
or subjective probabilities and the task was to elicit those credences. The 
means was to assign a score to probabilities announced by these subjects. 
The Brier score is most commonly used, but not exclusively so. For ex-
ample, Brier’s score formula (2) is used but its terms are interpreted dif-
ferently. The quantities xi are the subject’s announced probabilities, and 
the quantities fi are the subject’s true beliefs. Replacing frequencies fi by 
probabilities pi, we have a penalty function: 

If the Brier score is a penalty that the subject seeks to minimize, the analog 
of (3) above shows that the subject does best by announcing the subject’s 
true beliefs. 

The literature presents different scenarios to motivate an interest in 
what otherwise looks like an arcane scenario of dissembling subjects who 
may not announce their true subjective probabilities. McCarthy (1956, 
p. 654) imagines a forecaster and a client. The client uses the penalty as 
a way to “keep the forecaster honest” (the scare quotes are McCarthy’s). 
De Finetti (1965, §3; 1974, §5.5) is more detailed. He imagines scenarios 
in which an expert makes a probabilistic recommendation. A geologist, 
for example, may announce probabilities on the success of drilling an oil 
well at a particular site. We interest the geologist “in giving an honest an-
swer; in expressing his deep felt belief ” (De Finetti 1974, p. 193; emphasis 
in original) by associating the score with the fee to be paid to the geologist 
on completion of the drilling. In another scenario, probabilistic bets are 

3 See, for example, McCarthy (1956), De Finetti (1965; 1974, chap. 5), Savage (1971).
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made on the outcome of sporting events and the payoff is tied to the score. 
Finally, it is proposed that answers to multiple choice exam questions be 
given as probabilities and that the final score be computed as a Brier score.

For our purposes, however, minimizing the Brier score works too well. 
Our concern includes credences that may not be probabilities. Imagine 
that the true credences pi of a subject are not probabilities. They are just 
a set of numbers p1, …, pn that do not sum to unity. The minimum of 
the penalty function P of (2a) occurs when the reported values x1, …, xn 
are not the true credences p1, …, pn but the true credences normalized to 
unity.

To see this, note that the minimum of (2a) with respect to varying xi 
arises when we have dP/dx1 = … = dP/dxn = 0. Thus we have

and similar conditions for the remaining x2, …, xn. Rearranging these, we 
have

The credences reported are the true credences renormalized, so they sum 
to unity.

Thus, elicitation of true credences by means of a Brier score rewards 
subjects for lying and saying that their credences are probabilities, when 
they are not. This is an indication that the scoring method is biased to-
wards probabilities, for it rewards a shift to probabilities, even when they 
are not the quantities sought.

11.4. The Dominance Argument
What is distinctive about the last literature discussed above is that, first, 
the elicitation is governed by pragmatic factors. The students score the best 
on an exam or the geologist is paid the most if they reveal their true prob-
abilistic credences. Second, the primary focus is the eliciting of credences, 
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which are already assumed to be probabilities. It is not offered as a way of 
demonstrating that one’s credences must be probabilities.4 

A more recent development in this literature sought to alter both fea-
tures.5 It produced an argument for the necessity of probabilities that is 
presently enjoying considerable popularity. The core idea is that credences 
should be distributed not on pragmatic grounds but in a way that optimiz-
es the accuracy of the credences. The main result of this development is 
that the accuracy of a non-probabilistic credence can always be improved 
by switching to a probabilistic credence, no matter which outcome obtains

The simplest instantiation of the argument employs a Brier score. We 
have n mutually exclusive outcomes E1, …, Er over which credences x1, …, 
xr are distributed. All credences here and henceforth are restricted to the 
interval [0, 1]. The original Brier score formula (1) or (2), (2a) is broken 
up into r component loss functions Li, i = 1, …, r, according to which of 
outcome E1, …, Er obtains: 

The greatest accuracy is achieved by minimizing these scores. Hence, it is 
natural to characterize the quantities as “losses” to be minimized; and to 
think of an increasing loss score as a measure of increasing inaccuracy.

The association of loss with inaccuracy derives from the loss generat-
ing functions used. That is, each loss function Lk, associated with outcome 
Ek obtaining, is a sum of r terms: 

Generating function g1(xi) assures that a larger xi makes a smaller contri-
bution to the loss, for the case in which Ei obtains. Generating function 

4 For completeness, the devices needed are present. They are just not emphasized. The 
essential step of the dominance argument is mentioned in passing in the captions to Figure 1 and 2 
of De Finetti (1965, p. 92) and Figure 5.3 of De Finetti (1974, p. 189).

5 See, for example, Rosenkrantz (1981, 2.2), Joyce (1989, 2009), (Pettigrew 2016).
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g0(xi) assures that a larger xi makes a larger contribution to the loss in all 
the remaining cases.

With the loss functions (4), no matter which of E1, …, Er obtains, we 
always improve accuracy by replacing a non-probabilistic credence with 
a probabilistic credence. The argument is represented graphically in the 
simplest case of two outcomes E1, E2, with credences x1, x2. Figure 11.1 
shows the space of credences with individual points <x1, x2>, where both 
credences are restricted to values in [0, 1]. On the left, the figure shows 
curves of constant loss L1. They are circular arcs, centered on the corner 
point, <x1, x2> = <1, 0>, On the right, the figure shows the corresponding 
curves of constant loss L2. The diagonal dashed line represents those cre-
dences conforming with the additivity of the probability calculus. That is, 
x1 + x2 = 1. 

Figure 11.1. Dominance of probabilistic credences using a Brier 
score.

Pick any point in the space not on the diagonal, such as point A. This 
represents credences that violate the additivity axiom of the probability 
calculus. If we move along line AB, perpendicular to the diagonal, to the 
point B on the probabilistic diagonal, we replace the non-probabilistic cre-
dences at A with the probabilistic credences at B. We see in the figure on 
the left, that replacing credences at A by those at B reduces the loss L1. The 
same is true if we approach probabilistic credence B from a corresponding 
non-probabilistic credence A’, on the other side of the diagonal. That is, 
among all credences on the line AA’, the probabilistic credence at B has 
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the lowest loss L1. In other words, it is the most accurate among them if E1 
occurs. The same lines AB, A’B are shown on the right. Once again, among 
all credences on the line AA’, the probabilistic credence at B has the lowest 
loss L2. It is the most accurate among them if E2 occurs. This means that 
whichever of E1 or E2 occur, the probabilistic credence at B is the most 
accurate among all credences on the line AA’. Probabilistic credence B 
dominates: we achieve greater accuracy by replacing any non-probabilistic 
credence in AA’ with a probabilistic credence B.

In both cases, what is key is the concavity of the curves6 of constant 
loss towards the direction of smaller loss. Thus, moving towards the diag-
onal of probabilistic credences moves us to credences of smaller loss.

The result generalizes to the case of r outcomes, E1, …, Er . The easy 
way to see it is to identify a differential condition that expresses the dom-
inance. In the case of two outcomes E1 or E2, each probabilistic credence 
<x1, x2> on the diagonal x1 + x2 = 1 dominates a set of non-probabilistic 
credences {<x1 + k, x2 + k>} where k can have any value, both positive and 
negative, that generates points within the space. Each such set forms a line, 
such as AA’ of Figure 11.1, that is perpendicular to the diagonal of prob-
abilistic credences and will intersect it at one dominating point. For the 
case of L1 and L2 restricted just to the set {<x1 + k, x2 + k>}, the dominating 
point satisfies:

We now give the same analysis for the case of r outcomes, E1, …, Er . The 
hypersurface in the space of x1, x2, …, xr , corresponding to probabilistic 
credences is 

Each such point <x1, x2, …, xr> dominates points in the set  
{<x1 + k, x2 + k, …, xr + k>}, where k is both positive and negative as before. 

6 To avoid confusion, “concavity” here simply reports that the curves of constant L1 are 
geometrically concave towards the point that represents certainty of E1’s occurrence. The same 
property is described in Section 11.7 below, by standard convention, as the “convexity” of the 
function L1. This usage presumably reflects geometrical convexity in the direction of increasing L1.
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The dominating point will satisfy an extension of the differential condi-
tion above: 

To find the dominating point, we start with some point <x1, x2, …, xr> in 
the set that is not necessarily the dominating point, and we seek the value 
of k that satisfies condition (6). L1 expressed as a function of k is

A short computation shows that condition (6) for L1 is satisfied when 

By the obvious symmetry in the formulae, the same value of k leads to 
satisfaction of condition (6) for the remaining loss functions.7

Thus the dominating point in the set has credences

For i = 1, …, r. It is easy to confirm that these dominating credences satisfy 
the additivity condition

That is, the dominating credence point <X1, X2, …, Xr > is probabilistic.

11.5. The Problem: Sensitivity to the Scoring Rule 
Chosen
The analysis as laid out in the last section shows a dominance argument 
that appears at once elegant and compelling. This impression fades, how-
ever, when we realize that the dominance of probabilistic credences de-
pends delicately on the scoring rule or inaccuracy measure chosen. Most 

7 Based on geometric intuitions, the tacit assumption above was that the set of points 
{<x1 + k, x2 + k, …, xr + k>} is dominated by a single point. This assumption is now vindicated, 
since a single value of k produces a unique optimum for all loss functions. For completeness, 
the second derivative of all loss functions with respect to k is everywhere positive, so the optima 
computed are true minima.
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scoring rules do not return the dominance of probabilities. Even rules that 
differ minutely from the Brier score are enough to undo the dominance.

To illustrate this, replace the power of 2 used in the Brier score with a 
different exponent n. That is, the generating functions for what I shall call 
the “n-power” scoring rule are now

where, as before, outcome Ek is the one that obtains.
For n > 0, these will lead to what are, intuitively, accuracy measures. 

The function g1(xi) is strictly decreasing, so it rewards a higher credence xi 
in the result that obtains with a smaller loss. The function g0(xi) is strictly 
increasing, so it punishes a higher credence in a result that does not obtain 
with a greater loss. The loss functions become

Among all values of n > 0, the only value that supports the dominance of 
probabilistic credences is n = 2. The slightest deviation from it undoes the 
dominance. Choosing different values of n allows us to generate results of 
considerable variety, as we shall now see.

11.5.1. Scoring Rules with n > 1
We begin exploring the dominance relations by considering loss functions 
with n > 1. They exhibit dominance relations qualitatively similar to those 
of the Brier score. Their curves of constant loss are concave towards the re-
gion of lower loss, so that dominating points in the space arise in the same 
way, qualitatively, as in the case of the Brier score. However, the credences 
that dominate are not probabilistic. Loss functions with 1 < n < 2 lead 
to superadditive credences. Loss functions with n > 2 lead to subadditive 
credences.

To recall the definitions: if credences x(A) and x(B) for mutually exclu-
sive outcomes A and B are subadditive, then the credence x(A ∨ B) elicited 
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for their disjunction satisfies x(A ∨ B) < x(A) + x(B). If the credences are 
superadditive, then we have for this last case that x(A ∨ B) > x(A) + x(B). 
In the analysis that follows, we will identify subadditive and superadditive 
behavior in relation to the credence in the full outcome set to which cre-
dence 1 is assigned:

To see with least effort how these deviations from additivity arise, we cal-
culate the dominating credence for the “diagonal” set of points: 

This is just the diagonal that runs from the origin <0, 0, …, 0> to <1, 1, …, 
1> of the r-dimensional hypercubic space. The dominating point in the set 
is identified once again by condition (6). In this set, each loss function is 
the same function of x:

A short calculation that sets dL/dx = 0 in accord with condition (6) shows 
that the minimum loss for all the loss functions occurs when8 

That is, <x1, x2, …, xr> = <xdom, xdom,…, xdom> dominates this diagonal 
set as the point of smallest loss.

To conform with the probability calculus, the r credences of this dom-
inating point must be xdom = 1/r, so that their sum for the r outcomes, (r 
× 1/r), equals unity. This will happen only in two cases. First is the case of 
r = 2; that is, of two outcomes only. Then (r − 1)1/(n−1) = (1)1/(n−1) = 1, and 
we have, for all n, that

8 For n > 1, the second derivative d2L/dx2 > 0, everywhere, so the turning point is a 
minimum.
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Second is the case of the Brier score, n = 2. For then 1/(n − 1) = 1, so that 
(r − 1)1/(n−1) = (r − 1); and we have for the dominating point

In all other cases, additivity fails.
For r > 2 and n > 2, the exponent in (8) satisfies 0 < 1/(n − 1) < 1, and 

we have

It follows from (8) that:

This entails that the r credences xdom sum to greater than unity 
(subadditivity):

 
For r > 2 and 1 < n < 2, the exponent in (8) satisfies 1/(n − 1) > 1, and we 
have

By analogous reasoning to the previous case, the r credences xdom sum to 
less than unity (superadditivity):

The failure of additivity arises with the slightest deviation from the Brier 
score exponent 2. That is, the dominance argument fails to returns prob-
abilities if the exponent is 2.01 or 1.99. In these cases, the deviations from 
additivity of the dominating credences will be small. The deviations can 
be made as large as we please simply by selecting suitably large or small 
values of n.

For example, for r = 28 and n = 4, we find xdom = 1/4. Then the cre-
dences sum to
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If we set r = 11 and n = 11/10, we find xdom ≈ 10-10. Then the credences 
sum to

A more general sense of the range of possibilities is provided by a plot in 
Figure 11.2 of the sum S = r∙xdom against n, for various values of r > 2. 
Additivity is respected just when S = 1. This arises only when n = 2. All the 
curves intersect at S = 1, n = 2.

Figure 11.2. Failure of additivity for n-power scoring rules.

These results are a special case of the general result demonstrated in 
Appendix 11.A. That is, for n > 1, the dominating points in the space of 
r credences x1, x2, …, xr lie on an r − 1 dimensional hypersurface in the 
space of credences, satisfying
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For r > 2, this surface coincides with the surface of additive probabilities

only when n = 2. Otherwise, for n > 2, the surface lies above this additivity 
surface, and the credences are subadditive. For n < 2, the surface lies below 
this additivity surface, and the credences are superadditive.9

11.5.2. Scoring Rules with 0 < n < 1
We now consider the case of loss functions (4a) with exponent n satisfying 
0 < n < 1. This case exhibits behavior that is qualitatively different from 
the case of n > 1. For now, the surfaces of constant loss are convex towards 
the direction of smaller loss. This inclines credences to move to extreme 
values to secure smaller losses. This effect can be seen in the case of two 
outcomes, r = 2, and a square root loss function, n = 1/2. Then we have two 
loss functions:

Curves of constant loss are plotted in Figure 11.3. Those for loss L1 are 
on the left, and those for loss L2 are on the right. Probabilistic credences 
satisfying x1 + x2 = 1 lie on the dashed diagonal.

9 Equation (8) picks out a point on this surface. It is recoved by substituting x1 = … = xr = 
x into (12) and solving for x.
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Figure 11.3. Dominance of extremes with n = 1/2.

Repeating the analysis of Figure 11.1, we find in this case that moving cre-
dences away from the diagonal decreases both loss functions L1 and L2 and 
thus increases accuracy. An arbitrarily chosen additive credence at B is 
dominated by non-additive credences to which we arrive by following the 
arrows towards the extremes. Most striking is that the additive credences 
at x1 = x2 = 0.5 are dominated by the credences x1 = x2 = 0 and x1 = x2 = 1.

This striking behavior of the dominance of probabilistic credences by 
both subadditive and superadditive credences is an artifact of having just 
two outcomes, r = 2. For the case of more than two outcomes, the domin-
ating credences all have lower values and are superadditive. This is easy to 
see in the case of the diagonal set (7). All the loss functions for it are the 
same for the case of n = 1/2:

More generally, for all 0 < n < 1, the loss functions are

For all of these cases, the loss functions have a dominating minimum at 
the origin only:
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where L = 1.10 When x1 = x2 = … xr = x = 1, L = r − 1, which is greater than 
one for r > 2.

11.5.3. Scoring Rules with n = 1
The final case uses the absolute norm. That is, the generating functions 
are now11

where, as before, Ek is the outcome that obtains. In the case of two out-
comes, this scoring rule exhibits qualitatively different behavior again. 
The two loss functions are

The curves of constant loss for both are the same

They differ only in the values assigned to the curves. Since L2 = 2 − L1, the 
curves differ in the direction of increasing loss. These curves are plotted in 
Figure 11.4, with curves of constant L1 on the left and curves of constant 
L2 on the right.

10 Write, L(x, n) = (1 − x)n + (r − 1) xn. We have L(0, n) = 1. Also L(x, 1) = 1 + (r − 2) x  > 1, 
for all x > 0, r > 2. But L(x, n) > L(x, 1), for all 0 < n < 1 and x > 0, since then (1 − x)n > (1 − x) and xn 
> x.

11 This case is often presented as the absolute norm, writing g1(xi) = |1 − xi|. Since 0 ≤ x i ≤ 
1, the absolute operator |.| is superfluous.
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Figure 11.4. Degeneracy of dominance with n = 1.

In this degenerate case, dominance fails, since both loss functions are 
constant along the curves shown. Thus, as far as the accuracy measure is 
concerned, all the credences A, A’, A’’, … are equally accurate; and all the 
credences B, B’, B’’, … are equally accurate.

This degeneracy is not specific to the absolute norm n = 1, but is re-
coverable in the case of two outcomes, r = 2. For example, take the gener-
ating functions

where, as before, outcome Ek is the one that obtains. Then, as above, curves 
of constant loss for both L1 and L2 are the same:

Instead of a dominance relation, we find all credences on each of the 
curves to have the same loss L1 and L2 and thus to be equally accurate. 
We can take many increasing functions for h(x), such as h(x) = x2. For this 
case, these curves are hyperbolas with an asymptote of x1 = x2.

The degeneracy of the absolute norm rule does not persist when we 
move to more than two outcomes, r > 2. Then, smaller-valued credences 
dominate. The loss functions are
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For the diagonal set of credences (7), all the loss functions are equal

The dominating credence is 

More generally, uniformly reducing credences in such a way that we re-
main within the space 0 < xi < 1 (i = 1, …, r), uniformly decreases all the 
loss functions and thus increases accuracy. For example, we start at x = < 
x1, x2, …, xr> in this space and move to a new point:

for some increment e > 0 sufficiently small to keep us in the space. Then 
we have for all i = 1, … r,

Thus the credence x is dominated by the uniformly smaller credence x 
− . We can continue descending to smaller credences until we finally 
strike the origin x = 0 or end up on one of the two-dimensional edges of 
the hypercubic space (in which case, the above degeneracy replaces the 
dominance relations).

11.6. Accuracy Gives Very Little
In sum, the above exploration shows that the accuracy dominance of 
probabilistic credences is fragile. It depends critically on choosing exactly 
the right scoring rule. The Brier score belongs to a larger family of power 
rule scores (4a) and (5a), characterized by the exponent n. The case of n 
= 2 is the only case among them that returns the dominance of probabil-
istic credences. Other values of n give widely varying results. For n > 2, 
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the dominating credences are subadditive. For 1 < n < 2, the dominating 
credences are superadditive. Scoring rules with 0 < n ≤ 1 generally exhibit 
dominance by the lower values of credence in the space. Cases of equal 
credence, such as the probabilistic xi = 1/r, (i = 1, …, r) are dominated by 
all-zero credences x1 = x2 = … xr = 0, for example. We also saw anomalous 
cases of dominance by small and large credences and failures of domin-
ance, in favor of equality of accuracy over some sets of credences.

If one is not antecedently committed to probabilistic credences, there 
is nothing especially troublesome in these results. We learn from them 
that a requirement of accuracy does not have univocal import. It must bal-
ance rewards for credence in the outcome that obtains with punishments 
for credences in those that do not. There are, it turns out, many ways to 
effect this balance. There is no obviously right way to do it.

Some rules, such as those with n > 1, encourage prudence and direct 
credences towards intermediate values, while generally still not favoring 
probabilities. Others (such as n = 1/2, r = 2) effect the balance so that rash-
ness is rewarded. All unit credences dominate in the equal credence case, 
since the reward for assigning unit credences to the outcome that obtains 
exceeds the punishment for assigning unit credences to the outcome that 
does not obtain. Still other rules encourage timidity. Accordingly, as-
signing all-zero credences is most accurate, since the reward for a higher 
credence on the outcome that obtains is overwhelmed by the punishment 
for higher credences in outcomes that do not obtain.

These are widely varying results and we should accept them. To do 
otherwise and select among them for those we prefer is simply to invali-
date the whole accuracy-based method. We would not be using the meth-
od to inform our understanding and correct our prejudices. We would be 
using our prejudices to overturn what our method tells us.

11.7. Attempts to Justify the Choice of Scoring Rule
If one is antecedently committed to probabilistic credences, matters look 
very different. The results are troublesome. One has to find some way to 
impugn virtually all the accuracy measures employed in favor of the very 
few that return the desired result. In effect, one must work backwards from 
the probabilistic result desired to a condition that will deliver it. When 
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working backwards is done well, the resulting conditions will be congenial 
to those who already conceive of credences as probabilities. To those who 
are not antecedently committed to probabilistic credences, however, these 
conditions will appear as arbitrary as the original commitment to prob-
abilistic credences. This, in my view, is what the following review of these 
attempts shows.

Rosenkrantz (1981, 2.2) presented an early attempt to justify the Brier 
score independently within the context of a dominance-based vindication 
of probabilities. He noted that when the Brier score is used for elicitation 
of credences, it has the property that a subject with non-probabilistic cre-
dences minimizes the loss by reporting credences that are proportional 
to the “true probabilities.” This, he called “absolutely non-distorting.” 
Rosenkrantz conjectured but did not show that the Brier score is uniquely 
selected by this property, supplemented by other, weaker properties. The 
analysis seems hasty, since all strictly proper scoring rules (to be dis-
cussed below) share this property. Moreover, the property does not seem 
praiseworthy, since it is just the result reported above in Section 11.3, 
namely that a Brier score elicitation rewards subjects for lying about their 
non-probabilistic credences by rescaling them to probabilities with a con-
stant multiplicative factor.

Joyce’s (1998) proposal for restricting scoring rules is more definite and 
more confident. His “main theorem” (pp. 587–88) shows that probabilistic 
credences dominate if we use a scoring rule that satisfies six conditions 
that he names: “Structure,” “Extensionality,” “Normality,” “Dominance,” 
“Weak Convexity,” and “Symmetry.” None of these conditions is a logical 
necessity. Each is merely natural for probabilists. Each introduces into the 
proof a contingent presupposition congenial to probabilists. As a result, 
each contributes to the circularity. Lest the analysis grow too lengthy, 
we consider only two of the strongest conditions: Weak Convexity and 
Symmetry.

If two credences c and c’ have the same score on some outcome, 
then Weak Convexity requires that the score assigned to their midpoint,  
(c + c’)/2 is strictly less, unless c = c’. Considered abstractly, the require-
ment seems natural enough. “Weak Convexity is motivated by the intui-
tion that extremism in the pursuit of accuracy is no virtue,” Joyce (p. 596) 
assures us. However, Weak Convexity is violated by power scoring rules 
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with 0 < n < 1. As we saw above in Section 11.6, that does not make them 
defective, but just different ways of balancing the rewards for true beliefs 
and punishments for false beliefs. To preclude them is not to learn from 
what accuracy measures tell us, but to tell accuracy measures what they 
should be doing to accord with our other notions. It is part of the artificial 
adjustment of the premises needed if the demonstration is to yield the 
predetermined result—that is, the necessity of probabilities.

Weak Convexity alone, however, does not restrict power scoring 
rules with n > 1. The further restriction needed in the main theorem is 
Symmetry. If two credences c and c’ have the same score on some outcome 
i, then the distribution of scores over the intermediate credences is sym-
metric in the sense that, for any 0 ≤ l ≤ 1

This condition picks out just the quadratic Brier score from all n-power 
scoring rules as required.12 Thus, if we are working backwards to a pre-
determined result, the condition will seem apposite. However, it is difficult 
to see any independent justification for it. Joyce’s rationale (p. 597) mere-
ly restates what the formula says in words and suggests that Symmetry 
somehow precludes an improper favoring of one credence over another.

About a decade later, Joyce (2009) had presumably recognized the 
fragility of positing these conditions unequivocally. They were, he con-
ceded, “not all well justified” (p. 264), and a reappraisal was undertaken. 
Indeed, at times the commitment to the overall project is equivocal. The 
decline predicted earlier seems well underway. He writes: “Readers will 
be left to decide for themselves which of the properties discussed below 
conform to their intuitions about what makes a system of beliefs better or 
worse from the purely epistemic perspective” (p. 266). A proof has scant 
foundations if acceptance of its premises depends on the intuitions of in-
dividual readers. My intuitions about angles and lines are immaterial to 

12 An easy way to see this is to consider credences (xdom + e) among the diagonal set (7) 
in the immediate vicinity of the dominating point xdom, for n > 1. The symmetry of scoring rule Li 
will manifest in the vanishing of the cubic term in e3 in the power series expansion

Li(xdom + e) = Li(xdom) + e Li’(xdom) + e2/2 Li’’(xdom) + e3/6 Li’’’(xdom) + …

However, Li’’’(xdom) = 0 only in the case of n = 2.
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the proof of Pythagoras’ theorem or the impossibility of duplicating the 
cube. In a notable compromise of the entire program of providing quan-
titative, normative guides to credences, he notes that “epistemic goodness 
or badness for partial beliefs can be made sufficiently precise and deter-
minate to admit of quantification” is merely a “useful fiction.” Further, 
he reports on a newly named condition, “admissibility,” which “is not a 
substantive claim about epistemic rationality” but a way to “capture one’s 
sense of what is valuable about beliefs from a purely epistemic perspective” 
(p. 267). Nonetheless, it is used to restrict the choice of scoring rules, al-
though apparently on rather infirm ground.

One should not fear that Joyce (2009) has abandoned the original pro-
ject entirely. For eventually Joyce settles on what is offered as the “least 
restrictive” of the theorems that employ dominance ideas to demonstrate 
the necessity of probabilities. The theorem—whose details are found in 
Joyce (2009, pp. 287–88)—depends, among other things, on the condition 
of “Coherent Admissibility” (p. 280). This condition dismisses a scoring 
rule as “unreasonable” if it assigns a worse score to a probabilistic credence 
than to a non-probabilistic one in the case of all outcomes.

Hannes Leitgeb and Richard Pettigrew (2010, p. 246) seem to me to 
give the correct appraisal. As they put it, Coherent Admissibility is far 
from benign since “it accords a privileged status to probability functions.” 
They add, 

We are inclined to ask: Why is it that we are justified in 
demanding that every probability function is admissible? 
Why are we not justified in demanding the same of a belief 
function that lies outside that class? And, of course, we must 
not make this demand of any nonprobability function.

Just this sort of privileging of probabilities seems quite benign if one is 
working backwards from the predetermined conclusion that credences 
must be probabilities, for the condition says that a scoring rule cannot 
preclude probabilities, as Joyce says, “a priori” (2009, p. 280). It does not 
appear benign to those who have not already prejudged the outcome.

A real difficulty for probabilists is that once one becomes con-
vinced that credences have to be probabilities, it is hard to conceive of 
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how alternatives could be cogent. This may be behind Joyce’s (2009, p, 
283) concerns that the all-zero-valued credences that can dominate with 
power scoring rules when 0 < n ≤ 1. His assessment is severe. He calls 
them “logically inconsistent,” since “the believer minimizes [the] expected 
inaccuracy by being absolutely certain that every [proposition] is false 
even though logic dictates that one of them must be true.” This accusation 
of logical inconsistency will be unwelcome to proponents of the Shafer-
Dempster theory of belief functions. Complete ignorance is represented 
there by assigning zero-valued belief functions “Bel” to all outcome sets 
except the universal set. We see here that Joyce’s assessments are driven by 
a prior commitment to interpreting credences as probabilities, so that zero 
credence coincides with certain falsity.13 In the Shafer-Dempster theory, a 
zero-belief function can be interpreted as demarcating an interval of belief 
stretching from zero to one. 

In my view, the most promising avenue for restriction of scoring rules 
is through the class of “strictly proper” scoring rules that are much used 
elsewhere. Joyce (2009, §8) discusses and defends them. Let us first review 
them.

11.8. Strictly Proper Scoring Rules
Strictly proper scoring rules arose in the context of scoring a predictor’s 
performance and of the elicitation of subjective probabilities. It addresses 
the problem that most alternatives to the Brier rule do not deliver prob-
abilistic credences at their minima.

For example, we can generalize the Brier rule by replacing its expo-
nent 2 by an arbitrarily selected n, as in the n-power rule of (5a) above. 
It is shown in Appendix 11.B below that the only value of n that gives a 
rule that correctly elicits probabilities is n = 2. For all n > 2 (and r > 2), the 
power rule (5a) elicits subadditive credences. Alternatively, if 1 < n < 2, 
then the n-power rule elicits superadditive credences.

13 Of course, even for probabilists, zero probability does not coincide with certain falsity, 
but merely measure zero improbability. De Finetti’s finitely additive treatment of the infinite 
lottery assigns zero probability to each outcome individually, even though one must obtain. That 
a dart strikes any particular point on the board is a probability zero outcome, even though some 
point must be struck.
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These general n-power rule elicitations have an awkward property 
that is something like the reverse of the n = 2 Brier rule. We saw above 
in Section 11.3 that the Brier rule elicits an additive probability measure, 
even when the subject’s true credences are not probabilistic. The n-power 
rule (for n not 2) elicits credences that are not probabilities, even when the 
subject’s true credences are probabilities.

The upshot is that the formal properties of the credences elicited by 
the scoring rule method will only be probabilities if the rule used is very 
carefully tuned to give just that result. The standard response in the lit-
erature on elicitation and assessment of a predictor’s performance is to 
restrict the scoring rules under consideration to “strictly proper” scoring 
rules.

As a background to the notion, we recall that a general scoring rule 
employs two functions: g1(x) to reward a credence x in what turns out 
to be the true outcome; and g0(x) to punish a credence x in an outcome 
that turns out not to be true. The loss score assigned to elicited credences 
x = <x1, x2, …, xr > for true probabilistic credences or true frequencies 
p = <p1, p2, …, pr> is

The most direct definition (such as given in Gneiting and Raftery 2007, p. 
359) simply asserts that

Strictly Proper I

A scoring rule L is strictly proper just if L(p, x) ≥ L(p, p), for all pi 
in 0 ≤ pi ≤ 1, i = 1, …, r, with equality only when x = p.

This definition explicitly rules out by fiat any scoring rule that fails to 
elicit x as a probability measure. Note that the definition is so strong that, 
like the Brier rule, a strictly proper scoring rule will elicit a probability 
even when the subject’s true credences are not probabilities. To illustrate, 
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imagine that the subject’s true credences are a non-probabilistic q = (q1, q2, 
…, qr). We can normalize them to a probability

by dividing by Q = (q1 + q2 + … + qr). If the subject’s true probability is p, 
we know that the scoring rule will elicit x = p. By the definition of strictly 
proper scoring rules, x = p is the unique value of x that minimizes L(p, x). 
However, L(p, x) is linear in p so that L(p, x) = L(q, x)/Q. Hence, x = p will 
also minimize L(q, x) uniquely. That is, if the subject’s true credences are 
a non-probabilistic q, a strictly proper scoring rule will reward the subject 
most if the subject lies and reports a probabilistic, normalized credence p 
= q/Q.

11.9. Strictly Proper Scoring Rules in the Dominance 
Argument
This favoring of probabilities by strictly proper scoring rules is unprob-
lematic in the context in which the notion was introduced. For when 
the rules are used to elicit probabilities from a subject, we begin with 
the assumption that the subject’s credences are already probabilities. 
Correspondingly, when we use the rules to assess the performance of a 
predictor against the actual frequencies of outcomes, these actual frequen-
cies are also additive measures.

The use of strictly proper scoring rules ceases to be benign, however, 
when they are used as part of a vindication of probabilities. For the rules 
are engineered to favor probabilities and will yield them even when they 
are not the subject’s credences. They exhibit the same favoring of probabil-
ities if they are used as accuracy measures in the dominance arguments 
used to vindicate probabilities. A much-noted theorem in the scoring rule 
literature asserts exactly this: any non-probabilistic credence q is strong-
ly dominated by a probabilistic credence p, where “strongly dominated” 
means that p has a strictly lower score than q for all possible outcomes 
when the scoring rule used is strictly proper.14

14 See, for example, Predd et al. (2009, p. 4788).
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A simpler but less transparent definition of a strictly proper scoring 
rule lets us display the dominance in an example. 

Strictly Proper II15

A scoring rule L is strictly proper just if pg1(x) + (1 − p)g0(x) is 
uniquely minimized at x = p for all 0 ≤ p ≤ 1.

This definition is equivalent to the definition Strictly Proper I.16

This simpler form of the definition lets us see quickly how probabil-
istic credences dominate in a special case, that of the “diagonal” set (7) of 
credences above. For the general scoring rule, the generalization of the r 
loss functions (4) and (4a) above is the following:

For the diagonal set (7) of credences, all of these loss functions reduce to 
the same expression:

The second definition of strict propriety tells us directly that all of these 
loss functions are uniquely minimized when

That is, all credences in the set are strongly dominated by this probabilistic 
credence.

The selection of a strictly proper scoring rule in the accuracy-driven 
vindication of probability amounts to a delicate fine-tuning of the analysis 
to give just the probabilistic result antecedently desired. The extent of the 
fine-tuning depends on just how sparsely the strictly proper scoring rules 

15 Predd et al. (p. 4787) also include the requirement that the functions g0(x) and g1(x) are 
continuous. Schervish, Seidenfeld, and Kadane (2009, p. 205) relax the condition of continuity. 
Some of my analysis assumes differentiability of these functions, however.

16 For a demonstration of the equivalence, see Appendix 11.D.
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are distributed among scoring rules that we would intuitively judge to be 
admissible measures of accuracy.

In short, the strictly proper rules are very sparsely distributed among 
this larger class of rules. This is already suggested by theorems such as 
those of Schervish (1989), which show how all strictly proper scoring rules 
can be generated from the selection of a small class of functions. We can 
more directly gauge the sparseness by means of the second definition 
above. In brief, we have considerable freedom in selecting either of the 
functions g0(x) or g1(x). But once one is fixed, then so is the other; and 
we can generate an arbitrary number of scoring rules that are not strictly 
proper simply by selecting different functions for the second.

To see this, assume that g0(x) is fixed at some function suitable for 
penalizing a credence x on an outcome that does not obtain. We have from 
the second definition that pg1(x) + (1 − p)g0(x) has a unique minimum, for 
fixed p, when x = p. This minimum arises when the derivative with respect 
to x vanishes

Substituting x = p at this minimum, we have

Since p can have any value in 0 ≤ p ≤ 1, this relation is a restriction on the 
functions g0(x) and g1(x) for any x in the same range. It follows that

Reading from right to left in this formula, fixing g0(x) fixes g1(x) up to the 
additive constant g1(0). Selecting any other function for g1(x) will yield a 
scoring rule that is not strictly proper. For example, if we fix g0(x) = xn for 
n > 1, then a short calculation shows that g1(x) must be

up to the additive constant g1(0) = 1. Any other choice of function for 
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g1(x), such as the apparently “natural” n-power rule (5a), fails to be strictly 
proper.

11.10. Justifying Strict Propriety
A dominance-accuracy argument for probabilities that employs strictly 
proper scoring rules must provide independent grounds for the restriction 
to strictly proper scoring rules. That these rules are popular in the broad-
er elicitation literature provides no such grounds. Indeed, it is quite the 
reverse. Since strictly proper scoring rules have been designed explicitly 
to favor probabilities, using them to preclude non-probabilistic credences 
is prima facie circular. Their favoring is so strong that, used as a means 
of elicitation, they will reward a subject with non-probabilistic credences 
who lies and declares probabilistic credences.

All that can now prevent the analysis from collapsing into circularity 
is some independent justification of the use of strictly proper scoring rules. 
Joyce (2009, pp. 277–79) attempts such a justification by means of the no-
tion of “immodesty.” The quantity L(p, x) of (10a) is the probabilistically 
expected score using rule L of a credence x, according to the expectations 
of probabilistic credence p. A “modest” credence will judge L(p, x) < L(p, p). 
That is, it will judge some other credence x to have a lower expected score 
and thus to be more accurate than p itself. This is a poor situation for 
credence p, since considerations of expected accuracy indicate that, by p’s 
own assessment, credence x is the better one. The credences we should 
seek, therefore, are “immodest.” They are such that, by their own lights, 
they are the most accurate.

This favoring of immodest credences is, in effect, a guide for selecting 
scoring rules, for a credence can only be immodest or modest relative to 
a scoring rule. This guide leads us directly to strictly proper scoring rules. 
We are asking for rules in which L(p, p) takes the minimum value in com-
parison with all other L(p, x). But just this property of a scoring rule is 
strict propriety in the form of definition I of Section 11.8 above.

The justification of a restriction just to strictly proper scoring rules is 
still not complete. For nothing so far precludes another scoring rule that 
might render some non-probabilistic credence immodest. The analysis 
stalls at this point since we have no precise characterization of this last 
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sort of scoring rule. Note that the score L(p, x) of a strictly proper rule is 
the expected score for credence x according to probability p. If we seek an 
immodest, non-probabilistic credence y, then we would replace p in the 
score by y. But then L(y, x) is no longer an expectation. It is unclear how 
the quantity should be interpreted.17 We have no clear way to characterize 
an immodest, non-probabilistic credence.

The regress of reasons must continue. In an attempt to complete the 
justification, Joyce considers cases of physical chances in which we nat-
urally choose probabilistic credences. What credence can we have in the 
each of the six outcomes of a fair die throw, other than a probability of 
one sixth? Thus we should demand the hospitality condition of “Minimal 
Coherence” of our scoring rules: they should not preclude in advance 
probabilistic credences. This way credences concerning physical chance 
can be accommodated. If, however, we require both immodesty and the 
possibility of rules that favor probabilistic credences in their expectations, 
then we are led to strictly proper scoring rules. They are, by their defin-
ition, the only rules that can serve.

As we have already seen, this latest step in the regress of reasons will 
seem quite compelling to someone who antecedently favors probabilities. 
It is surely benign, they might think, to demand that we use scoring rules 
that are minimally hospital to probabilities in the sense that they do not 
automatically preclude them. To someone who has not prejudged the out-
come, the demand is anything but benign.18 For the burden of the analysis 
shows that this demand is enough to force probabilistic credences in all 
cases. 

If our earnest desire is not to prejudge, then should we not ask that 
our scoring rules be hospitable to more than just probabilistic credences? 
Once we demand hospitality for one favored type of credence, no others 
are sustainable. 

17 For example, expectation-like quantities computed using a non-probabilistic y fail to 
meet minimal conditions of an expectation. For example, the expectation for a quantity Q = <Q1, 
Q2, …, Qr> in the special case in which Q1= Q2 = …= Qr = Q, should be Q. However the sum 
Si yiQi = Si yiQ is equal to Q only when Si yi = 1, which is the case of probabilistic credence y.

18 Let us set aside the quibble that considerations of strict dominance in accuracy have 
been replaced by considerations of expected accuracy. That weakens the whole argument since 
maximizing expectations is not automatically always the best.
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If this last vindication is unsatisfactory, might we find another? 
Pettigrew (2016, chap. 4) offers another vindication of strictly proper 
scoring rules. The analysis depends on positing several conditions on an 
inaccuracy measure that include what he calls “Divergence Additivity,” 
“Divergence Continuity,” and “Decomposition.” We find once again that 
these conditions are congenial for a probabilist who knows that they will 
yield the required result. They appear arbitrary, however, to someone not 
antecedently committed to probabilities.

Divergence Additivity requires that the inaccuracy of some set of cre-
dences <x1, x2, …, xr > is measured by taking the arithmetic sum of the 
inaccuracies of the individual credences, using g1(xi) or g0(xi), according 
to whether the credence xi is in the true state or not. Summation seems, 
initially, to be an innocent requirement. Pettigrew (p. 49) calls the sum-
mation “the natural thing to do.” But it is far from innocent, for it rep-
resents a particular rule for determining the import of variation among 
individual inaccuracy measures. Take the case of five credences r = 5 and 
assume that we have two different sets of inaccuracies provided by the 
functions g1(xi) or g0(xi):

0.1, 0.1, 0.1, 01, 0.1  and  0.01, 0.01, 0.01, 0.01, 0.46.

How are we to summarize the combined inaccuracy in each case? Is the 
combined inaccuracy of the first the same as the second? Or does the pres-
ence of the large inaccuracy 0.46 in the second render the second case 
more inaccurate than the first? Or is this second case less inaccurate since 
four of its five components are very small, 0.01? Divergence Additivity 
measures the combined inaccuracy by summing the components. Since 
the components in both cases sum to 0.5, this condition judges them equal 
in combined inaccuracy. This is quite a specific way to trade off the import 
of non-uniformities of the second case. Since it competes with many other 
possible ways of trading off non-uniformities, merely finding it “natural” 
falls well short of the independent justification needed.

Similar arbitrariness troubles the other two conditions. Briefly, 
Divergence Continuity requires the analogs of the functions g1(x) or 
g0(x) to be continuous in x. In the abstract, the requirement seems inno-
cent. However, requirements of continuity can be far from innocent. In 



The Material Theory of Induction420

geometry, we might think it innocent to require that some two-dimen-
sional surface be covered continuously by the familiar <x, y> coordinate 
system. However, this condition restricts us to surfaces that are topologic-
ally “R2,” precluding surfaces of spheres and toruses, even though both 
are, in a geometric sense, everywhere continuous. Finally, Decomposition 
arises from two further conditions, Calibration and Truth-Directedness, 
each of which, independently, looks quite natural. The difficulty is that 
these two conditions turn out to be incompatible, so that at least one is 
wrong. Once again, naturalness proves to be a poor guide. Decomposition 
is a compromise condition that attempts to mediate between them. We 
may well wonder why it is a good idea to mediate between two conditions, 
one or both of which might be wrong. The mediation uses a formula that 
in turn appears arbitrary, unless one knows that it will enable a demon-
stration of the result sought.

All of these efforts end up offering no escape from the problem that 
has dogged the accuracy-based vindication of probabilities from the start. 
We are trapped in an endless regress of reasons. The requirement of accur-
acy alone, it turns out, gives us very little. What really determines the out-
come is our choice of scoring rule. Even among n-power scoring rules, we 
can select any desired extent of superadditivity or subadditivity of our cre-
dences just by choosing a suitable n. If we are to vindicate a restriction to 
probabilistic credences, we must find further reasons that favor them. We 
find new reasons that seem natural; and then we realize that they are only 
natural if judged by our antecedent prejudice for probabilistic credences. 
Still further reasons are needed, and the regress of reasons proceeds.

11.11. Naturalness Gone Astray
Reinhard Selten (1998) provides a sobering illustration of the precarious-
ness of accepting conditions on the basis of their naturalness. His interest 
is what he calls “the quadratic scoring rule.” It is used in something like an 
elicitation context in which a predicted probability distribution x is scored 
against a true probability distribution p by means of the “expected score 
loss.” His quadratic scoring rule is given in one form (p. 48) as
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where the two distributions x = <x1, …, xr> and p = <p1, …, pr> adopt the 
indexed values xi and pi over outcomes i = 1, …, r. Selten (p. 43) reports: 
“As far as the author knows, Brier (1950) was the first one who described 
this rule.”

This scoring rule formula differs from the Brier score formula given 
above as (2a). The difference is easy to see, since the reference probabil-
ity pi of formula (2a) enters linearly into the expression, whereas the true 
probability pi of Selten’s formula enters as a quadratic. A simple relation, 
however, connects the two formulae and is such that this formality does 
not make a difference to their common function of eliciting distributions. 
If we write the Brier formula (2a) as “B(x | p),” then we have L(x | p) =  
B(x | p) − B(p | p).19

The principal result of Selten’s paper is a demonstration that its four 
axioms are satisfied uniquely by the quadratic scoring rule. This unique-
ness is a strong result. Selten goes to some pains to justify the naturalness 
of what might be the most contentious of the axioms, the fourth axiom, 
“neutrality.” It requires that the loss function L be symmetric in the two 
distributions:

Selten’s plea for the axiom is strong and plausible:

The interpretation of axiom 4 becomes clear if one looks at 
the hypothetical case that one and only one of two theories 
p and q is right, but it is not known which one. The expected 
score loss of the wrong theory is a measure of how far it is 
from the truth. It is only fair to require that this measure is 
“neutral” in the sense that it treats both theories equally. If 
p is wrong and q is right, then p should be considered to be 
as far from the truth as q in the opposite case that q is wrong 
and p is right.

19 I thank an anonymous reviewer for BSPSOpen for pointing out this connection.
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A scoring rule should not be prejudiced in favor of one 
of both theories in the contest between p and q. The severity 
of the deviation between them should not be judged differ-
ently depending on which of them is true or false.

A scoring rule which is not neutral is discriminating 
on the basis of the location of the theories in the space of 
all probability distributions over the alternatives. Theories 
in some parts of this space are treated more favorably than 
those in some other parts without any justification. There-
fore, the neutrality axiom 4 is a natural requirement to be 
imposed on a reasonable scoring rule. (p. 54)

It is easy to accept this plea and, with it, neutrality as a reasonable demand 
for any scoring rule. It does seem natural. The comfort will surely be dis-
turbed when one realizes that Selten’s naturalness requirement eliminates 
virtually all the many, strictly proper scoring rules discussed above. All 
that remains is Selten’s quadratic rule. This elimination might be justifi-
able if Selten’s analysis had found some inadequacy in the function of all 
of these other strictly proper scoring rules. His analysis shows no such in-
adequacy; and it cannot. For all strictly proper scoring rules are by explicit 
design adequate to their function of eliciting a probabilistic credence.

The symmetry of Selten’s neutrality condition does not derive from 
the function of the scoring rule. Rather, it calls to mind the idea that dis-
tances between two points in ordinary space treat the two points symmet-
rically. Distance AB in a geometric space is the same as distance BA. It is 
easy to assent to the corresponding symmetry in the context of Selten’s 
analysis, since his scoring rule is, in a more abstract sense, a measure of 
the distance separating two distributions in a probability space. However, 
there is a difference from the geometric case. Distances in geometry must 
treat the points A and B symmetrically, since the notion of distance itself 
does not distinguish or privilege one point over another. There is no cor-
responding symmetry in the two distributions, p and x. One is the true 
probability distribution; the other is an elicited distribution. In terms of 
function of the scoring rule, there is no need to treat them symmetrical-
ly. Asymmetric strictly proper scoring rules still serve their function of 
elicitation.
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It is of course “natural” to treat them symmetrically. What results is 
an appealing simplification. We reduce the many scoring rules possible to 
a unique rule with a simple expression. That simple rule is likely easier to 
work with computationally than many of the more complicated strictly 
proper scoring rules. There is an aesthetic comfort in the formula. Its sym-
metry is visible from inspection, and we can see without calculation that 
it takes a minimum value just when our elicited distribution xi coincides 
with the true distribution pi.

However, the appeal of these factors should not lead us to think of the 
naturalness condition as anything more than an aesthetically motivated 
restriction unrelated to the rules’ function. It establishes no necessity for 
the quadratic scoring rule.

11.12. Conclusion
What makes the circularity of this accuracy-based approach harder to see 
at the outset is that it draws on a well-established literature on scoring 
rules in meteorology, economics, and subjective Bayesianism. This litera-
ture developed scoring rules for other purposes. They were used to reward 
meteorologists for their probabilistic predictions when scored against the 
actual frequencies of weather conditions; or they were used to encour-
age subjects to match their publicly declared probabilities with their true 
but hidden probabilities. For these purposes, it was appropriate to work 
with a narrow subset of scoring rules, adapted antecedently to probability 
measures. Using different rules, ill-adapted to probabilities would have no 
point.

Matters change when we try to use scoring rules to demonstrate the 
necessity of probabilities. Now, the careful selection of the same scoring 
rules ceases to be the practical adaption of the rules to the intended use. 
It amounts to the covert assumption of the very thing that is to be proven. 
For these favored rules—the Brier score and its generalization as strictly 
proper scoring rules—strongly favor probabilistic credences. As we saw 
above, if a subject harbors non-probabilistic credences and these scoring 
rules are used to elicit them, the subject will be rewarded for lying and 
reporting probabilistic credences.
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All would be well with accuracy-based vindications if solid, independ-
ent grounds could be found for use of these favored rules. However, no 
such grounds have emerged and, I argue, none can emerge. For all such 
grounds must covertly assume exactly what they seek to demonstrate. 
Instead, as we have seen repeatedly, the grounds will succumb under scru-
tiny. We are forever trapped in an endless regress of reasons.

Appendix 11.A. Dominance Relations for n-Power 
Scoring Rule with n > 1
The n-power loss functions

admit dominating points that lie on an r − 1 dimensional hypersurface 
of the r dimensional space of credences x1, x2, …, xr . Each point on the 
surface is a minimum for all r loss functions among a set of points lying on 
a curve in the space of credences. We write this curve as xi(l), I = 1, …, r, 
where l is a path parameter. A dominance point is identified by means of 
the derivatives of the loss functions with respect to l. The first derivatives 
are

and similarly for L2, …, Lr . The second derivatives are 
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and similarly for L2, …, Lr . To identify a dominance point, we set all the 
first derivatives (13) to zero. The results for dL1/dl = 0 and dLi/dl = 0 are, 
respectively,

Subtracting the second from the first, we recover

This expression (16), with i = 2, 3, …, r can be used to replace expressions 
for dx2/dl, dx3/dl, …, dxr/dl in (15), rewritten as

After some manipulation, the reconfigured equation (15) reduces to the 
expression that identifies the r − 1 dimensional hypersurface of domin-
ance points: 

In the special case of n = 2, the Brier score, this relation identifies the 
hypersurface of additive credences that conform with the probability 
calculus:20

To determine the disposition of the hypersurfaces of the remaining cases, 
we write the individual terms of (12) as

20 For this case, n – 1 = 1 and xi
n−1 + (1 − xi)

n−1 = xi + (1 − xi) = 1.
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They can be inverted to yield

where, following (12), we have

A special case is r = 2, for any n > 1. For then y2 = (1 − y1) we have

so that the dominance points are also additive: 1 = x1 + x2.
Otherwise, for r > 2 and n > 2, we have from (17) that

since

by means of inequality (23) below. Using similar relations for x2, x3, …, xr , 
we recover

It follows that r > 2 and n > 2 is the case of subadditive credences. Repeating 
the above analysis for r > 2 and 1 < n < 2, using inequality (24), we recover:

from which it follows that this is the case of superadditive credences.
The hypersurface (12) is picked out by the vanishing of the first de-

rivatives, dL1/dl = dL2/dl =… = dLr/dl = 0 for the curves xi(l), i = 1, …, 
r. To complete the analysis, we need to show that these points are true 



42711 | Circularity in the Scoring Rule Vindication of Probabilities

minima for the loss functions along the curves, so that the points on the 
hypersurface are dominance points. This in turn requires identification of 
the curves.

It will be sufficient to identify one set of curves as follows.21 In brief, we 
find the slope of the curve at each point on the hypersurface. We then take 
as the curve xi(l) through that point, the straight line that has this slope 
as its slope everywhere. Select some point on the hypersurface, whose cre-
dences Xi satisfy equation (12). We have from (16) that

where K is some undetermined constant that is the same for all xi(l). The 
constant is undetermined since its differing values give us the freedom to 
rescale the parameter l arbitrarily. We can, for example, alter the value of 
K if we introduce a new parameterization l’(l) for which

To ensure that the path parameterization introduces no nuisance pathol-
ogies, it is convenient to set it, by stipulation, proportional to the natural 
Euclidean path length through

We select the constant in this expression so that the undetermined con-
stant K is set to one. That is, we now have

where mi > 0 since 0 ≤ Xi ≤ 1 for all i. The straight line with this slope mi 
that passes through the hypersurface point Xi at l = 0 is

21 The properties described above do not, I suspect, uniquely define the curves xi(l). 

Identifying one set of curves is sufficient to display the dominance properties of the points of the 
hypersurface.
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For all such curves, we have

Substituting these properties into the r expressions for d2Li/dl2, I = 1, …, 
r, analogous to (14), and recalling n > 0, it is easy to see that all the second 
derivative terms are greater than zero. Hence the point of intersection of 
each curve Xi with the hypersurface (12) is a true minimum along each 
curve for all the loss functions L1, …, Lr .

Appendix 11.B. Credences Elicited by n-Power Scoring 
with n > 1
The n-power scoring rule is generated by the functions (5a). The credences 
x = <x1, x2, …, xr> it elicits for a subject’s true probabilistic credences p = 
<p1, p2, …, pr> are those that minimize the loss function.

To keep the analysis simple, consider only the generic case in which pi > 0, 
all i. The first and second derivatives of L(p, x) with respect to x1 are

and similarly for x1, …, xr. We seek the minimum loss with respect to x by 
setting all first derivatives to zero. We find for i = 1, …, r, that ∂L/∂xi = 0 
leads to
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The values selected by this condition represent a true minimum since 
∂2L/∂xi

2 > 0 for 0 ≤ xi ≤ 1, for all i. Solving for xi, the credences elicited are

The credences elicited will correspond to probabilities pi only in the case 
of the Brier rule, n = 2. For then we have

When n is not 2, but r = 2, the rule will return additive credence x1 and x2:

These elicited credences x1 and x2 will not correspond to the probabilities 
p1 and p2 unless we have the exceptional cases of p1 = 0 or p1 = 0.5 or p1 = 1.

In all other cases for n > 1, we recover subadditive credences (for n > 
2) or superadditive credences (for 1 < n < 2).

To begin, consider the case of n > 2. For r > 2, we have from inequality 
(23) below that:

Using 1 − p1 =  p2 + … + pr , it becomes

Substituting into (20) for the case of i = 1, we have
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with similar formulae for x2, …, xr . We see that these credences are suba-
dditive if we sum them:

where the credence in the set of all outcomes is 1. For the case of 1 < n < 2, 
using (24) below, we have, instead of (21), the inequality: 

Following analogous reasoning, we arrive at superadditive credences

Appendix 11.C. Useful Inequalities
The equalities used above are derived by considering the function 

for some fixed value of y > 0. Its first derivative is

For n > 2, the exponent satisfies −1 < (2 − n)/(n − 1) < 0. It follows that  
df(x)/dx < 0 for all x > 0. Since f(0) = 0, we have after integration of df(x)/dx 
that f(x) < 0. That is, for all x > 0 and y > 0, n > 2,

Applying this inequality to (z2 + z3 + … + zr)1/(n−1) for all zi > 0, we recover

and then

Further iteration eventually leads to:
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For 1 < n < 2, we have that the exponent in f(x) satisfies (2 − n)/(n − 1) > 0. 
Proceeding as before we now have

which eventually leads to:

Appendix 11.D. Equivalent Definitions of Strictly 
Proper Scoring Rules
To show the equivalence of the two definitions I and II of strictly proper 
scoring rules, it is sufficient to show that definition II entails definition I; 
and to show the converse entailment.

Strictly Proper II entails Strictly Proper I

The loss function L(p, x) of (10a) consists of a sum of r terms:

where i = 1, …, r. Definition II entails that each of these r terms individual-
ly is minimized when xi = pi. To illustrate for I = 1, the term is rewritten as

Hence, this term is minimized uniquely, according to definition II, when 
x1 = p1. The corresponding results for the remaining x2, x3, … follow an-
alogously. Since x = p minimizes each term uniquely, it follows that x = p 
minimizes their sum, L(p, x), uniquely, which is definition I.

Strictly Proper I entails Strictly Proper II

Definition I applies for all pi in 0 ≤ pi ≤ 1, i = 1, …, r. Thus it applies to the 
case in which only p1 > 0 and p2 > 0, but p3 = p4 = … = pr = 0. In this special 
case, the loss function reduces to
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There are no terms in L(p, x) in g1(x3), g1(x4), …, g1(x4), but these variables 
only appear in g0(x3), g0(x4), …, g0(xr). Since all suitable functions for g0(xi) 
are strictly increasing, the condition for minimization must include xi = 
0 = pi, for i = 3, 4, …, r. Hence, the minimization of definition I reduces to 
the simpler problem of minimizing:

That is, definition I requires minimization for fixed p1 and p2 of:

Definition I stipulates that the minimum is achieved uniquely when x1 = 
p1 and x2 = p2. Since x1 and x2 can be varied independently in seeking the 
minimum, the minimum can only arise when the terms in which they 
appear 

are individually, uniquely minimized by x1 = p1, for the first, and x2 
= p2, for the second.

Either of these is equivalent to definition II, with the restriction that 0 
< p < 1. The complete definition II allows 0 ≤ p ≤ 1. The two missing cases, 
p = 0 and p = 1, always conform with definition II. Hence, definition I 
entails definition II.
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12

No Place to Stand: The Incompleteness 
of All Calculi of Inductive Inference1

12.1. Introduction
The previous two chapters have sought to show that the probability cal-
culus cannot serve as a universally applicable logic of inductive inference. 
We may well wonder whether there might be some other calculus of in-
ductive inference that can be applied universally. It would, perhaps, arise 
through a weakening of the probability calculus. The principal source of 
difficulty addressed in the preceding chapters was the additivity of the 
probability calculus. Such a weakening seems possible as far as additiv-
ity is concerned. Something like it is achieved with the Shafer-Dempster 
theory of belief functions. However, there is a second, lingering problem. 
Bayesian analyses require prior probabilities. As we shall see below, these 
prior probabilities are never benign. They always make a difference to the 
final result.

For a long time, I hoped to find an extension of or alternative to the 
probability calculus that would afford us a truly neutral initial state. We 
could then proceed to incorporate the evidence, free from the worry that 
the unsupported choice of a prior state might somehow compromise the 
analysis. These efforts failed, again and again. Eventually, I came to see 
that they failed for a good reason of principle: there is no calculus of in-
ductive inference that can support this fully neutral initial state and still 
admit the non-trivial incorporation of new evidence.

1 I am grateful for helpful discussion especially to Wayne Myrvold and to Yann 
Benétreau-Dupin and the Fellows of the Center for Philosophy of Science, Spring Term, 2015, who 
urged me to write this introductory account.
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A technically detailed statement and demonstration of this result is 
given in Norton (2019), and readers are referred to it for these details. The 
burden of the present chapter is to give an introductory account of this 
result and its import, suppressing as much as possible of the distracting 
technical details. For, as we shall see, the result itself is rather simple in 
conception. Indeed it is so simple that I believe the only reason we have 
not had the result as a staple in our literature is that no one thought to 
look for it.

Sections 12.2–5 below describe what it would be for a calculus of in-
ductive inference to be complete, using the illustration of the Bayesian 
analysis of simplicity; and the sections explain why completeness is desir-
able, if only it could be secured. In brief, completeness is achieved when 
computations in the calculus are carried out in a domain sufficiently large 
that the computations do not need to call upon inductive content that is 
external to the domain. Completeness provides an evidentially neutral 
“place to stand”2 prior to any considerations of evidence. We then modify 
this initial state, moving away from neutrality, under the import of evi-
dence. This neutral starting point would allow us to characterize inductive 
inference merely as inference that conforms to the calculus at issue, for no 
external inductive content would be needed. Any deviations from neutral-
ity would solely result from the import of evidence. This characterization 
would provide a clear and simple solution to the enduring, foundational 
problems of inductive inference. All such problems would be reduced to 
questions answerable by computation in the calculus.

This attractive solution to the foundational problems fails. Non-trivial 
calculi of inductive inference are incomplete. None provide an eviden-
tially neutral place to stand. These incomplete calculi include many more 
than just the probability calculus. This incompleteness explains why par-
ticular calculi of inductive inference are beset by lingering difficulties. 
The Bayesian system is perpetually struggling to overcome the problem of 
the priors. Augmented calculi are repeatedly proposed to solve problems 
in older calculi, while no augmented calculus manages without its own, 
new problems. All of these problems arise because we are really trying to 

2 This phrase alludes to Archimedes’ celebrated boast in the context of the principle of 
the lever: “Give me a place to stand and I shall move the world.”
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formulate a complete calculus of inductive inference. That the problems 
must remain unsolved is not due to a failure of our imagination to hit 
upon just the right solution. It is a necessity owing to incompleteness.

Sections 12.6–14 provide a simplified guide to the full proof of this 
failure. A terse summary of the main result that will be introduced and 
explained in greater detail in this chapter is that the incompleteness arises 
from the combination of two desirable properties of calculi of inductive 
inference.

The first property is an expression of completeness: we can find a 
sufficiently large set of propositions in which the inductive strengths of 
support are fixed by relations in the set, without the need to import any 
inductive content from outside it. Since the only other inferential resour-
ces within the set are the deductive relations among the propositions, this 
amounts to requiring that the inductive strengths of support be fixed by 
the deductive relations among the propositions in the set. This require-
ment is unremarkable. The Kolmogorov axioms of probability theory are 
a routine part of such a specification. These axioms adapt the probabilities 
to the deductive structure. They need only a small supplement to fix the 
probabilities uniquely.

The second property involves disjunctive refinements of propositions. 
Through them we replace the proposition

Person X is in Boston

by a disjunction of its disjunctive parts:

Person X is in Boston-location-1 or Person X is in Boston-
location-2 or Person X is in Boston-location-r.

Such disjunctive refinement increases the expressive power of the set of 
propositions and leads to adjustments of the inductive strengths of sup-
port. The requirement of asymptotic stability asserts that continuing dis-
junctive refinement eventually provides such a diminishing increase in 
power that the inductive strengths of support among some fixed set of 
propositions stabilize to limiting values. Further refinement eventually 
becomes inert, inductive hair-splitting.
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The incompleteness resides in the impossibility of sustaining both 
properties.3 Briefly, the deductive closure of any set of propositions is 
highly symmetric. Each of the non-contradictory, logically strongest 
propositions—the “atoms”—enter into the same deductive relations. As 
a result, a deductively definable logic of induction must treat them alike. 
Each new disjunctive refinement will alter the atoms and, as a result, the 
inductive strengths throughout the set. It turns out that a deductively de-
finable logic of induction will continue to respond without stabilization to 
suitably crafted, continuing disjunctive refinements, unless it is a trivial 
logic that assigns the same limiting inductive strengths everywhere.

One might be tempted by an obvious rejoinder: if continuing refine-
ment causes continuing problems, stop refining! Declare that one specific 
refinement is preferred; or declare that its propositions comprise a pre-
ferred language. This resolves the problem. But the decision of when to 
stop or of what the preferred language is must be made on external, in-
ductive grounds. It privileges certain propositions and thus amounts to 
the introduction of external inductive content, in violation of the require-
ment of completeness.

The concluding Sections 12.15–18 of this chapter take stock and re-
view possible responses.

12.2. The Appeal of a Calculus of Inductive Inference
At this point, there should be no doubt about one thing: rule-based ac-
counts of inductive inference are in bad shape. Simple enumerative induc-
tion fails more than it succeeds. It is almost never the case that when some 
As are B, it is also the case that all As are B. The replicability of experiment 
is the gold standard of science, we are told, never to be discounted, except 
when we do discount it. If we seek the formal template to which argu-
ments from analogy must conform, we find prescriptions of ever growing 
complexity. We should infer to the best explanation. Yet it is an instruc-
tion that is hard to follow, since we are offered no precise characterization 
of just what a good explanation is or why it has such evidential powers. 

3 The proof strategy is an extension of the familiar problems introduced by the principle 
of indifference probabilistic logic. See Norton (2008) for discussion.
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Finally, to mention an example to which we will return below, evidence 
favors simpler hypotheses, we are told. But we have no serviceable char-
acterization—even at the most general level—of what makes a hypothesis 
simpler or why such hypotheses should be favored.

These are just the beginnings of the difficulties. Over the centuries, 
inductive inference has attracted a fulsome collection of general problems 
that threaten the very cogency of this form of inference. We have Hume’s 
problem, Hempel’s raven, Goodman’s grue, and Quine’s underdetermin-
ation. The difficulties are so enduring that a mere mention of induction 
calls philosophical pain to mind.

The tenacity of these problems stands in striking contrast to deductive 
inference. While there are always complications at the fringes, the core 
is stable to the point of tedium. Modus ponens is a valid argument form. 
Affirming the consequent is a fallacy. These facts of logic leave no room 
for doubt or debate. We separate valid from invalid deductive inferences 
merely by checking whether the argument form used is one of the ap-
proved argument forms in a logic textbook. The exercise is reminiscent of 
making travel plans by checking a train timetable.

In this regard, deductive logic is more like arithmetic than inductive 
inference. It is an uncontested, particular fact of arithmetic that 7,919 is 
the thousandth prime number; and it is simply a matter of computation to 
verify it. More general facts have a similar security. That there are infinite 
prime numbers is proved by a theorem known since the time of Euclid. 
Anyone who doubts this can consult the proof and receive all the assur-
ance a reasonable person could require.

Might the problems of inductive inference be resolvable in a similar 
way? Might the puzzles of induction be converted into queries that could 
be put to and answered by mechanical computation in some suitable 
calculus? The most popular current approach to inductive inference, the 
Bayesian approach, holds out the promise of such a solution. The approach 
is based on the supposition that inductive support or warranted belief is 
captured by the mathematical calculus of probabilities. Much of Bayesian 
analysis involves the working of proofs in calculus. The strength of in-
ductive support provided by some item of evidence for some hypothesis 
is computed numerically as a conditional probability. General facts about 
inductive inference are established as theorems of the probability calculus, 
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much as Euclid proved the infinity of the primes. In each case, we have 
the comforting assurance that, one way or another, a computation will 
provide precise answers to our questions.

12.3. A Bayesian Analysis of Simplicity
A familiar principle is that evidence favors a simpler hypothesis. As we 
saw in earlier chapters, when we fit a curve to data, we might find a good 
enough fit from the hypothesis of a straight line and a slightly better fit 
from a parabola. We are routinely willing to forgo a slightly better fit by 
a parabola for the lesser fit of a straight line, because we prefer to use the 
simpler hypothesis.

The preference for the simpler hypothesis can be vindicated in Bayesian 
analysis. The key to it is that there are fewer of the simpler hypotheses. A 
straight line—“y = ax + b”—is fixed by just two adjustable parameters, a 
and b. A parabola—“y = ax2 + bx + c”—is fixed by three parameters, a, b, 
and c. Hence, there are many more of the more complicated hypotheses. 
The straight line hypotheses form a two-dimensional space. The parabolic 
hypotheses form a three-dimensional space.

A still simpler example uses this fact and will suffice to get to the key 
point. Imagine that we have to choose between a simple hypothesis and a 
more complicated one. Let us say that the simple hypothesis is drawn from 
a ten-membered set {Hsim1, Hsim2, …, Hsim10} of hypotheses of compar-
able simplicity. The complicated hypothesis is drawn from a much larger, 
one-hundred-membered set {Hcom1, Hcom2, …, Hcom100} of hypotheses of 
comparable complication. We shall assign equal prior probability to each 
set:

where conditionalization on a background W is supposed but not repre-
sented. We then spread the probability uniformly within each set. Since 
the second set has ten times as many members as the first, the prior prob-
ability of any of the individual simple hypotheses Hsim i is ten times as 
great as the prior probability of any of the complicated hypotheses Hcom k:
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Let us say that the two hypotheses Hsim i and Hcom k fit roughly equally 
well with the evidence. That is, the supposition of each makes the evidence 
E roughly equally probable:

so that the ratio of likelihoods P(E | Hsim i)/P(E | Hcom k) ≈ 1. The relative 
strength of support from the evidence and background together for the 
hypotheses is expressed by the ratio of posterior probabilities P(Hsim i | 
E)/P(Hcom k | E). It can be calculated with the ratio form of Bayes’ theorem:

Since the likelihood ratio is approximately one, the ratio of the priors (2) is 
the deciding factor that gives a large boost to the probability of the simpler 
hypotheses:

In brief, since there are fewer simpler hypotheses, a natural spreading of 
prior probabilities (1) can assign higher prior probability to the simpler 
hypotheses. When the evidence is equivocal in choosing among the hy-
pothesis, this higher prior probability gives the simpler hypothesis the 
decisive advantage.

While this captures the essentials of the Bayesian analysis, more real-
istic cases are messier. There are almost always infinitely many hypotheses 
grouped into one complexity class and then, in addition, infinitely many 
such classes. Simply counting hypotheses no longer works. More sophis-
ticated analyses are needed, although the essentials remain the same. 
Jeffreys (1961, p. 47) measured the complexity of classes of curves by the 
sum of the order, the degree and the absolute values of the coefficients of a 
suitably reduced differential equation that governs the curves. Solomonoff 
(1964) measured complexity as algorithmic complexity; that is, the meas-
ure is the size of the smallest universal Turing machine program needed 
to generate the hypothesis. They both then exponentially penalized the 
prior probability of each complexity class so that the probabilities could 
sum to unity.
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12.4. External Inductive Content
In many examples like those above, Bayesian analysis has been able to 
reduce an inductive puzzle to a computation in the probability calculus. 
In each case, however, it turns out that the analysis is not self-contained. 
Each requires supplementation by external inductive content. That is, 
the computation depends on direct or indirect specification of inductive 
strengths of support by considerations external to the computation.

Take the case of the analysis of simplicity above. We assigned equal 
probability to the two complexity classes in (1) and then spread the as-
signed probability uniformly within each class. The outcome was that 
each of the simpler hypotheses was assigned a greater prior probability; 
and this was key to the whole analysis. Yet nothing within the probabilis-
tic computation forced this assignment. We could just have assigned the 
same prior probability to each hypothesis individually

This alternative assignment would have defeated the analysis. For then, 
instead of (2), we would have had

and the simpler hypothesis would have received no probabilistic boost:

The point is not that the assignment of (1) is unjustifiable. One could cer-
tainly conceive of circumstances in which we would be warranted in as-
signing a higher prior probability to a simpler hypothesis. And we could 
conceive of others in which this might not be so.

The point is that the assignment of (1) is provided externally to the 
probabilistic computation that takes us from (1) to the main result (3). 
This means that the recovery of the result (3) by the computation is not 
inductively self-contained. Essential inductive content is provided from 
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an external source. To preclude confusion, by “inductive content” I mean 
only the assignments of probability in (1) or (1’).

12.5. The Ideal of Completeness
A natural response to the presence of the external inductive content in 
the Bayesian analysis of simplicity is that we have set our boundaries too 
narrowly. That the simpler hypotheses ought to be assigned a higher pri-
or probability is something that can, in turn, be learned inductively. In 
Jeffreys’ analysis of simplicity, we are to assume that nature favors curves 
drawn from the simpler of his complexity classes. In Solomonoff’s analy-
sis, we are to assume that nature favors hypotheses that are algorithmic-
ally simpler. Neither of these are a priori truths. They are contingent facts 
about the world. Ascertaining their truth is a matter of further inductive 
investigation. If we extend the boundaries of our computation, we would 
hope to capture those considerations as well.

What if those considerations in turn depend on further external in-
ductive content? We would then extend our boundaries still further. Let 
us suppose that it is possible to extend the boundary of the computational 
domain so far that no external inductive content is needed. What would 
result would be an account of all the relations of inductive support within 
the domain that is fully contained in a single, enormous computation in 
the probability calculus.

While such an enormous computation would surely outstrip any hu-
man powers of comprehension, its possibility in principle is of profound 
foundational importance. It would mean that the probability calculus is 
all we need for a full understanding of inductive inference within a suit-
ably large domain.

All particular facts of inductive support within that domain would 
be expressible by particular probabilistic relations among its propositions. 
That the straight-line hypothesis is better supported by the evidence would 
be expressed by its greater probability; and so on for every other particular 
fact of inductive support. 

The same would be true for general facts about inductive inference. 
Every general fact could, in principle, be captured by some general theor-
em within such a huge computation. If, for example, simpler hypotheses 
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are favored evidentially in this domain, this general fact would be captured 
by a theorem. It would assert that the prior probabilities of hypotheses in 
simpler classes must, in general, be higher, as in (1). All of this—at both 
the level of the particular and general—could be known without drawing 
on any inductive content from outside the domain. The analysis would be 
self-contained.

12.6. Its Failure
What is shown in Norton (2019)—and what will be reviewed below—is 
that this ideal of completeness is unattainable. A very large class of pos-
sible calculi that likely includes any calculus one might realistically con-
sider proves unable to support this ideal of completeness. This failure is 
profound foundationally. It tells us something important about the nature 
of inductive inference itself: it cannot be fully characterized merely by a 
calculus.

To get a sense of this import, it may be helpful to compare this with 
the familiar incompleteness of arithmetic. It was once quite reasonable to 
expect that all the truths of arithmetic could be captured by a few axioms. 
For example, Peano’s axioms lay down a few simple properties of natural 
numbers: 1 is a number; every number has a unique successor; and so on. 
We would hope that we could identify all of arithmetic with all the truths 
that can be deduced from these axioms.

Famously, Gödel demonstrated that no finite axiom system can cap-
ture all arithmetic truths in this way. The truths of arithmetic are some-
thing more than what can be deduced from any fixed, finite system of 
axioms. We may, of course, be able to derive very many important and 
interesting arithmetic truths from our favorite axiom system. However, 
no matter which finite axiom system we favor, there will always be arith-
metic truths that are external to its theorems.

I hesitate to draw a comparison with Gödel’s result, for his result is 
profound and his methods extraordinarily ingenious. The correspond-
ing methods for inductive calculi are simple and mechanical and the re-
sult rather banal. But the significance of the result for inductive logic is 
comparable.
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We may have a favored calculus for inductive inference and be able to 
infer many important and useful results within it. We might then seek to 
characterize inductive inference merely as inference that conforms with 
some specific calculus, such as the probability calculus. The incomplete-
ness tells us that characterization fails. There is always more to inductive 
support than can be captured by the calculus. Searching for theorems 
within a favored calculus can only ever return a partial understanding. 
Inductive inference cannot be reduced to inference that conforms with 
some favored calculus.

12.7. Deductive Preliminaries

12.7.1. Deductive Structure
How is the incompleteness demonstrated? The first step is to fix the en-
vironment in which the inductive logic is applied. We take a fixed set of 
propositions

and our concern will be to determine the inductive relations prevailing 
among these propositions. This set is intended to be not just large, but 
very large. It might be all the hypotheses entertained in science, all the 
evidence statements that may support them, and every other proposition 
that in some way mediates between them. This set—all the propositions 
we have entertained in science—will be large. But it will still be finite. 
For there have only been a finite number of scientists and, given some 
finite limit of the length of sentences, only a finite number of propositions 
expressible.

These propositions come with a deductive structure. The structure 
is just the set of all deductive entailment relations among the m propos-
itions. It may turn out, for example, that A1235 deductively entails A441, 
or that A103 and A1 are logically incompatible, so that their conjunction 
entails the contradiction ∅. The deductive structure is the totality of these 
deductive relations.

It will be essential for what follows to see that this structure is high-
ly symmetric. This symmetry is harder to see if we consider merely the 
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propositions A1, A2, …, Am by themselves. Rather, we take the larger set of 
propositions generated by Boolean operations; that is, by taking all neg-
ations (“not” ~), disjunctions (“or” ∨) and conjunctions (“and” &) of the 
propositions. The set of sentences that results is infinite. However, the set 
of logically distinct propositions is not. The set contains many logically 
equivalent sentences. The sentence A1, for example, is logically equivalent 
to all of ~~ A1, ~~~~ A1, A1 ∨ A1, A1 & (A2 ∨ ~ A2), etc.

12.7.2. A Boolean Algebra of Propositions
The deductive structure, with all duplications eliminated, is best char-
acterized by identifying its “atoms.” These are the logically strongest 
(non-contradictory) propositions. A finite set of propositions can support 
only a finite number of atoms. Take the simple case of two propositions in 
the set {A, B}, where we assume that they are logically compatible and do 
not exhaust the space. Then, there are four distinct atoms:

Each of the propositions a1, a2, a3, and a4 is an atom since nothing (other 
than the contradiction ∅) entails it. 

The four atoms generate a four-atom Boolean algebra of a finite num-
ber of propositions, where there are five distinct logical levels:

the universal proposition: W4 = a1 ∨ a2 ∨ a3 ∨ a4

three-atom disjunctions: a1 ∨ a2 ∨ a3,   a1 ∨ a2 ∨ a4,    
a1 ∨ a3 ∨ a4,   a2 ∨ a3 ∨ a4

two-atom disjunctions: a1 ∨ a2,   a1 ∨ a3,   a1 ∨ a4,   a2 ∨ a3,    
a2 ∨ a4,   a3 ∨ a4

atoms: a1, a2, a3, a4

the contradiction: ∅

The original propositions A and B reside within this Boolean algebra as A 
= a1 ∨ a2 and B = a1 ∨ a3. Figure 12.1 is a picture of the algebra, showing 
the distinct levels. The arrows represent deductive entailment.
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Ø

Ω

a1

a1va2va3

a2va3

a1va2

a1va3

a1va3va4a1va2va4

a2va4

a1va4

a2va3va4

a3va4

a2 a3

a4

Figure 12.1. A four-atom Boolean algebra.

12.7.3. Symmetries of Deductive Structure
A Boolean algebra is a highly symmetric structure. Informally speaking, 
each level is homogeneous. That is, the entire algebra “looks the same” 
from any proposition we pick in the level. For example, take the two-at-
om disjunction level of the four-atom algebra. Each disjunction in it is 
entailed by two atoms; and each disjunction in the two-atom layer in turn 
entails just two three-atom disjunctions. The only change, as we move 
around within one of the levels, is the labeling of the atoms that appear in 
the deductive entailments.

When there are very many atoms in the algebra, the basic structure 
remains the same. There are now, however, many more levels: the one-at-
om level, the two-atom level, the three-atom level, and so on for many 
more levels. As before, each level in the algebra is homogenous. That is, the 
algebra looks the same, as far as deductive relations are concerned, from 
each proposition in the same level.

More formally, this symmetry can be expressed as a labeling invari-
ance. That is, the total deductive structure is unchanged if we permute the 
labels attached to the atoms. Take the four atoms
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and permute their labels any way you please. You might just switch the 
first two, so that the atoms are now labeled

Or you might cyclically permute them to 

In both cases, propagate the labeling change through the remainder of 
the algebra. For these permutations and for any others, the total deductive 
structure will remain unchanged. If a1 entails a1 ∨ a2 entails a1 ∨ a2 ∨ a3 
prior to the permutations of atomic labels, the same will be true for the 
relabeled propositions.

The symmetry is easier to see geometrically in a simpler figure that 
shows just a three-atom algebra. Figure 12.2 shows the same three-atom 
algebra that differs only in the arbitrary labeling of the atoms. Labels a1 
and a2 are switched on one side; and atom labels a1, a2, and a3 are cyclically 
permuted on the other:

Ø

Ω

a1

a2va3a1va2

a1, a2

switch
a1, a2, a3

cycle

a1va3

a2

a3

Ø

Ω

a1

a2va3

a1va2a1va3

a2a3

Ø

Ω

a1

a2va3

a1va2 a1va3

a2 a3

Figure 12.2. Relabelings of a three-atom algebra.

12.8. Deductively Definable Logics of Induction

12.8.1. Rules Define Strengths of Inductive Support
A calculus of inductive inference will here be built around the funda-
mental quantity “[A | B],” which is the strength of the inductive support 
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afforded proposition A by proposition B. The strength might be a con-
ditional probability, which means that it conforms with the probability 
calculus. The strength need not be a probability. It may be a strength that 
conforms with one of many other calculi.

Other choices are possible for the basic quantity. We could instead 
use “[A  | B, C]”, which could be interpreted as the strength of inductive 
support afforded proposition A by B with respect to background C. It will 
become clear that the arguments leading to incompleteness can be mount-
ed in variant forms for each of these choices. We will proceed with just 
[A | B], since it is all that is needed to see how the arguments run.

A calculus of inductive inference is a system of rules that enables 
the assignment by purely mechanical computation of all the strengths 
[Ai | Ak] for propositions in the set {A1, A2, …, Am}. They key question is 
which resources these rules may use. If the domain in which the set resides 
is sufficiently large for completeness to obtain, then the rules may not use 
any inductive content from outside the domain. That is, the rules may not 
set any of the [Ai | Ak] by external considerations independent of the rules 
of the calculus.

This restriction then leaves as the sole resource the deductive relations 
among the propositions in the set {A1, A2, …, Am} and their deductive 
relations with the other propositions in the larger algebra W in which it 
resides. A calculus that employs just this deductive structure in specifying 
its strength is “deductively definable.”

12.8.2. Two Sample Logics
At first it may seem that deductive definability is excessively restrictive. It 
is not. Rather, it is the standard way of specifying a calculus of this type. 
As a general matter, the definitions of the strengths [Ai | Ak] may be sup-
plied by explicit or implicit definitions.

The latter implicit definitions are more commonly used. The cele-
brated Kolmogorov axioms (1950) for the probability axioms provide im-
plicit definitions solely in terms of the deductive structures among the 
propositions in the outcome space. These axioms, used to define an addi-
tive measure m on the algebra, assert:
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This is an implicit definition of the additive measure m. It consists of three 
sentences in which the measure appears; and those sentences otherwise 
only mention the deductive structure of the algebra. For example, (4b) 
assigns unity to the universal proposition W, distinguished by the fact 
that it is deductively entailed by all the propositions in the algebra. The 
summation rule relates the measure of a disjunction to the measures of 
the disjuncts in the special case in which the disjuncts are deductively 
incompatible.

The Kolmogorov axioms constrain the measure m, but do not definite 
it uniquely. In any given algebra, there will be infinitely many measures 
compatible with the axioms. We can assure uniqueness of m in some alge-
bra by adding further conditions, such as

Once again, this sentence mentions only deductive structure. The atoms 
a1, a2, …, an are the propositions in the algebra that are deductively en-
tailed by no other propositions (other than the contradiction, ∅).

This uniquely defined additive measure can now be used to introduce 
the familiar inductive strength of support, a conditional probability. For 
all propositions A and B, where m(B) is not 0

In order to underscore that these results apply to many calculi, we can also 
define a different calculus—a “specific conditioning” logic—by replacing 
(6) by the following.4 For all propositions A and B, where neither m(A) nor 
m(B) is 0

4 For more details of the properties of a special conditioning logic, see Norton (2010, 
§11.2).
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We will see shortly in an example what motivates this logic.

12.8.3. General Form of the Definitions
The conditions (4), (5), and (6) implicitly define a probabilistic calculus 
of inductive inference. The conditions (4), (5), and (7) implicitly define a 
distinct “specific conditioning” calculus of inductive inference. What will 
matter in what follows is the general form of the definitions:

General form of the implicit definition: A set of sentences that 
mention the strengths [Ai | Ak] and deductive relations 
among the members of the set {A1, A2, …, Am} and the 
other propositions in the algebra.

These are just two examples of many possible deductively definable logics 
of induction. More are described in Norton (2010).

A simple and natural logic derives from the basic notion of hypo-
thetico-deductive confirmation. Accordingly, if hypothesis H deductively 
entails evidence E, then evidence E inductively supports H. This much 
provides for a single value “supports” for [H | E] via the explicit definition:

If H deductively entails E, then [H | E] = supports.

There is much scope to enhance the definition. We might replace the single 
value with increasing numerical values the closer that H is to E in terms 
of the levels of the Boolean algebra. If, for example, H = a1 ∨ a2 from the 
level of two-atom disjunctions and E = a1 ∨ a2 ∨ a3 ∨ a4 from the level of 
four-atom disjunctions, then the strength of support might be defined as 
2/4. Then, the closer they are in levels, the stronger the support. This gives 
the augmented definition5

If H from the level of m atom disjunctions deductively entails E 
from the level of n atom disjunctions, then [H | E] = m/n.

5 This definition induces a product rule. If A entails B entails C, then [A | C] = [A | B] × 
[B | C]. 
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This second example illustrates the general form of an explicit definition 
of inductive strengths:

General form of the explicit definition: The strengths [Ai | Ak] are 
determined by a formula that mentions only the deductive 
relations among the members of the set {A1, A2, …, Am} 
and the other propositions in the algebra.

In the example, the formula is “m/n”, where the quantities n and m are 
related to atom counts and are thus recoverable from the deductive struc-
ture of the Boolean algebra.

This hypothetico-deductive model could be enhanced still further by 
rewarding hypotheses with stronger support if they were more explana-
tory or simpler. To do this requires that we have some way of identifying 
which hypotheses are more explanatory or which are simpler. If this can 
be done by adding further propositions to the algebra, then the definition 
of the inductive strengths can still meet the requirement that they draw 
only on resources within the domain. If this cannot be done and the judg-
ments require resources outside the domain, then we have already estab-
lished that these particular augmentations of the hypothetico-deductive 
scheme are not complete.

12.9. The Quest for an Art Thief
As an illustration of the application of these logics, we will imagine an 
inductive problem presented to the police in their efforts to track down the 
location of a notorious art thief. They know, we shall say, that the art thief 
is in one of four cities: Boston “BOS,” New York “NY,” Philadelphia “PHL,” 
or Pittsburgh “PIT.” That is, we have

These four propositions are the atoms of the algebra. Their evidence is that 
the thief is in an East Coast, Atlantic port city “EC”:

We can then ask how much support EC provides to the various possibil-
ities. We have from the Kolmogorov axioms (4) and condition (5) that
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It follows from the definition (6) that the evidence EC gives the same sup-
port to the hypothesis BOS as it does to the disjunction BOS ∨ PIT

This is a familiar property of conditional probability. Since the propos-
ition PIT contradicts the evidence EC, forming a disjunction with BOS 
does not alter the conditional probability.

While the property is familiar, it is an oddity of probabilistic support. 
Unless we have honed our sense of evidential support on probabilistic no-
tions, we would judge the support provided by EC for BOS to be weakened 
when we form a disjunction with the city PIT that contradicts the evidence. 
The evidence specifically supports BOS, not PIT. Within the probabilistic 
analysis, we can recover the fact that the PIT disjunct plays no role in the 
support accrued to BOS ∨ PIT by noting that the probability is unchanged 
when we eliminate the PIT disjunct. The awkwardness is that we have to 
do this additional computation to learn that the evidence points better to 
BOS than to BOS ∨ PIT.

The specific conditioning logic (7) is designed to remedy this defect. It 
does the work of discriminating between BOS and BOS ∨ PIT by assigning 
a lower strength of support to BOS ∨ PIT. That is, we have

whereas

so that 1/6 = [(BOS ∨ PIT) | EC]SC < [BOS | EC]SC = 1/3. Perhaps in this 
case, the advantage of the specific conditioning logic is unclear. But this 
is only because we can “see through” the example and recognize the odd, 
disjunctive character of the hypothesis BOS ∨ PIT. In more complicated 
cases, this might not be possible and we would benefit from the specific 
conditioning logic doing the work of recognizing the oddity for us.
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12.10. Symmetry Constraints on Deductively 
Definable Inductive Logics
Two properties of the systems developed here combine to place powerful 
constraints on the inductive logics.

First, the inductive logic is deductively definable. It follows directly 
from the above general implicit and explicit definitions that if two sets of 
propositions agree in their deductive relations, then they must agree in 
their inductive relations. That is, assume that a set of propositions A, B, C, 
… can be mapped to a second set A’, B’, C’, … in a way that preserves the 
deductive structure. It follows that the inductive strengths formed from 
A, B, C, … must agree with the corresponding strengths formed from A’, 
B’, C’, …

Second, the deductive structure is highly symmetric. This means that 
the deductive structure preserving map can be implemented within a sin-
gle algebra of propositions merely by relabeling the propositions. It then 
follows that many of the inductive strengths formed within the single al-
gebra must be equal.

12.10.1. An Illustration
We can see how these equalities would apply in the example of the art 
thief. Consider the support afforded by EC for BOS and NY. That is, com-
pare [BOS | EC] and [NY | EC]. We shall see that they must be equal.

To see this, we relabel BOS and NY as

The two remaining atom labels are unchanged other than for the addition 
of a prime:

One sees immediately that the deductive structure of the propositions 
with the primed labels is the same as the deductive structure of the prop-
ositions with the unprimed labels. That is, for every deductive entailment 
in the first there is a corresponding deductive entailment in the second; 
and vice versa. For example, BOS deductively entails EC = BOS ∨ NY ∨ 
PHL. Correspondingly, BOS’ deductively entails EC’ = BOS’ ∨ NY’ ∨ PHL’.
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Since the inductive logic is deductively definable, it now follows that 
all corresponding inductive strengths must agree. That is we have

The primed propositions are merely relabelings of the unprimed propos-
itions. In particular, BOS’ = NY and EC’ = EC. Making the replacements 
in the first equality [BOS | EC] = [BOS’ | EC’] gives the result promised

We can see informally how this equality comes about. It arises because the 
BOS-EC relationship is reduced to the bare skeleton of relations among its 
atoms,

“single atomic proposition deductively entails three-atom 
disjunction.”

The NY-EC relationship is the same. Since the deductive structures in-
volved are the same, the correspondingly inductive strengths must be the 
same.

12.10.2. The Symmetry Theorem
The symmetry constraint can be generalized. Take a slightly more general 
case of a deductively definable logic in which the inductive strengths [A 
| B] are fixed by the deductive relations among A and B and the remain-
ing propositions of the algebra. When might we have an equality of two 
strengths [A | B] and [C | D]? It arises when there is some relabeling pos-
sible for the atoms in the algebra, so that A and B are relabeled as A’ and 
B’ and



The Material Theory of Induction456

This relabeling will be possible just in case the conjunctions to be set equal 
are formed from the same number of atoms. That is, the same number 
of atoms disjoined to form A & B and to form C & D, and so on for the 
remaining equalities, so that

where the notation “#proposition” indicates the number of atoms dis-
joined to form the proposition.

Then, by reasoning analogous to that of the last section, we can show 
that the deductive relations into which A and B enter are the same as those 
into which C and D enter. It now follows that the inductive strength [A | B] 
is fixed by the atom counts of these four conjunctions. That is,

Symmetry Theorem. For each deductively definable logic in which 
the inductive strengths [A | B] are fixed by the deductive 
relations among A and B and the remaining propositions 
of the algebra, there exists a function f such that [A | B] = 
f(#A & B, #A & ~B, #~A & B, #~A & ~B).

We can illustrate this theorem in the case of the two logics considered 
above. For the probabilistic logic we have
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For the specific conditioning logic, we have

In general, the specification of a new inductive logic merely requires the 
specification of a new function f in the theorem.

This formulation of the symmetry theorem is not the most general 
formulation. In general, the strengths [Ai | Ak] are fixed by deductive re-
lations among the large set {A1, A2, …, Am} and their deductive relations 
with the other propositions in the larger algebra W in which it resides. The 
obvious generalization of the theorem is given in Norton (2019, §4.2).

12.10.3. How Might Deductive Definability Fail?
The requirement of deductive definability is fragile and easily broken. 
Since this might not be immediately apparent, here is an example of a 
failure. Consider the deductively definable logic of induction specified by 
(4) and (5) above. Replace (5) by

That is equivalent to setting the normalized measures of the atoms to

The corresponding conditional probabilities are 

The key fact about these assignments is that they are non-uniform. 
Uniformity is unsustainable in a deductively definable logic of induction. 
Each of the atoms a1, a2, …, an enters into exactly the same deductive 
relations with the other propositions in the algebra. Hence, deductive de-
finability requires the equality of all these conditional probabilities
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For the condition (5’) to be upheld, we must have some way of distinguish-
ing among the atoms. Atom a1 will be assigned the smallest measure m; 
atom a2 will be assigned the next largest measure m; and so on.

Distinguishing among the atoms cannot be done in terms of the de-
ductive structure. It must be done by means external to the algebra. These 
means amount to external inductive content and lead to the specification 
of the non-uniform probabilities (5’’).

Finally, since the logic is no longer deductively definable, it is no long-
er possible to define the conditional probabilities of (5’’) purely as a func-
tion of atom counts, so the symmetry theorem does not apply to this logic.

12.11. The Need for Disjunctive Refinements
The example of the art thief shows how a simple deductively definable 
logic of induction can be inadequate for its intended purpose. We would 
like to know whether the evidence EC better supports that the art thief is 
in New York (NY) rather than in, say, Boston (BOS). However, the logic 
requires [BOS | EC] = [NY | EC]. So differential support is not possible.

This problem will persist as long as the propositions form a small 
Boolean algebra based on just four atoms BOS, NY, PHL, and PIT. The 
remedy is to increase the expressive power of the algebra by increasing 
the number of atoms. For example, we may judge that there are a large 
number of possible lairs in Boston in which our thief may be hiding out. 
If we write BOSi as the proposition that the thief is hiding in the ith of r 
possible lairs, then we create a disjunctive refinement of original algebra 
by replacing the atom BOS by the disjunction of new atoms

Correspondingly, we can expand the remaining atoms as

The small four-atom algebra has now been replaced by a larger algebra 
with r + s + t + u atoms. 
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This larger algebra gives us a great deal more expressive power. We 
can assign widely varying support to propositions like BOS or NY, accord-
ing to the values selected for r, s, t, and u. In the probabilistic logic, we now 
have

If there are many more likely places to hide in New York than in Boston, 
we would have r < s and P(BOS | EC) < P(NY | EC). For the specific condi-
tioning logic, we now have

Then [(BOS ∨ PIT) | EC]SC would be reduced in relation to [BOS | EC]SC 
according to how large t is in relation to r.

12.12. Asymptotic Stability
This last example illustrates a general property of deductively definable 
logics of induction. By disjunctively refining the atoms, we introduce new 
possibilities that alter the inductive strengths. Part of the content comes 
in the inductive relations among the new atoms and the original propos-
itions. The part that will concern us here, however, involves just the rela-
tions among the old propositions.

Here is an example. We fix just three for examination—BOS, NY, and 
EC—and ask after the support BOS accrues from evidence EC and the sup-
port NY accrues from EC. As we refine and add more atoms, the relative 
strengths of support [BOS | EC] and [NY | EC] will change. Initially, these 
changes reflect the incorporation of new information into the algebra of 
propositions. There may be, for example, many more lairs in New York in 
which the art thief can hide.

In this process, we are not altering the evidence proposition dir-
ectly. We are asking the same question repeatedly: What is the support 
accrued to NY from the evidence EC? What changes is the background 
deductive and inductive structure in which the propositions NY and EC 
appear. These changes should be reflected, to greater or lesser degree, in 
the strength [NY | EC].
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Eventually, we expect that the new information incorporated will have 
diminishing import inductively. If NY1 happens to be the proposition that 
the art thief is in a luxurious Fifth Avenue penthouse apartment in New 
York, then we might refine it further as

where NY1-NE is the proposition that the art thief is, at this moment, in 
the northeast corner of the penthouse; and so on for the remaining three 
quadrants NW, SE, and SW. Presumably, this refinement would lead at 
best to a small change in the inductive strength [NY | EC].

Or perhaps not. Perhaps there is some evidential import in the loca-
tion of the art thief in the penthouse that the inductive logic can discern. 
Then we might refine further to incorporate still more inductively relevant 
information. Through the refinements, we may add new sorts of prop-
ositions, perhaps concerning the history of the art thief ’s behavior, the 
climate in New York and elsewhere, the public transport system in various 
cities, and so on.

The requirement of asymptotic stability is that, eventually, continuing 
refinement will produce diminishing returns, in the sense that the origin-
al strengths like [NY | EC] alter less and less. Once we are at this point, 
strengths involving these propositions stabilize. They may stop changing 
completely. Or they may approach their limiting values asymptotically. 
For example, if [NY | EC] has the limiting value [NY | EC]lim, then once 
we are at this point of diminishing returns, the actual value of [NY | EC] 
will be close to [NY | EC]lim and, the sole change introduced by further 
refinement is to bring [NY | EC] closer to the limiting value, [NY | EC]lim.6

The idea behind asymptotic stability is that there is a right choice for 
the strength of support [NY | EC] once all relevant background informa-
tion is incorporated into the algebra; and that the inductive logic imple-
mented is able to find it, at least asymptotically.

6 More precisely, when we require that [NY | EC] approaches the limiting value [NY | 
EC]lim asymptotically we just mean this. Pick any measure of closeness to [NY | EC]lim you like: 
within 1%, within 0.1%, within 0.001%, etc. Then it is always possible to refine the algebra so that 
the actually value of [NY | EC] lies within those bounds and so that it remains there under all 
possible, subsequent refinements.
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The alternative is to allow that the strength [NY | EC] never stabil-
izes. This would mean that no matter how much additional information 
we incorporate into the algebra of propositions, the value of [NY | EC] 
would keep changing without ever settling down. An inductive logic that 
behaves this way is of no value to us, for it is unable to implement the idea 
that there is a definite strength of support that EC affords NY in the con-
text of even the fullest specification of background facts.

This discussion so far has dealt with the special case of an art thief. 
The general case is no different. As indicated above, we concern ourselves 
with some fixed set of proposition {A1, A2, …, Am}, where the set is very 
large and may include all the propositions considered in science. The re-
quirement of asymptotic stability is that sufficient disjunctive refinement 
of the atoms leads each of the pairwise strengths [Ai | Ak] to settle down 
asymptotically to its limiting value, from which still further refinement 
cannot remove it. The limiting value is the best representation of the in-
ductive support Ak affords Ai.

12.13. The Two Requirements Conflict
Now the trouble starts. We require two things of our logic of induction, 
each well motivated. First, we require it to be deductively definable, as a 
consequence of our requirement that the logic be complete. Second, we 
require asymptotic stability, as a consequence of our requirement that the 
logic eventually lead to stable inductive strengths under continued dis-
junctive refinements.

The two requirements conflict and bring disaster. That is, if the logic is 
deductively definable, then it must be so responsive to different disjunctive 
refinements that it never settles down to limiting inductive strengths. 
Asymptotic stability proves unsustainable.

The instability is easily recoverable in the example of the art thief. 
Imagine that the art thief has a confederate within the police headquar-
ters who is intent on confounding the police’s efforts. The confederate 
can confound any inductive logic merely by artful selection of disjunctive 
refinements.

The ease of this confounding follows directly from the symmetry theor-
em: inductive strengths are fixed by the atom counts in the propositions. 
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The confederate can then confound the logic merely by refinements that 
artfully manipulate the atom counts and drive the inductive support in 
any direction the malicious confederate desires.

For example, take the probabilistic case above. We have

We might start with values r = s = t = 10, as result of the first refinement. 
Then, we would have

The confederate might choose to lead the police towards Boston by merely 
refining BOS much more than NY and PHL. So we might refine further to 
r = 1,000 and s = t = 10. Then, evidential support swings strongly towards 
BOS since we have

But had the confederate chosen instead to refine NY, we could get exactly 
the reversed result, from r = t = 10 and s = 1,000:

No matter how far advanced the disjunctive refinements may be, this 
possibility for confounding by further, malicious refinement will always 
be there. There can be no stabilization of the two probabilities. For, if ever 
the probabilities seem to stabilize, further malicious refinement can drive 
them away from what appeared to be their limiting values. The logic has 
no protection from this malice. Nothing within it can distinguish a refine-
ment that reflects proper inductive import from one that merely deceives.

One might imagine the following escape. The malicious refinements 
are blocked merely by halting the disjunctive refinements at a stage at which 
further refinements would only advance the deception. This escape would 
succeed, but its success would depend on knowing when the appropriate 
stage of refinement is at which to halt. This fact is not recoverable within 
the propositions of the algebra. It must be supplied by external consider-
ations. These external considerations would then be supplying important 
inductive content in violation of the requirement of completeness of the 
inductive logic. That is, we escape instability by admitting incompleteness.
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The example above is drawn from a probabilistic logic of induction. 
The same malicious deception can be visited upon any non-trivial logic 
of induction. The symmetry theorem tells us that the strengths in any de-
ductively definable logic of induction are fixed by the atom counts. As long 
as the logic assigns different inductive strengths when the atom counts 
change, a malicious confederate will always be able to steer the weight of 
inductive support in any desired direction.

12.14. Triviality of a Complete Logic of Induction
The escape that preserves completeness is an unhappy one: if the logic 
of induction fails to adjust its strengths of inductive support when atom 
counts change, then it is immune to deception by malicious disjunctive 
refinements. However, a logic that is unresponsive to atom counts, or 
merely unresponsive in its limiting behavior, is a trivial logic that assigns 
the same limiting inductive strength in all cases, no matter what the atom 
counts in the propositions might be.

In short, deductive definability and asymptotic stability force the in-
ductive logic to be the trivial logic that assigns the same limiting value 
to all inductive strengths. The discussion here does not provide a proof 
of this result. It merely recounts an example to illustrate how the result 
comes about. The full demonstration of Norton (2019), the “no-go” result, 
requires a great deal more logical accountancy. But those details introduce 
no further matters of principle. The essential manipulations have already 
been illustrated in the example above. 

There is a technical complication in the full demonstration. To arrive 
at the simplest version of the no-go result, a third condition of continuity 
is needed. It merely requires that inductive strengths do not make dis-
continuous jumps in their dependence on atom counts when the atom 
counts are large. Without the condition, one still has triviality forced on 
the inductive logics, but the triviality comes in the form of a unique lim-
iting value for each inductive strength, according to the class of deductive 
structure to which they belong. This notion of class is defined in Norton 
(2019).
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12.15. Escapes
The no-go result is developed in a precise setting: the deductive structure 
is given by propositional logic with a finite number of propositions; and 
the inductive structure is given by inductive strengths that are represented 
by the binary quantity [A | B]. The temptation is to look for ways of escap-
ing the result by altering the setting. The prospects of such an escape are 
poor. 

As far the deductive structure is concerned, the logic employs just 
the Boolean operators. They reappear in most, more developed deductive 
logics. All of these logics will then admit the disjunctive refinements that 
power the present analysis. More generally, the decisive property of the 
deductive structure is that it is highly symmetric. This symmetry can be 
replicated in richer logics. For example, if we have a simple predicate logic 
with monadic predicates only, P1(.), …, Pn(.), then the logic will be sym-
metric under permutation of the predicates.

Similarly, a richer inductive structure will also generate correspond-
ing no-go results. For example, we may replace [A | B] by a tertiary quan-
tity, “[A | B, C],” as suggested earlier. It could be interpreted as the strength 
of inductive support afforded proposition A by B with respect to back-
ground C. The discussion above would remain largely unchanged except 
in the details. If the inductive logic is deductively definable, the strength of 
support would still turn out to be a function solely of the atom counts in 
propositions A, B, and C. As a result, it would be subject to confounding by 
malicious disjunctive refinement, as before, and the logic would be forced 
to triviality.

More briefly stated, the no-go result developed here is likely to be 
replicable in almost any setting precisely because there is rather little in 
it. Deductive structures are, generally, highly symmetric, and asymptotic 
stability is hard to deny, for otherwise the inductive logic would fail to 
assign a stable limiting value for the strengths of inductive support. With 
these properties pervasive, a version of the incompleteness result is always 
nearby.
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12.16. Subjective Bayesianism
Because of the present popularity of subjective Bayesianism, it is worth 
indicating how this interacts with the no-go result. To begin, the fact that 
prior probabilities can be assigned arbitrarily, according to our personal 
whim, does break the symmetry essential to the no-go result. However, it 
breaks it at great cost, for the conditional probabilities cease to be meas-
ures of inductive support. They become, initially, pure statements of opin-
ion and, after conditionalization on evidence, an amalgam of opinion and 
evidential warrant.7

One might hope that the amalgam of opinion and warrant can be sep-
arated into its elements by a confirmation measure. This would be defined 
in terms of the subjective Bayesians’ probabilities but would extract just 
the evidential warrant from the amalgam, stripping out any subjective 
contributions. What the no-go result asserts, however, is that any such 
confirmation measure must be trivial if it is to be complete. For such a 
measure would conform to the conditions that lead to the no-go result.

12.17. The Recalcitrance of Problems of Induction 
Explained
This analysis establishes that any non-trivial calculus of inductive infer-
ence is incomplete. In retrospect, this fact is not so surprising. The litera-
ture on calculi of inductive inference has been beset with persistent prob-
lems. We can now see that their recalcitrance is explicable as an inevitable 
outcome of incompleteness.

The traditional failure is the notorious problem of the priors in 
Bayesian analysis. The hope had been that we could push our inductive 
investigations back far enough to a neutral starting point, prior to the in-
clusion of any relevant evidence. There we would seek a prior probability 
distribution that would be vacuous in the sense that it would inductively 
favor no particular proposition over any others. Yet no such vacuous prior 

7 The celebrated “washing out of the priors” theorems fall short of what is needed. 
There is a reverse, indelibility result. Loosely speaking, for any fixed likelihoods and any fixed 
posterior probability we may choose, there will always be some perversely chosen prior probability 
compatible with it.
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has been found. All prior probability distributions exert an influence on 
the subsequent analysis and can only be used responsibly if they reflect the 
presence of further evidence outside the calculation.

This is just what incompleteness predicts. For a vacuous prior would 
enable a calculus to be complete. Moreover, the incompleteness result pre-
dicts that this problem of the priors will reappear in some form in any 
non-trivial calculus, not just a probabilistic calculus.

Another recurring problem is that the unadulterated probability cal-
culus is not elastic enough to accommodate all inductive inference prob-
lems. There have been many extensions proposed. We may suppose, for 
example, that a simple probability measure is insufficient, and it is replaced 
by a set of measures, or by a structure that uses interval values, and so on. 
Or we may alter the calculus in fundamental ways, such as the violation 
of additivity in the Shafer-Dempster calculus. Whatever successes these 
expansions meet, they are always limited. Further problems arise and call 
for still more extensions.

If we reconceive the proposals for altered calculi as efforts to find the 
one, true, and complete logic of inductive inference, then their limited 
success ceases to be an unexpected annoyance. It is merely the reflection 
of a necessity: there can be no non-trivial, complete logic of inductive 
inference.

12.18. Conclusion
In the light of the results reviewed in this chapter, what should we think 
of calculi of inductive inference? The import of the results is limited. They 
do not tell us that we must give up the idea of calculi of inductive infer-
ence. Rather, they tell us that we should give up the quest for a single, 
all-purpose calculus that will give us a complete treatment of inductive 
inference. In its place, we should conceive of inductive inference locally. In 
any domain of investigation, no matter how big or how small, we may seek 
a calculus to govern our inductive inferences. If we find one that works in 
a particular domain, the calculus will never provide a complete account 
of the inductive relations in that domain. We will always need further 
inductive content to be supplied externally to the domain. No matter what 
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our domain, there will always be an external background to which we 
must resort for inductive content.

This local reconception of inductive inference fits well with the ma-
terial theory of induction. In each domain, there will be relations of in-
ductive support peculiar to it. They are not warranted by conformity with 
some universal calculus. They are warranted by the particular background 
facts prevailing in that domain. If those relations are regular enough to be 
described abstractly, we may identify a calculus for those inductive rela-
tions. However, whether there is such a calculus and what its rules are will 
depend on the background facts prevailing in that domain. We should 
expect the calculus to differ from domain to domain. There is no universal 
calculus of inductive inference. That is the final moral of incompleteness.
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13

Infinite Lottery Machines

13.1. Introduction
No single calculus of inductive inference can serve universally. There is 
not even any guarantee that the inductive inferences warranted locally, in 
some domain, will be regular enough to admit the abstractions that form 
a calculus. However, in many important cases, when the background facts 
warrant it, inductive inferences can be governed by a calculus. By far, the 
most familiar case is the probability calculus.

That many alternative calculi other than the probability calculus are 
possible is easy to see. Norton (2010) identifies a large class of what are 
called “deductively definable” logics of induction. Generating a calculus 
in the class is easy. It requires little more than picking a function from 
infinitely many choices.

The harder part is to see whether some specific calculus is warranted 
in some particular domain. This chapter and the next three will provide 
a few illustrations of unfamiliar cases. In these cases, the warranted cal-
culus is not the probability calculus. The systems to be investigated are, 
in this chapter, infinite lottery machines; and, in subsequent chapters, 
continuum-sized outcome sets, which include nonmeasurable outcomes; 
indeterministic physical systems; and the quantum spin of electrons.

The infinite lottery machine that is the focus of this chapter selects 
among a countable infinity of outcomes, 1, 2, 3, …, without favor. It allows 
us to pose a series of inductive problems. In this arrangement, how much 
support inductively is given to the outcome of some particular number, 
say 378? Or to some finite set of numbers, say all those between 37 to 256? 
Or to some infinite set of numbers, such as the even numbers or the prime 
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numbers? The answers to these questions will be supplied by the inductive 
logic applicable to these domains.

The warranting facts that pick out the logic will be the physical prop-
erties of the infinite lottery machine. The inductive logic will be the same 
for all properly functioning infinite lottery machines. Thus, the pertinent 
warranting facts will be just those that they have in common—that is, the 
fact that they choose a number without favoring any.

The example of the infinite lottery machine has already proven 
troublesome in the existing literature. We shall see in Section 13.2 that an 
unreflective application of the probability calculus to it fails. The literature 
has explored several ways of modifying the calculus to accommodate an 
infinite lottery. They include dropping countable additivity and introdu-
cing infinitesimal probabilities. In subsequent sections, I will argue that 
neither of these modifications succeeds. The defining characteristic of an 
infinite lottery is that it chooses its outcomes without favoring any. This 
characteristic is captured formally in the condition of “label independ-
ence” described in Section 13.3. It says that the chance of an outcome with 
some definite number or a set of them is unaffected if we permute the 
numbers that label the outcomes. This condition, it is argued in Sections 
13.4 and 13.5, is incompatible with the (finite) additivity of a probability 
measure. This additivity is the familiar property that, if we have two mu-
tually exclusive outcomes, then we can add their probabilities to find the 
probability of their disjunction. Thus, the chance properties of an infinite 
lottery machine cannot be represented by a probability measure. Attempts 
to do so, I argue in Section 13.6, amount to altering the background facts 
presumed. These attempts do not solve the problem but merely exchange 
the problem for a different one that can be solved with a probability meas-
ure. Section 13.7 explores a non-standard calculus that is warranted by 
specific configurations of an infinite lottery machine. Section 13.8 out-
lines how we can give intuitive meaning to the values in the non-standard 
calculus and use it to make predictions. Section 13.9 extends the logic to 
repeated independent drawings of the lottery. Section 13.10 uses the exten-
sion to show that the chances of frequencies of outcomes in these repeated 
drawings do not conform with probabilistic expectations so that frequen-
cies cannot be used to reintroduce probabilities. Section 13.11 defends the 
failure of what is identified as the “containment principle.” Section 13.12 
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reports briefly on work elsewhere on the unexpected complications found 
when we try to determine the extent to which an infinite lottery machine 
is physically possible. Section 13.13 offers some concluding discussion.

Finally, Appendix 13.A reviews the so-called “measure problem” of 
eternal inflation in modern cosmology. It turns out to be essentially the 
same as the difficulty of fitting an additive probability measure to an in-
finite lottery machine.

13.2. The Initial Difficulty
An infinite lottery machine entered the literature because it poses an im-
mediate problem if we wish to use the probability calculus as the applic-
able inductive logic. This problem arises from a tension between two con-
ditions. First, the machine chooses each number without favor. So each 
outcome n must have equal probability P(n): 

Second, the outcomes are mutually exclusive and at least one must occur. 
Hence, all of these probabilities must sum to unity in the infinite sum: 

No value of e can satisfy both (1) and (2). For if we choose some e > 0, no 
matter how close this e is to zero, then (26) is the summing of infinitely 
many non-zero e’s. Summing only finitely many will eventually exceed the 
unity required in (2). If, instead, we set e = 0, then (2) is the summing of 
infinitely many zeros, which is zero.

Two types of solutions have been proposed in the literature. The most 
popular, advocated by Bruno de Finetti (1972; §5.17), targets the fact that 
(2) requires the summing of an infinity of probabilities. This infinite sum 
operation is qualitatively different from merely summing finitely many 
probabilities. For the infinite summation is carried out in two steps. First, 
one sums finitely many terms up to some large number N, say
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One then takes the limit of S(N) as N grows infinitely large. De Finetti 
proposed that we discard this rule of “countable additivity”1 and employ 
only the first step, “finite additivity,” in which we are allowed to add only 
finitely many probabilities. The outcome is that we no longer require sum-
mation condition (2) for the infinite lottery machine; and we can now 
employ e = 0 in (1), without running into contradictions. De Finetti’s pro-
posal has been subject to extensive critical scrutiny.2

Setting e = 0 amounts to setting the probability of each individual 
number outcome (or any finite set of them) to zero. This seems too severe 
to some. Might we not manage by assigning a very tiny probability—an 
“infinitesimal” amount—to each outcome? Non-standard analysis pro-
vides a mathematically clean way of doing just this. The possibility has 
been explored, for example, by Benci, Horsten, and Wenmackers (2013) 
and Wenmackers and Horsten (2013); and it has been subjected to critical 
scrutiny by, for example, Pruss (2014), Williamson (2007), and Weintraub 
(2008).

Neither of the repairs to probabilistic analysis will be pursued fur-
ther here, since, as I will below argue, no such repair is adequate. The 
infinite lottery requires an even greater departure from normal ideas of 
probability.

13.3. Label Independence
To proceed, we must clarify just what is meant by “choosing without favor,” 
or, as it is sometimes said, having a “fair” lottery. Taking this to mean that 
each outcome has equal probability is untenable, since this presumes that 
the probabilistic treatment is adequate. We need an analysis that does not 
make this presumption. In the following, I shall speak of the “chance” of 
an outcome, where the term will no longer designate a probability. What 
it designates will be determined through the development of the inductive 
calculus that governs it.

1 The full condition of countable additivity applies to any infinite set of mutually 
incompatible outcomes {A1, A2, …, An, … } and asserts that P(A1 or A2 or …) = P(A1) + P(A2) + 
…, where the ellipses “…” indicate that the formulae continue for all n.

2 See, for example, Bartha (2004), Blackwell and Diaconis (1996), Kadane, Schervish, and 
Seidenfeld (1986), Kadane and O’Hagan (1995) and Williamson (1999).
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What it is to choose without favor can be specified through the re-
quirement of “label independence.” The driving intuition is that when out-
comes are chosen with favor, then the chances will generally differ with 
different outcomes. Holding a ticket for the outcome labeled “37” may be 
preferable to, say, “18” if the outcome labeled “37” is favored over the one 
labeled “18.” If, however, the choice is made without favor, then we should 
be indifferent to whether we have the outcome labeled “37,” “18,” or any 
other label. Moreover, this indifference should remain no matter how the 
lottery machine operator switches the labels around over the various out-
comes. We should not care to which outcome our label “37” is attached, 
for none is favored.

The general requirement is that the chances are unaffected by any 
permutation of the labels. A permutation moves labels from outcomes to 
outcomes such that every outcome starts and ends with exactly one label; 
no labels are discarded; and no new labels are introduced. More formally, 
the requirement is the following:

Label independence. All true statements pertinent to the chances 
of different outcomes remain true when the labels are 
arbitrarily permuted.

We can see how it works by taking the case of a finite randomizer, the rou-
lette wheel. Such a wheel has, in the American case, thirty-eight equally 
sized pockets on its perimeter. It is spun and a ball projected in the oppos-
ite direction. The pockets are numbered from 1 to 36, 0 and 00; and the 
outcome is the pocket in which the ball eventually comes to rest. As long 
as the wheel is well balanced with equal-sized pockets and the croupier 
spins and projects with vigor, the ball with pass over the wheel many times 
and arrive with equal chance in each pocket. Under those conditions, the 
choice of labeling the pockets is immaterial. We could, without comprom-
ising the fairness of the wheel, peel off the labels that mark each pocket 
and rearrange them in any way we please.

To apply label independence, we start with a statement true of a prop-
erly made roulette wheel:

Pockets 11 and 23 are the same size.
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Under a permutation that switches label 11 with label 3 and label 23 with 
label 10, the proposition now asserts a truth expressed in the old labeling 
as

Pockets 3 and 10 are the same size.

Proceeding with further permutations, we see that the label independence 
of the statement amounts to the assertion that any two pockets have the 
same size. Similarly, the following is true of any well-functioning roulette 
wheel:

The ball ends up in pockets 1 to 12 roughly as often as it does in 
pockets 13 to 24.

Under label independence, it remains true if we permute the labels of 
pockets 13 to 24 with those of pockets 25 to 36. It now expresses a truth 
expressed in the old labeling as

The ball ends up in pockets 1 to 12 roughly as often as it does in 
pockets 25 to 36.

Thus, the label independence of the second statement reflects the fact that 
the relative frequency of outcomes in a set of pockets depends merely on 
the number of pockets in the set.

The qualification “pertinent to the chances” is essential, for there are 
many statements true of a roulette wheel whose truth is not preserved 
under arbitrary permutation of the pocket labels. For example, in an 
American wheel,

Pockets 3 and 4 are diametrically opposite on the wheel.

This statement does not remain true under most permutations of the pock-
et labels. However, since the statement is not pertinent to the randomizing 
function of the wheel, the failure does not violate label independence.

13.4. Abandoning Finite Additivity
There are no surprises when label independence is used to characterize 
how a finite randomizer, such as a roulette wheel, picks outcomes without 
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favor. Matters change when label independence is applied to an infinite 
lottery machine. The reason is that labels on infinite sets of outcomes can 
be permuted in ways that are impossible for finite sets. It is easy to permute 
them so that the labels for some infinite set of outcomes end up assigned 
to one of its proper subsets. It follows from label independence that the set 
and its proper subset have the same chance. If chances are probabilities, it 
means that they have the same probability. Assembling several permuta-
tions like this soon contradicts the requirement that the probability of an 
outcome is the sum of the probabilities of its disjoint parts. This is a strik-
ing result that bears repeating. If outcome A is the disjunction of mutually 
exclusive outcomes B or C or D—that is,

and B, C, and D pairwise contradict, then we can have cases in which

which is incompatible3 with finite additivity,4 which requires

That is, the label independence of an infinite lottery machine requires us to 
abandon finite additivity for a measure of the chance of sets of outcomes. 
Since finite additivity is essential to the definition of probability, it follows 
that chances cannot be probabilities for an infinite lottery machine.

13.5. An Example of the Failure of Finite Additivity
An illustration of the failure of finite additivity in (3) and (4) is provided by 
an example reported in Bartha (2004, §5) and Norton (2011, pp. 412–15). 
Assume that the chance function “Ch(.)” measures the chance of different 
sets of outcomes of an infinite lottery machine, recalling that the notion 
of chance employed here, so far, is only loosely defined and need not be a 

3 Unless all the probabilities are zero.
4 The full condition of finite additivity applies to any finite set of mutually incompatible 

outcomes {A1, A2, …, An} and asserts that P(A1 or A2 or … or An) = P(A1) + P(A2) + … + P(An).
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probability measure. For some numbering of the outcomes, the labels on 
the sets of even-numbered outcomes5

and the labels on the sets of odd-numbered outcomes

can be switched one-to-one by a permutation:

Hence, by label independence, the two sets must have equal chance: 

Now, consider the four sets of every fourth number:

By similar reasoning, each of one, two, three, and four have equal chance: 

So far, nothing untoward has happened. All of this is compatible with the 
Ch(.) function being a probability measure. This will now change.

Consider two sets of outcomes: set one and the set whose members are 
in (two or three or four). Since all the sets are countably infinite, we can 
have the following two-part permutation of the labels. The first switches 
the labels one-to-one on odd with those on one:

The second part switches the labels one-to-one on even with those of (two 
or three or four):

5 Here and henceforth I move without warning between a set representation of an 
outcome, even = {2, 4, 6, …} and an equivalent propositional representation, even = 2 or 4 or 6 or 
….



47713 | Infinite Lottery Machines

For convenience, since the set one now carries the labels that originated in 
odd, let us also call it odd*; and similarly (two or three or four) is also called 
even*. That is, we have two names for each outcome set:

Since the new labels of outcomes in odd* and even* can also be switched 
one-to-one with each other, analogously to (5), they must also have equal 
chance. That is: 

Combining this, we have

These last equalities violate6 finite additivity (4), since a finitely additive 
probability measure P(.) must satisfy,

13.6. Finite Additivity Must Go
The simple example above shows that label independence for an infinite 
lottery is incompatible with the finite additivity of a probability measure. 
To proceed, at least one of them must be given up. Both Bartha (2005, §5) 
and Wenmackers and Horsten (2013, p. 41) find giving up finite additivity 
too great a sacrifice. In my view, we have no choice but to sacrifice finite 
additivity. For label independence is a defining characteristic of an infinite 

6 Unless all the probabilities are zero.
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lottery machine. Without it, we can no longer say that the infinite lottery 
machine chooses its outcomes without favor. There is no comparable ne-
cessity for probability measures, other than our comfort and familiarity 
with them.

To persist in describing the chance properties of an infinite lottery 
machine by a probability measure is, in effect, to change the problem 
posed. For no single probability measure can satisfy all the equalities 
derived above from label independence. We must choose which subset 
will be satisfied. This choice amounts to adding extra conditions on the 
operation of the infinite lottery machine. While the augmented problem 
may be quite well-posed and even interesting, it is a different problem. 
The extra conditions must breach label independence so that we no longer 
describe a device that chooses outcomes without favor. We have not solved 
the original problem; we have merely changed the problem to one we like 
better.

To see how this favoring can come about, consider the two equalities 
(5) and (7). If the chance function is a probability function P(.), then they 
become

We cannot uphold both if we note that the probabilistic version of (30) 
requires

For then P(odd*) = P(one) = 1/4; while P(even*) = P(two) + P(three) + 
P(four) = 3/4, in contradiction with (7a).

To preserve the applicability of a probability measure, we have to 
block one of (5a) or (7a). A simple strategy is to select a preferred num-
bering of the outcomes, such as the original labeling, and then define the 
probability of each set of outcomes in the natural way. That is, we consider 
the sequence of finite, initial sets
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The probability of some nominated outcome set is defined as the limit of 
the frequency of outcome set members in this sequence. For the outcome 
even, we have 

Definitions of the form (9) using the sequence (8) give the expected prob-
abilities (5a) and (6a) for P(even), P(odd), P(one), P(two), P(three), and 
P(four). However, they fail to return (7a), since, as before, we have P(odd*) 
= P(one) = 1/4 and P(even*) = P(two or three or four) = 3/4.

There is a second, parallel “starred” analysis that preserves the equal-
ity of (7a) while giving up (5a). It proceeds exactly as above, but replaces 
the sequence (8) with one natural to the starred labeling of outcomes. That 
is, the starred labels assigned to outcomes after the permutation conform 
with

In place of (8), it has this sequence:

Using the sequence (8a), definitions of probability based on relative fre-
quencies akin to (9) will give starred results that are the reverse of the 
unstarred results. That is, we shall secure (7a) P(even*) = P(odd*) = 1/2, 
but not (5a).

In comparing the unstarred and starred analysis, we see how each 
improperly favors certain outcomes in the judgment of the other. The un-
starred analysis gives P(odd•) = 1/4 and P(even•) = 3/4, improperly favor-
ing even• over odd•, according to a starred analysis. However, the starred 
analysis gives P(odd) = 1/4 and P(even) = 3/4, improperly favoring even 
over odd, according to an unstarred analysis.

Thus, describing an infinite lottery machine with a probability meas-
ure replaces the original requirement of selection without favor, by se-
lection with the added restriction that the selection must respect also a 
preferred numbering scheme and the limiting ratios native to it.
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That some such change in the problem is required if probabilities are 
to be retained was noted by Edwin Jaynes (2003). He was a leading pro-
ponent of objective Bayesianism and a master of the memorable riposte, 
which he formulated for this case as follows:

Infinite-set paradoxing has become a morbid infection that 
is today spreading in a way that threatens the very life of 
probability theory, and it requires immediate surgical re-
moval. In our system, after this surgery, such paradoxes 
are avoided automatically; they cannot arise from correct 
application of our basic rules, because those rules admit 
only finite sets and infinite sets that arise as well-defined 
and well-behaved limits of finite sets. The paradoxing was 
caused by (1) jumping directly into an infinite set without 
specifying any limiting process to define its properties; and 
then (2) asking questions whose answers depend on how 
the limit was approached.

For example, the question: “What is the probability that 
an integer is even?” can have any answer we please in (0, 1), 
depending on what limiting process is used to define the 
“set of all integers” (just as a conditionally convergent series 
can be made to converge to any number we please, depend-
ing on the order in which we arrange the terms).

In our view, an infinite set cannot be said to possess any 
“existence” and mathematical properties at all—at least, in 
probability theory—until we have specified the limiting 
process that is to generate it from a finite set. (p. xxii)

The bluster of Jaynes’ riposte cannot cover the fact that he can offer no 
good reason for eschewing infinite sets that do not come with a preferred 
ordering or numbering scheme. If we must eschew all such sets, then we 
are precluding from inductive analysis cases that arise in real science. The 
problems rehearsed in Sections 13.5 and 13.6 above have played out almost 
exactly as a foundational problem in recent inflationary cosmology—the 
“measure problem”—where the lack of a preferred order on an infinite set 
of pocket universes has precluded introduction of a probability measure 
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over them. This problem is reviewed in Appendix 13.A. This should quell 
fears that the problem of fitting a probability measure to an infinite lot-
tery machine is merely the contrarian whimsy of eccentric theorists and 
idle philosophers. The problem has a connection and application in real 
science.

13.7. The Inductive Logic Warranted for an Infinite 
Lottery Machine
The defining characteristic of an infinite lottery machine is that its choice 
of outcomes respects label independence. This characteristic rules out 
an inductive logic whose strengths of support are probability measures. 
According to the material theory of induction, the background facts war-
rant the inductive logic appropriate to the domain. Label independence—
the characteristic common to all infinite lottery machines—is the key, 
warranting fact. It acts powerfully and leads us to the following inductive 
logic.

13.7.1. Equal Chance Sets
The logic divides outcome sets into types such that all sets of the same 
type must have the same chance. To implement this division, we require 
that two outcome sets are of the same type if the members of the two sets 
can be mapped one-to-one by a permutation of labels. This means that the 
outcome sets must have the same size (i.e., cardinality). In addition, the 
complements of the sets must also be the same size, else the requisite per-
mutation of labels will not be possible. What results are sets of outcomes 
of the following types:7

Examples of finite3 are {1, 2, 3}, {27, 1026, 5000}, and {24, 589, 2001}.

7 Co-infinite means that the complement of the set is infinite. Co-finite means that the 
complement of the set is finite.
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An example is the infinite set of even numbers {2, 4, 6, …} since its com-
plement is the infinite set of odd numbers {1, 3, 5, …}

An example of infiniteco-finite-10 is the set of all numbers greater than 10: 
{11, 12,  13,…) since its complement is the finite set {1, 2, 3, …, 10}.

13.7.2. Chance Values
The requirement of label independence entails that sets of outcomes of the 
same type must be assigned the same chance. Thus, the chance function 
Ch(.) in this logic can only have the following set of values: 

And for completeness we add in the two special cases

According to (10a), all equal-sized finite sets of outcomes have the same 
chance: any n membered finite set has the same chance Vn. This is re-
quired by label independence, since some permutation can always switch 
the labels between any two finite sets, as long as they are the same size. 
Similarly, (34b) tells us that all infinite sets that are co-infinite have the 
same chance. We have already seen an example above in (5) and (7):

Since each of the four infinite sets are co-infinite, there is a permutation 
that switches their labels. By label independence, they have the same 
chance. Since every co-infinite infinite set of outcomes is assigned the 
same value V∞ as its complement set, we informally name this value “as 
likely as not.” Finally, (10c) can be interpreted similarly to (10a).
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13.7.3. Comparing Chance Values
The conditions (10) are powerful restrictions. They preclude the chance 
function Ch(.) being an additive probability measure. However, they leave 
the logic underspecified. We do not yet know whether the values Vn, V∞, 
and V−n are the same or different; and, if they are different, how they com-
pare with one another. To arrive at the conditions (10), we used label in-
variance only. Further restrictions can enrich the logic.

A qualitative ranking of the strengths of support derives from the idea 
that the chance of a set of outcomes cannot be diminished if we add fur-
ther outcomes to the set. This condition induces the relation “≤,” which is 
read as “is no stronger than.” It obtains between values A and B when the 
outcomes that realize a value A can be a subset of the outcomes that realize 
a value B. As a result, the relation inherits the properties of set theoretic 
inclusion. It is antisymmetric, reflexive, and transitive. It is easy to see that 

One might think that this condition is unavoidable. It is not. It is mere-
ly familiar and amounts to one construal of the meaning of strength of 
support. A somewhat similar condition fails in the “specific conditioning 
logic” of Norton (2010, §11.2).

Further discriminations, if any, must be warranted by further back-
ground facts, whose truth must be recovered from the physical properties 
of the pertinent chance process. One case that is easy to motivate phys-
ically arises if we have an additive measure that is not normalizable; that 
is, the total measure of its space is infinite. It arises if we have a space in 
which lengths, areas, or volumes are defined, the total space has infinite 
length, area, or volume, and the chances of some event occurring in a 
region of the space are measured by its length, area, or volume. This case 
is developed more fully in the next chapter in Section 14.4. An illustration 
presented there derives from steady-state cosmology. Accordingly, the 
chance of a hydrogen atom being created in some region of our cosmic 
infinite Euclidean space is proportional to the region’s volume.

To apply the infinite lottery logic to this case, we divide the space into 
an infinite number of parts of equal length, area, or volume. An outcome 
finiten arises when the event is realized in some subset of the space of n 
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of these parts. Its chance is measured by n. Correspondingly, the chance 
associated with any infinite volume of space will be measured by ∞. That 
is, we have 

The inequalities relating the various values of Vn in (35) become strict 
inequalities.

If the outcome of the infinite lottery machine lies in some finite set of out-
comes, then the chance relations (12) match those of a finite probabilistic 
randomizer with the same finite set of outcomes. That is, the chances of 
different outcomes in the finite set will behave like probabilities defined as 

where A is a subset of B, and B is a finite set of outcomes.
The conditions (11a) and (13) are not assured. They can fail, depending 

on the particular physical instantiation of the infinite lottery machine. 
Such a failure would arise if the randomizer is based on the non-prob-
abilistic, indeterministic systems described in Chapter 15. The conditions 
succeed for the “Spin of a pointer on a dial” device of Norton (2018). 

Correspondingly, while label independence does not force it, we may 
require as an additional assumption in some more specific logic that8

In the following section, we shall see why this additional assumption 
fits naturally into the formal properties of the chance function.

These inequalities along with relations (10), (11), (12), and (13), all 
assumed henceforth, characterize an inductive logic native to an infinite 

8 Considerations of cardinality make natural the strict inequality V∞ < V−n for all n. 
However, unlike the case of Vn, I have been unable to conceive of possible background facts that 
would warrant strict inequalities among the individual values of V−n as shown in (35b). Might an 
inventive reader be able to conceive of such facts?
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lottery machine well enough for us to see that such logics differ signifi-
cantly from a probabilistic logic. 

A curious outcome of the analysis is that this logic is the reverse of the 
one de Finetti (1972; §5.17) proposed for an infinite lottery. In his logic, 
additivity was preserved for outcomes comprised of infinite sets; but it 
was trivialized for outcomes of finite sets, since the latter were all assigned 
zero probability. In the present logic, non-trivial additivity is maintained 
for finite sets through (12) and (13), but additivity fails through (10b) for 
most infinite sets.

13.8. Interpreting the Inductive Logic
The chance function Ch(.) of Section 13.7 specifies an inductive logic. Its 
formal properties are clear. However, we may well ask what its quantities 
mean. What should we think when we learn that some outcome has such-
and-such a chance value? This question asks less than is usually asked in 
the analogous circumstance when we seek an interpretation of probabil-
ity. It does not ask for an explicit definition, such as would be sought by 
a relative frequency interpretation of probability or from the subjectivist 
Bayesian definition of probability in terms of betting quotients. One can 
have an understanding of a magnitude, adequate for practical applica-
tions, without an explicit definition of it. Since the values of the chance 
function (10) are so unfamiliar, that is all that is sought here.

13.8.1. The Probabilistic Model
The problem of developing some informal understanding of an initial-
ly abstruse quantity arises also for ordinary probabilities. We can use its 
solution as a model for the new chance function. Take the simple case of a 
coin toss whose outcome can be heads H or tails T. How are we to under-
stand the probability assertion that P(H) = 0.5? How are we to distinguish 
that probability assertion from nearby assertions like P(H) = 0.4 or P(H) = 
0.6? To be told that a probability of 0.4 is weaker than a probability of 0.5 is 
true but merely qualitative and falls well short of the precision we expect.

We gain a better understanding of such assertions, sufficient to dis-
criminate among them, by contriving associated circumstances of either 
very high or very low probability. For example,
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If P(H) = 0.5, then, with probability near one, the frequency of H 
among many, independent coin tosses will be close to 0.5.

If P(H) = 0.4, then, with probability near one, the frequency of H 
among many, independent coin tosses will be close to 0.4.

Sentences like these, by themselves, are not sufficient to give informal 
meaning to the quantity P(.). All we have is one probability statement, 
that P(H) = 0.5, associated with another statement concerning an out-
come with a probability near one. Without something further, we will 
be trapped forever in a self-referential web of statements in which prob-
abilistic assertions are made about other probabilistic assertions, without 
otherwise clarifying what any probabilistic assertion means. The axioms 
and definitions used to deduce all of these assertions can be modeled in 
many systems with an extensive quantity whose magnitude is additive. To 
break out of the self-referential trap, we use a rule that coordinates large 
and small values of probability with informal judgments of expectation 
about chance outcomes:

Rule of coordination for probability. Very low probability 
outcomes generally do not happen; and very high 
probability outcomes generally do.

Thus, we come to some understanding of the difference between P(H) = 
0.5 and P(H) = 0.4: we expect each to deliver roughly 50% or 40% H, re-
spectively, in repeated independent coin tosses.

This interpretive rule, in various forms, has a long history and has 
come to be known as “Cournot’s Principle.”9 In Andrey Kolmogorov’s 
(1950, p. 4) canonical treatment of the foundations of probability theory, 
he has a version of this rule that employs the locution “practically certain”: 

(a) One can be practically certain that if the complex of 
conditions S is repeated a large number of times, n, then if 

9 For a brief survey, see Shafer (2008, §2). One must be careful to treat the rule as nothing 
more than an informal guide. Otherwise, the danger is that one misidentifies very low probability 
events as strictly impossible and very high probability events as necessary. For de Finetti’s view of 
the rule, see de Finetti (1974, pp. 180–81). My use of the term “rule of coordination” is intended to 
recall Reichenbach’s notion of a coordinative principle.
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m be the number of occurrences of event A, the ratio m/n 
will differ slightly from P(A).

(b) If P(A) is very small, one can be practically certain that 
when conditions S are realized only once, the event A 
would not occur at all.

This process of conveying meaning should not be confused with subject-
ive Bayesians’ process of elicitation of probabilities. They determine, for 
example, that a subject has assigned probability 0.5 to H when the subject 
accepts even odds on either H or T. The present concern is how the subject, 
prior to the elicitation, came to judge that 0.5 was the appropriate prob-
ability to assign. This in turn requires some prior understanding by the 
subject of what probability 0.5 means.

14.8.2. The Analogous Analysis for the Chance Function
This same strategy can be used both to interpret the values of the chance 
function (10) and, at the same time, to display the predictive powers of the 
logic. The analogs of very low probability and very high probability out-
comes are those with chance Vn and chance V−n. A chance Vn outcome is 
realized when the number drawn resides in a finite set among the infinite 
possibilities. This is not an outcome we should expect to happen, since it 
is thoroughly swamped by the infinite numbers outside the set. A chance 
V−n happens when the number drawn lies outside some finite set. Since 
there are infinite possibilities outside the finite set that realize it, this is an 
outcome we should expect. That is, we have the following interpretive rule:

Rule of coordination for chance. Very low chance outcomes with 
chance Vn generally do not happen; and very high chance 
outcomes with chance V−n generally do.

The rule divides outcomes sharply into three sets:

•  outcomes in one of the finiten sets, which we do not expect;

•  outcomes in infiniteco-infinite sets, which may or may not 
happen “as likely as not”; and

•  outcomes in one of the infiniteco-finite-n sets, which we do 
expect.
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The application of this rule is simpler than in the probabilistic case for two 
reasons. First, in the present case, the division of outcomes into unexpect-
ed, intermediate, and expected is sharp. This sharpness makes it natural 
to replace the inequalities of (11) by strict inequalities. In the probabilistic 
case, the division was muddier. Just how low should a probability be before 
its outcome is not to be expected? If one is pressed, one eventually intro-
duces some arbitrary cutoff, knowing that any cutoff can be challenged if 
sufficient contrivance is allowed.

Second, the intermediate co-infinite infinite outcomes all are assigned 
the same chance values of V∞. The intermediate outcomes in the prob-
abilistic case, however, are assigned a range of probabilities, and further 
work is needed to distinguish them. For example, we separated the cases 
of probability 0.5 and 0.4 by considering a large number of independent 
trials. The comparable analysis is not needed for the chance function. 
However, as an exercise in applying the chance function, in Section 13.8.4 
below, it is used to determine the chance of various frequencies of out-
comes of even and odd numbers in many independent drawings of an 
infinite fair lottery.

13.8.3. Applying the Rule of Coordination
To illustrate how the rule of coordination is used, we apply it to a simple 
case. Consider the chance that the number drawn is less than or equal 
to some large number N. This outcome set has N members and thus has 
chance VN. It is an outcome not to be expected. The outcome that the 
number is greater than N, however, is in the complement set and thus has 
chance V−N. It is an outcome we do expect. This must appear strange at 
first; for it tells us that no matter how large we make N—one million, one 
quadrillion, one millionmillion—we are sure the number drawn is greater, 
even though we are certain that some definite, finite number is drawn. 
There is only strangeness here, but no problem. It is how the chances are in 
an infinite lottery. All our calculus does is to relate the fact to us.
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13.9. Repeated, Independent, Infinite Lottery 
Drawings10

13.9.1. Applying Label Independence
To explore the application of the rule of coordination further and to see 
how the chance function behaves, consider the case of repeated independ-
ent drawings from a sequence of identical infinite lottery machines. We 
will consider the case of N independent drawings from N machines: ma-
chine1, machine2, …, machineN. The combined outcome of N drawings 
will form an N-tuple such as 

where the subscript N reminds us that there are N elements in the tuple. 
The set of all such outcomes is WN. It is countably infinite, since it is formed 
as a finite tuple of elements of a countably infinite set.

Label independence can be implemented once again. We consider 
permutations of the labels on the outcomes of each lottery machine in-
dividually. Under such permutations, any N-tuple can be mapped to any 
other N-tuple. Thus, label independence requires that the outcome repre-
sented by each N-tuple each has a chance.

Label independence allows us to form equal chance sets of outcome 
sets, analogous to the equal chance sets of Section 13.7.1. Consider, for ex-
ample, the set of all N-tuples such that every element in each of the mem-
ber N-tuples is an even number. We will write this as11 

Analogously we have 

10 The analysis of Sections 13.8 and 13.9 was decisively advanced by ideas that emerged 
in an energetic email exchange with Matthew W. Parker. I thank him for this and also for helpful 
remarks on the present text.

11 The square bracket notation [ … ] is used to preclude the misreading that all-even is 
an N-tuple of sets, whose first, second, third, … members are each the sets of even drawings on 
machine1, machine2, machine3, ….
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When it happens that two sets of outcomes can be mapped onto each other 
by a label permutation, then label independence requires that the two sets 
have the same chance. Since they can be so mapped, all-even and all-odd 
have the same chance. They belong to the same equal chance set of out-
come sets.

This shows that the inductive logic induced by label independence on 
repeated, independent drawings is similar in structure to that induced on 
single drawings. We shall see below that the full structure induced for 
the repeated case is more complicated. However, there are simple sectors 
in the logic that are formally the same as the logic that applies to single 
drawings.

13.9.2. A Simple Sector
A simple sector consists of a set of equal chance sets, where those equal 
chance sets can be totally ordered by set inclusion. That is, the equal 
chance sets form a chain such that the outcomes of each equal chance 
set is a subset of those higher in the chain. Since the set of all outcomes 
WN is countably infinite, the equal chance sets will be of the type familiar 
from Section 13.7.1, namely finiten, infiniteco-infinite, and infiniteco-finite-n. 
Because they are also totally ordered, we can assign the chance values V0, 
V1, …, V∞, … V−1, V−0 of (34). If all the cardinalities are not realized by the 
equal chance sets, then the sector will only have a subset of these values. 
Thus the equal chance sets of a simple sector follow the same logic as that 
governing equal chance sets of single drawings.

A note of caution is in order: there are many simple sectors in the 
outcome space of repeated drawings. The chance values only have a mean-
ing within the sector in which they are defined relative to the chance of 
the other outcomes in the sector. Without further justification, we can-
not assume that the chance of Vsomething in the outcome space of a single 
drawing has the same meaning chance of Vsomething in a simple sector of 
the outcome space of repeated drawings.

An example of a simple sector is the set of all outcomes in which all 
drawings return the same number. The outcome in which number 1 is 
drawn every time is 
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with an obvious extension of the notation to all 2, all 3, … outcomes. Set 
complementation with the simple sector gives a notion of negation. For 
example12

The outcome 1N has a single member and is of type finite1. The comple-
ment not 1 N is of type infiniteco-finite-1. Thus, 

Applying the rule of coordination, we infer that an outcome in which all 
numbers drawn in N independent repetitions are 1 is not to be expected in 
relation to other outcomes in the sector. Correspondingly, an outcome in 
which none of the numbers drawn is 1 is to be expected. 

To identify further members in the sector, we ask whether we should 
expect all the N drawings to yield the same number, where the same num-
ber is found in some finite set, say {1, 2, 3}. That is, the outcome is (1N or 
2N or 3N). Proceeding as above, we find this outcome is not to be expected, 
since

We get a different result if we ask about the outcome in which all the num-
bers drawn are the same, but that the number can be any in an infinite set 
of type infiniteco-infinite, such as the set of all even numbers or the set of all 
odd numbers. These two outcomes are (2N or 4 N or 6 N or …) and (1 N or 
2 N or 3 N or …). Since these two outcomes can be mapped onto each other 
by a permutation of labels and because they are of type infiniteco-infinite, 
we assign the same value

These outcomes are “as likely as not” in this sector.

12 As before, I move without warning between the set representation of the outcome not 
1N = {2N, 3N, 4N, …} and its equivalent propositional representation not 1N = 2N or 3N or 4N or … 
.
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13.9.3. A Finite Simple Sector
All the finite outcome sets in the last simple sector above are subsets of 
another simple sector. Consider the outcome in which all the numbers 
drawn in N repetitions are less than or equal to some big, finite number 
Big, where the numbers drawn need not be the same. This outcome corres-
ponds to a set of BigN tuples in the outcome set WN. Thus, we have

That is, since BigN is finite, the outcome is one that will generally not hap-
pen according to the rule of coordination.

This is a new sector since a permutation of labels cannot map the set 
of tuples here assigned the value VBigN onto the set assigned the value 
VBigN in the simple sector of Section 13.9.2. For example, consider the 
finite2 equal chance sets in each sector. The sector in this section will have 
outcomes like

No permutation of labels can map these onto the tuples, such as

in the corresponding finite2 equal chance sets of the simple sector of 
Section 13.9.2. 

We cannot directly compare chance values across different sectors. 
However, our rule of coordination enables us to make some coarser 
judgments. What of the outcome that at least one of the numbers in N 
independent drawings is greater than Big? This outcome set is the com-
plement of the last set considered with BigN members. Thus, this outcome 
set is co-finite infinite so that the outcome is to be expected according to 
the rule of coordination. That is, no matter how big we make Big, we must 
always expect that at least one of the numbers drawn in N drawings will 
be greater.

Similarly, we cannot directly compare the chance values across the 
different sectors of Sections 13.9.2 and 13.9.3. However, our rule of co-
ordination, applied to tuples of drawings, tells us that outcomes realized 
by finitely many tuples of drawings generally do not happen. If we now 



49313 | Infinite Lottery Machines

assume that outcomes realized by infinitely many tuples of drawings are 
more likely than the finite case, we arrive at a result that is surely surpris-
ing to someone whose intuitions about chance have been tutored by the 
probability calculus. It is more likely that all N numbers drawn are the 
same than it is that all N numbers drawn are less than or equal to some 
number Big, no matter how big we make it. This holds no matter how large 
we make N. 

13.9.4. A “Likely As Not” Sector
Here are examples that illustrate outcomes to which the “as likely as not” 
chance of V∞ is assigned. Consider the numbers drawn in N independent 
repetitions of the infinite lottery:

all-even: all numbers drawn are even numbers
all-odd: all numbers drawn are odd numbers
all-powers: all numbers drawn are powers of 10, 

that is, 10, 102, 103, 104, …
not-all-powers: all numbers drawn are NOT powers of 10, 

that is, not and of 10, 102, 103, 104, …

Each of these outcomes corresponds to sets of tuples in WN of type in-
finiteco-infinite. They can each be mapped onto any other by a permutation 
of the labels on the individual lottery machines. It follows that they have 
equal chance:

This will seem surprising if we think that there are vastly fewer outcomes 
in all-powers than in not-all-powers, since there are vastly fewer powers 
of ten than numbers that are not powers of ten. Any surprise should be 
dispelled by recalling that both of these sets are countably infinite. The 
impression that one is bigger than the other is purely an artifact of label-
ing. Label independence warns us that such artifacts of labeling should be 
ignored. The two sets in these examples are equinumerous and equinum-
erous in their complements, and they can be mapped onto each other by 
a label permutation.
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13.9.5. Further Sectors
The chance logic of repeated independent infinite lottery drawings in-
cludes further sectors with more complicated properties. An indication of 
the nature of these sectors follows from consideration of two independent 
drawings. Consider the outcome that the first number drawn is 1 and that 
the second number drawn is even—that is, [1, even]—and then another 
outcome [1 or 2, even]. Both can be mapped one-to-one by label permu-
tations onto infinite-co-infinite sets of pairs. However, no permutation of 
labels can map [1, even] to [1 or 2, even]. Thus, they cannot be required 
by label independence to have the same chance value. We would need to 
assign them different chance values. In an obvious notation, they might 
be V1,∞ and V2,∞. In this notation, the outcome [even, even] would be as-
signed the value V∞,∞. The applicable chance logic would then reside in 
relations analogous to those of (35), such as V1,∞ ≤ V2,∞ ≤ … ≤ V∞,∞; and 
V1,∞ = V∞,1; V2,∞ = V∞, 2; etc.

13.10. Relative Frequencies of “As Likely As Not” 
Outcomes

13.10.1. Can Frequencies Reintroduce Probabilities?
The inductive logic induced by label independence precludes an ordinary 
probabilistic logic. We might wonder, however, whether probabilities can 
be reintroduced indirectly by an empirical approach. We carry out many 
independent drawings and let the limiting behavior of the frequencies re-
introduce probabilities. This approach would succeed with a finite lottery. 
In independent repetitions, we expect with high probability that roughly 
half of the numbers drawn will be even and half of them odd. That is a 
consequence of the probabilistic fact that an even number is drawn with 
probability 1/2. 

We should not expect similar results in an infinite lottery, for the 
value V∞ assigned to both even and odd outcomes is quite removed in its 
formal properties from a probability 1/2. We shall see in this section by 
direct calculation that the chance function of the infinite lottery does not 
return the favoring of relative frequencies of odd and even outcomes such 
as would be needed to reintroduce a probability of one half for each.
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13.10.2. Odd and Even Outcomes
Consider N > 1 independent drawings of the lottery as in Section 13.9. The 
outcome sets that interest us are sets of N-tuples of the form

Since each odd and even are realized by infinitely many numbers, the set 
of N-tuples realizing any particular outcome set of the form [odd, odd, …, 
even, odd, even, even]N is infinite. Correspondingly, there are infinitely 
many ways that the complement set could be realized. Thus, the outcome 
is co-infinite infinite, and it has chance V∞ of the simple sector of Section 
13.9.3.

Permuting the labels on the individual lottery machine outcomes, we 
find that each of these outcome sets can be mapped onto any other. For 
example, the outcome set 

can be mapped onto the outcome set

We take the lottery machines in the positions marked “even” in the first 
outcome set and apply a permutation of labels that switches odd and even 
numbers. It follows that all the outcome sets of odd and even outcomes in 
this subsection have equal chances.

13.10.3. Frequencies of Even Outcomes
Our concern is not just the outcome sets of Section 13.10.2. We want to 
know the chances of n even numbers in N independent draws. These chan-
ces are assigned to larger outcome sets. The case of n = 0 is the all-odd 
tuple above. The case of n = 1 is realized as the union of N outcome sets
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In general, the number of these outcome sets to be joined to form the set 
of n even outcomes is given by the combinatorial factor C(N, n) = N!/(n! 
(N – n)!). This combinatorial factor is always finite for finite N and n. It 
follows that there are still infinitely many N-tuples of individual outcome 
numbers that realize the outcome of exactly n even numbers in any order 
among the N drawings; and also infinitely N-tuples in the complement set. 

As a result, it is natural to assign the chance value V∞ to each outcome 
of n even numbers among N draws for any n. We might then continue 
with the natural supposition that each outcome of n even numbers among 
N draws has the same chance for any n. This was a conclusion I drew in an 
earlier version of this chapter and reported in a paper (Norton 2018a, §9). 
Unfortunately, the inference to this conclusion is a fallacy, and I retract 
it. That the outcomes have the same chance requires that they be in the 
same sector of the infinite logic. The values V∞ reported might be drawn 
from different sectors. Then they would have an immediate meaning only 
within each sector. To conclude that they represent equal chances requires 
further argumentation. Ideally, we would need to show that permuting the 
labels takes us from one outcome of n even numbers to any other, which 
would show that they are within the same sector after all. This has not 
been shown and cannot be shown.

For it is easy to show that the outcome set of n = 0 even numbers 
drawn cannot be mapped by a label permutation onto the outcome set of n 
even numbers drawn, where 0 < n < N. To see this, for the purpose of a re-
ductio, assume otherwise: that there is such a mapping for some particular 
value of 0 < n < N. Then a permutation of labels must include mappings of 
N-tuples of the form
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Here, o1, 1, o1, 2, …, oN, N are odd numbers that enter into N-tuples that map 
to N-tuples with even numbers e1, 1, e2, 2, …, eN, N in the positions shown. 
The “?, ?, ?, …” represent further numbers that may be odd or even, but 
have at least one odd number in each N-tuple.

Since the label permutations are carried out independently on each 
machine, it now follows that the label permutation on the set of machines 
must also include the map

However, this mapping is not included in the mapping supposed, for 
an N-tuple drawn from n = 0 even outcome set is mapped to an N-tuple 
drawn from the n = N even outcome set. This contradiction completes the 
reductio.

While not all outcome sets with n even numbers can be mapped onto 
each other. There are a few mappings that succeed. We can map the out-
come set with n even numbers among N draws onto the outcome set with 
N – n even outcomes merely by a permutation that switches everywhere 
odd and even numbers in each lottery machine. Thus we have

In Appendix 13.B, it is shown that this last possibility exhausts all the 
possibilities for equivalences under label permutation in the case of n even 
outcomes. That is, it is shown that a label permutation cannot map the 
outcome set n even to the outcome set m even unless n = N – m.

In the following two sections, we shall see that we can infer enough 
equivalences under label permutation to show that the essential point re-
ported is correct: the chances of n even outcomes do not make likely a 
stabilization of frequencies that accord with probabilistic expectations.
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13.10.4. The Chances of N Odd Versus N Even in N Drawings
The simplest case arises with the two extremes all-even and all-odd. They 
are in the same sector, since a permutation of the individual lottery labels 
can map one onto the other. To probe their chance behavior, consider an-
other property:

and its complement not div m. The outcomes even and odd are the special 
case of m = 2. We have from earlier that a permutation of labels can map 
each of even, odd, div m, not div m onto each other. So they individually 
have the same chance. It now follows immediately that the same is true of 
the N tuples:

They have equal chance, so we may write:

These equalities differ markedly from probabilistic expectations. Since we 
have P(div m) = 1/m and P(not-div m) = (m − 1)/m, we expect

That is, the outcome (N not-div m in N) is (m − 1)N times as probable as 
outcome (N div m in N). It is the basis of the probabilistic expectation that 
not-div m outcomes are likely to occur much more frequently than div 
m outcomes (for m > 2). The equalities of the chance function do not re-
flect this probabilistic favoring or the associated expectations concerning 
frequencies.

13.10.5. Chances of Intermediate N Even Drawings in N Drawings
The preceding section has shown that the chance of frequencies of div m 
in N drawings is independent of m for the extreme n = N case of all-div m. 
This independence of the chances from m holds for all values of n. That is, 
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the chance of 0, 1, 2, … occurrences of a div m number in N drawings is 
independent of the value of m. Below, I sketch a diagrammatic proof for 
the simple case of N = 2. The proof will then be generalized to all N.

In two independent drawings, we will represent the four possible out-
comes sets as

The frequency n = 0 corresponds to OO; n = 1 to (OE or EO); and n = 2 to 
EE. Figure 13.1 lays out the pairs of individual number outcomes in a grid. 
(It only shows a finite corner of the infinite grid.) The first number drawn 
is on the horizontal axis, and the second number drawn is on the vertical 
axis. The set of pairs that comprise OO is shown by the distribution of the 
labels “OO,” and so on for the remaining outcomes. 

Figure 13.1. Distribution of outcomes OO, OE, EO, and EE in a two-
lottery outcome space.
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We will permute the labels so that the outcome sets for n = 0, n = 1, and n 
= 2 even outcomes coincide with the outcome sets for n = 0, n = 1, and n = 
2 div 6 outcomes.

A permutation of the labels of the first lottery can be represented in 
the figure by leaving the labels in their positions on the axes and permut-
ing the columns associated with the first lottery’s numbers. The requisite 
permutation shifts the first five odd-numbered columns—1, 3, 5, 7, 9—to 
the left; and then places the first even-numbered column, 2, after it; and 
so on for the all the column numbers: five odd-numbered columns, then 
an even-numbered column, repeatedly. The result is shown in Figure 13.2.

Figure 13.2. Result of permuting the columns.

To complete the manipulation, we perform the same permutation on 
the labels of the second lottery. That is, we perform the corresponding 
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permutation of the rows to which the second lottery’s numbers are associ-
ated. The result is shown in Figure 13.3. 

Figure 13.3. Result of permuting the columns and rows.

We read from Figure 13.3 that the outcomes have been relocated as follows:

Thus, the chances of n even outcomes equals the chances of n div 6 out-
comes for all n.

The figure shows the manipulation for the case of m = 6. It is clear that 
it will succeed for any value of m > 2. It follows that the chances of the fre-
quencies are independent of whether we are asking about even numbers or 
numbers divisible by 6 or 10 or 100 or 1,000. That is, the chances of these 
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frequencies do not conform with the probabilistic expectations that even 
numbers appear in repeated trials roughly half of the time and that those 
divisible by 6 or 10 or 100 or 1,000 appear roughly 1/6 or 1/10 or 1/100 or 
1/1,000th of the time, respectively.

13.10.6. The General Case13

The general result is that the chances of n div m outcomes in N drawings is 
independent of the value of m for all 0 ≤ n ≤ N.

To see it, first note that there is a permutation of the label numbers 
of one lottery machine such that the set div m is mapped exactly onto 
the set div k for any m, k > 1. That is, under the permutation, all number 
labels divisible by m are switched with all number labels divisible by k. The 
construction of the N = 2 case displays the permutation for the case of m 
= 2 and k = 6.

Consider any N-tuple of outcomes that has exactly n outcomes divis-
ible by m—that is, drawn from the set div m. Under the permutation, this 
N-tuple is mapped to one that has exactly n outcomes divisible by k—that 
is, drawn from the set div k. Now consider the set of all N-tuples with 
exactly n outcomes divisible by m. The same permutation will map it to 
the set of all N-tuples with exactly n outcomes divisible by k. Thus, label 
independence entails that the two sets have the same chance, and we can 
write

for all 0 ≤ n ≤ N  and any m, k > 1. Since the outcomes of n even and N-n 
even may be mapped onto each other, we can extend these equalities of 
chances:

for all 0 ≤ n ≤ N. 

13.10.7. Frequencies Do Not Give Us Probabilities
What these results show is that the tempting strategy for reintroducing 
probabilities fails. The temptation is to say “Do the experiment. Run many 

13 I thank Matthew W. Parker for this proof.
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independent drawings from lottery machines. Read the limiting frequen-
cies in many drawings. They will reveal to you the probabilities hidden in 
the lottery machines!” 

The strategy fails since the chances of different frequencies do not 
mass in a way that would reveal probabilities. Probabilistic intuitions 
would lead us to expect that drawing all N numbers divisible by 100 in N 
draws would be much less likely that drawing all N numbers not divisible 
by 100 in N draws. Yet they have the same chance, so we have no reason to 
expect the second over the first.

The same probabilistic intuitions would lead us to expect that the most 
likely numbers of even drawings in N drawings would cluster around N/2. 
Numbers of even drawings far from N/2 would be unlikely. From this 
clustering, we could recover a probability of one half for an even number. 
The trouble is that this same clustering around N/2 is likely for outcomes 
divisible by 10, 100, or 1,000. We would then have to infer that numbers 
divisible by 10, 100, or 1,000, or any other number greater than 2, also have 
a probability of one half. No ordinary probability distribution can realize 
these probabilities.14

The calculations reviewed in this section and in Appendix 13.B show 
that the chances of securing n or m even numbers in N repeated independ-
ent draws from infinite lottery machines are incomparable for most n and 
m. Thus, this section leaves open whether imposition of further back-
ground facts will lead to further relations that will lead to chances favor-
ing certain frequencies of outcomes. However, what has been shown is 
that if there is any favoring, it is not of a type that can be used to reveal 
underlying probabilities as long as the fair character of the infinite lottery 
is preserved.

14 Assume otherwise. Then the probability of drawing a number divisible by 2r is one half, 
for any r > 1. Since the probability of drawing a number divisible by 2 is also one half, it follows the 
probability of drawing numbers divisible only by 21, 22, …, 2r–1, is zero. But since r can be set as 
large as we like, we infer that the chance of a number divisible by any power of two is zero, which 
contradicts the probability of one half for even numbers.
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13.11. Failure of the Containment Principle
The infinite lottery logic will likely be discomforting for someone whose 
intuitions are guided by probability theory. One source of discomfort may 
be that the removal of elements from an outcome set commonly does not 
reduce the chances of the outcome. It would seem natural that the set of 
even-numbered outcomes {2, 4, 6, 8, …} must be assigned greater chance 
than the set of every fourth numbered outcome {4, 8, 12, 16,  …}. This 
second set is properly contained in the first. However, the present logic 
assigns the same chance to both. We might express the intuition more 
clearly as,

The containment principle. If a set of outcomes A is properly 
contained in a set of outcomes B, then the chance of A is 
strictly less than the chance of B: Ch(A) < Ch(B).

If the background facts support it, there is no problem with a logic that 
conforms with this principle. However, the principle cannot lay claim to 
a preferred status. As is always the case, whether a logic has some feature 
is decided by prevailing background facts. The background fact of label 
independence entails the failure of the containment principle.

Two further considerations reduce the appeal of the principle. First, 
the containment principle has not been uniformly respected in familiar 
probabilistic applications. There is a probability zero of a dart hitting any 
particular point on a dartboard that consists of a continuum of points. The 
same zero probability is assigned to the dart hitting any of a countable in-
finity of points on the dartboard, even if that set contains the single point 
originally considered. In another example, we follow de Finetti’s prescrip-
tion for the infinite lottery and employ a probability measure that is only 
finitely additive. Then, the probability of drawing a one is the same as the 
probability of drawing any number less than one hundred million. Both 
are zero probability outcomes.

Second, the containment principle by itself is insufficient to induce 
chances that can compare all sets of outcomes. Since the set of even-num-
bered outcomes is disjoint from the set of odd multiples of three {3, 9, 
15, 21, 27, …}, we are unable to compare their chances. In such cases, we 
may be inclined to retain the chance assignments of the present logic: if 
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disjoint outcome sets (and their complements) are equinumerous, then 
they are assigned the same chance. What results, however, is a non-tran-
sitive comparison relation for chances. We have from considerations of 
equinumerosity that

Ch({2, 4, 6, 8, …}) = Ch({3, 9, 15, 21, 27, …})

Ch({4, 8, 12, 16, …}) = Ch({3, 9, 15, 21, 27, …}).

If transitivity of the comparison relation for chances is supposed, it fol-
lows that

Ch({4, 8, 12, 16, …}) = Ch({2, 4, 6, 8, …}).

This equality contradicts the containment principle, which tells us that

Ch({4, 8, 12, 16, …}) < Ch({2, 4, 6, 8, …}).

If transitivity is dropped, we will be unable to assign a single value to each 
chance, but only assign pairwise comparisons of strength. Presumably, 
some accommodation of the two approaches can be found eventually, but 
it may not be pretty or simple.

In sum, we should use the containment principle when the back-
ground facts call for it. When they do not call for it, we should feel no 
special loss at its failure.

13.12. Is an Infinite Lottery Machine Physically 
Possible?
The discussion so far has presumed the physical possibility of an infinite 
lottery machine. But in what sense are they physically possible? Elsewhere 
(Norton, 2018; Norton and Pruss, 2018, Norton, 2020) I have pursued the 
question is greater detail. The answer proves to be more complicated and 
much more interesting than one might first imagine.

The natural starting point is to seek some design that employs ordin-
ary probabilistic randomizers, such as coin tosses, die throws, and point-
ers spun on dials. We run into difficulties immediately. We will need in-
finite powers of discrimination to distinguish among the infinitely many 
possible pointer outcomes crammed onto the scale etched onto the surface 
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of the dial. If we use coins or dice, we will need to use infinitely many of 
them to create an outcome space big enough to hold the countable infinity 
of outcomes of the infinite lottery machine.

If we are undaunted by the task of flipping infinitely many coins or 
reading pointer positions with infinite precision, the prospects for an in-
finite lottery machine seem good. Infinitely many coin tosses produce an 
outcome space of continuum size; that is, an order of infinity higher than 
that needed for the countably infinite outcomes of the infinite lottery ma-
chine. Somewhere in this much bigger space we would expect to find a 
countable infinity of outcomes that implement an infinite lottery machine.

However, in Norton (2018), as corrected by Norton and Pruss (2018), 
we found a maddening problem. With some ingenuity, we can use or-
dinary probabilistic randomizers to form infinite lottery machines. But 
in every design we could imagine, there was always a probability of zero 
that the machine would operate successfully. The persistence and recalci-
trance of the failure suggested that the problem was not merely one of an 
impoverished imagination for the design of the infinite lottery machines. 
There was some unidentified matter of principle defeating all attempts.

In Norton (2020) the matter of principle is recovered from what I 
would otherwise have imagined to be the arcana of measure theory and 
axiomatic set theory. The probabilistic randomizers will provide us with 
an outcome space expansive enough to host the infinite lottery outcomes 
that encode results “1,” “2,” “3,” and so on. If a probability is defined for 
each of these outcomes, then that probability must be the same for each 
and can only be zero. For otherwise, if the probability is greater than zero, 
we need only sum finitely many of the equal, non-zero probabilities P(1), 
P(2), P(3), … to arrive at a sum greater than one. That sum contradicts the 
normalization of the probability measure to unity. If, however, we set each 
of the probabilities P(1), P(2), P(3), … to zero, then the probability that any 
one of the infinite lottery outcomes, 1, 2, 3, …, arises is zero. For it is given 
by the sum 

This means that the infinite lottery machine operates successfully only 
with probability zero.
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The escape is to use infinite lottery outcomes to encode results “1,” 
“2,” “3,” … that are probabilistically nonmeasurable. Norton (2020) de-
scribes two designs that do this. The same difficulty besets both. Their 
designs presume the existence of the nonmeasurable outcome sets, but do 
not specify which those sets are. This means that, after the randomizers 
settle into some end state, we cannot know the outcome set to which they 
belong. The number selected as the infinite lottery outcome is inaccessible 
to the user, rendering the device useless.

It turns out that, as far as we know, this failure must always happen. 
For all known examples of nonmeasurable sets are non-constructive, and 
we have some reason to expect that none can be constructed. This means 
that we are allowed to assume their existence, commonly by virtue of the 
axiom of choice of axiomatic set theory, or something equivalent to it.15 
However, there is no explicit description for which they are. We are caught 
in a dilemma. If an infinite lottery machine based on ordinary probabilis-
tic randomizers is to return a result we can read, it will do so successfully 
only with probability zero. If we demand a probability of success greater 
than zero, then we can have it, but the result of the infinite lottery machine 
will be inaccessible to us.

These results apply only to infinite lottery machines constructed from 
ordinary probabilistic randomizers. They do not preclude other designs. 
Norton (2018, 2020) describes designs based on quantum mechanical 
systems. In the simplest such design, one takes a quantum particle in 
a definite momentum state. It consists of a wave uniformly distributed 
over space in the direction of the momentum. We divide that space into 
a countable infinity of intervals of the same size, numbered 1, 2, 3, …. 
If we now perform a measurement on the position of the particle, it will 
manifest with equal chances in each interval. An infinite lottery machine 
has been implemented.

While the exercise of designing these infinite lottery machines is en-
tertaining, I take a more permissive view of them. For hundreds of years, 
the paradigm of a probabilistic system in probability theory was the coin 
toss, die throw, and card shuffle. Yet prior to quantum theory, our best sci-
ence told us that none of these was a true randomizer. Probability theory 

15 For more on nonmeasurable sets and the axiom of choice, see Chapter 14.
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thrived merely by supposing that these real randomizers were imperfect 
surrogates for true but unrealizable probabilistic randomizers: idealized 
coin tosses, die throws, and card shuffles. We can, I propose, take the same 
attitude to infinite lottery machines. They are an idealized case that can be 
added to our repertoire of idealized randomizers. We can and should ask 
what inductive logic is adapted them.

Finally, we should separate the issue of the cogency of the design of 
an infinite lottery machine from the cogency of the infinite lottery logic 
described in this chapter. We may not be able to specify explicitly which 
are the infinite lottery outcomes of a probabilistically based machine. But, 
on the authority of the axiom of choice, they exist. So we can ask what 
chance each has of being realized; and we should expect a suitable logic of 
induction to tell us.

13.13. Conclusion
The infinite lottery remains one of the most popular arguments used to 
establish that the countable additivity of a probability measure must be 
reduced to mere finite additivity. What this chapter shows is that the im-
plications of the infinite lottery are still stronger. It requires also that we 
abandon finite additivity. The existing literature has been reluctant to ac-
cept this further conclusion for it requires abandoning probabilities as the 
gauge of the possibility of the various outcomes. However, as I argued in 
Section 13.6, to persist in the use of a finitely additive probability meas-
ure for this purpose is to change the problem posed by adding further 
conditions, such as a preferred numbering of the outcomes. The original 
infinite lottery problem is solved by a non-additive logic such as developed 
in Sections 13.7 and 13.8.

The new chance logic of these sections will seem strange to those al-
ready steeped in probabilistic thinking. The strangeness is merely a result 
of its unfamiliarity. It is easy to lose sight of how abstruse the notion of 
probability even is. It was once unfamiliar to all of us. Imagine trying to 
convey to someone new to it that there is a probability of 0.5 that their 
unborn child will be a girl. We may eventually convey the idea by saying, 
“What is the probability of a girl? It is the same as getting heads on a fair 
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coin toss.” This formulation uses a physical randomizer as a benchmark-
ing device.

Now consider the cosmologists described in Appendix 13.A. They 
consider the infinitely many like and unlike patches spawned by eternal 
inflation. They find the chance properties of the patches to conform with 
label independence; and they find themselves confused by the resulting 
chance behavior. We should be able to use the same benchmarking strat-
egy to clarify these chance properties for them: “What is the chance of a 
like patch? It is the same as the chance of an even number in an infinite, 
fair lottery.”

Appendix 13.A: The “Measure Problem” in Eternal 
Inflation16

13.A1 Inflation and Eternal Inflation
Inflation in cosmology is a brief period of very rapid expansion in the very 
early universe. It has the same effect as taking a wrinkled rubber sheet and 
stretching it to an enormous size. The wrinkles are all but eliminated. This 
smoothing process motivated in large part the introduction of inflation 
into cosmological theory in the 1980s. The smoothing would explain why 
the cosmic matter distribution is so uniform on the largest scale and why 
the geometry of space is so close to flat. It also explains why, contrary to 
expectations of exotic particle theories, we see no magnetic monopoles. 
The inflationary stretching of space exiles them to parts of the cosmos we 
cannot see.

Under continuing criticism, the status of inflation in modern cosmol-
ogy remains mixed. It was unclear that there ever was a pressing need to 
explain these features of the cosmos through further theory. The matter 
driving inflation was initially supposed to come from novel particle phys-
ics: a Grand Unified Theory (“GUT”). These efforts failed. The driving 
matter is now just a novel matter field, the inflation, posited ad hoc with 
just the right properties. Moreover, the search for a viable form of inflation 

16 For a fuller discussion of the measure problem and its inductive analysis, see Norton 
(2018a).
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has led to multiple versions so that it is not so much a single theory as a 
program of research.

Nonetheless, the notion has proven quite appealing and it has become 
a staple, if debated, topic in cosmology. The strongest argument for it 
comes from its treatment of quantum fluctuations. During inflation, tiny, 
evanescent quantum fluctuations are amplified to cosmic scales where 
they are “frozen in” as classical perturbations in matter density that match 
the non-uniformities we observe now.

The original idea was that there would be an early period of inflation, 
driven by the exotic matter of the inflaton field. This rapid expansion would 
cease and be followed by a more slowly expanding state, driven by familiar 
forms of matter and radiation. Eternal inflation is a variation in which 
this cessation of inflation never happens universally. Rather it happens 
in patches, with each patch reverting to a modestly expanding universe 
with ordinary matter. Each is a pocket universe or little island universe. 
Outside these patches, inflation continues. Since inflating space grows so 
much faster than the space of the patches, the universe overall persists 
eternally in an inflating state, continuously spawning non-inflating pock-
et universes. One of these pocket universes is our observable universe.

13.A2 The Measure Problem: Should We Be Here?
The immediate question asked of eternal inflation is whether we should 
expect a spawned pocket universe to be like our observable universe. It 
would count against eternal inflation if a universe like ours were excep-
tional among the non-inflating universes spawned. The measure problem 
is the problem of finding a way to quantify how much we should expect 
patches like ours.

The difficulty can be seen in a simplified version of the problem in 
which we introduce a binary classification: pocket universes like ours ver-
sus pocket universes unlike ours. We gauge the extent to which a universe 
like ours will come about in eternal inflation by asking after the distribu-
tion of like and unlike over the pocket universes. It is natural to ask for the 
probabilities of each. That query leads to trouble.

Alan Guth (2007) introduced inflation to cosmology in the early 
1980s. Here is his development of the problem:
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However, as soon as one attempts to define probabilities in 
an eternally inflating spacetime, one discovers ambiguities. 
The problem is that the sample space is infinite, in that an 
eternally inflating universe produces an infinite number of 
pocket universes. The fraction of universes with any partic-
ular property is therefore equal to infinity divided by infin-
ity—a meaningless ratio. To obtain a well-defined answer, 
one needs to invoke some method of regularization. (p. 11)

Since there is a countable infinity of these pocket universes, we can see 
the similarity to the infinite lottery problem. It is like asking after the dis-
tribution of even and odd tickets in the lottery. Guth continues the above 
remarks by making the following connection:

To understand the nature of the problem, it is useful to 
think about the integers as a model system with an infinite 
number of entities. We can ask, for example, what fraction 
of the integers are odd. Most people would presumably say 
that the answer is 1/2, since the integers alternate between 
odd and even. That is, if the string of integers is truncated 
after the Nth, then the fraction of odd integers in the string 
is exactly 1/2 if N is even, and is (N + 1)/2N if N is odd. In 
any case, the fraction approaches 1/2 as N approaches in-
finity.

However, the ambiguity of the answer can be seen if 
one imagines other orderings for the integers. One could, if 
one wished, order the integers as

always writing two odd integers followed by one even inte-
ger. This series includes each integer exactly once, just like 
the usual sequence (1, 2, 3, 4, …). The integers are just ar-
ranged in an unusual order. However, if we truncate the se-
quence shown in Eq. (14) after the Nth entry, and then take 
the limit N → ∞, we would conclude that 2/3 of the integers 
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are odd. Thus, we find that the definition of probability on 
an infinite set requires some method of truncation, and that 
the answer can depend non-trivially on the method that is 
used.

Guth correctly recognizes that recovering a well-defined probability re-
quires us to add something. He calls it “regularization,” and it corresponds 
to imposing an order on the set of outcomes quite analogous to that used 
in Section 13.6 above. The difficulty, of course, is that there are multiple 
choices for the ordering and each typically leads to a different probability 
measure.

In including regularization in the set up of the problem, Guth pre-
sumes more than is needed to arrive at it. The same problem is generated 
in Section 13.5 above merely by matching one-to-one infinite sets of the 
same cardinality. Paul Steinhardt is also one of the founding figures of 
inflationary cosmology and now one of its sternest critics. He sets up the 
problem using cardinality considerations alone:

In an eternally inflating universe, an infinite number of is-
lands will have properties like the ones we observe, but an 
infinite number will not. The true outcome of inflation was 
best summarized by Guth: “In an eternally inflating uni-
verse, anything that can happen will happen; in fact, it will 
happen an infinite number of times.”

So is our universe the exception or the rule? In an in-
finite collection of islands, it is hard to tell. As an analogy, 
suppose you have a sack containing a known finite number 
of quarters and pennies. If you reach in and pick a coin ran-
domly, you can make a firm prediction about which coin 
you are most likely to choose. If the sack contains an infinite 
number of quarter and pennies, though, you cannot. To try 
to assess the probabilities, you sort the coins into piles. You 
start by putting one quarter into the pile, then one penny, 
then a second quarter, then a second penny, and so on. This 
procedure gives you the impression that there is an equal 
number of each denomination. But then you try a differ-
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ent system, first piling 10 quarters, then one penny, then 10 
quarters, then another penny, and so on. Now you have the 
impression that there are 10 quarters for every penny.

Which method of counting out the coins is right? The 
answer is neither. For an infinite collection of coins, there 
are an infinite number of ways of sorting that produce an 
infinite range of probabilities. So there is no legitimate way 
to judge which coin is more likely. By the same reasoning, 
there is no way to judge which kind of island is more likely 
in an eternally inflating universe. (2001, p. 42)

13.A3 No Probabilities—No Predictions
Guth seems optimistic that there will be a solution to the measure prob-
lem. Steinhardt is pessimistic and uses his pessimism as grounds for criti-
cizing inflationary theory. However, they agree that securing probabilities 
is essential to eternal inflation as a predictive theory. Guth (2007, p. 11) 
writes: “To extract predictions from the theory, we must therefore learn to 
distinguish the probable from the improbable.” Steinhardt is more forth-
right in his concern:

Now you should be disturbed. What does it mean to say that 
inflation makes certain predictions—that, for example, the 
universe is uniform or has scale-invariant fluctuations—if 
anything that can happen will happen an infinite number 
of times? And if the theory does not make testable predic-
tions, how can cosmologists claim that the theory agrees 
with observations, as they routinely do? (2011, p. 42)

He then reviews with disdain the idea of imposing a measure on the 
islands:

An alternative strategy supposes that islands like our ob-
servable universe are the most likely outcome of inflation. 
Proponents of this approach impose a so-called measure, a 
specific rule for weighting which kinds of islands are most 
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likely—analogous to declaring that we must take three 
quarters for every five pennies when drawing coins from 
our sack. The notion of a measure, an ad hoc addition, is an 
open admission that in inflationary theory on its own does 
not explain or predict anything. (pp. 42–43)

Guth and Steinhardt share an all-or-nothing view: if probabilities cannot 
be secured, then the theory has failed as an instrument of prediction. This 
view is based on a widely accepted but false presumption: that the only 
precise way to deal with uncertainties is through probabilities. A major 
goal of this book is to show that this presumption is too severe and too 
narrow. We can still deal formally with uncertainty when probabilities 
are inapplicable. The background facts may merely warrant an inductive 
logic that is not probabilistic. In this case, the inductive logic warranted is 
summarized in the chance function (10).

We should separate the question of whether there is an inductive logic 
native to the situation from the question of whether we can secure the 
sorts of prediction we might like. In the case of eternal inflation, there 
is a well-defined inductive logic applicable. However, it turns out not to 
support the sorts of predictions the cosmologists seek. The difficulty is 
that the inductive logic assigns the same chance V∞ to any universe in 
which there are infinitely many like pocket universes and infinitely many 
unlike pocket universes. Since this combination encompasses virtually all 
the possibilities that can be realized,17 the logic is unable to discriminate 
among them usefully—that is, in a way that might privilege like universes.

Some prediction is still possible. The chance function (10) has predict-
ive powers, as shown in Sections 13.9 and 13.10 above. They may be weaker 
than the predictive powers of a full probability measure. But that is all that 
the specification of the infinite lottery permits.

More generally, we cannot demand that the universe gives us theories 
of the type that we happen to like. We may prefer theories of indeterministic 

17 There is an uncountable infinity of possible distributions of like and unlike over the 
countable infinity of pocket universes. The case in the main text occupies all of them except a 
countable infinity of exceptions that arise in universes finitely many like pocket universes, or in 
universes with finitely many unlike universes.
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processes always to be endowed with probabilities, for they enable strong 
predictions. However, the world is under no obligation to provide such 
theories. Probabilities are not provided by the indeterministic systems 
described in a later chapter; and the theories are correspondingly weak in 
predictions. That fact does not make them failures as theories. They just 
happen to be the best the world will give us.

Appendix 13.B: Inequivalences under Label 
Permutation of Outcomes of Many Independent 
Drawings
The numbers drawn independently from N infinite lottery machines form 
an N-tuple <n1, n2, n3, …, nN>N. These N-tuples can be grouped into “or-
dered parity sets” such as [odd, odd, …, even, odd, even, even]N defined in 
the main text in Section 13.10.2. The outcome sets of primary interest are 
those with n even numbers in any order. They are the “unordered parity 
sets,” written “(n, N)”:

where parity is either even or odd. The following is to be shown:

Theorem
No label permutation can map the unordered parity set (n, N) onto (m, N), 
for all 0 ≤ n ≤ N, excepting the trivial case of n = m, implemented by an 
identity map on labels, and the case of n = N – m, implemented by a label 
permutation that switches all odd with all even numbers.

Proof
The case of n = 0 and 0 < m < N has been shown in Section 13.10.3. 
Switching “even” for “odd” in that demonstration shows the case of n = N 
and 0 < m < N. Here we need only consider  0 < n, m < N in the theorem.

Assume for purposes of a reductio that there exists a label permuta-
tion f that maps the N-tuple <n1, n2, n3, …, nN>N to <f(n1), f(n2), f(n3), 
…, f(nN)>N such that unordered parity set (n, N) is mapped onto (m, N), 
where n does not equal N – m. 



The Material Theory of Induction516

It may be the case that a label permutation maps every member of 
some ordered parity set of (n, N) onto elements of the same ordered parity 
set of (m, N). The mapping is “onto” so that the image of the ordered par-
ity set of (n, N) coincides with the ordered parity set of  (m, N). We shall 
say that the label permutation respects ordered parity sets just if this last 
property is true for every ordered parity set of (n, N).

There are N!/(n!(N − n)!) ordered parity sets that are subsets of (n, N); 
and N!/(m!(N − m)!) ordered parity sets that are subsets of (m, N). Unless 
we have the cases excepted in the theorem, n = m or n = N − m, these two 
combinatorial factors are unequal. It follows that there can be no one-
to-one label permutation that respects ordered parity sets for the cases 
considered in the theorem.

For example, there are four ordered parity sets for (1,4): EOOO, OEOO, 
OOEO, OOOE, written here in compact notation with “E” = even and “O” 
= odd. There are six ordered parity sets for (2, 4): EEOO, EOEO, EOOE, 
OEEO, OOEE. A label permutation that respects ordered parity sets would 
have to map the members of each of the EEOO, EOEO, … of (2, 4) onto 
distinct ordered parity sets EOOO, OEOO, … of (1, 4). Since there are six 
of the former and four of the latter, this is impossible.

Set n as the number of evens for which N!/(n!(N − n)!) > N!/(m!(N − 
m)!). (There will always be an inequality since the case of equality n = N 
– m is excluded.) Since the label permutation cannot respect ordered par-
ity sets, it follows that the permutation must “cross over” the boundaries 
somewhere of the ordered parity sets. That is, there must be two N-tuples 
that map as

where f(R) and f(S) belong to the same ordered parity set of (m, N), but R 
and S belong to different ordered parity sets of (n, N).

To proceed, we form a new N-tuple T = <t1, t2, t3, …, tN>N by the rule

Each of R and S have n even numbers in their tuples. However, the posi-
tioning of the even numbers in their N-tuples must be different somewhere, 
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since R and S come from different ordered parity sets. The definition of T 
is designed to collect all the even numbers from R and S such that T has at 
least one more even number than R and S. For example, if R = <1, 1, 2, 2> 
and S = <1, 2, 1, 2>, then T = <1, 2, 2, 2>. That is, T belongs to an unordered 
parity set, (n’, N), where n’ > n.

The label permutation f maps T as

Each f(ti) is either f(ri) or f(si). Since f(R) and f(S) are both members of 
the same ordered parity set (m, N), it follows that f(T) is a member of the 
same ordered parity set (m, N). That is, the label permutation f maps an 
N-tuple T in (n’, N), where n’ > n, to an N-tuple f(T) in (m, N). Since a label 
permutation is invertible, it follows that there is no N-tuple in (n, N) that 
the label permutation maps to f(T). This mapping of T contradicts the 
initial assumption that the label permutation maps (n, N) to (m, N) and 
completes the reductio needed to establish the theorem.
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14

Uncountable Problems1

14.1. Introduction
The previous chapter examined the inductive logic applicable to an infinite 
lottery machine. As we saw, such a machine generates a countably infinite 
set of outcomes; that is, there are as many outcomes as natural numbers, 
1, 2, 3, …. We found there that if the lottery machine is to operate without 
favoring any particular outcome, the inductive logic native to the system 
is not probabilistic. A countably infinite set is the smallest in the hierarchy 
of infinities. The next step up the hierarchy routinely considered is a con-
tinuum-sized set, such as given by the set of all real numbers, or even just 
by the set of all real numbers in some interval from, say, 0 to 1.

It is easy to assume that the problems of inductive inference with 
countably infinite sets do not arise for outcome sets of continuum size. 
For a familiar structure in probability theory is the uniform distribution 
of probabilities over some interval of real numbers. One might think that 
this probability distribution provides a logic that treats each outcome in 
a continuum-sized set equally, thereby doing what no probability distri-
bution could do for a countably infinite set. This would be a mistake. A 
continuum-sized set is literally infinitely more complicated than a count-
ably infinite set. If we simply ask that each outcome in a continuum-sized 
set be treated equally in the inductive logic, then just about every problem 
that arose with the countably infinite case would reappear, and then more.

1 My thanks to Jeremy Butterfield for a close reading of this chapter that led to many 
corrections.
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This chapter will explore the sorts of inductive logic that can imple-
ment uniformity of chance over an outcome set of continuum size. The 
notion of uniformity used is label independence, as developed in the pre-
vious chapter. To begin with, we will presume the outcome set is “bare”; 
in other words, that it has no further structure beyond its continuum 
size. Then, in Section 14.2, we shall see that label independence imposes 
an inductive logic, something like the infinite lottery machine inductive 
logic, but with more sectors. This is an unfamiliar logic, remote from a 
probabilistic logic.

If we seek a sense of uniformity of chance compatible with a prob-
abilistic logic, we must weaken the requirement of label independence. It 
will be weakened in successive sections in three stages. In Section 14.3, 
the unrestricted requirement of label independence will be weakened by 
requiring that the independence holds only for permutations that preserve 
a s-field of subsets of a continuum-sized outcome set. This is a natural 
first step, since probability measures in continuum-sized outcome sets are 
generally only defined over such subsets. We will find that this weakening 
is insufficient. A probability measure fails to conform with the weakened 
requirement of label independence. The failure is not remedied by a fur-
ther weakening that only allows permutations that are involutions. The 
applicable logic turns out to be akin to that of the completely neutral sup-
port of Chapter 9. 

In Section 14.4, label independence will be further weakened by 
assuming that the continuum-sized outcome set has its own metrical 
structure, commonly the metrical geometry of a space. The permutations 
of label independence are restricted to those that preserve areas or vol-
umes of this metrical geometry. Finally, this weakened version of label 
independence will be shown to be compatible with a probabilistic logic: it 
is one that matches probabilities with the space’s areas or volumes.

The success, however, will prove limited. For if the metrical space is 
infinite in area or volume, a probabilistic logic cannot provide uniformity 
of chances. It is easy to see that a metrically adapted label independence 
requires that this uniformity be expressed by the same inductive logic that 
applies to the infinite lottery machine. This inductive logic is the one that 
applies to the stochastic process of continuous creation of matter in Bondi, 
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Gold, and Hoyle’s steady-state cosmology. Its application to this case is 
teased out in enough detail to return some curious results.

That this last inductive logic is applicable will be demonstrated by de-
composing the space into infinitely many parts. The parts will then be re-
assembled in a way that respects the background metrical structure of the 
space but precludes an additive measure. This construction is one of the 
simplest of a corner of mathematics that explores “paradoxical decompos-
itions.” This literature is introduced in Section 14.5. It has explored more 
thoroughly the difficulties faced when we seek to use additive measures 
to gauge the size of sets in a metrical space. The construction of Section 
14.4 employs a decomposition into infinitely many parts. If our space had 
hyperbolic geometry, then a remarkable construction reported by Stan 
Wagon (1994) shows that similar results can be achieved by decomposing 
the space into just three parts each of infinite measure.

The literature of paradoxical decompositions is the locus of nonmeas-
urable sets. These are sets in a metrical space to which no area or volume 
can be assigned consistently. While the difficulties for probability meas-
ures have so far arisen only in metrical spaces of infinite area or volume, 
these nonmeasurable sets become problematic for probability measures 
defined over spaces with finite total area or volume. For such a probability 
measure will fail to assign a value to these nonmeasurable sets. Since these 
nonmeasurable sets impose a fundamental limitation on the use of prob-
ability measures in such spaces, they will be pursued in the remainder of 
the chapter.

Section 14.6 will review the simplest example, a Vitali set. Since a 
Vitali set is metrically nonmeasurable, it is beyond the reach of a probabil-
ity measure adapted to the spatial metric. Instead, the chance that some 
outcome of a random process will be found in a Vitali set is shown to 
follow a familiar inductive logic—that of the infinite lottery machine. This 
section also discusses the awkwardness that nonmeasurable sets are not 
constructible by the means normally employed in set theory. Rather, their 
existence is posited by the axiom of choice.

Finally, in Section 14.7, I will recount a nonmeasurable set described 
by David Blackwell and Persi Diaconis (1996) that comes closer to the sort 
of systems commonly treated in accounts of inductive inference. It is a 
probabilistically nonmeasurable outcome set that arises with infinitely 



The Material Theory of Induction522

many coin tosses. In Section 14.8, I show that there is a weak inductive 
logic native to the example that I call an “ultrafilter logic.”

Overall, this investigation shows that in many cases of a continu-
um-sized outcome set, a probabilistic logic fails to apply. Other, non-prob-
abilistic logics do apply locally to the specific problem posed. To recount 
them, they appear as: Section 14.3.6, Section 14.4.2, Section 14.6.2: varia-
tions on an infinite lottery machine logic. Section 14.8: an ultrafilter logic.

14.2. The Inductive Logic of Uniform Chances in a 
Bare Continuum
How might an inductive logic provide equal support or equal chances to 
every outcome in a space of continuum size? To answer, we need to specify 
the applicable notion of equality or uniformity of chances. This condition 
was developed in the previous chapter. An infinite lottery machine select-
ed among a countable infinity of numbers fairly—that is, without favoring 
any. Each of the infinity of outcomes was assigned a unique number label. 
The fairness of the lottery was expressed in the following condition:2

Label independence. All true statements pertinent to the chances 
of different outcomes remain true when the labels are 
arbitrarily permuted. 

That individual outcomes have equal chance is secured through propos-
itions like

Outcomes numbered “37” and “18” have the same chance.

The statement remains true no matter how we redistribute number labels 
across the outcomes. This indifference to the labels assigned to individual 
outcomes can only come about if all outcomes have the same chance. This 
sameness fails with statements like

2 Here and below, a permutation is a one-to-one mapping on the label set or, 
correspondingly, on the outcome set. In the previous chapter, these sets were countable. In 
conformity with modern usage, the term “permutation” will continue to be used when the label of 
the outcome set is continuum sized. The term is synonymous with bijection.
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Outcome number “37” has greater chance than outcome number 
“18.”

This statement cannot remain true under a relabeling that switches labels 
“37” and “18,” assuming that the relation of “greater chance” is asymmet-
ric. These considerations apply also to sets of outcomes

The odd-numbered set of outcomes has the same chance as the 
even-numbered set of outcomes.

This statement remains true no matter how we permute the number labels 
over the outcomes. Once again, this indifference of the sets to the numbers 
that label their elements can only come about if the two sets have the same 
chance. From similar statements, it follows that two sets of outcomes have 
the same chance, just in case there is a permutation of the number labels 
that reassigns the numbers labeling the first set to the second set.

We now apply label independence to an outcome set of continuum 
size. We saw in the previous chapter that the chance values assigned to sets 
of outcomes of an infinite lottery machine drawing were divided into two 
sectors, a finite sector and an infinite sector. Replicating the procedure of 
the previous chapter for the new case of a continuum-sized outcome set, 
we find a similar but more complicated structure, with three sectors. In 
the continuum-sized case, the chance of an outcome in various outcome 
sets has the indicated values and associated informal interpretation:

Finite set of outcomes of size n: 

A countable infinity of values, V(n), n = 1, 2, 3, …; “very 
unlikely.”

Countably infinite set of outcomes:

One value only, V(countably infinite); “unlikely.”

Continuum-sized infinite set of outcomes: 

For an outcome set of continuum size and whose complement 
is continuum sized,
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 One value only, V(continuum-co-continuum); “as likely 
as not.”

For an outcome set of continuum size and whose complement 
is countably infinite,

 One value only, V(continuum-co-countable); “likely.”

For an outcome set of continuum size and whose complement 
is finite, 

 V(continuum-co-finite n), n = 1, 2, 3, …; “very likely.”

The strength of support grows as we move down this list. The distance 
between the sectors is very great since we step up the hierarchy of infinites. 
We could, presumably, find many results that match those of the infin-
ite lottery machine logic and many more that do not, because of its extra 
structure. However, I will pass over this exercise. What matters for our 
purposes is that the fullest implementation of uniformity in a continu-
um-sized outcome set leads to a logic that is quite different from a prob-
abilistic logic.

14.3. Uniformity over a s-Field of Outcomes

14.3.1. A Uniform Probability Distribution
The logic of the last section is very different from a probabilistic logic. We 
were driven to this logic by the requirement of label independence. If we 
are to find conditions more conducive to a probabilistic logic, we will need 
to weaken this requirement. To map a pathway for this, we need to see our 
goal: a uniform probability distribution over a continuum-sized outcome 
set. Take the especially hospitable case3 of outcomes labeled by real num-
bers in the interval [0, 1]—that is, the set of real numbers x, such that 0 ≤ x 
≤ 1. The uniform probability distribution over this interval is derived from 
a probability density function

3 It is hospitable since, otherwise, if either end of the interval extends to infinity, a 
uniform non-zero probability density over the interval integrates to an infinite probability over the 
whole interval.
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and it is plotted in Figure 14.1.

Figure 14.1. Uniform probability distribution.

We extract probabilities from this probability density for sets of outcomes 
by computing the corresponding areas under the curve. The probability of 
an outcome labeled by a real number in the interval [a, b], where 0 ≤ a ≤ b 
≤ 1, is the area shown in the figure and, of course, is equal to b − a.

This distribution certainly looks like it is choosing without favor 
among the continuum-sized outcome labeled by [0, 1]. The curve in Figure 
14.1 is flat. It is also free of a problem that faces a uniform probability 
distribution over a countably infinite outcome space: there is no countably 
additive, uniform probability distribution over the set. For such a distri-
bution, each outcome would have to be assigned the same probability. If 
this value is zero, then their countably infinite sum is also zero, in contra-
diction with the requirement that the probabilities of all mutually exclu-
sive outcomes must sum to unity. In contrast, the probability density (1) 
can assign zero probability to each of its continuum many outcomes with-
out a corresponding difficulty. The summation of an uncountable infinity 
of zeros is not a well-defined operation in standard probability theory.

In spite of these encouraging signs, the uniform probability distribu-
tion fails to implement the requirement of label independence. Consider a 
statement like the following: 
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(Eq) The probability of events labeled by real numbers in  
[0, 0.5] is the same as the probability of events labeled by 
real numbers in [0.5, 1]. 

Since the permutations admissible under label independence are entirely 
unrestricted and can scatter the labels about in all imaginable ways, it is 
easy to see that this and other statements like it fail to remain true when 
the number labels are permuted. Some restriction on the permutations is 
needed if label independence is to apply.

14.3.2. The s-Field
One of the founding results of modern measure theory is that an additive 
measure, such as a probability measure, cannot assign a measure to all 
subsets of points in a space if the space is sufficiently large. In such large 
spaces there are many nonmeasurable sets. In Section 14.6 below, we shall 
see the standard example that arises in the interval [0, 1] of real numbers, 
a Vitali set. It follows that probabilities can be defined only for a preferred 
subset of all the subsets of real numbers in [0, 1]. The resulting restric-
tion on the scope of probability measures has been built into the modern 
mathematical formalism from the outset. Andrey Kolmogorov (1950), the 
locus classicus of the modern tradition, introduces the distinction in his 
definitions. A probability measure is defined in the context of a set of “ele-
mentary events” (p. 2). It is, for example, the set of outcomes labeled by 
real numbers in [0, 1]. However, a probability is not automatically defined 
for all subsets of this set. Rather, probabilities are initially defined only for 
some of these subsets. These are the “random events” that form a field or 
algebra of sets. That is, the field or algebra is by definition closed under the 
finite union, finite intersection, and complement of its members. When 
the set of elementary events is infinite, the fields or algebras are required to 
be s-fields or s-algebras; that is, they are closed under countably infinite 
unions and intersections.

Since a probability measure can assign probabilities only to some of 
the subsets of elementary events labeled by real numbers in [0, 1], these sets 
have to be identified if the probability measure is to be adequately defined. 
The standard procedure is to work backwards from the probabilities that 
we cannot forego. In forming the probability distribution associated with 
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(1), we expect that, whatever other assignments of probability there may 
be, the probability assigned to all intervals of the form [a, b] above is b − a. 
So we include in the s-field all intervals of the closed form [a, b] as well 
as half-open [a, b), (a, b], and open (a, b).4 We then require that the s-field 
associated with the uniform distribution be one that contains all of these 
intervals and is closed under all countable unions and intersections. It is 
not obvious that such a field should exist or, if so, that it should be unique. 
Both are assured by the Extension Theorem (Kolmogorov 1950, p. 17).5

14.3.3. s-Field Adaptation
The uniform distribution does not assign probabilities to all subsets of 
the elementary events labeled by real numbers in [0, 1]. It follows that the 
truth of statements concerning subsets of elementary events cannot be 
preserved under an arbitrary permutation of the numbering of the ele-
mentary events used in the statement. The permutation may take a set for 
which a probability is defined to one that is nonmeasurable. What is a true 
statement for the original set about its probability may fail to be true when 
those same number labels are applied to a nonmeasurable set, for the latter 
set has no probability. Thus, the subsets in the s-field are favored in the 
sense that a probability is defined for them only. Label independence fails.

If a probability density (1) is to conform with label independence, we 
need to weaken label independence. A first step in this weakening is to 
restrict the permutations so that they only map sets of events in the s-field 
to sets of events in the s-field. 

s-field adapted label independence. All true statements pertinent 
to the chances of different outcomes remain true when the 
labels are permuted by all permutations that preserve the 
sets of the s-field. 

A consequence is that sets of elementary events labeled by some open, 
half-open or closed interval of real numbers, always remain labeled by 
such intervals under all permutations to be considered. 

4 By the usual convention [a, b) contains all x for which a ≤ x < b, etc.
5 See Rosenthal (2006, chap. 2) for a more expansive introduction to this result of great 

foundational importance.
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14.3.4. Failure
While s-field adaptation is a necessary adaptation if the uniform probabil-
ity density (1) is to be compatible with label independence, it turns out not 
to be sufficient. The uniform probability density (1) still does not conform 
with the weakened requirement. The permutations of the weakened re-
quirement are continuous functions on x that invertibly map the interval 
[0, 1] back to [0, 1]. The condition of invertibility is essential. Otherwise, 
the function would redistribute the number labels in such a way that one 
elementary event would be assigned more than one new number label. 
There are, of course, very many such invertible functions. Label independ-
ence requires that all of them leave the probability distribution unchanged. 
The trouble is that virtually none of them leave it unchanged.

One example illustrates the general behavior. We start with two events 
consisting of elementary events labeled by real numbers x in the intervals 
[0, 0.5] and [0.5, 1.0]. The probability density (1) assigns equal probability 
of 0.5 to each event. As we saw above in (Eq), label independence requires 
that this statement remain true when we permute the numbers that label 
the elementary events. We use an invertible, continuous function to carry 
out the permutation. Let that function map each real number x in [0, 1] to 
a new value y in [0, 1] according to

To use the function as a permutation of labels, we take the elementary 
event that was originally labeled y and assign it the new real number label 
x. The number x is “carried along” by the function. Under this permu-
tation, as shown in Figure 14.2 (left), the two events originally labeled 
with real numbers in the intervals [0, 0.5] and [0.5, 1.0] are mapped to the 
events originally labeled with real numbers in the intervals [0.8666, 1] and 
[0, 0.8666], respectively. These last events are now assigned the new, car-
ried along number labels in the intervals [0, 0.5] and [0.5, 1.0] respectively.
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Figure 14.2. Uniformity of probability not preserved under 
permutation.

These two intervals have unequal probabilities under the probability 
density (1): the probabilities are 1 − 0.8666 = 0.1333 and 0.8666 respective-
ly. The permutation (2), however, assigns them new number labels in the 
intervals [0, 0.5] and [0.5, 1.0], respectively. Statement (Eq) is false if we use 
the permuted number labels. Label independence is violated.

What would it take for label independence to be preserved? The condi-
tion needed is simple. A permutation like (2) can “carry along” the prob-
abilities assigned to the origin set to the destination set. The key condition 
is that this carried along probability must match that originally assigned 
to the destination set. This is what failed for the permutation (2) above.

We can give this condition a general formulation as follows. The prob-
ability assigned to some small interval x to x + dx is approximated by 
p(x)dx. Under the permutation, the number labels in the interval x to x 
+ dx are now reassigned to events originally labeled by numbers in the 
interval y to y + dy. These events were originally assigned a probability 
approximated by p(y)dy. The condition that this original probability and 
the carried along probability agree is
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Taking the limit of dx and dy to zero, we have6

Here p(y) is the new probability density induced by the carrying along 
of the original probability density by the permutation, expressed in the 
original number labels.

A short calculation shows that the carried along probability density 
of (3), when computed for the permutation (2) and the source probability 
density (1), is

This induced probability density is no longer uniform over its argument, 
y. Thus, statement (Eq) will turn from true to false under permutation (3), 
violating label independence.

These last considerations lead directly to the general condition that 
must be satisfied by all permutations if label independence is to be pre-
served. It is simply

Comparing (3) and (4), we see that this equality of probability densities 
can only be secured if |dx/dy| = 1. This last condition is violated by almost 
every permutation of the number labels. For y(x) a continuous, differenti-
able function of x, it is satisfied only by two cases y = x and y = 1 − x.

The outcome is that the probability density (1) does not distribute the 
chances over a continuum set of elementary events indifferently, in the 
sense captured by the requirement of s-field adapted label independence. 
For there are just two “right” ways to apply the numbering. This suggests 
that there is more structure hidden in the example than merely a continu-
um-sized set and its s-field of subsets.

6 The absolute norm in |dx/dy| keeps p(y) positive in both cases above. Note that |dx/dy| 
is either always positive or always negative, since the conditions of continuity and invertibility 
requires x(y) to be everywhere increasing or everywhere decreasing.
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14.3.5. Involutions
Before proceeding, we should briefly consider a tempting escape from 
the problems just developed. Might we propose that some x is the “right” 
labeling to use—that it has some property intrinsic to the problem, and 
that a permutation y is somehow ill-suited—since it takes us to another 
labeling that lacks the property?

The particular function (2) above was chosen with just this possibil-
ity in mind. For it is an involution, which means it has the characteristic 
property that a double application of the function returns the original 
argument—that is, x = f(f(x)). This means that there is a perfect symmetry 
in the relationship between x and y. Exactly the same functional form as 
(2) takes us back from y to x:

Figure 14.2 (right) shows the inverse mapping of the interval y in [0, 0.5] to 
the interval x in [0.8666, 1]. The graph of an involution has the distinctive 
property of symmetry around the diagonal axis of the dashed line y = x, 
shown in Figure 14.2. Clearly, there are many more involutions, since this 
symmetry is all that is required.

The use of an involution responds directly to the idea that some la-
beling might be the “right” one. For it follows from the symmetry that, 
for any property that x bears with respect to y, there is a corresponding 
property that y bears with respect to x. Thus, any decision that one of x or 
y is somehow favored cannot be derived from properties intrinsic to the 
parameters. Whatever case we make for favoring x based on the intrinsic 
properties of x, there is a corresponding case that can be made for y. What 
results is a further weakening of label independence:

s-field, involution adapted label independence. All true 
statements pertinent to the chances of different outcomes 
remain true when the labels are permuted by all 
involutions that preserve the sets of the s-field.

The existence of many involutions then shows that this proposal for escape 
fails. There is no intrinsic property of one labeling x that distinguishes 
it. A preference for x must be imposed by us externally by fiat. Such an 
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external imposition breaks label independence. We may, however, find an 
external basis for the imposition, as we shall see in Section 14.4 below.

14.3.6. The Natural Inductive Logic on [0, 1]
What if we forego the idea that inductive support must be represented 
probabilistically?7 What inductive logic over the intervals of [0, 1] con-
forms with these two weakened requirements of label independence? Even 
with these weakenings, it turns out that the only inductive logic admis-
sible is akin to the infinite lottery machine logic.8 The logic assigns the 
same neutral value I to any interval9 (a, b), where 0 ≤ a < b ≤ 1 in [0, 1], 
except (a, b) = (0, 1):

That this is the unique inductive logic that conforms with the weakened 
label independence follows from two statements:

(i) In some real number labeling of the elementary events, 
all intervals (a, b) of equal size |b − a| accrue the 
same support: support((0, 0.1)) = support((0.1, 0.2)) = 
support((0.2, 0.3)) = … etc.

(ii) For any 0 < a < 1, 0 < b < 1, there exists an involution on 
[0, 1] that maps the interval (0, a) to the interval (b, 1). By 
label independence, they have the same support.10

Take any two intervals in the scope of (5): (a, b) and (c, d). By (i), they have 
the same support as (0, b − a) and as (1 − (d − c), 1), respectively. Through 
(ii), label invariance entails that the intervals (0, b − a) and (1 − (d − c), 

7 For comparison, the transformational behavior of probability measures under 
involutions has been explored in greater detail in Norton (2008).

8 As with the infinite lottery machine logic, different supports are assigned to sets of 
outcomes of finite size or countably infinite size.

9 For simplicity of exposition, I consider only open intervals (a, b). The same results apply 
to half-open and closed intervals.

10 For the statement “Events labeled by (0, a) have support X” must be true also of events 
labeled (b, 1), since this second set of elementary events can be relabeled through the involution by 
numbers in (0, a). 
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1) have equal support. Hence, all intervals in (5) have the same support, 
which we label as “I”.

In this analysis, (i) is an assumption that amounts to requiring that 
there be at least some numbering that is naturally adapted to the equalities 
of support.11 Statement (ii) is derived from the properties of involutions. 
Readers who are satisfied that the statement is correct might like to skip 
over the details that follow.

Statement (ii) can be demonstrated though two families of involutions 
that are jointly dense in the unit square, as displayed in Figure 14.3.

Figure 14.3. Two families of involutions on [0, 1].

These involutions derive from the formulae:

That they are involutions can be seen by rearranging each to give

11 Almost all of (5) can be derived with constructions like those of (ii). However, no 
continuous involution can map all the equalities needed. None can map, say (0, 0.5) to (0.1, 0.6). 
Something like assumption (i) is needed to complete derivation of (5).
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Since x and y enter symmetrically into these rearranged formulae, it fol-
lows that, in each case, y has the same functional dependency on x as x 
does on y.

Consider the interval (0, a) of (ii) for any 0 < a < 1. It follows from 
the density of the involutions that there always exists one involution that 
maps (0, a) to (b, 1) for any 0 < b < 1. As Figure 14.3 shows, the A family 
of involutions, maps (0, a) to (b, 1), where 0 < b < 1 − a. The B family of 
involutions maps (0, a) to (b, 1), where 1 − a < b < 1. The involution y = 
1 − x, intermediate between the two families, covers the intermediate case 
of b = 1 − a, in which (0, a) is mapped to (1 − a, 1)

14.4. Uniformity from Metrical Lengths, Areas, and 
Volumes

14.4.1. Metrical Adaptation
If the uniform probability density (1) is to conform with label independ-
ence, we will need to weaken the requirement still further. In many im-
portant cases, a continuum-sized outcome set has a further structure: a 
spatial metrical structure to which the probability distribution must be 
adapted. Metrical structure assigns lengths in one-dimensional continua, 
areas in two-dimensional continua, and volumes in three-dimensional 
continua and higher.

When metrical structure is present, we often require that chances be 
adapted to it. This means that sets of outcomes that are equal in length, 
area, or volume have equal chances. These cases arise when—in accord-
ance with the material theory of induction—background facts warrant it. 
Here are some examples. A very long steel beam has defects randomly 
distributed throughout. If it is stressed uniformly, this fact ensures that 
fracture is equally probable in portions of equal length. A dart is thrown 
at a dart board. Assuming disturbances from sufficiently many random 
factors, it is equally likely to strike regions of equal area. Under the physic-
al principle of the maximization of thermodynamic entropy, a molecule 
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of an ideal gas, free of external fields, is equally likely to be in parts of the 
containing vessel of equal volume.

This adaptation of chances to metrical structure can be implemented 
by restricting the set of the permutations in the requirement of label 
independence:

Metrically adapted label independence. All true statements 
pertinent to the chances of different outcomes remain true 
when the labels are permuted by all permutations that 
preserve the metrical measures of outcome sets. 

A permutation preserves metrical measure just when labels identifying 
some metrically measurable set of outcomes are permuted to a new set of 
outcomes that has exactly the same metrical measure. In generic cases, 
such a permutation can switch any region with any other of the same 
metrical measure. In these cases, it follows from this weakened version 
of label independence that the chance of some outcome depends only on 
the length, area, or volume associated with it. The statement “outcome A 
has chance such-and-such” must remain true when the labels identifying 
outcome A are relocated to any other part of the space under a metrical 
measure preserving-permutation. The relocated outcome must have the 
same length, area, or volume as the original, no matter how they may dif-
fer in their other properties.

These metrical measure-preserving permutations are allowed to pre-
serve metrical measure patchwise. That is, they can divide up the space 
into patches and rearrange them, as long as the rearrangement preserves 
the measure of each patch. This last patchwise construction is a main-
stay of traditional geometry. It is the standard method of proving equality 
of areas and volumes. A rather pretty example that uses area-preserv-
ing permutations to prove Pythagoras’s theorem is one given by Rufus 
Isaacs (1975). The square on the left of Figure 14.4 shows four right-angle 
triangles, each with sides of length a, b, and hypotenuse c. They enclose 
a central square of area c2, which is the “square on the hypotenuse” of 
Pythagoras’ theorem. The area associated with this square is redistributed 
under a permutation shown in two steps in the central two squares. First, 
two triangles are permuted so that their positions are moved down the 
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figure. Then, two of the triangles are moved together up the figure. The 
result, shown in the square on the right, is that the region forming the 
square of area c2 has been relocated to a new region consisting of two 
squares, one of area a2 and another of area b2. These are the “squares on 
the other two sides.” They are shown by this construction to be equal to 
the square on the hypotenuse.

 
Figure 14.4. A metric preserving permutation proves Pythagoras’ 
theorem.

If the chances are expressed by probabilities, metrically adapted label in-
dependence requires equal lengths, areas, and volumes to be equally prob-
able. Familiar cases work just as we would expect. These successful appli-
cations of the probability calculus arrive easily. It is because an additive 
metrical structure is already present in the physical assumption that the 
spatial continua have lengths, areas, or volumes native to them. Chances 
acquire that additive structure upon adaptation to the metrical structure. 
Disjoint volumes add to give the combined volume, so the chances of 
outcomes in them add also to give the disjoined chances. Since the total 
system length, area, or volume may have an arbitrary magnitude, all that 
remains is to normalize the adapted chances to unity to recover probabil-
ity measures. If the total area of a dart board is 144 square inches, then the 
probability of the dart striking any nominated square inch area is 1/144.

14.4.2. The Infinite Lottery Machine Logic, Again
We can now see which will be the troublesome cases: those in which the 
lengths, areas, or volumes of the total system are infinite. For then, nor-
malization over a uniform measure is no longer possible. If the dartboard 
is infinite in area, then the probability of the dart striking any nominated 
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square inch is 0 = 1/∞. Since the infinite area is a countable infinity of 
unit areas, the chance relations among them turn out to be the same as 
in the infinite lottery. That is, the requirement of metrically adapted label 
independence leads us to the same inductive logic as applies to an infinite 
lottery machine.

An easy way to see this is to continue with the example of the infin-
ite dart board—that is, as areas on an infinite Euclidean plane. A process 
identifies a point in the plane in such a way that its chances conform with 
metrically adapted label invariance. We can divide this plane into infinite-
ly many tiles of equal, finite area. For convenience, let us pick square tiles. 
We consider the outcome that the point selected is in one or more of these 
tiles. Each will have an equal chance. Infinitely many real number pairs 
label each square uniquely. Since there are a countable infinity of tiles, we 
can relabel them with single natural numbers, 1, 2, 3, …. The resulting re-
labeling will now conform with the original, unrestricted requirement of 
label independence. Since the labels are natural numbers, the arguments 
of the previous chapter apply. The chances of outcomes in various sets of 
the tiles conform with the infinite lottery logic.

It now follows that all areas consisting of finitely many n tiles have the 
same chance and—as with the infinite lottery—are assigned the chance 
value Vn. Since the areas of the tiles are additive, we have the further prop-
erty of the additivity of these chance values. For all finite m and n,

These finite cases can be developed further in obvious ways. The more 
interesting cases, however, are outcomes in parts of the plane of infin-
ite area. To put it crudely, under metrical adaptation, we expect trouble, 
since all infinite areas are equal. Using arguments carried over from the 
analysis of the infinite lottery machine, we will find that the chances of 
outcomes in all infinite-co-infinite regions have the same value, called V∞ 
in the infinite lottery case.

To see this, we divide the infinite plane into four quadrants, I, II, III, 
and IV. We can then reproduce the argument concerning the sets one, two, 
three, and four of the infinite lottery machine. We first number the tiles in 
the quadrant I with the numbers in the set 
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and then continue for quadrants II, III, and IV with the numbers in the 
sets

respectively, as shown on the left in Figure 14.5. 

Figure 14.5. Rearranging tiles over the quadrants of an infinite 
plane.

Since each quadrant contains a countable infinity of tiles, we can proceed 
just as we did with the infinite lottery machine. We can rearrange the tiles 
so that all those in quadrant I fill both quadrants I and III, while those 
previously in quadrants II, III, and IV fill just quadrants II and IV. Or we 
can rearrange the tiles so that those in quadrant IV fill quadrants I, II, 
and III, while those previously in quadrants I, II, and III just fill quadrant 
IV. This rearrangement is shown on the right in Figure 14.5. Since the 
rearrangement of tiles is merely a permutation of the labeling, it preserves 
chances. With further similar permutations, we can conclude
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where “Ch(I)” designates the chance of an outcome in quadrant I.
Since this inductive logic has been elaborated more fully in the pre-

vious chapter, there is no need to duplicate the analysis here. Similar ma-
nipulations can show that this same inductive logic applies to one-dimen-
sional continua with length and three-dimensional and higher continua 
with volume if the chance processes in them conform with metrically 
adapted label independence. The next section provides an illustration in a 
science of this logic in a three-dimensional space.

14.4.3. Continuous Creation of Matter in Steady State 
Cosmology
The steady-state cosmology of Bondi, Gold, and Hoyle enjoyed consider-
able attention with its initial formulation of 1948, until it eventually suc-
cumbed to several empirical problems. The most notable was an endur-
ing difficulty in explaining naturally the cosmic background radiation 
observed by Arno Penzias and Robert Wilson in 1964. The cosmology is 
based on the “perfect cosmological principle.” It goes beyond the more 
familiar cosmological principle in asserting that the universe presents the 
same average aspect to us not just at all positions in space, but at all times 
as well.

We know from measurements of the velocities of distant galaxies that 
the matter of the universe is everywhere expanding. That would normally 
entail that the average density of matter is everywhere decreasing, so it is 
lesser at later times. This decrease would violate the perfect cosmological 
principle. So steady-state cosmology posits the continual creation of mat-
ter at just the right rate to maintain a constant, average matter density 
through time. Since ordinary matter is particulate in nature, this contin-
ual creation must be a discrete process with particles popping into exist-
ence stochastically. In Bondi and Gold’s (1948, p. 256) original proposal, 
the rate of creation was “estimated as at most one particle of proton mass 
per litre per 109 years.”12 Within a few years, the requisite creation rate was 
updated with new astronomical measurements of the rate of expansion 
of the universe. In 1960, Bondi estimated it as “on an average the mass of 

12 This corresponds to a mass creation rate of approximately 10-43 g/sec cm3 (p. 265).
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a hydrogen atom is created in each litre of volume every 5 × 1011 years” 
(1960, p. 143).13 The difference between creation of a particle of proton 
mass and hydrogen atom mass is inconsequential. A hydrogen atom con-
sists of a proton and an electron and the proton comprises roughly 99.9% 
of the atom’s mass.

For our purposes, the delicate question is just what stochastic rules 
govern the creation of these particles. The theorists ruled out the initial-
ly plausible possibility of matter being created within stars. Insufficient 
newly created matter could escape from stars to form new galaxies. (Bondi 
and Gold 1948, p. 266; Bondi 1960, p. 149). On grounds of simplicity, the 
theorists proposed creation processes uniformly distributed through 
space. As Bondi and Gold pointed out,

According to this view the probability of creation taking 
place in any particular four-dimensional element of vol-
ume (spatial volume element × element of time) is simply 
proportional to its (four-dimensional) volume, the factor of 
proportionality being a function of position. By our argu-
ment in 14.4.1 this factor cannot vary very much from point 
to point. (1948, p. 268)

Bondi later added, “It seems simplest to suppose that the probability of cre-
ation in any small four-dimensional element of space-time is simply pro-
portional to its four-dimensional volume” (1960, p. 151). On the strength 
of these remarks, we shall proceed in assuming the following stochastic 
model. In some fixed interval of cosmic time, there is an equal chance of 
creation of a hydrogen atom in each region of space of the same volume. 
Creation events are independent of each other.

Bondi and Gold assumed that chance in this model could be prob-
abilistic. They were mistaken. Since the space of steady-state cosmology is 
Euclidean and thus infinite, the stochastic model conforms with metric-
ally adapted label independence and is governed by the infinite lottery 
machine inductive logic. As a result, the process of continual creation that 
they described will not proceed quite according to normal expectation.

13 This corresponds to a mass creation rate of approximately 10-46 g/sec cm3 (p. 143).
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To explore the application of this logic to continual creation, imagine 
the Euclidean space of the cosmology divided into two infinite parts, “left” 
and “right” by some infinite plane. We will ask about the distribution of 
new particle creation events on the two sides of the plane in the course of 
a year. Since the average creation rate per unit volume of space is assumed 
to be non-zero, infinitely many particles will be created on each side over 
the year. Is this creation rate the same on both sides? That is, in the long 
run, are one in two creation events on the left side?

It is tempting to give the quick answer that the rate is infinitely many 
particles per year in both; therefore, they are equal. This equality is some-
thing less than it seems. It does not support the further conclusion that 
one in two creation events are, in the long run, on the left side. Take the 
case in which the rate of particle creation per unit volume per year on the 
left side is 1,000 times greater than on the right side. Since both volumes 
are infinite, this case too yields a creation rate of infinitely many particles 
per year on both sides. Yet we do not expect one in two of them to be in 
this left side in the long run. It seems that a more refined means of com-
paring the rates of creation is needed.

In the course of a year, infinitely many particles will be created, but 
it will be a countable infinity. (There are a countable infinity of equal vol-
umes of space. In each, at most a finite number of particles will be creat-
ed, usually zero or one.) If we track these creation events one by one, we 
can form the ratio of left-side particle creation events to the total number. 
Among N particle creation events, there will be NL creation events on the 
left side.

Since left and right are equally favored, our expectation is that the 
ratio of NL/N will stabilize towards one half as we let N go to infinity. This 
expectation is not supported by the infinite lottery inductive logic. This 
case is isomorphic to the frequency of even numbers in repeated drawings 
from an infinite lottery machine. We saw in the previous chapter (§10.8) 
that the relative frequency of even numbers among all those drawn does 
not stabilize to any definite value. 

This result may seem to contradict the symmetry of right and left. 
Surely half of all creation events must happen on the left in the long run 
and half must happen on the right? This expectation depends on the tacit 
assumption that there is an average in the long run to the fraction of 
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creation events. We now see that there is not. The symmetry of left and 
right is preserved in the sense that no stable fraction arises in the long run 
for both left and right.

This result arises from tracking creation events in infinite volumes 
of space. If we restrict our consideration to finite volumes of space, then 
the normal probabilistic analysis succeeds. Over time, constant mass is 
preserved on average in each finite volume of space, as required by steady-
state cosmology.

Finally, as a minor point, this analysis involves a technical complica-
tion. It requires an enumeration of the particle creation events in the year 
by 1, 2, 3, 4, …, N, … so that the limit of the ratio NL/N can be formed. 
Such an enumeration is possible since there are only a countable infinity 
of creation events. However, the enumeration must be dictated by a rule 
that is independent of whether the event is on the left region or right re-
gion. The simplest such rule is to number the creation events by their time 
order. We would number the temporally first event 1, the second 2, and so 
on. The difficulty is that there may be no first event if the creation times 
have an accumulation point towards the past. This arises if, for example, 
the creation events happen at times (in years) 1/100, 1/101, 1/102, 1/103, … 
There can be multiple such accumulation points. If there are accumulation 
points towards the future, then the enumeration can never pass them.

I believe the following rule will solve the problem. Divide the year 
into 1/10ths and assign 1, 2, 3, … to the first event in each 1/10th, if there 
is one in each 1/10th. Next divide the year in 1/100ths and assign the next 
numbers to the first unnumbered events in each 1/100th, if there is one 
in each 1/100th. Continue for 1/1,000ths, 1/10,000th... If several events 
have exactly the same creation time, assign them the same number and 
increment both N and NL in one step.14

14 This method will fail if infinitely many events have exactly the same time of creation. I 
presume this is not expected to happen.
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14.5. Paradoxical Decompositions

14.5.1. What They Are
The construction of Section 14.4.2 above is just the first of many that yields 
results troublesome to additive measures. It is one of the simplest instan-
tiations of what is known as a paradoxical decomposition. Their specifica-
tion is rather general. Following Wagon (1994, chap. 1), such decompos-
itions arise in the context of a set E that can be partitioned into a countable 
collection of pairwise disjoint subsets, A1, A2, A3, …, B1, B2, B3, … 15

There must also be a group G that acts on the set E. Its elements map these 
subsets to other subsets of E. The original set E admits a paradoxical de-
composition if elements of the group can map the A-sets of the partition 
to sets whose union exhaust E; and correspondingly for the B-sets. That is, 
there are elements of G, g1, g2, g3, … and h1, h2, h3, …, such that we have

The standard definitions (Wagon 1994, Def. 1.1, p. 4; p. 7) do not explicit-
ly allow for a common and important case: the mapping of the disjoint 
A-sets and B-sets onto E can be inverted. That is, a partition of the entire 
set E can be mapped back to either the A-sets or B-sets by elements of G.16 
When this inversion is possible, then elements of the group G can map the 
A-subsets onto the B-subsets, and vice versa.

The construction of Section 14.4.2 above conforms to the conditions 
of paradoxical decomposition. Quadrant IV might correspond to the 
A-sets and the union of quadrants I, II, and III might correspond to the 
B-sets. The group is the group of isometries of a Euclidean space. These are 
the maps on the space that preserve metrical distance and thus also areas. 
They comprise translations, rotations, and reflections. Moving a tile from 

15 In the case that the A-subsets and the B-subsets each are finite in number, they do not 
need to be the same number.

16 This inversion can fail if, for example, the image sets g1(A1), g2(A2), g3(A3), … are not 
disjoint.
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one part of the space to another, while preserving its area, corresponds to 
allowing one of the isometries to act on it. In this case, it is a translation.

The conditions for a paradoxical decomposition are realized since a 
rearrangement of the tiles in quadrant IV can cover the whole space; and 
the same is true of the tiles in the union of quadrants I, II, and III. The 
case that concerned us, however, was the further case in which inversions 
are possible. Then the tiles in quadrant IV can be swapped with those in 
quadrants I, II, and III. The import of several swaps of this type was the 
non-additive chances (6).

14.5.2. How They Extend the Analysis
There are two aspects of the argument in Section 14.4 for these non-addi-
tive chances that could be strengthened. First, the argument requires a 
decomposition into infinitely many subsets that are then rearranged to 
give the final result. One might worry that there is some trickery peculiar 
to the infinitude of the decomposition.

(i) Can the construction still proceed if the decomposition is 
into finitely many parts only?

Second, the total area of the Euclidean plane involved in the paradoxical 
decomposition is infinite.

(ii) Are paradoxical decompositions possible if we require 
the total area or—more generally—the total volume of the 
space to be finite?

The literature on paradoxical decompositions has provided affirmative 
answers to both questions.

A paradoxical decomposition with finitely many subsets and using the 
group of isometries is not possible in the Euclidean plane. It is possible, 
however, if we move to non-Euclidean geometries. After the geometry of 
Euclid, the next simplest geometries are the spaces of constant positive 
and negative curvature. The second case of constant negative curvature is 
a hyperbolic geometry. It is a space of infinite area. In it, Euclid’s axiom of 
the parallels fails in this way: there is more than one straight line through 
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a point, parallel to a given straight line elsewhere in the space. It can be 
visualized, piecewise, as the geometry induced on a saddle shaped surface 
in a higher dimensional Euclidean space.

Wagon (1994, pp. 61–68) showed that it is possible to divide up a 
two-dimensional hyperbolic space into three disjoint parts whose union 
exhausts the space and provides a paradoxical decomposition, using the 
isometry group.17 Call the disjoint parts A, B, and C. If we choose a suit-
able axis of rotation, Wagon showed that it is possible to rotate A by 120o 
so that it coincides with B. A further rotation by 120o then leaves A coinci-
dent with C. These rotations are isometries, so they preserve the areas of 
the parts rotated.

We might pause at this moment and imagine that a point is chosen 
randomly in the space such that metrically adapted label independence 
is respected. These rotations by 120o are metrically adapted permutations 
that can swap the labeling among the three sets A, B, and C. Thus they 
have equal chances. If we assign probabilities to the chosen point being in 
A or in B or in C, we must then have

so that P(A) + P(B) + P(C) = 1.
The trouble is that rotations around a different point in the space lead 

to different results. With a different, suitably chosen axis of rotation, a ro-
tation of A by 180o leaves it coincident with the union of B and C. Applying 
the same reasoning, we now arrive at probability assignments

They are incompatible with the first set of probability assignments. Once 
again, we find that these chances cannot be represented by probabilities.

A curious sidelight is that this case of a hyperbolic space could almost 
be applied directly to the example of steady-state cosmology of Section 
14.4.3. The space-time of steady-state cosmology is a de Sitter space-time. 
Bondi, Gold, and Hoyle introduced a cosmic time that slices the space-
time into spaces at different instants of cosmic time. They chose a slicing 
that yields Euclidean spaces. A de Sitter space-time is rich in symmetries. 

17 See Wapner (2005, pp. 45–48) for a simplified and engaging development.
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It turns out that there are other ways of slicing it that admit different cos-
mic times. In another choice of cosmic time, the spaces at each cosmic 
instant are hyperbolic in their geometry. If we ask for matter to be created 
continuously by some stochastic process that is uniform in the hyperbolic 
space, the construction just sketched—promoted to a three dimensional 
space—shows that this uniformity cannot be represented probabilistic-
ally. The demonstration does not require decomposition into infinitely 
many parts, but just the three indicated. However, the cogency of this 
more elegant construction is lessened by the fact that the slicing of a de 
Sitter space-time into hyperbolic spaces is uncongenial to steady-state 
cosmology. For in this slicing, the radius of curvature of the space would 
vary with cosmic time.18 While this variant slicing is simply another way 
of displaying the space-time structure of the steady-state cosmology, its 
associated cosmic time is not one in which the perfect cosmological prin-
ciple can be expressed.

The areas A, B, and C of this construction are not as simple geomet-
rically as the quadrants of Euclidean space used in Section 14.4.2. Each 
consists of infinitely many parts, with the parts touching only at points, as 
shown in the diagrams in the references above. However, decomposition 
of the hyperbolic space into these three parts is notable in one aspect: it 
does not require the axiom of choice. The significance of this statement will 
be clarified below.

The hyperbolic space is infinite in area, and the three parts A, B, and 
C are also infinite in area. This infinity allows them to be rotated into one 
another in ways that preclude a finite, additive measure for the areas. For 
when areas are infinite, we can write all of the following:

Since these equalities cannot all be satisfied if the areas of the parts are 
finite, one might expect that a paradoxical decomposition of a space of 
finite area or volume is not possible.

This expectation proves incorrect. There are paradoxical decompos-
itions of spaces of finite volume. The celebrated example is the Banach-
Tarski paradox. It has been discussed in detail elsewhere so that it needs 

18 See Bondi (1960, p. 145).
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only the barest statement here.19 The basic result is that a sphere in 
three-dimensional Euclidean space can be decomposed into five parts. 
The parts are then rearranged in space, where the rearrangement employs 
only volume preserving isometries. The result is two spheres, each with 
the same volume as the original sphere. 

The paradoxical aspect of the Banach-Tarski paradox derives from the 
apparent impossibility of the process. We decompose a sphere into parts 
that can be recombined into two spheres whose total volume is double 
that of the original sphere, where all the rearrangements are isometries. 
The paradoxical aspect is dispelled, however, once we find that four of 
the five parts in the standard decomposition are nonmeasurable in the 
background metric of Euclidean space. They are not simple volumes of the 
type normally encountered in geometry; they are scatterings of infinitely 
many points that defy simple geometric description. No volume can be 
consistently assigned to them.20 Thus, the constructions are revealed to be 
fancy versions of a more familiar decomposition. We can take a countable 
infinity of entities labeled 1, 2, 3, … and divide them into the set of odd-
labeled entities and the set of even-labeled entities. If we now relabel the 
entities in each set with 1, 2, 3, … and 1, 2, 3, …, we have doubled the set 
of entities, or at least that is what the labeling indicates.

While Banach-Tarski-like constructions have proven enormously 
stimulating to mathematical inquiry,21 the most important contribution 
to our concerns here arises at the outset. It is that there are nonmeasurable 

19 See Wapner (2005, chap. 5) for a very clear development; and Wagon (1994) for a 
mathematically more thorough treatment.

20 A point to which we will shortly return: the axiom of choice is needed to arrive at their 
existence.

21 When one first encounters these constructions, one might be quite amazed that a 
mortal mathematician could discover them. Or at least that was my reaction. What I found very 
helpful was the recognition that the more complicated constructions derive from a simple piece of 
group theory. The elements of the free group with two generators a and b consist of finite strings 
of symbols like abba-1b-1a of arbitrary but always finite length. It is easy to see that a paradoxical 
decomposition is possible in this set of group elements. Any good treatment shows it. All that 
remains is to realize the generators in some geometrical setting, for example as rotations in space, 
and in a way that preserves the free group properties. Banach-Tarski-like paradoxes then appear 
and they require three dimensions of space, since in two dimensions the two generators a and b 
cannot be realized. The complications of the geometry of the rotations mask the constructions’ 
simple origins.
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sets. Their existence represents some sort of obstacle to the universal 
applicability of additive probability measures in inductive inference. The 
next section looks at how these nonmeasurable sets arise.

14.6. A Nonmeasurable Set

14.6.1. A Vitali Set
The simplest example of a nonmeasurable set used almost universally as 
an introduction to the general idea is a Vitali set.22 The version developed 
here will be a subset of the interval of real numbers [0, 1); that is all real 
numbers x such that 0 ≤ x < 1. These real numbers will be the angular 
coordinates that cover a circle, as shown in Figure 14.6.

Figure 14.6. Equivalent numbers used in the construction of a Vitali 
Set.

Two real numbers are defined as equivalent under the relation “~” if 
they differ only by a rational number. That is, x ~ y just in case there is a 
rational number r such that y = x ⊕ r. Addition “⊕” is modulus 1 addition. 

22 See Kharazishvili (2004, chap. 1), Wagon 1(994, pp. 7–8), Wapner (2005, pp. 132–35).
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To compute a modular sum, the numbers x and r are added by ordinary 
arithmetic. If the result exceeds one, one is subtracted. If it is negative, one 
is added. This modular rule ensures that the sum shown always remains 
in the interval [0, 1). Figuratively, addition by r just steps us repeatedly 
around the circle of Figure 14.6. This figure shows points equivalent under 
successive addition of the rational number 0.22 = 11/50, that is 0, 0.22, 
0.44, 0.66, 0.88, 0.10, 0.32, ….

Since the relation is an equivalence relation, it divides all the real 
numbers in [0, 1) into disjoint equivalence classes. They are distinguished 
by a number that, as I shall say, “seeds” them. The rational number 0 seeds 
an equivalence class that contains all the rational numbers in [0, 1). This 
shows immediately that each equivalence class has infinitely many seeds: 
every rational number in [0, 1) seeds the same class. Irrational numbers 
seed other classes. The irrational  = 0.7071 … seeds a class that con-
tains  = 0.2071 … since

The simple graphic of Figure 14.7 displays the partition of [0, 1) into the 
equivalence classes.
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Figure 14.7. Choices that form a Vitali set.

The points in the square are all the real numbers in [0, 1). Each is uniquely 
picked out by the seed of the equivalence class to which it belongs and 
the rational increment added to the seed to arrive at it. The vertical axis 
shows the seeds used to create each equivalence class. The axis has many 
gaps in it, since all duplicated seeds are eliminated. Its seeds include only 
one rational number and only one of  and . The hori-
zontal axis shows the values in [0, 1) that the various members of each 
equivalence class can take after all the rationals are added to the seed of 
the equivalence class. Each equivalence class is represented by a single 
horizontal line.

A Vitali set is formed by taking just one number from each equiva-
lence class. This means that the difference between two elements in the set 
cannot be a rational number. Forming the set amounts to taking a vertical 
section in the square shown in Figure 14.7. It may seem obvious that such 
a section can be taken. (This is a point to which we will return short-
ly.) Moreover. there are very many ways that this section can be taken, so 
many sets can be Vitali sets. We just need to settle on one to proceed. We 
will call it Vit(0).

To demonstrate that this is a nonmeasurable set, we need a measure; 
for a set can be nonmeasurable only with respect to some specified meas-
ure. We take the uniform distribution (1) over [0, 1) as that measure. Its 
uniformity gives it the property of translation invariance. That is, if the 
probability density assigns some probability P(A) to a subset A of [0, 1), 
then it assigns the same probability to the set Ax produced by translating 
all numbers in A by the same amount x:23 P(Ax) = P(A). Applying a uni-
form translation by r to all the numbers in the Vitali set Vit(0), we form 
the translated set Vit(r). Figure 14.7 shows Vit(0.25).

As we can see, the set of translated Vitali sets for all rational numbers 
r partition the interval [0, 1), as shown in Figure 14.8.

23 That is, Ax is {y ⊕ x: y ∈ A}.
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Figure 14.8. Vitali sets partition [0, 1).

That is, their union is [0, 1), and the translated sets are pairwise disjoint. 
The first follows by construction, since every number in [0, 1) is either in 
Vit(0) or arrived at from an element of Vit(0) by adding a rational r to it, 
which means that it is a member of Vit(r). Two translated Vitali sets V(r) 
and V(s) are disjoint for unequal rational numbers r and s. For otherwise 
they share a common element of the form x ⊕ r = y ⊕ s, where both x and y 
are elements of V(0). However, this last equation entails that x and y differ 
by a rational number. This cannot be true of any two distinct elements of 
V(0), since each is drawn from a distinct equivalence class. 

Assume for purposes of a reductio argument that the Vitali set is 
measurable under the uniform density (1) and that it has a probability 
P. Since the probability density is invariant under translation, it follows 
that all uniformly translated Vitali sets Vit(r) have the same probability. 
The set of rational numbers is countable.24 Therefore, there are countably 

24 For each rational can be represented by the ratio p/q of natural numbers p and q. The pair 
can then be mapped one-to-one to an infinite subset of the natural numbers by the formula 2p3q.
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many translated Vitali sets. The countable sum of their probabilities must 
be unity. That is, the summation of a countable infinity of probabilities P 
must be unity. No real number P can satisfy this condition. If P is zero, 
the countably infinite sum is zero. If P is greater than zero, no matter how 
small, the countably infinite sum is infinite. We have arrived at a contra-
diction. The Vitali set Vit(0) is not measurable under the uniform density 
(1).

14.6.2. The Infinite Lottery Machine Logic, Again
How does the existence of nonmeasurable sets like a Vitali set affect in-
ductive inference? We can set up an inductive inference problem that 
uses this Vitali set by assuming that a real number has been chosen in the 
interval [0, 1). We will assume that the choice is uniform in the sense that 
the chance of selection in any set, if defined, is unchanged by translations 
of the set. It follows that the distribution of chances in the space conforms 
with metrically adapted label independence, where the permutations 
are translations that preserve the metric associated with the probability 
density (1). It now follows that each of the translated Vitali sets Vit(r) must 
have equal chances. For any pair of Vitali sets, Vit(r) and Vit(s), a trans-
lation by s - r shifts the labels on the first set to the second.

The inductive problem is to determine the chances that the point 
selected lies in one of the Vitali sets, or in some union of them. The prob-
ability measures derived from the uniform density (1) cannot supply chan-
ces for these outcomes, for it is not defined on them. Rather, the applic-
able logic is the infinite lottery machine logic. To see this, note that the 
countably many Vitali sets Vit(r) can be relabeled by the natural numbers 
1, 2, 3, …. Each Vitali set V(1), V(2), … has the same chance and, under 
the new labeling, conforms with the original, unrestricted requirement 
of label independence. These are just the conditions to which an infinite 
lottery machine conforms. By repeating the arguments concerning it, we 
can infer that

The chance that the point chosen is in some finite set of Vitali 
sets of size N is VN.

The chance that the point chosen is in some infinite-co-infinite 
set of Vitali sets is V∞.
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The chance that the point chosen is in some infinite-co-finite set 
of Vitali sets, where the complement is of size N, is V–N.

The familiar results now follow. There is the same chance that the point 
chosen is in the infinite set of Vitali sets that have even-numbered labels, 
in those with odd-numbered labels, in those with labels that are powers of 
ten: 1, 10, 100, 1,000, … etc. On many repetitions there is no stabilization 
of frequencies such as would conform with a probability measure. We do 
not stabilize with roughly half the points selected in the odd-numbered set 
and half in the even-numbered set. 

14.6.3. The Axiom of Choice
The foregoing analysis assumes that a logic of induction should accommo-
date outcomes in nonmeasurable sets like the Vitali sets. However, these 
nonmeasurable sets have a disputed status in mathematics. The difficulty 
derives from a key step in the analysis. The Vitali set V(0) was formed by 
selecting just one element from each of the equivalence classes above. It 
was simply assumed that such a selection was possible. To see that matters 
are not quite so simple, one should reflect on just how we are to make the 
selection. Might we choose the smallest or largest element in each equiva-
lence class? This fails since there might be no smallest or largest element. 
Might we choose the element that is the median value; that is, the one that 
comes half way through? Since the equivalence classes are infinite, “half-
way through” is ill-defined. Might we choose the element whose value co-
incides with the mean of all members in the equivalence class? This fails 
since there may be no such element.

We might suspect that all these failures derive from poor imagination. 
There is some recipe, we might hope, even if very complicated, that lets us 
specify which set is our Vitali set V(0). However, it turns out that no one 
has been able to find a constructive formula that can specify the uncount-
able infinity of choices needed. There are formal results that suggest but do 
not prove that no such constructive formula is possible. Rather, the best we 
can now do is simply to assume that there does exist a set comprised of just 
one element from each equivalence class. At first glance, the existence of 
such sets seems so straightforward that it can hardly be doubted. But then 
we find reasons for doubt. Since a Vitali set results from an uncountable 
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infinity of selections of numbers from an uncountable infinity of equiva-
lence classes, if there are any Vitali sets, then there are very many of them. 
Yet when we try positively to specify just one, we can find no way to do it. 
If they exist, all we can say is that they are somewhere in very great num-
bers in the mathematical universe. We just cannot specify precisely where.

These last considerations have been codified into more precise math-
ematics. The standard treatment of sets is the Zermelo-Fraenkel set 
theory.25 Its axioms were developed to rescue set theory after Russell’s 
paradox showed its naïve foundations were fatally flawed. In the naïve set 
theory, we assume that a set can be formed as those things that satisfy 
any condition we can specify. Famously, Russell used this rule to create 
the set of all sets that do not contain themselves as elements. The set is 
contradictory in that it can be a member of itself if and only if it is not a 
member of itself.

To avoid this problem, Zermelo-Fraenkel set theory is restrained in 
just what sets it allows to exist. Its axioms do provide cautiously for the 
existence and behaviors of certain sets and include what amount to prin-
ciples of set construction. The axiom schema of subsets tells us that we can 
always create a new set as a subset from another by placing some restrictive 
condition on elements in the original set. This replaces the problematic 
naïve rule with a benign rule, since its set-delineating condition can only 
carve off a set from an already existing set. It does not permit the forma-
tion of a Russell set. Other axioms assert the existence of a null set; of the 
union of two sets that are already elements of another set; of a power set of 
all subsets of a set; and of an infinite set constructed by specific conditions.

Constructive axioms of this type have recovered much of set theory. 
However, they are not rich enough to provide for the sets like Vitali sets. 
It turned out that their existence could only be secured by introducing a 
new, non-constructive axiom that merely asserted the existence of certain 
sets, but gave no recipe for their construction. This axiom is the “axiom of 
choice,” or something equivalent to it. The axiom amounts to the assertion 
that if we have a set of member sets that are pairwise disjoint, then there 
exists another set comprised of just one element from each of the member 

25 For an easier introduction, see Stoll (1979, chap. 7).
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sets. The Vitali set Vit(0) formed above is just such a set. The presumption 
that it exists amounts to applying the axiom of choice.

The axiom of choice has been surrounded by an air of uncertainty. 
A major motivation for the uncertainty was the discovery of the Banach-
Tarski paradox, for the formation of the sets in the paradox require the 
axiom. As a result, treatments of the paradox routinely include labored 
discussions of the cogency of the axiom.26 As far as I can see, the question 
of the admissibility of the axiom and thus of nonmeasurable sets remains 
open simply in virtue of the lack of any well-principled means to decide 
for or against it.

The original basis for arguments against it was the intuitive inadmiss-
ibility of results like the Banach-Tarski paradox. To block the paradox, one 
had to overturn something in the foundations of set theory. The axiom 
of choice stood out as the easiest target because of its non-constructive 
character. But if one is reconciled to the Banach-Tarski paradox so that 
it becomes the more benignly labeled Banach-Tarski theorem, then this 
basis for rejecting the axiom of choice is lost. Other reasons for rejecting it 
are hard to find. Its truth is not empirically decidable. There is no physical 
test we can perform to detect the existence of nonmeasurable sets of points 
specifically in some physical space. The axiom has been shown to be con-
sistent with the other axioms of the Zermelo-Fraenkel set theory, so there 
is no problem in logic in adding it to the axioms of the theory. 

Correspondingly, however, there seems to be no decisive grounds for 
adding the axiom of choice to the other axioms of Zermelo-Fraenkel set 
theory. Just as there is no empirical way to falsify the axiom, there is no 
empirical way to demonstrate it. Rather, the principal motivation for em-
ploying it seems to be pragmatic: much useful mathematics depends upon 
it. For example, Zorn’s lemma, which is equivalent to the axiom of choice, 
is needed to demonstrate that every vector space has a basis.27

This pragmatic attitude is perhaps not so different from a simpler one. 
No measurement can distinguish whether a physical magnitude is an ir-
rational real number or some nearby rational number. Any measurement 

26 See, for example, the ominously numbered Chapter 13 of Wagon (1994).
27 See Brunner et al. (1996) for an extended analysis of the role of the axiom of choice in 

the mathematics of quantum theory.
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has some inexactness. We can never affirm by direct measurement that 
the hypotenuse of a right-angled triangle with unit sides is exactly the 
irrational number √2 = 1.41421 … as opposed to the nearby rational num-
bers 14/10 or 141/100 or 1,414/1,000 and so on. However, if we forego the 
possibility of irrational lengths in space, we forego the right-angled tri-
angles of Pythagoras’ theorem. Instead, the best we would have would be 
many triangles, all with sides of rational length, that come arbitrarily close 
to the side lengths of Pythagoras’ theorem. We may congratulate ourselves 
on the purity of our prudence in restricting ourselves to the observation-
ally more secure. Our reward would be mathematical complexities that 
would propagate pain and misery through the entirety of our physical 
theories.

Our question here is not simply that of the admissibility of the axiom 
of choice. It is a slightly different one. Should an account of inductive in-
ference be responsible for relations among propositions that pertain to 
nonmeasurable sets? To forego exploring these relations would require 
positive reasons for precluding nonmeasurable sets. I do not see them 
unless we are prepared to entertain anthropocentric perspectives on the 
world. This might happen if we were so committed a subjectivist that we 
reduce the scope of inductive inference to relations among things that 
we can construct. This attitude seems quite presumptuous to me. That 
nonmeasurable sets outstrip our constructive prescriptions seems to me 
quite reasonably explained by the weakness of those prescriptions. They 
are weak, as we have repeatedly learned. We would like a finite axiom sys-
tem whose theorems would include all the truths of arithmetic. Goedel’s 
famous theorem shows that no finite axiom system can do this. It tells us 
that our arithmetic axiomatic methods are weak in their reach. If finite 
prescriptions are essential to us, we run into trouble at the very start of 
mathematics. There is an uncountable infinity of real numbers in [0, 1]. 
Yet our language admits of only countably many sentences for describ-
ing them. Most real numbers outstrip our descriptive reach. Return now 
to nonmeasurable sets. Are there, we might ask, nonmeasurable sets of 
points in our physical space? Whether there are or not is a physical fact 
about space and true whether our finite constructive devices allow us to 
give a precise description of them.
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In my view, as long as the status of these sets remains open, we should 
consider what an inductive logic must do to accommodate them. For a 
general understanding of the nature of inductive inference must be expan-
sive enough to include these accommodations. To do otherwise is to pre-
judge the status of nonmeasurable sets and artificially restrict the scope of 
inductive inference. It is in that permissive spirit that the explorations of 
this chapter are undertaken.

14.7. Blackwell and Diaconis’ Nonmeasurable Coin 
Toss Event
Most instances of nonmeasurable sets arise in the esoteric realm of ab-
stract mathematics. When we use the sets to specify chancy events, that 
makes the events seem distant from the concerns of an inductive logic 
that may apply to real science. It would help to reduce the distance if we 
could find nonmeasurable events that arise in the archetypal probabilistic 
problem of sequential coin tosses. Blackwell and Diaconis (1996) have de-
scribed such events. An account of them will be given in this section. An 
interesting bonus is that the apparatus needed to describe the events en-
ables specification of another inductive logic that, while very weak, applies 
to events that are otherwise probabilistically nonmeasurable.

14.7.1. Tail Events
Blackwell and Diaconis’ event arises in the case of infinitely many coin 
tosses. Each toss has a probability of 1/2 heads H or tails T; and the tosses 
are all probabilistically independent. Our elementary events will be in-
finite sequences of heads and tails. If we let variables a1 = H or T, a2 = H 
or T, a3 = H or T, …, then such an infinite sequence is represented by the 
infinite tuple a = <a1, a2, a3, …>. The nonmeasurable event will be one of 
what is called a “tail set,” or, as I shall call them here, a “tail event.” These 
are events whose properties (such as the probability, if defined) depend 
only on the long term behavior of the infinite sequence—that is, on its tail. 

Such events are familiar and important. For example, elementary 
events like 
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are distinctive in that the limiting relative frequency of heads H is 1/2. 
This distinctive property is shared by many other elementary events that 
differ in finitely many of the individual coin tosses. For example,

differs from <H, T, H, T, H, T, H, T, …> only in its first few tosses. It will still 
return a limiting relative frequency of heads H of 1/2. The heavy weighting 
towards H in the early tosses is eventually and inexorably swamped by the 
later tosses.

Each of these elementary events has a probability given by the infinite 
product 1/2 × 1/2 × 1/2 × …. That is, each has probability zero. There are 
infinitely many elementary events that return this limiting relative fre-
quency. We combine28 them disjunctively to form the event “half”: that the 
infinitely many coin tosses return a limiting relative frequency of heads H 
of 1/2. Since the individual tosses are probabilistically independent and 
each of probability 1/2, we can apply the strong law of large numbers to 
conclude that the event half will occur with probability one, P(half) = 1.

The last paragraph describes the distinctive property of a tail event: its 
probability is unaffected by whatever may happen in finitely many of the 
tosses that comprise it. More precisely:

Tail event characterization 1: a tail event is probabilistically 
independent of the outcome of any finite set of tosses.

Recall that two events A and B are probabilistically independent just if P(A 
& B) = P(A) ⋅ P(B). This defining property means that half is independent 
of the conjunction (a1= H) & (a2 = H) & (a7 = H) & (a63 = H), so that:

and similarly for any other finite set of tosses.
There are many other tail events. For example:

28 If we think of the events as propositions, then we are “or”ing them together. If we think 
of them as elements of a set, we are collecting them into a set.
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quarter: the limiting relative frequency of heads H is 1/4. 
P(quarter) = 0.

three-quarters: the limiting relative frequency of heads H is 3/4. 
P(three-quarters) = 0.

interval-no: the limiting relative frequency of heads H lies in 
some interval of reals that does not contain 1/2: P(interval-
no) = 0.

interval-yes: the limiting relative frequency of heads H lies in 
some interval of reals that does contain 1/2: P(interval-yes) 
= 1.

even-H: an infinite number of even-numbered tosses are head H. 
P(even-H) = 1

Tolstoy: the infinite sequence contains, infinitely often, the en-
tirety of Tolstoy’s War and Peace, encoded in binary using 
H and T, as well as every variant of the same length created 
by all possible typographical errors. P(Tolstoy) = 1.

It may at first seem that this list of examples is uncreative in the sense that 
every probability is a zero or a one. These zeros and ones are unavoidable, 
however. The Kolmogorov (1950, pp. 69–70) Zero-One Law asserts that all 
tail events to which probability can be assigned are of probability zero or 
one only.

The proof of the law involves some mathematical complications. 
Rosenthal (2006, §3.5) gives a serviceable formulation as well as a helpful 
account of tail events. The basic idea behind the proof, however, is so sim-
ple and striking as to bear mention. As we saw above, the defining char-
acteristic of a tail event we shall call “tail” in infinitely many coin tosses 
is that it is probabilistically independent of any event formed from only 
finitely many coin tosses, such as one we will here call “finite.” This means

for all possible finite. The unusual circumstance is that the event tail is a 
member of the infinite set of events formed from all possible instantiations 
of finite, when closed under finite and countable unions and intersections.29 

29 That is, the s-algebra formed from all instantiations of finite.
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This leads eventually to the curious result that tail is independent of itself! 
Substituting tail for finite in this last equation and noting that tail & tail 
= tail, we have

This equation admits only two solutions:

Since we will shortly be dealing with nonmeasurable events, we will need 
another characterization of tail events that does not explicitly invoke 
probability measures. That condition is simply that 

Tail event characterization 2: if a = <a1, a2, a3, …> is an 
elementary event within some tail event and b = <b1, b2, 
b3, …> is any elementary event that differs from it in only 
finitely many tosses, then b is also in the tail event.

This new characterization entails the original one above in case the events 
concerned have well-defined probabilities. To illustrate this, pick any fi-
nite set, such as a1 and a3. Let us say that 

is an elementary event in some tail event, where a2, a4, a5, a6, … have some 
values that are kept fixed in what follows here. The new condition requires 
that all combinations of alternative values of a1 and a3 appear in other 
elementary events in the tail event. These additional events are

The probabilistic contribution to the tail event by these four elementary 
events is
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This is just the probabilistic contribution to the tail arising when tosses 
a1 and a3 are excluded, which shows the probability is independent of the 
tosses a1 and a3. Repeating for all other finite combinations of tosses, we 
see that the probability of the tail event is independent of any of these 
finite combinations, which is the first characterization of tail events above.

14.7.2. An Intermediate Tail Event E30

We can start with a tail event of probability zero. By adding new elemen-
tary events to it, we can expand it to a tail event of probability one. For ex-
ample, we might start with the tail event interval-no that is defined by the 
limiting relative frequency of heads lying in the interval 0.9 to 1.0. Since 
0.5 = 1/2 is not in that interval, this tail event has zero probability. We 
continuously expand the interval by adding more elementary events until 
the interval becomes 0.4 to 1.0. At the moment when the interval expands 
to include the limiting relative frequency of heads of 0.5, its probability 
will flip from zero to one. Writing “rf” for the limiting relative frequency 
of heads and assuming that the intervals include their end points, we have

30 Alex Pruss has pointed out another way that a nonmeasurable tail event may be formed 
in this coin tossing example. Each elementary event has a reversed event in which every H is 
replaced by T and every T by H. We form maximal equivalence classes of elementary events, such 
that two events in the same class differ only in finitely many of the individual coin toss outcomes. 
For each such equivalence class U there is reversed class Ur consisting of the reversals of the 
elementary events in U. The entire outcome set is partitioned by an infinity of (unordered) pairs of 
such classes: {U, Ur}, {V, Vr}, … Using the axiom of choice for collections of two-membered sets, 
we choose one equivalence class from each pair. Their union is the tail event N. The entire outcome 
set is partitioned by N and its reversal Nr. The event N satisfies conditions (a) and (b) of Section 
14.7.3 and thus is nonmeasurable. See http://alexanderpruss.blogspot.com/2017/11/heres-simple-
construction-of-non.html
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This last example suggests that as we assemble sets of elementary events 
into events, we find no tail events intermediate between events with prob-
ability zero and those with probability one. Certainly, there are none in 
the sequence just considered. However, that last sequence included by con-
struction only tail events with well-defined probabilities. What Blackwell 
and Diaconis demonstrate is that there are very many tail events, inter-
mediate between events with zero and one probability, and that these 
tail events are probabilistically nonmeasureable. No probability can be 
assigned to each of them.

We begin assembling Blackwell and Diaconis’ event “E” as a set of 
elementary events, making our focus the presence of H toss outcomes. The 
first elementary event in E is just one that consists of all H:

We now add to E all elementary events that differ from aall-H in only 
finitely many tosses. They include:

Call them “infinite H, finite T” elementary events. There are as many of 
these elementary outcomes as there are subsets of the natural numbers. 
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That is, there is a higher order of infinity of them. Nonetheless, the prob-
ability of the event just formed is zero. It is a tail event characterized by a 
limiting relative frequency of heads of one. Our starting point is essential-
ly the same as the growing intervals of tail events above.

We will add many more elementary events to E but in a way that 
avoids the flipping of probability from zero to one. We achieve this by 
adding elementary events in a way that conforms with a specific set of 
rules. To express them, we need to define the intersection operation ∩ on 
elementary events. The intersection of elementary events a and b is the 
elementary event a ∩ b that has H in every position that has H in both a 
and b and T otherwise. For example,

The complement ac of an elementary event is just that same event a with 
each occurrence of H switched to T and each occurrence of T switched to 
H. For example:

The event E is a set of elementary events, where we write elementary event 
a is a member of E as a ∈ E.

The rules for forming E are that the following conditions are respected 
as the elementary events are added:

I. The “no-H” elementary event ano-H = <T, T, T, T, …> is not in E. 
ano-H ∉E.

II. (“containment”) If a ∈ E and b arises by replacing some T in a 
by H, then b is also in E. 
If a ∈ E and a ∩ b = a, then b ∈ E. 
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III. (“intersection”) The intersections of elementary events in E 
are also in E. 
If a ∈ E and b ∈ E, then a ∩ b ∈ E.

IV. (“exhaustion”) For every element a, either a or its 
complement ac is in E. 
For all a, either a ∈ E or ac ∈ E

V. (“free”) The infinite intersection of all elementary events in E 
is the “no-H” event.

Those with mathematical interests will recognize these five conditions as 
defining a free ultrafilter. The first three specify a filter. The fourth makes 
the filter an ultrafilter; and the fifth makes it a free ultrafilter.31

These conditions impose a definite structure on the elementary events 
that comprise E. From III and I, we have that every intersection of elemen-
tary events in E must have some H toss outcomes. Thus, for all elementary 
events a, just one of a or its complement ac can be included in E. Condition 
V ensures that every elementary event in E must contain infinitely many 
H toss outcomes.32

The set of “infinite H, finite T” elementary events along with aall-H 
satisfies all these conditions, excepting IV.33 While we have not fully speci-
fied the content of E, we can already see at this stage that any possible set E 

31 Blackwell and Diaconis do not implement the ultrafilter structure directly on the tuples 
that form the elementary events. Rather they form sets of indices of the locations of H in the tuples. 
For example, <H, T, H, T, H, T, …> yields the set of odd numbers {1, 3, 5, 7, …}. The ultrafilter is 
implemented in the set of all these subsets of the natural numbers.

32 To see this, assume otherwise that there is an elementary event fin(n) in E that has 
finitely many H—say, n of them. If n > 1, then there is an elementary event a such that a ∩ fin(n) 
and ac ∩ fin(n) each have one or more H, but each is strictly fewer than n. Since just one of and 
ac is in E, it follows from the intersection condition III that there is another elementary event in 
E with fewer H than n. Iterating, it follows that, if there is an elementary event in E with finitely 
many H, then there is an elementary event in E with just one H. This elementary event fin(1) 
must be contained in every elementary event in E. Otherwise the intersection of fin(1) with some 
elementary event in E would be ano-H so that ano-H must also be in E by III, which then violates I. 
But if a ∩ fin(1) = fin(1) for all a in E, then the free condition V is violated.

33 They are equivalent to a Fréchet filter.
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must include this set. This follows from II and the fact that I requires that 
some H must be present in all the events of any possible set E. 

To satisfy exhaustion IV, we need to add further events. We have 
many choices over which to add. For example, we must add one of the 
elementary events in half

or its complement

But we cannot add both. Next, we must choose among

Adding the tail event half flipped the probability of the continuously 
growing set of tails events above from zero to one. We now see that this tail 
event cannot be a subset of E. For all four of a, ac, b, and bc are included 
in half. It also suggests that no tail event with a relative frequency in the 
vicinity of 0.5 can be in E. That these tail events are precluded from E gives 
the first indication that our path leads away from events with well defined 
probabilities. We may avoid the flipping of probability from zero to one by 
including only parts of these tail events in E.

We need to make many, many decisions of this type. We get a rough 
estimate of the number by noting that there are as many elementary events 
as there are members of the power set of the natural numbers—that is, the 
set of all subsets of the natural numbers.34 We then make about that many 
choices of inclusion between each elementary event and its complement. 
This suggests that the number of ways of forming distinct Es is two or-
ders of infinity higher than the natural numbers:35 it has the cardinality of 
the power set(power set (natural numbers)). There are very many possible 
events E!

34 Each subset of the natural numbers corresponds to an elementary event. The odd 
numbers {1, 3, 5, …} corresponds to <H, T, H, T, H, …>.

35 A more precise analysis shows that this is the cardinality of the set of ultrafilters on the 
natural numbers. See Comfort and Negrepontis (1974, p. 147).
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The supposition here is that if we persist in adding elementary events 
to E prudently, we will arrive at a set conforming with all the conditions. 
In particular, exhaustion IV will be satisfied. This is an apparently in-
nocent supposition and essential to the formation of E. It is, however, 
a non-constructive assumption of existence. We have not specified just 
which elementary events can be added to satisfy exhaustion IV and, were 
we to try, our efforts to do so would fail. The existence assumption turns 
out to be of a similar character to the axiom of choice described above. 
More precisely, the existence of E is proved by the ultrafilter theorem. Its 
proof commonly employs Zorn’s lemma, which is equivalent to the axiom 
of choice. However, the ultrafilter theorem is logically weaker than the 
axiom of choice, as displayed in Herrlich (2006, p. 18).

Nonetheless, all the vacillations that surround the earlier construction 
of the Vitali sets arise again here. As reported above, my view is that we 
should persist in exploring these systems. To do otherwise is to prejudge 
the admissibility of axioms like the axiom of choice and thus to restrict 
artificially the scope of our inductive logics.

14.7.3. Event E is Probabilistically Nonmeasurable
We can now prove that any event E conforming with the conditions I–V 
is nonmeasurable. For the purposes of a reductio argument, assume that 
event E is measurable and also its complement, event Ec, the set of all ele-
mentary events not included in E. We will find that

(a) from a symmetry, P(E) = P(Ec) = 0.5; and

(b) since E is a tail event, by the Kolmogorov Zero-One Law, P(E) 
= 0 or 1.

Since (a) and (b) contradict, the reductio is completed. The set E is not 
measurable.

To illustrate (a), note that there is a one-to-one correspondence be-
tween elementary events in E and those in Ec: each a ∈ E corresponds to 
ac ∈ Ec. To implement the correspondence, we just flip H to T and T to H 
in each elementary event a. It follows that each set of elementary events a 
in E is mapped to a corresponding set in Ec with a mirror image structure 
from the flipping of H and T. Thus, if a probability is defined for the first 
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set, then the corresponding set has the same probability. An easy way to 
see this is to note that we turn some set of elementary events in E into 
the corresponding set in Ec without making any changes to the physical 
tosses; we merely imagine that the labels on each of the coins is switched 
from H to T or T to H. If follows that if E is probabilistically measurable, 
then so is Ec; and that they have the same probability. Since P(E) + P(Ec) = 
1, we infer that P(E) = P(Ec) = 0.5.

To illustrate (b), consider some elementary event a ∈ E. Let b be any 
elementary event that differs from a in finitely many of its toss outcomes. 
From exhaustion IV, we have that one of b or bc is in E. If bc is in E, then 
so must a ∩ bc. But since a and bc agree only on finitely many toss out-
comes, it follows that a ∩ bc has only finitely many H. We saw above that 
all elementary events in E have infinitely many H. Therefore, b is in E. That 
is, for every elementary event in E, the event E also contains every other 
elementary event that differs from it in only finitely many toss outcomes. 
Recalling Tail event characterization 2 above, it now follows that E is a tail 
event. By the Kolmogorov Zero-One Law, it has probability zero or one.

14.8. The Ultrafilter Logic
The analysis above shows that probabilistic reasoning over the outcomes 
of infinitely many coin tosses cannot proceed if our considerations include 
the very many nonmeasurable events of type E. The probability calculus 
falls silent over them.36

There are so many elementary events that arise with infinitely many 
coin tosses that we run into problems with standard methods even before 
attempting probabilistic analysis. For example, we might try to charac-
terize the event consisting of all elementary events in which there are (in 
some sense) more heads than tails. One natural approach employs limits. 
We consider a finite sequence of coin tosses and compute the ratio of the 
number of heads to the number of tails. The event of interest consists of all 
elementary events in which that ratio is greater than one. We then take the 
limit as the number of coin tosses goes to infinity. The event that results 

36 We receive no help from upper and lower probabilities. Blackwell and Diaconis (1996) 
also show that the lower probabilities of both E and Ec are zero. Thus, the corresponding intervals 
are maximally large.
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will be something less than what we sought; for it is easy to contrive ele-
mentary events for which the ratio in question has no limit. All of these 
will be omitted from the event.

Should we despair of inductive inferences that encompass all the ele-
mentary events of the infinite coin toss? It turns out that if we are will-
ing to consider rather weak systems of inductive logic, we can find one 
that applies. It is embodied in the conditions I–V of the last section that 
characterizes an ultrafilter. A popular way of explaining the import of an 
ultrafilter is that it specifies which sets are large. In this case, a set of ele-
mentary events satisfying the conditions I–V contain a large number of 
H; none of the others do. What makes this a natural understanding is that 
these conditions admit only elementary events with infinitely many H; 
and condition II explicitly continued to populate E with all those elemen-
tary events with more H in them. The notion of “large” at issue here is, in 
intuitive terms, vague. Let us simply turn this around and assert that what 
we mean by “large” is membership in some set E that conforms with I–V.

What results is a two-valued inductive logic that responds to the evi-
dence that the actual outcome of infinite tosses contains many H. The ele-
mentary events in E are “supported” (one value) by the evidence as having 
many H. The remainder are “not supported” (the other value). The axioms 
of the logic are the conditions I–V above. They play the same role as the 
Kolmogorov axioms of probability theory.

There are infinitely many sets E of elementary events possible. This 
infinity enables the logic to have a dynamics loosely akin to that of con-
ditionalization in probabilistic analysis. We start out with the choice of 
applicable E left entirely open. This is as evidentially neutral a starting 
point as the logic admits. We can then carry out the analog of condition-
alization by restricting the admissible sets E to those with some particu-
lar elementary event or some set of elementary events. Loosely speaking 
this restriction introduces the new information that something in these 
elementary events is close to the actual outcome. More precisely, to condi-
tionalize on some elementary event a in this way is say that some infinite 
subsequence of a must be common to all elementary events in E. For axiom 
III, in conjunction with the other axioms, requires that every elementary 
event in E have an intersection with a that has infinitely many H in it.
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As with the probability calculus, there are restrictions on the events 
on which we can conditionalize. In the ordinary probability calculus, we 
cannot conditionalize on events with zero probability. Correspondingly, if 
we have conditionalized on a set of elementary events containing

we cannot then conditionalize on a set containing its complement

For the axioms preclude membership of both in E. 
The logic is weak. It is merely two-valued and, as a practical matter, 

no finitely specifiable set of evidence will lead to complete determination 
of the membership of E. For, as we have seen, the existence of ultrafilters 
must be assumed without a finite recipe for the construction of any. If 
we exclude highly contrived examples, I cannot now think of a factual 
scenario whose background facts would require axioms I–V to govern our 
inductive inferences.

The value of the logic lies in reminding us that many logics of induct-
ive inference are possible. If we infer probabilistically over outcomes of 
infinitely many coin tosses, we do arrive at many strong results. However, 
the cost is that all of these inferences fall silent over the nonmeasurable 
events. If we are prepared to accept a weaker inductive logic, then we see 
that there is a logic native to the mathematical structure that does embrace 
all events.

14.9. Conclusion
The considerations of this chapter have been wide-ranging. They are, how-
ever, unified by a single question: How might an inductive logic represent 
the uniformity of chances over an outcome set of continuum size? This 
might have seemed an easy case for a probabilistic logic. Is it not realized 
by a uniform probability density over some continuum-sized set such as 
the interval [0, 1]? This proves not to be the case. If we define the uni-
formity of chances through the requirement of label independence, the 
inductive logic that arises is very far from a probabilistic logic.
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The bulk of the chapter has tried to find how we may alter the require-
ment of uniformity until it matches what the probability calculus can pro-
vide. These alterations were introduced by weakening the requirement of 
label independence until we arrived at a version adapted to a background 
spatial metric. Even this weakening and the addition of background 
metrical structure met with limited success. For the inductive logic 
adapted to spaces of infinite area or volume is not probabilistic. Further, 
nonmeasurable sets arise in spaces of finite area and volume. They escape 
the reach of a probability measure if its probabilities are to match the spa-
tial areas and volumes. The only escape from this last problem seems to 
be to find reasons to ignore these sets. That they are non-constructible is 
a tempting way to banish them from our consideration. However, this es-
cape comes at the cost of supposing that all that exists in mathematics and 
in the physical world described by mathematics is what we can construct 
by our meager, finite methods.
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15

Indeterministic Physical Systems

15.1. Introduction
The indeterministic systems investigated in this chapter share the com-
mon characteristic that determining one aspect of the system leaves others 
open. The most familiar cases are ones in which the present state of the 
system fails to fix its future state. We shall see several such systems in 
Section 15.3. The most important are systems with infinitely many degrees 
of freedom, for this sort of determinism is generic among them. Rather 
than delve into the details of the physics of such systems, the mechanism 
that generates the indeterminism will be illustrated by the simplified sys-
tem of the infinite domino cascade.

A different sort of indeterministic system will be explored in Section 
15.4. At the risk of abusing the term, I will also describe as indeterministic 
systems those in which, at the same moment of time, one component fails 
to fix others, contrary to normal expectations. The examples will be drawn 
from Newtonian gravitation theory.

Each instance of indeterminism poses a problem in inductive in-
ference. From known aspects, what strengths of inductive support are 
provided to the remaining underdetermined aspects? Given this present, 
What support is provided to the various possible futures? Given this mass 
distribution, What support is given to the various possible Newtonian 
potential fields? As explained in Section 15.5, each of the problems has 
been chosen so that the complete background physics is transparent and 
transparently provides no probabilities over the various underetermined 
possibilities. The problem for inductive analysis is to find the strengths of 
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inductive support for the different possibilities without altering or adding 
to this physics. For to do otherwise is to change the problem posed.

We shall see in Section 15.6 that probabilities can only be assigned 
as strengths of inductive support if we add to the background facts. 
Normalization of a probability measure, for example, requires that the 
probabilities of different times of spontaneous excitation in a temporal-
ly indeterministic system diminish to zero as the times grow large. This 
diminution must happen at some rate—quickly or slowly—and fitting a 
probability measure to the process requires that some speed be chosen. To 
make that choice, however, is to add to the physics provided.

This is just the first of a series of problems that preclude the use of 
probabilities as strengths of support. The final example requires the adap-
tation of a uniform probability measure to an infinite dimensional space 
of Newtonian potentials. The infinity of the dimensions presents especial-
ly intractable problems.

Section 15.7 then describes how the material theory of induction 
solves the inductive problems. We are to look to the background physical 
facts to provide the strengths of inductive support. By design, these facts 
provide very little. They allow us to say of various processes or components 
that they are necessary, possible, and impossible. These three evaluations 
become the values of a spare, three-valued inductive logic. Its strengths 
of support coincide with those of “completely neutral support” described 
elsewhere, including Chapter 10. This completely neutral support can be 
fixed by certain invariances in space of possibilities; and we shall see that 
they are realized in this case as well.

We proceed first with a preliminary in Section 15.2 on the project now 
undertaken.

15.2. Why Take Simple, Unrealistic Physical Systems 
Seriously?
The illustrations to come involve simple, physically unrealistic systems that 
we mostly1 do not encounter in the ordinary practice of science. So why 
pay any special attention to them in investigations of inductive inference? 

1 The exception is the example of the quantum spin of electrons.
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There is a simple pragmatic reason for considering them. If the analysis of 
the warranting relations is to be transparent, we need simple systems. We 
need systems in which the full set of background facts is easy to compre-
hend so that their full import can be seen clearly and unequivocally.

This pragmatic reason, however, is not the principal one. The deep-
er reason for taking these simple systems seriously pertains to the range 
of applicability of inductive inference. We do not balk at reasoning de-
ductively about fictitious systems, no matter how bizarre we may find 
them. Correspondingly, I see no reason to prohibit inductive inference 
over such systems. There is no guarantee, of course, that every system will 
admit rich inductive inferences. Just what is possible inductively will be 
determined by the background facts that obtain, as the material theory 
of induction asserts. When we ask which inductive inferences are war-
ranted in the simple systems below, we will find that their strengths of 
inductive support cannot be probability measures. That is, we will find 
through counterexamples that the probability calculus does not provide a 
universally applicable logic of induction.

It may be tempting to block the counterexamples by insisting that the 
scope of inductive inference is limited to ordinary physical systems of the 
type we normally encounter in science. This would be an unnecessary re-
striction on the reach of inductive methods. Worse, it would be of no help 
in protecting the probability calculus as the universally applicable logic 
of inductive inference. For the restriction to ordinary systems gives up 
universal applicability at the outset. Moreover, the restriction itself would 
conform with the material theory of induction, for the range of applicabil-
ity of probabilistic inductive logic would be circumscribed by the factual 
restriction to ordinary systems.2

15.3. Temporally Indeterministic Systems
The general idea of determinism is that the fixing of one aspect of a system 
fixes some other. This section will address the case of temporal aspects. In a 
(temporally) deterministic physical system, the present state of the system 

2 I set aside here the further problem of delineating just what will count as “ordinary.” 
Many of the systems ordinarily considered in science are highly idealized and thus highly 
unrealistic.
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determines its future states. With the notable exception of quantum meas-
urement, physical systems are generally assumed to be deterministic. The 
present state of our planetary system fixes the future movements of the 
planets and whether there will be an eclipse at any nominated time.

Systems that violate temporal determinism have attracted consider-
able attention in recent decades in the philosophy of physics, with the 
modern era marked by the publication of John Earman’s Primer (1986). 
Once we start to look for indeterministic systems, we find them in many 
places. 

15.3.1. The Dome
One of the simplest indeterministic systems is the “dome.” Since it has 
been discussed extensively elsewhere (Norton 2003, §3; 2008), it needs 
only a brief recapitulation here. A unit point mass slides frictionlessly over 
the surface of a dome in a vertical gravitational field with acceleration due 
to gravity g, as shown in Figure 15.1.

r=0

h = 
(2/3g)r3/2

F = r1/2
r

Figure 15.1. The dome.

The dome has a vertical axis of rotational symmetry about its apex and the 
surface is depressed below the apex by a (negative) height h = (2/3g)r3/2, 
where r is the radial distance to the point from the apex along the surface. 
The force F on the point mass along the surface of the dome is
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and is directed outward from the apex. The motion of the point mass is 
governed by the equation of motion

where t is time. Initially, at time t = 0, the point mass is located at the apex 
r = 0 at rest. Since the force at the apex is F = 01/2 = 0, one solution to the 
equation of motion is that the mass remains at the apex for all time:

However, there is a second family of solutions, in which the particle moves 
spontaneously at time t = T for any time T ≥ 0:

In this second solution, the particle remains quiescent up to and including 
time t = T. Then it moves away from the apex in any direction.

This spontaneous excitation results entirely from the equation of mo-
tion. There is no hidden triggering event, such as a slight bump to the 
dome that may dislodge the point mass from the apex. If there is no spon-
taneous motion, it is so because the equations of motion allow it. If there 
is spontaneous motion at time T, it happens just because the equation of 
motion also allow it.

The dome is a Newtonian system with only finitely many degrees of 
freedom. That is, its state can be specified fully just by specifying a finite 
list of magnitudes: the position of the particle on the dome, its speed, and 
its direction of motion. The dome is unusual in its indeterminism in that, 
generally, Newtonian systems with finitely many degrees of freedom are 
deterministic. It was devised originally to display an unusual exception 
to this generality. Because of its exceptional character, the indeterminism 
of the dome is highly sensitive to changes in the physical system, and its 
indeterminism can be eliminated by small adjustments to it.

15.3.2. Masses and Springs
Matters change once we consider Newtonian systems with infinitely many 
degrees of freedom. An important example is a system of infinitely many 
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interacting particles. It has infinitely many degrees of freedom since its 
state can only be specified by specifying infinitely many magnitudes, such 
as the mass, position and velocity of each particle. Such systems are gener-
ically indeterministic. While circumstances need to be specially contrived 
to induce indeterminism among the systems with finitely many degrees 
of freedom, indeterminism is simply the standard, generic behavior of 
these systems with infinitely many degrees of freedom. There are many 
examples in the literature. Often they arise in the supertask literature, as 
reviewed in Manchak and Roberts (2016).

The masses and springs example consists of an infinite chain of mass-
spring-mass-spring-… shown in Figure 15.2.

......

Figure 15.2. Masses and springs.

Its temporal behavior is recovered from an application of Newton’s laws 
along with Hooke’s laws for the springs. If the system is set initially in 
equilibrium with all the masses at rest and the springs unextended or 
uncompressed, then the system can remain in this quiescent state in-
definitely. However, at any later moment, it can spontaneously self-excite 
with all the masses set in motion. The system is noteworthy for the ease 
with which a full mathematical description can be given and for what it 
represents physically. It is a standard model of a one-dimensional crystal, 
extended to infinite size. It indicates that more complex solids, such as 
infinite three-dimensional crystals, will exhibit similar indeterminism.3 

In all of these systems, the infinity of the number of degrees of free-
dom is essential. A finite system, no matter how large, will not manifest 
the indeterministic behavior as freely. A finite chain of mass-spring-mass-
spring-…, once quiescent, remains so for all time, no matter how large it is.

3 I have argued in Norton (2012) that this fact ensures that the infinite component, 
thermodynamic limit of thermal physics cannot involve examination of a system that consists 
of infinite components. Through their indeterminism, such infinite systems have qualitatively 
different properties from the real target of analysis, systems with many, but finitely many, 
components.
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15.3.3. The Infinite Domino Cascade
Rather than work through the technical details of the examples, I will dis-
play a toy example, shown in Figure 15.3, that illustrates the mechanism 
that brings about indeterminism in all of these infinite cases. In a domino 
cascade, dominoes or slender tiles are set on their edges in a row, such that 
when one falls, it strikes another, leading it to fall; that falling domino 
strikes yet another, leading it to fall; and so on down the row.

Consider a very large row of dominoes, finite in number. We assume 
no external perturbing effects. There are no slight vibrations from passing 
trucks, no thermal agitation from air molecules, and so on. If it is set up at 
rest initially, it will remain so indefinitely.

Consider an infinite row of dominoes with the same provisions. As 
with the finite case, it can remain at rest indefinitely. However, it is also 
possible for it to be set into motion spontaneously. The final stages of this 
spontaneous motion are the following:

• the first domino falls, because it was struck by the second 
domino that started falling earlier;

• the second domino fell, because it was struck by the third 
domino that started falling earlier;

• the third domino fell, because it was struck by the fourth domi-
no that started falling earlier; and so on.

As we proceed through the falling of the first, second, and third dom-
inoes, and so forth, we trace the process back through time and eventually 
consider the falling of all infinity of the dominoes.
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Figure 15.3. Infinite domino cascade.

This cascade of falls could not happen spontaneously if there were finitely 
many dominoes. For, as we trace back through the finite cascade, we would 
eventually come to the last domino. It would not fall because there would 
be no further dominoes to fall on it. There would be nothing to start the 
cascade. In the infinite case, we never come to the end of the cascade. For 
any domino, there is always a next domino to fall on it. So every domino 
falls. There is no first fall to initiate the cascade and no need for one.

All that remains now is to close a loophole. If each domino takes the 
same amount of time to fall onto the next, then the infinity of domino falls 
needed to complete the cascade requires an infinite amount of time. This 
does not make the process impossible. But it does make it uninteresting 
for our purposes, for it is simply a process that has been underway for all 
of an infinite past time. If each fall takes one second, then the Nth domino 
fell N seconds ago; and so on for N indefinitely large.

We close the loophole by contriving the geometry of dominoes such 
that each time of fall is successively shorter as we proceed along the cas-
cade. If the successive dominoes require 1/2, 1/4, 1/8, 1/16, … seconds to 
fall, then all infinity of them will have fallen after 1/2 + 1/4 + 1/8 + 1/16 + 
… = 1 second. To an observer, the motion would appear as follows. The 
initially quiescent dominoes remain so for some time. Then, off in the 
distance at the infinite end of the row of dominoes, at the moment of spon-
taneous excitation, there is a disturbance that rapidly propagates towards 
the beginning of the row and leaves all the dominoes toppled.
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Some delicacy is needed to arrange all the dominoes so that they can 
behave this way. The time each takes to fall on the next will depend on how 
hard it is struck and how close it is to the next domino. Under plausible 
assumptions, computed in Appendix 15.A, the time each domino needs 
to fall onto the next scales in direct proportion to the distance between 
the dominoes. Thus, we secure the above schedule of acceleration of the 
falls by shrinking the distance between the dominoes in proportion to the 
times 1/2, 1/4, 1/8, 1/16, … If we assume that the widths of the dominoes 
are scaled similarly, then the cascade can be completed in finite time just 
if the length of the domino row is finite.

One outcome of this scaling is that the dominoes will become arbi-
trarily thin. One might imagine that this means that the dominoes become 
pseudostable rather like a pencil balanced on an infinitely sharpened tip. 
However, none of the dominoes will be pseudostable, since a pseudostable 
system is one which is toppled by an arbitrarily small perturbation. Each 
domino will have a finite width, even if small, which forms a stable base. 
Toppling it requires some non-zero work to lift its center of mass past its 
edge.

This is a toy model. However, it illustrates how indeterminism arises 
generically in systems with infinitely many degrees of freedom. In such 
systems, there are many cascades of excitation processes that cannot arise 
spontaneously in finite systems, since the finite system requires some in-
itiating event to get the process started. In a system with infinitely many 
degrees of freedom, these processes can happen spontaneously without 
need of some initiating event, for they are comprised of infinite cascades 
of events that have no first member.

These general remarks can be made more precise. For a synopsis of 
the analysis for a more general case and for the quantitative analysis of 
the masses and springs example specifically, see Norton (2012, Appendix).

15.4. Indeterminism among Components of a System
In the indeterminism of the last section, the present state of the system 
fails to fix its future state. It may also happen that, at the same time, the 
state of some components of a system may fail to fix the state of other com-
ponents, contrary to our expectations. The problem in inductive inference 
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is then to determine the strengths of support afforded to these incomplete-
ly determined components.

15.4.1. Gauge Systems
There is a simple recipe for generating many problems of this type by in-
jecting a small fiction into physics. Modern physical theories are replete 
with gauge freedoms. They arise when one has two descriptions that ap-
pear to be of distinct physical systems, but it turns out that the differences 
are merely artifacts of the descriptions used. It is “the Eiffel tower” and “la 
tour Eiffel.” The two systems are the same physically. They just differ in 
their names.

Imagine, however, that through some novel physics we do find a way 
to distinguish the two. Then we would have a difference that makes a dif-
ference; and learning which the correct is one would become a problem 
in inductive inference. Since there are many gauge freedoms in modern 
physics, this stratagem can create many new inductive inference problems 
of just the type sought here.

Fact can sometimes mimic fiction. The gauge field associated with 
magnetism is the vector potential A. In classical physics, it is merely a 
useful adjunct in computing magnetic field strengths, but not a physic-
ally significant quantity in its own right. The coming of quantum theory 
initially showed promise of changing this circumstance. Bohm and 
Aharonov (1959) found a quantum effect that arose when there was an 
A field present, but no magnetic field. They initially offered it as evidence 
that the A field is physically significant. Later analysis showed the situa-
tion to be more complicated.

For concreteness, I will elaborate one of the simplest gauge freedoms. 
In ordinary Newtonian gravitation theory, the physically significant 
quantity is the gravitational force on a unit test mass and the associat-
ed quantities of work. The distribution of all such possible forces over all 
space is the Newtonian gravitational force field f. For the case of the sun, 
the force field is given by the familiar inverse square law

where a force of magnitude f(r) on a unit test mass is directed towards 
the center of the sun. M is the mass of the sun, r the radial distance from 
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the center of the sun to the test mass, and G the universal constant of 
gravitation. 

The Newtonian gravitational potential field j(r) is defined through the 
work W(r0, r1) needed to be performed against this force field when we 
move a unit test mass from one position r0 to another r1. That is, the po-
tential fields j(r0) and j(r1) are related by

We usually infer from (3) that . However, we are really only 
authorized to infer to something weaker: 

where K can be any number, positive or negative, large or small.
The choice of K leaves the physically significant quantities unaltered. 

That is, for all K, we end up with the same work term W(r0, r1) in (3) since 

and the same force field f(r) in (2) since

The freedom in selection of different K’s is a gauge freedom and trans-
forming between different, physically equivalent expressions for j(r) by 
changing the value of K is a gauge transformation.

The inductive inference problem posed is this. We introduce the fic-
tion that some new physics will enable us to detect and distinguish among 
the gravitational potentials of (4). Given the gravitational force field f(r) of 
the sun (2), what is the inductive strength of support given to the gravita-
tional potential fields j(r) of (4) with different values of K?

15.4.2. Newtonian Cosmology
Indeterminism among components in a physical theory can arise without 
the need for any fictitious physics. A simple example, inspired by Wallace 
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(2016), arises in Newtonian gravitation theory. We expect that the specifi-
cation of the position and masses of all bodies in the universe will fix the 
gravitational force on a test body and the gravitation potential field at any 
point in space.

That things are not simple precipitated an acute problem in Newtonian 
cosmology in the late nineteenth and early twentieth century. Newtonian 
cosmology assumes that infinite Euclidean space is filled with a uniform 
matter distribution of constant density r. The expectation is that there is 
a unique gravitational force acting on any test body in such a universe. 
This force is calculated by summing all the gravitational forces acting on 
the test body from the uniformly distributed cosmic matter. The trouble is 
that there are many ways to sum these forces. Pick any resultant force you 
like and there is a way to carry out the sum so that the net force on the test 
body is just that force. For a survey of this period and for an example of 
the simple calculations that lead to the multiplicity of forces, see Norton 
(1999a).

In retrospect, the difficulty is all too easy to see. Contrary to expect-
ations, the cosmic matter distribution does not fix the net gravitational 
force on the test body. Many fields are compatible with the one matter 
distribution and thus we can compute many forces on the test body simply 
by drawing quantities from different possible fields.

When the problem was first examined in the literature, however, this 
possibility was overlooked, since the loss of uniqueness of the force was 
unthinkable. Instead, many physicists found it obvious and even compel-
ling that the symmetries of the problem must force a unique solution: there 
can be no preferred directions in a homogeneous, isotropic cosmology. So 
the net force can point in no direction. Hence, there is no net force on the 
test body and, as a result, the gravitational potential field must everywhere 
be a constant.

We shall return below to this risky idea that physical intuition can 
override what well-established equations say. Before we do, it is interesting 
to note that a favored resolution was to modify Newton’s inverse square 
law of gravity until it returned the expected constant gravitational poten-
tial. This computation was used by Einstein in 1917 as a foil to motivate his 
introduction of the cosmological constant into general relativity. 
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We can develop the difficulty as follows. A curious result of Newtonian 
gravitation theory concerns an infinite flat plate of matter of density r and 
thickness Dx. The gravitational force exerted by this plate on a test body 
turns out to be independent of the distance from the plate. It is just

directed along the line of shortest distance to the plate.4 We can use this 
result to determine the gravitational force on a test body in a Newtonian 
cosmos. We divide the uniform matter distribution into infinitely many 
flat plates of thickness Dx and infinite area, arranged parallel to the y and 
z axes of a Cartesian coordinate system (x, y, z). 

Consider a unit test mass at some fixed x-coordinate position, say x’ = 
x. We can divide the matter distribution that acts gravitationally on it into 
two parts. As shown in Figure 15.4, the first consists of all those infinite 
plates between x’ = −x and x’ = x. The second consists of all the remaining 
infinite plates.

Figure 15.4. Unbalanced forces in Newtonian cosmology.

4 See Appendix 15.B for a justification and demonstration of this result and further 
analysis of this example.
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We have from (5) that each plate of thickness Dx contributes force 2pGr 
Dx. Hence, the force on the test body from the plates between x’ = −x and 
x’ = x is just their sum

and is directed along the x-axis towards x = 0. The remaining plates each 
exert the force 2pGr Dx on the test body. The force will be in the +x direc-
tion if the plate is located at x’ > x and it will be in the −x direction if the 
plate is located at x’< −x. Hence, we can pair up the plates at coordinate 
positions +x’ and −x’, matching one that exerts a force in the +x direction 
with one that exerts a force in the −x direction, so the net force from the 
pair is zero. This pairing exhausts all the matter of the second part, as 
shown in Figure 15.5. The net result is that the force on the test body is 
given by (43).

Figure 15.5. Balanced forces in Newtonian cosmology.

We can repeat this construction for every point in space, so that the ex-
pression (6) represents the gravitational force field due to the cosmic mat-
ter. This force field induces a gravitational potential through a relation 
analogous to (3) as
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The problem should now be obvious. The division of the cosmic matter 
into plates perpendicular to the x axis was arbitrary. We could also have 
divided it into plates perpendicular to the y or the z axes. We could then 
replicate the above analysis and recover two distinct potential fields5

We can generate still further potential fields. Another arbitrary choice was 
to locate the center of the plates of the first part at x-coordinate 0. We 
could equally have chosen any x-coordinate, such as x0. We would then 
have arrived at the gravitational potential fields

Taken together, we have many potentials compatible with the cosmic mat-
ter distribution. One might well suspect at this point, quite correctly, that 
we have only begun to explore the gravitational potential fields compatible 
with the cosmic matter distribution.

These potential fields form a large space, and we can navigate through 
them by the following artifice. We start with any admissible potential, 
such as (7a). We arrive at another simply by adding a “harmonic function” 
to it.6 It turns out that

is a harmonic function. Adding it to (7a) moves us to (7b):

5 For experts: the potentials (7a, b, c) derive from physically distinct gravitational systems 
and not gauge equivalent along the lines of Malament (1995). For more, see Appendix 15.B.

6 A harmonic function is one that satisfies Laplace’s equation ∇2F = 0. For more, see 
Appendix 15.B.
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Another harmonic function is

Adding it to (7a) moves us to (8c).
The remarkable fact is that there are infinitely many harmonic func-

tions and they are linearly independent. This means that we cannot reduce 
the set by expressing some as linear combinations of others. If we repre-
sent an infinite set of linearly independent harmonic functions as F1, F2, 
F3, …, then adding any linear combination of them to an admissible po-
tential produces another. Thus, we arrive at an infinite dimensioned space 
of gravitational potentials 

where the space is parameterized by infinitely many parameters a1, a2, a3, 
… which can each independently take on all values, positive and negative, 
large and small. The potentials of (7a, b, c) and (8a, b, c) are just some of 
the simplest potentials in the space.

The inductive problem to be addressed shortly is to determine the sup-
port for each of the solutions in the space of potentials defined by (9), given 
the spatial geometry and matter distribution of Newtonian cosmology.

Since both the spatial geometry and the matter distribution are iso-
tropic and homogeneous, it is natural to assume that the gravitational 
potential will share some or all of these symmetries. One may even have 
a strong intuition, as physicists did in the past, that the potential must 
share these symmetries. Imposing them would have the effect of greatly 
reducing the size of the space of potentials (9). While the reduced problem 
that results is interesting its own right, it is not the one to be addressed 
here. We do not assume homogeneity and isotropy of the potential field, 
for there is no compulsion to assume either. It is not an assumption that 
can be derived from the corresponding symmetries of the geometry and 
the matter distribution and, as the viablility of the potentials (9) show, it is 
not enforced on individual potentials of Newtonian gravitational theory.
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15.5. Inductive Analysis of Temporally Indeterministic 
Systems
The indeterministic systems of Sections 15.3 and 15.4 above each pose a 
problem in inductive inference. Take certain fixed aspects of a system: its 
present state or certain of its components. Find the strength of inductive 
support that the aspect provides to some other aspect: the system’s future 
state or certain others of its components. The systems have been chosen so 
that all share the following two properties:

• The physics described is an exhaustive account of the totality of 
background facts. There are no further hidden background 
facts.

• The physics leaves one aspect of the system underdetermined, 
but provides no probabilities for the different possibilities.

An essential condition to be placed on the inductive analysis is that it 
merely extracts and displays the relations of inductive support already 
present in the fully specified systems. That is, setting off the controlling 
idea for emphasis:

The analysis may not impose new physics.

For to impose new physics is to introduce new facts that alter the problem 
posed. What would result might well be a cogent analysis of some prob-
lem, but it would not be an analysis of the problem originally posed.

15.6. A Probabilistic Analysis
Let us attempt to represent the strengths of inductive support as probabil-
ities. We shall see that this analysis inevitably imposes new physical facts 
on the systems.

15.6.1. Temporally Indeterministic Systems7

The temporally indeterministic systems of Section 15.3 all involve systems 
that remain quiescent until some time t = T of spontaneous excitation. 

7 The analysis of this section draws on Norton (2010a).
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The inductive problem is to determine the strengths of support for various 
times T. Initially, this looks like a problem tailor-made for probabilistic 
analysis, for it is similar to the problem of radioactive decay: a radioactive 
atom remains quiescent until the moment of decay. This moment is gov-
erned by the familiar law of radioactive decay. The probability P(T) of de-
cay in the time interval from 0 to T is

where the time constant t of the decay is related to the empirically deter-
mined half-life of the element by T1/2 = t ln 2.

This law of radioactive decay is the natural probabilistic law adapted 
to these cases, for it is the unique law with “no memory” of what hap-
pened in the past. That is, whether the atom will decay in the moments 
immediately to come is independent of how long the atom has survived so 
far without decaying. It has no memory of whether that past survival was 
long or short.

If we write Q(T) = 1 − P(T) for the probability that the atom does not 
decay in the initial time T, then this no-memory property is expressible as

That is, the probability that the atom survives undecayed for a total time 
T + u is given by the probability that it survives first for time T and then, 
given no decay, that it then survives for a further time u. The no-mem-
ory property says that these last two probabilities are independent, so the 
probability of the conjunction of their outcomes is just the product of (11). 
This relation entails the exponential decay law (10).8

The probability distribution (10) expresses a physical chance. It is im-
mediately and naturally converted into a logic of induction through the 

8 Differentiate (11) with respect to u and find 

.

Evaluate this expression at u = 0 and recover dQ(T)/dT = k Q(T), where k = dQ(u)/du|u = 0 
is a constant independent of T. The solution is Q(T) = constant ⋅ exp(kT). Since the atom must 
eventually decay, P(T) = 1 − Q(T) must go to unity as T goes to infinity. Hence, we must have 
“constant” = 1 and k = −1/t, for any t > 0.
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conditional probabilities it induces on pairs of hypotheses concerning the 
time of decay. For example, 

H(T1, T2): the hypothesis that the time T of spontaneous 
excitation occurs in the interval T1 ≤ T < T2. 

If we take as our background B the physical description of the radioactive 
atom, then the support accrued to the hypothesis from B that the atom 
will decay sometime up to time T is just given by

The support for the hypothesis of decay between T1 and T2, from the evi-
dence that decay happens by time T > T2 > T1 is

All this is unremarkable and it seems to be the natural analysis to apply 
to the spontaneous excitations of Section 15.3. Here, however, our famili-
arity with radioactive decay is leading us astray. For the probabilistic law 
(10) includes a time constant t. The magnitude of the time constant has a 
profound effect on the dynamics, as shown in Figure 15.6.

Figure 15.6. Effect of different time constants t on the probability of 
spontaneous motion.

A small time constant entails that spontaneous excitation is all but sure to 
happen soon. If t is one millisecond, then there is a probability of 0.999 of 
spontaneous excitation in time t ln 1,000 = 6.91t = 6.91 milliseconds.9 A 

9 To arrive at these estimates, invert (10) to recover T = t ln [1/(1 − P)].
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large time constant entails that spontaneous excitation is very unlikely to 
happen soon. If t is one thousand years, then there is a probability of only 
0.001 of spontaneous excitation in t ln 1.001 = 0.001t = one year.

Since use of the probabilistic law (10) requires selection of a time 
constant t, it can only be employed if we, in effect, make some judgment 
about how soon the spontaneous excitation will occur. We already have 
the complete physics of the systems of Section 15.3. There is no time scale 
provided and no judgments of sooner or later. All the physics tells us is 
that spontaneous excitation is possible. 

Thus, to apply the probabilistic law (10) is to introduce new physics. 
In other words, it is to change the problem posed to a new one to which 
probabilistic methods happen to be well-adapted. 

The analysis above is just a beginning. There are many ways to apply 
probabilistic analyses to this problem of spontaneous excitation. While 
some are quite ingenious, none succeed. Here are a few of the possibilities.

The physics is indifferent to which is the time T of spontaneous ex-
citation. So a natural choice is a uniform distribution of probability over 
all values of T from zero to infinity. The immediate difficulty is that the 
probabilities of such a uniform distribution cannot sum to unity. We set 
equal the probability of equal intervals

Since there are infinitely many of these intervals, the total probability is

This is a failure of the probability distribution to normalize: these prob-
abilities should sum to the unit probability required by the axioms of 
probability theory for the entire outcome space.

While this failure is usually treated as fatal, the normalization condi-
tion is sometimes dropped, under the expectation that conditionalization 
may lead to a normalized probability distribution. However, even if this 
expectation is sometimes met, the real problem with the distribution (12) 
is that it still adds to the physical facts. It assures us that, for example, 
H(0, 2) is twice as probable as H(0, 1). If we make the usual connections 
to frequencies, that means that we should expect H(0, 2) to arise roughly 
twice as often as H(0, 1) in many repeated trials. The physical facts for 
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these systems include no such provision. They simply allow that any of the 
times in these hypotheses may be the time of spontaneous excitation; and 
nothing more.

Another possibility was explored more fully in Chapter 13. It is that 
we drop the requirement of countable additivity that allows us to sum the 
infinitely many e’s above. Instead, we are allowed to sum finitely many 
only; that is, we are restricted to finite additivity. The result is that we can 
set e = 0 in (12) without breaching normalization. All the individual hy-
potheses of (12) are assigned zero probability

but their infinite disjunction is assigned unit probability.10 Finite disjunc-
tions of them are also assigned zero probability

This is promising initially, since all finite intervals of times are treated 
equally, even if as zero probability outcomes.

The difficulty is that the finitely additive measure is still adding sig-
nificantly to the physics. For even finitely additive measures must assign 
unit probability to some set of outcomes; and these become privileged as 
the events we expect to happen. There is no way to assign this privileged 
set without adding to the physics. For example, the above measure assures 
us that the time of spontaneous excitation is, with probability 1, greater 
than or equal to T = 1: P(H(1, ∞) | B) = 1. The physics is equally indiffer-
ent to the times of spontaneous excitation as it is to the inverse times of 
spontaneous excitation, 1/T. If the finitely additive measure is a reasonable 
way to represent complete indifference, then it should work equally well 
when it is applied to the inverse times 1/T. In this application, by parallel 
reasoning, we arrive at the result that, with probability one, P(H(1/1, ∞) | 
B) = 1. But H(1/1, ∞) = H(1, ∞) = H(0, 1),11 so that we have a contradiction 
with the earlier probability assignment P(H(0, 1) | B) = 0.

10 Or, more carefully, one less whatever probability is assigned to the hypothesis that there 
is never a spontaneous excitation.

11 Aside from the inclusion of T = 1 in H(1/T, ∞), but not in H(0, 1).
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The escape from the contradiction is to decide that only one of the 
two finitely additive measures may be used. This, however, amounts to se-
lecting a privileged subset of probability one times of excitation: the times 
between 0 and 1, or between 1 and infinity. The physics makes no such 
distinction. It is an addition forced on us by the probabilistic measure.

Two further probabilistic embellishments have been treated elsewhere 
in Norton (2010a) and in earlier chapters. First, one might try to escape the 
need to select a single time constant t in (10) by adopting the complete set 
of measures (10), for all values of t, as the representation of the strength of 
support. The motivation is correct in that it seeks a representation weaker 
than a single probability measure. However, it is too indirect in that it 
seeks to preserve probability measures by using them to simulate a differ-
ent, non-additive logic. The better approach is simply to write down that 
logic directly, as in Section 15.7 below.

Second, one might adopt the measure of (10) as a subjective degree of 
belief. The earnest but possibly unrealizable hope is that repeated condi-
tionalization will wash away the subjective opinion and leave behind the 
objective bearing of evidence, or at least some approach to it. Once again, 
the motivation is good but the execution poor. Again, the better approach 
is simply to write down the warranted logic directly.

15.6.2. Probabilities, Empirically?
While we may not be able to recover probabilities from the physics gov-
erning these indeterministic systems, might we introduce them through 
an empirical artifice? To take a concrete case, imagine that somehow we 
are able to physically realize a dome. We might then set up many of them 
and just observe what happens. Might we find that that the frequencies 
for different times of spontaneous excitation stabilize towards limiting 
values? We could then introduce probabilities, set in value to those empir-
ically determined, limiting, relative frequencies.

Dawid (2015) considers an even simpler case in the same spirit. What 
if we have one hundred domes and find that they all excite spontaneously 
at exactly 16.8 seconds? Might we then infer to a deterministic rule: spon-
taneous excitation occurs at 16.8 seconds for all domes?
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How we treat these proposals will depend on how certain we are of the 
background, governing physics. Are we certain of the background physics 
or are we not?

In the first case, we remain certain that the Newtonian physics speci-
fied is the totality of the physics governing the processes. That all excita-
tions occur at 16.8 seconds is compatible with the indeterministic physics, 
but it is not something we could predict from that physics, at the exclusion 
of many other possibilities. Correspondingly, the background physics au-
thorizes no further predictions, even after we have seen all one hundred 
domes excite at 16.8 seconds. We should remain as uncertain of the next 
excitation time as we were prior to seeing the first dome in the imagined 
experiment.

This situation is quite similar to that of a gambler in a casino at a 
roulette wheel. Neglecting 0 and 00, the chance of a black on a properly 
functioning wheel is 1/2. Imagine, however, that the gambler steps up to 
the table with the wheel and finds twenty successive spins to yield black. 
Assume the gambler is confident of the background theory: the wheel is 
functioning properly. All the gambler can properly conclude is that an 
extremely unlikely event has occurred. Twenty successive black outcomes 
is possible, just improbable.

What the gambler should not now think is that the wheel is on some 
sort of “streak” so that contrary to the physical construction of the wheel 
and the laws of probability, the next outcome is more likely to be black. To 
think that is to commit a notorious gambler’s streak fallacy.

It is the same with the dome. As long as we remain convinced that the 
Newtonian physics described is the totality of the physics that governs the 
dome, repeated excitations at 16.8 seconds is merely a coincidence. In a 
similar vein, the indeterministic physics does not support the existence of 
stable limiting frequencies for different excitation times. Any appearance 
of such stability is mere coincidence that cannot be expected to persist.

That was the first case. In the second case, we become uncertain that 
the Newtonian physics described is all that governs the actual domes of 
our experiment. We suspect that some further or some other physics is at 
play. What physics it might be is hard to say, since the entire scenario is 
built from multiple layers of fiction. I leave it to the reader’s imagination. 
Whatever alternative physics we may suspect here is what will guide the 
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inferences. Once again, the situation is similar to that of the gambler. The 
probability of twenty black outcomes is exceedingly small: 1/220, which 
is roughly 1/1,000,000. Having seen such an improbable occurrence, the 
gambler would reasonably suspect that something odd is afoot. Perhaps 
the wheel has some ingenious cheating device that is malfunctioning and 
delivering all black outcomes. If the gambler believes that to be the case 
and that the cheating device will continue to operate well, the gambler 
would be well warranted to conclude that the next outcome will be black.

In short, as long as we retain the presumptions made at the outset 
of the totality of the physics governing the indeterministic systems, any 
empirically observed regularities of the type suggested will be of no help 
to us inductively. To expect otherwise is to commit a fallacy analogous to 
the gambler’s streak fallacy.

15.6.3. Systems with Indetermimism among Their Components
The inductive problems posed in Section 15.4 are to find the inductive 
strengths of support afforded to underdetermined components of a physic-
al system by those that are fixed by the problem specification. Much of the 
analysis of Section 15.6.1 can be carried over to the probabilistic analysis 
of these problems. Probabilistic analysis fails in the same way. In addition, 
the infinite dimensionality of the space of underdetermined potentials (9) 
in Newtonian cosmology raises more problems.

The simplest problem was posed in Section 15.4.1. We are to choose 
among the infinitely many gauge equivalent fields of (4). This choice 
amounted to selection of a value of the constant K, which can take any 
real value, positive or negative, large or small.

The straightforward approach is to represent strength of inductive 
support by a probability distribution over K. However, since K has an in-
finite range, the distribution must be attenuated towards zero for large 
positive and large negative values of K. Otherwise, it will not normalize 
to unity. Here, the difficulty is like that faced by the probabilistic law (10). 
The rate of attenuation will be represented by some parameter or some 
characteristic of the distribution that is akin to the selection of the time 
constant t in (10). Any choice of a rate of attenuation, however, is an addi-
tion to the physics of the gauge system.
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One might also try to avoid the problem by employing an unnormal-
izable probability distribution akin to (12). Once again, this will add to the 
physics, for it requires us to assign higher probability to larger intervals of 
K, even through the physics does not authorize it. Finally, the difficulties 
of the finitely additive measure can be replicated here as well.

The still harder case for probabilistic analysis is that of Newtonian 
cosmology in Section 15.4.2. For now we are to distribute probabilities 
uniformly over the space of potentials (9). Its individual solutions are 
picked out by specifying values for the infinitely many parameters a1, a2, 
a3, … That is, it is an infinite dimensional space. The familiar problem is 
that we cannot easily assign an additive measure over such spaces since 
the parameter values range from minus infinity to plus infinity. In the 
examples so far, it is the requirement of normalization of the measure of 
the full space to unity that forces the problem. The new problem with an 
infinite dimensional space is there is still no well behaved, uniform meas-
ure over this space, even if we drop the requirement of normalization.

To see this, recall that probabilities behave like volumes in space. So, 
for continuity with familiar notions, let us continue to call them volumes. 
First consider a space of parameters a1, a2, …, an of finite dimension n. The 
set of all points for which 0 < ai < 2, all i, forms a cube of side 2. This cube 
consists of 2n cubes of unit side. In a three dimensional space, the side 2 
cube consists of 23 = 8 unit sided cubes. If we assign unit volume to each 
unit cube, the side 2 cube just has volume 2n.

For any finite n this relation is unproblematic. That ceases to be so 
when we take the case of the infinite dimensional space. For then, the 
sided 2 cube consists of an uncountable infinity 2∞ of unit cubes. Since 
the measure is uniform, all the unit cubes have the same volume. There 
are two cases: the unit cubes have non-zero volume; and the unit cubes 
have zero volume.

If the unit cubes have some finite, non-zero volume, then it follows 
that the side 2 cube must have infinite volume. This follows using only 
finite additivity of the volumes. For if we suppose any finite volume for 
the side 2 cube, then we need only sum finitely many of the unit cubes to 
recover a summed volume greater than it. Of course, if the unit cubes have 
infinite volume, then so must also the side 2 cube.
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The other possibility is that the unit cubes have zero volume. Then 
the side 2 cube can also have zero volume. However, it may also have a fi-
nite, non-zero volume or an infinite volume. This may seem odd, since we 
are supposing the side 2 cube to consist of nothing but zero volume unit 
cubes. Why not add up all these zeros and get zero volume? The problem is 
that there are an uncountable infinity 2∞ of zeros and adding an uncount-
able infinity of them is an undefined operation.12 The volume of the side 2 
cube must merely be greater than the sum of the volumes of finitely many 
unit cubes; or (if countable additivity is assumed) of a countable infinity 
of them. So its volume can be non-zero.13

These results can be applied to a cube anywhere in the space. Every 
cube can be decomposed into 2∞ half-sided cubes; and every cube is it-
self a component cube of a doubled-sided cube. What results are three 
possibilities for the uniform measure. The two simple ones are just that all 
cubes have either zero volume or infinite volume. The complicated case is 
that there is some value L such that an L-sided cube has finite, non-zero 
volume. Since the measure is uniform, all cubes of side L will have this 
volume. It follows by replicating the above reasoning that all smaller cubes 
that can be compounded to form cube of side L must have zero volume; 
and all larger cubes that can be built from cubes of side L must have in-
finite volume.

This third option violates the requirement that we add nothing to the 
physics, for it singles about quite particular, preferred sets of parameters 
as just those that reside in the cubes of side L. Since parameter values cor-
respond to gravitational potentials, this is a privileging of certain sets of 
potentials.

Combining the three possibilities, cubes in this space will almost 
everywhere have either zero volume or infinite volume. One can see this 
result informally by noting what happens when we scale up or scale down 
any region by a factor M. That is, we multiply all the parameter values in 

12 This is a familiar result. Each point in the unit intervals of reals is of zero length. Since 
there are an uncountable infinity of them, we cannot add them to find the length of the unit 
interval of reals, which is not zero, but one.

13 This is an uncommon possibility. In discussions of measures on infinite dimensioned 
spaces, it is usually assumed that the spaces are separable, which allows that each region can be 
composed of a countable infinity of equal volume subregions. Separability fails in this case.
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the set specifying the region by M. The volume of the region will scale by 
a factor Mdimension of space = M∞. This factor is zero if M < 1 and infinity if 
M > 1. This suggests that almost all volumes will be zero or infinity. For a 
finite, non-zero volume cannot stay finite and non-zero under any scaling, 
either up or down. It becomes an infinite or a zero volume, respectively. 
However, employing this factor M∞ directly in a more thorough argument 
is not straightforward, since it leads to indeterminate arithmetic forms. 
For example, scale up a zero volume by an infinite factor M∞, when M 
> 1. The new volume is “0 × ∞,” which is an expression that cannot be 
evaluated.

Note that these troubles arise without assuming that the volume of 
the total space normalizes to unity. If we retain countable additivity, the 
possibilities above admit only two values for the volume of the entire 
space: zero or infinity.

It might be tempting to drop countable additivity, assign zero volume 
to any bounded region and unit volume to the whole space. One does not 
escape the difficulty already developed above for finitely additive meas-
ures in the case of spontaneous excitations. Briefly, the measure ought to 
be indifferent to whether we parameterize the space with the original par-
ameters ai or their inverses, 1/ai. Then we would assign zero volume to the 
side 2 cube in the inverse parameterization 1/ai for which 0 < |1/ai| < 1, all 
i. But this region corresponds to the entirety of the space in the original 
parameterization, 1 < |ai| < ∞, excepting a zero volume cube 0 < |ai| < 1. In 
the original parameterization, this region is assigned unit volume.

15.7. The Inductive Logic Warranted

15.7.1. The Logic
The material theory of induction directs us to look to the background facts 
to determine which logic is warranted. In the cases of this chapter, the 
background facts are, by careful contrivance, such as to support essential-
ly no non-trivial inductive inferences at all. They allow us merely to say 
that certain outcomes are possible but to provide no discriminations of 
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the nature of “more possible” or “less possible.” This lack of discrimination 
can be codified into a formal calculus with three values:14

These values are assigned to strengths of inductive support, written as 
“[A | B],” where this symbol represents the strength of inductive support 
afforded to proposition A by proposition B. The little structure these 
strengths have is induced by deductive relations among the propositions; 
or, in other terms, by set theoretic containment amongst the sets of possi-
bilities. That is, we have: 

The logic is empty until we specify the propositions to which it applies. 
Many choices are possible here. One convenient choice arises in the con-
text of the spontaneously exciting systems of Section 15.4.1. The propos-
itions over which this logic is defined are: H(T1, T2), as defined in Section 
15.6.1; B, the proposition that describes the background physical facts of 
the system; and, for completeness, H(∞), the time of spontaneous excita-
tion T = ∞. Proposition H(∞) corresponds to the case in which there is no 
spontaneous excitation.

The logic now authorizes us to assign strengths of support such as

14 This logic has been developed in various forms in Norton (2008a, 2010a and 2010b) and 
in Chapter 10.
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There is a natural and obvious generalization to the systems of Section 
15.4 with indeterminism among the system components.

An important property of this logic is that it is not additive, in contrast 
with the probability calculus. That is, if A1 and A2 are mutually exclusive 
propositions, such that [A1 | C] = [A2 | C] = poss, then it is possible that [A1 
∨ A2 | C] = poss. Overall, we violate additivity since

The additivity of a probability measure would require in this case that 

so the probabilities assigned to A1, A2, and A1∨A2 cannot be equal unless 
we have the exceptional case of all probability zero outcomes.

15.7.2. Invariances
Norton (2008a, 2010b) and Chapter 10 argued that this logic (13) repre-
sents the case of completely neutral support; that is, the case in which we 
have no reason at all to favor any of the contingent propositions in any 
degree. It was shown that the logic can be derived in two ways from two 
invariance properties. We shall see below that these invariances are re-
spected to a great extent in these systems. However, do recall that the logic 
(13) of Section 15.7.1 was not derived from these invariances, but directly 
from the possibilities allowed by the background physical facts. 

Redescription. The first invariance is invariance under redescription. 
This invariance is commonly employed in the context of the principle of 
indifference. It arises when we redescribe a system in a way that preserves 
our indifferences.

Take, for example, the value of the parameter K in the Newtonian 
gauge system of Section 15.4.1. Represent a useful set of hypotheses by:

On the basis of the background facts B, we are indifferent to K lying in 
equal ranges of values, so we have



The Material Theory of Induction602

Now replace the parameter K by L = K3. Since L is an equally good param-
eter to use in (4), we can also write

However, HL(1, 2) = HK (1, 23) = HK (1, 8)

Combining with HL(0, 1) = HK(0, 1) we recover

This is an example of the failure of additivity of the type of (14).
Negation. The second invariance is invariance under negation. If the 

support for some proposition A is completely neutral, then we have no 
grounds to assign it more or less support than its negation not-A. We must 
assign the two equal support. That is, the strength of support remains un-
changed under the negation map that sends hypotheses to their negations.

This negation map can be implemented in the case of systems that can 
spontaneously excite as follows. Write

Hypothesis HT(0, 1) says that this time lies in 0 ≤ T < 1. Its negation, not-
HT(0, 1), asserts that that the time of spontaneous excitation lies in 1 < T 
≤ ∞. Negation invariance of the strengths of support requires the equality

We can see that this equality obtains according to the rules of (13). For

and from the rules

as well as
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All these hypotheses accrue equal support poss from the background B 
since none are deductively entailed by B. 

We can also derive negation invariance from redescription invari-
ance. Consider the support, not for various times T, but for the inverse 
times 1/T. If we are indifferent to the two parameterizations of the time, T 
and 1/T, then we would have, under description invariance:

The interval 1 < T ≤ ∞ is the same 0 ≤ 1/T < 1. That is,

Combining we infer

This is just negation invariance (15).

15.8. Conclusion
According to the material theory of induction, there is no logic or calculus 
of inductive inference that applies universally to all problems in inductive 
inference. It follows that there are problems in inductive inference in which 
strengths of support cannot properly be represented by probability meas-
ures. This chapter illustrates this claim with examples of indeterministic 
physical systems contrived to be resistant to a representation of strengths 
of inductive support as probabilities. The contrivance depends on finding 
simple physical systems in which a full specification of the background 
physical facts can be given and their burden easily discerned. An inductive 
analysis must determine strengths of inductive support without requiring 
alteration of or addition to these background facts. In the examples pre-
sented, using probabilities to represent strengths of supports requires just 
such additions. For this reason, their use fails.

The material theory of induction asserts that the applicable logic of in-
duction is determined by these background facts. Their paucity supports a 
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very weak, three-valued inductive logic that happens to coincide with the 
completely neutral strengths of inductive support elaborated elsewhere.

The inductive problems of this chapter all involve problems of in-
determinism in which certain aspects of a system fail to fix certain other 
aspects. Problems of this sort do arise in recent science. The most obvious 
involves singularities in general relativity. Singular space-times can de-
velop in many ways into the future. The possibilities are not determined 
and there are no probabilities provided by general relativity to weight the 
different possibilities.

A white hole is the temporal inverse of a black hole. When systems 
fall into a black hole, their structures are obliterated by the black hole, 
whose properties are merely mass, charge, and angular momentum. If we 
now take the time reverse of the falling in, anything that can fall into a 
black hole can also be ejected by a white hole. The possibilities are not 
determined.

In relativistic cosmology, the Big Bang is a space-time singularity in 
our common past, out of which the entire universe issued. The longstand-
ing puzzle has been to explain why this singularity issued in a universe 
that is so nearly spatially homogeneous and isotropic and with spatial 
curvature very close to zero. Here is a problem in inductive inference. 
Given the background facts of general relativity and that there is an initial 
singularity, what support do we have for the various possible cosmolo-
gies that may arise? There are very many possible configurations other 
than the particular one manifested in our universe; and there are no good 
reasons provided in pre-inflationary cosmology15 that we should have just 
these initial conditions and not others.

It is tempting to convert these last facts into the claim that it is very 
improbable that we have the initial conditions we do. But such a claim, 
if read literally, solves the inductive problem by means of a probability 
measure. Since the background facts listed provide for no probabilities, 
their introduction is as illicit as in the contrived examples of this chapter.

The moral of the chapter is that we should be prepared for problems in 
inductive inference in which strengths of support are not well-represented 

15 The once common claim that inflationary cosmology does provide these reasons is now 
challenged. See, for example, Holland and Wald (2008).
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by probability measures. To do otherwise—to persist in representing 
strengths of inductive support universally as probability measures—risks 
unwittingly importing new facts that change the problem posed to a new 
one amenable to probabilistic representation. The outcome is that we will 
not have solved the problem actually before us but a different one that we 
wished we had. 

Appendix 15.A: Toppling Dominoes
A domino has width W, height H, and mass m and is separated from 
the next domino by an inter-domino distance L. To be toppled, a small 
impulse is needed to push the domino from its vertical position until it 
strikes the next domino, as shown in Figure 15.7.

Figure 15.7. Geometry of a toppling domino.

As the center of mass of the domino pivots on one edge, if forms an invert-
ed pendulum. Call the angular position of the center of mass q as it pivots 
around the edge and set q = 0 when the center of mass is directly over the 
edge. If the distance along the circular arc traced by the center of mass of 
the domino is x and the center of mass is located in the geometric center 
of the domino, then the gravitational force on the center of motion in the 
direction of the arc is mg sin q, for g the acceleration due to gravity. The 
equation of motion in time t is , where sin q is approximated as q for 
the small angles we encounter here. Since q = x/(H/2), we have
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where k2 = g/(H/2). This inverted pendulum equation of motion admits 
the general solution q(t) = A sinh (kt) + B cosh (kt), for undetermined 
constants A and B. We set q(t) = 0 when t = 0, so that B = 0, and arrive at:

In toppling, the center of mass of the domino is first lifted by the rotational 
pivot about the edge and then falls under gravity once past the edge.

It would be convenient if there were some longest time this motion 
could take. One might imagine that, if the domino were given just the 
right, minimal push, it would pivot slowly and its center of mass would 
momentarily have zero speed as it passes over the edge at the apex of its 
motion. This cannot happen. A longer computation shows that this mo-
tion would require infinite time.16

The best we can secure is that the center of mass, at the moment of 
passing over the edge, has some small linear speed V. Since the angular 
speed is dq(t)/dt = Ak cosh (kt), we require V/(H/2) = dq(0)/dt = Ak cosh 
(k0) = Ak. Thus the solution is

since, for small times, sinh (kt) ≈ kt.
The domino center of motion must move from its initial angular pos-

ition q = −W/H to its collision with the next domino at angular position q 
= (L−W)/H. Substituting into the last equation for q(t), we have L/H = Vt/
(H/2) for the time t required by the domino to fall. That is

Thus the time tn for the nth domino to fall is given by Ln/2V, where Ln is 
the distance between dominoes n and (n − 1). Thus,

Total time for cascade

16 For more, see Norton (2003, pp. 11–12).
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If we assume that the domino width scales in the same way as the dis-
tance between the dominoes, the condition that the cascade completes in 
finite time reduces to the condition that the domino row be of finite spatial 
length. (Informally, this condition follows if we imagine that that the fall-
ing propagates through the chain at roughly a constant speed V.)

An assumption of this analysis is that each domino has the same speed 
V as its center of mass passes its apex. One might wonder whether the 
system can provide each domino sufficient energy. Some qualitative con-
siderations show that this will not be a problem. Each domino by suppos-
ition has speed V at its apex and thus kinetic energy (1/2)mV2. Assuming 
elastic collisions, it will pass this much energy to the next domino as well 
as the extra energy released when the domino center of mass falls to a 
lower height overall.

Indeed the problem will not be a lack energy to sustain the cascade, 
but the danger of a surfeit. For there are infinitely many dominoes of the 
same mass, each falling through a height in a finite time. If each domino 
falls to the same prone position, that will result in release of an infinite 
amount of energy.

Appendix 15.B: Newtonian Cosmology
The force (5) exerted by an infinite, flat plate of density r and thickness 
Dx is independent of the distance to the plate is easy to see qualitatively. 
Consider the portion of the plate subtended by a very small angle W at the 
location of unit test mass. The volume and thus the mass of this portion 
is proportional to Wr2. However the force exerted by this mass on the test 
mass diminishes with 1/r2. Hence, the force is proportional just to W and 
independent of distance.

The full expression for the force is computed as follows. The distance r 
from the unit test mass to each part of the plate satisfies r2 = x2 + s2 where 
x the shortest distance to the plate and s the distance from the closest point 
on the plate to the part at issue. A circular ring of width ds at radius s in 
the plate exerts a force on the unit test mass of
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where x/r is the cosine of the half angle at the base of the cone subtended 
by the ring. Integrating over all s, we recover (5) as

We can also compute the Newtonian gravitational potential field j direct-
ly from Poisson’s equation

For constant r, the solutions (7a, b, c) and (8a, b, c) follow immediately. For 
example, we recover (7a) as

That F = 2pGr (y2 − x2) is harmonic follows since

That adding a harmonic function to a solution of Poisson’s equation (16) 
takes us to another solution follows from the linearity of the operator ∇2. 
If F is a harmonic function, which satisfies Laplace’s equation ∇2F = 0, 
and we add it to an existing solution j of Poisson’s equation (16), their sum 
(j + F) also satisfies Poisson’s equation, for

The full set of harmonic functions is a linearly independent set. There is no 
simple way to write this set. In spherical coordinates (r, j, q), the harmonic 
functions are

for Aj, Bj, am, bm arbitrary constants; m = −j, − (j − 1), …, (j − 1), j; and j 
= 0, 1, 2, 3, …; and Pj

m(cos q) are the associated Legendre functions of cos 
q. (From Bronshtein and Semendyayev, 1985, p. 463, after correction of 
apparent typographical errors.)
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Digression for Experts
Since this problem of Newtonian cosmology has attracted considerable 
attention in the philosophy of physics literature, I include a short digres-
sion for experts.

Among the solutions to (16) is one that is formed as the equally weight-
ed sum of the three solutions (1/3) jx + (1/3) jy +(1/3) jz and is called by 
Malament (1995) a canonical solution centered at the origin

where the radial coordinate r satisfies r2 = x2 + y2 + z2. This solution has 
a special status as a solution with maximum isotropy: it is isotropic about 
the origin r = (x, y, z) = 0. This falls well short of the full homogeneity and 
isotropy that the early physicists expected. It has a preferred center at the 
origin of coordinates. Infinitely many more, distinct canonical solutions 
are possible, each centered at different points in space, r0 = (x0, y0, z0) ≠ 0.

Malament showed, however, that the differences among these canonic-
al solutions were only apparent. He adopted the natural assumption that 
the physically real properties of a Newtonian cosmology manifest in the 
relative accelerations of point masses in free fall. It turned out that all the 
canonical solutions give the same relative accelerations. That is, the choice 
among them was merely the exercising of a gauge freedom. For further 
motivation for this choice of what is physically significant, see Norton 
(1995).

Malament’s analysis gave a satisfactory answer to this question: which 
isotropic, homogeneous Newtonian cosmologies are there? The answer is 
given uniquely by the canonical solutions.

Our present question is a different one. It is: Which potential fields are 
fixed by a uniform matter distribution through Poisson’s equation (16). 
The answer to this question, as has been emphasized by Wallace (2016), 
is that there are infinitely many such fields and they form the infinite set 
(46). Only very few of them prove to be physically equivalent after the 
manner of (17a) and (17b). Solutions (7a), (7b), and (7c) are not physically 
equivalent. It follows from (6) that masses in free fall in (7a) jx experience 
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relative accelerations in the x-direction but not in the y- or z-directions. 
Similarly masses in free fall in jy and jz experience relative accelerations 
respectively in the y- and z-directions only. 

A natural way to block this failure of the mass distribution to deter-
mine the gravitational potential, as Wallace (2016) has emphasized, is to 
impose boundary conditions. All but the canonical solutions are elim-
inated if we require isotropy in the physically significant properties, as 
do Malament (1995, pp. 492, 501) and Norton (1995, p. 513, footnote 2). 
However, the imposition of this condition must be understood as a dis-
tinct choice we make in order to prune the space of solutions to a subset 
that happens to interest us. We cannot derive it from the isotropy of space 
and the matter distribution, for the Poisson equation does not respect this 
symmetry in its individual solutions. 
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16

A Quantum Inductive Logic

16.1. Introduction1 

The material theory of induction requires that good inductive inferences 
be warranted by facts within their domain of application. In earlier chap-
ters, we saw many examples of individual inductive inferences warranted 
by specific facts. Marie Curie, for example, inferred the crystallographic 
system of all crystals of radium chloride from inspecting just a few specks 
of the substance. The inference was warranted by the facts of crystallog-
raphy established in the preceding century, not by some universal induct-
ive inference schema.

In such cases, there is little sense that the inductive inference forms 
part of a larger inductive logic whose overall structure could be abstracted 
in some measure from the specific subject matter. There are cases, how-
ever, in which this abstraction is possible. But complete abstraction is im-
possible; for that would provide a universal logic of induction. Yet we can 
find cases in which sufficient structure can be abstracted for a rich logic 
to appear.

The most familiar inductive logic of this type, and the one that is best 
worked out, is probabilistic logic. The prevalence of probabilistic logic has 
given the illusion that it is the universal inductive logic and that no other 
inductive logic is viable. This illusion persists only because of the familiar-
ity of the example and the lack of sufficient efforts to identify alternatives. 
If we have any domain governed by some well-developed theory, then a 
compactly expressible inductive logic may be supported. Just which that 

1   I thank Rob Spekkens for helpful discussion that informed this chapter.
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logic will be, depends on the character of the theory. There will be cases in 
which the logic supported is not probabilistic.

In the preceding chapters, such cases were illustrated with simple ex-
amples: an infinite lottery machine, various forms of indeterministic sys-
tems, and nonmeasurable outcomes arising among infinitely many coin 
tosses. While we can and should demand that an inductive logic applies to 
these cases, one can be forgiven for finding the examples contrived or ab-
struse. They were so precisely because it enabled the systems to be simple 
enough for us to comprehend their physical properties fully.

Might we find an example with an immediate application to present 
science? This chapter presents such an example. Drawing on the work of 
Leifer and Spekkens (2013), we shall see that the natural mathematical 
structures of quantum theory afford a distinctive, non-probabilistic 
logic, at least for certain quantum systems, such as systems of entangled 
particles.

This quantum inductive logic differs from a probabilistic inductive 
logic in its most fundamental quantity. A probabilistic logic uses an addi-
tive probability measure to represent degrees of support or, in subjective 
terms, belief states. In its place, quantum logic uses a structure that arises 
naturally in quantum theory, a density operator. That this is the appro-
priate structure derives in turn from a deeper difference. Probabilities 
arise naturally when all of the distinct states of a system fall under a single 
probability measure supplied by background facts. While there are prob-
abilities associated with measurement outcomes in quantum theory, each 
measurement setting is associated with a different probability measure 
and, crucially, their totality does not form a single probability measure. 
Rather, the different probability measures are both issued and unified by a 
single, deeper structure—a density operator. This structure is the funda-
mental quantity of quantum inductive logic.

It may seem strange at first to replace a probability measure by a density 
operator when probabilities can also be found in quantum theory, even if 
in scattered form. For, one might think, a probability measure—when it 
can be found—is just the right thing to use to represent partial inductive 
support or uncertain beliefs. This thought is driven more by familiarity 
and comfort than good reasons. The naturalness of a probability measure 
is an artifact of hundreds of years of development. It is a rather abstruse 
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notion, as one finds when one engages in the cumbersome task of expli-
cating precisely what it means to say that, for example, some outcome has 
such-and-such a probability. We shall see below that a density operator 
is no more abstruse and, since it is the central structure provided by the 
quantum mechanics, it functions much better as the basis of a quantum 
inductive logic.

Section 16.2 will sketch some probabilistic inferences on the presence 
of a rare genetic mutation among siblings. It will serve as a foil for the 
quantum case introduced in Sections 16.3 and 16.4, inductive inferences 
over the measured spins of entangled electrons. Section 16.5 to 16.9 de-
velop the mathematical devices needed to treat the spins of entangled 
electrons. Sections 16.10 and 16.11 will identify one of these devices, a 
density operator, as the appropriate analog in the quantum case of the 
probabilities of the foil. Section 16.12 will provide a simple geometric pic-
ture of density operators to support this identification. Section 16.13 will 
briefly review how Matthew Leifer and Robert Spekkens (2013) developed 
the approach sketched into a fuller calculus with some analogies to the 
probability calculus. Sections 16.14 and 16.15 explore analogies and disan-
alogies between the probabilistic and quantum inductive logics. Section 
16.16 offers conclusions.

16.2. Probabilistic Inductive Inference

16.2.1. Rare Genetic Mutations
As a foil for the quantum case, let us consider cases in which a probabil-
istic logic is warranted by prevailing facts. One case arises when we have 
outcomes generated by physical chances. The simplest case is a gambling 
casino. By careful design, a roulette wheel (with a 0 and 00) has a physical 
chance of 18/38 of a red outcome; and a physical chance of 18/38 of a black 
outcome. This fact, and others like it, warrant using the corresponding 
probabilities as the measure of inductive support for red and black; and 
it warrants employing the probability calculus as the logic of induction 
applicable to casino games.

Population frequencies can also provide a factual warrant for the use 
of probabilities in an inductive logic. Demographic data consistently shows 
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that low educational levels correlate with unemployment. People in the US 
without a high school diploma, for example, are the group with the most 
unemployment. We make the added assumption that some individual has 
been chosen randomly, where randomly just means that each individual 
in the population has an equal probability of being chosen. It follows that 
the probability that the individual selected has a certain property matches 
the frequency of the property in the population. We can then use these 
probabilities as the measures of inductive support for the propositions 
that the individual has various educational levels and various employment 
statuses. That the individual has no high school diploma increases the in-
ductive support for the proposition that the individual is unemployed; for 
the probability of unemployment given no high school diploma is greater 
than the unconditioned probability of unemployment.

Inductive inferences concerning genetic mutations in some popula-
tion combine the essential features of the last two cases. To make mat-
ters concrete, consider a human population in which a mutation of some 
particular gene arises, but only very rarely. To make the example more 
interesting, assume that the mutation can arise in n mutually exclusive 
variations, so we have possible alleles

where N is the overwhelmingly most common case of no mutation—hence, 
the symbol N for “No.” We have a population of alleles in which the n 
mutations will arise with varying frequency. Physical chance process will 
govern the propagation of the alleles through the generations and those 
physical chances will determine the equilibrium distribution frequency 
of the various alleles. If standard, idealized conditions are met, these fre-
quencies will conform with the Hardy-Weinberg equilibrium.

16.2.2. Inductive Inference Problems
The conditions specified above are the background facts that warrant in-
ductive inferences over the presence of the mutation in the population. 
Since the physical chances are probabilistic, these inferences will be with-
in a probabilistic inductive logic.

Consider some randomly selected child. The fact of random selection 
means that the probability that the child carries mutation mi matches the 
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overall frequency ri of mutation-i carrying individuals in the population. 
These facts together warrant our use of probabilities as the measure of 
inductive support, where those probabilities are matched with population 
frequencies.

Consider two sibling children in some family. The measures of induct-
ive support that each carries the mutation mi is given by the two probabil-
ity measures:2

These two probabilities must also be related by the rule of total probability: 

In general, the two conditional probabilities in this last formula are quite 
complicated expressions of the various gene frequencies. However, for the 
case of extremely rare mutations—that is ri << 1—they are approximated 
very well by

The first conditional probability arises from the circumstance that, if 
child1 carries mi, then it is overwhelmingly likely that just one of the chil-
dren’s parents carries mutation mi. It is possible that a parent may carry 
two copies, or that both parents may carry copies, but these cases are far 
less likely and can be neglected. If just one of the children’s parents car-
ries mutation mi, then there is a probability of 1/2 that child2 inherits it. 

2 More exactly, if the allele carrying the mutation mi arises with frequency fi in the 
population and the gene distribution has arrived at the Hardy-Weinberg equilibrium, then the 
probability that the child carries one or both of the mutated alleles is ri = 2 fi(1 −  fi) + fi

2 ≈ 2fi for 
small fi << 1.
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The second conditional is recovered from a short application of Bayes’ 
theorem.3

We can use the conditional probabilities (3) to support an inference 
from the probability that child1 carries mi to the probability that child2 
carries mi. Substituting (3) into (2) we find: 

which agrees with (1).
This last inference is a particular case of how the rule of total prob-

ability becomes a rule of inductive inference in the probabilistic logic. 
Consider an outcome space that can be partitioned into mutually exclusive 
outcomes in two ways; that is as {S0, S1, …, Sn} and as {R0, R1, …, Rn}. We 
start with the probability distribution P(Rk) for k = 0, …, n as representing 
the inductive support for the outcomes Rk. The conditional probabilities 
P(Si | Rk) for i, k = 0, …, n, allow us to infer from the support accrued to 
the outcomes Bk to the support accrued to the outcomes Ai, by means of 
the rule of total probability: 

16.3. From Mutations to Electrons
Quantum mechanics describes a physical realm that differs from more 
familiar systems in which probabilistic logics are appropriate. The facts 
that comprise quantum theory can warrant a rather different inductive 
logic for certain quantum systems. One of these systems, a pair of entangled 
particles, is analogous to the pairs of children of the mutation case above 
in that the pair is comprised of two related systems. However, if we try to 
carry out inductive inferences analogous to those concerning mutations 
carried by children, we will find that we need to use a non-probabilistic 

3 Writing c1 = child1 carries mi and c2 = child2 carries mi, we have from Bayes’ theorem that

P(c2 | not-c1) =  P(c2) = (1/2)ri/(1-ri)

since P(c2) = ri , P(not-c1) = (1− ri) and P(not-c1 | c2) = 1 − P(c1 | c2) ≈ 1 − 1/2 = 1/2.
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inductive logic and that this logic can be read off directly from the quan-
tum mechanical formalism.

This is not the place to attempt a self-contained development of the 
standard formalism of quantum theory.4 However, my concern is that the 
development is accessible to those who do not work in quantum theory. I 
will do my best to motivate and explain the least amount needed to convey 
the main ideas to you, if you have less familiarity with the formalism. So 
do keep reading—this is written for you.

In the following, we will consider one of the simplest properties of 
one of the simplest, best-known particles. That is, we will consider elec-
trons and their spins. Electrons carry angular momentum. Classically, 
angular momentum is a measure of the quantity of rotational motion of 
a body, like a spinning top. It is the rotational analog of ordinary linear 
momentum—“mass time velocity”—and, for the spinning top, is “moment 
of inertia times the angular velocity.” It is a vector quantity and is fully 
specified when we have fixed its real number magnitude and its direction 
in space. The magnitude is determined by the speed of rotation and the 
mass distribution in the top, as expressed by its moment of inertia. The 
direction is fixed by the axis of rotation.5 Angular momentum acquires its 
importance in both classical and quantum systems since it is a conserved 
quantity. The total angular momentum remains constant in all closed 
interactions.

It is almost the same with the spin of the electron. The angular mo-
mentum of the electron has a magnitude. Unlike a classical top that can 
spin faster and slower and thus can carry more or less angular momen-
tum, all electrons carry the same magnitude of spin angular momentum. 
It is 1/2 in units of h/2p (where h is Planck’s constant). Since it is the same 
for all electrons, this magnitude is unimportant for what follows. Like the 
top, electron spin also has a direction and this direction can take all orien-
tations in space. This direction is the quantity that will interest us. The 

4 To fill in the inevitable technical gaps, an account such as Nielsen and Chuang (2010, 
chap. 1) can be consulted. 

5 Which direction along the axis? Up or down? The right hand rule tells us that, if the 
direction of rotation follows the direction of the curled fingers of the right hand, then the hand’s 
upright thumb indicates the direction.
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direction is what is measured in many foundational thought experiments 
in quantum mechanics.

The major disanalogy between spinning tops and electrons with spin 
is that there is nothing rotating or spinning inside the electron. An elec-
tron carries angular momentum in the same way that it carries electric 
charge, as a fundamental, irreducible property. There is no deeper story 
about some hidden, spinning machinery that explains how the angular 
momentum comes about. It is just there.

16.4. Two Inductive Inference Problems for Electrons
The background facts fix the inductive logic appropriate to some domain. 
We can find situations involving electrons in which a familiar probabilis-
tic induction is the appropriate one; and we can find situations in which 
it is not.

16.4.1. Uncertainty over Randomly Selected Positions
Here is an example of the first type that can be handled with ordinary 
probabilistic inferences. Assume that we have six widely spaced boxes, 
numbered one to six, and that an electron has been placed in just one of 
them. We do not know which contains the electron. We will choose one 
box at random and consider the outcome that this is the box containing 
the electron. How much inductive support is accrued to this outcome? To 
ensure that we have background facts that authorize probabilistic reason-
ing, assume that we choose the box whose number matches the outcome 
of a roll of an ordinary die. The die’s behavior, we assume, is governed by 
the probability calculus in the usual way.

A probabilistic inductive logic is warranted by the set up. The evi-
dence just presented affords inductive support at the level of a probability 
of 1/6 that the box selected contains the electron. All possible outcomes 
fall under a single probability measure. While this is obvious, this simple 
feature is worth noting, since it will fail in the quantum problems to be 
considered below. However, so far, no quantum peculiarity has entered.6 

6 (For experts) No quantum entanglement over different boxes is assumed. The spatial 
support of the electron’s wave function is presumed to be fully contained within just one box.
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The analysis would be the same if, instead of electrons, we had prepared 
six boxes with only one containing a marble.

16.4.2. Uncertainty over Measurements on Electrons in 
Entangled States
Now consider a second problem. It is possible to entangle two electrons 
so that their states are highly correlated. In the simplest case of two elec-
trons in a “singlet state” (explained below), the two electrons have spins 
that always point in opposite directions. If one is measured to have a spin 
that points north, the other will always be measured to point south; and 
so on for every other possible pairing of opposite directions. This singlet 
state can persist even when the two electrons are separated by great spatial 
distances. They are entangled.

If we have access to one of the electrons in this entangled state, we 
can perform measurements of the direction of its spin. The measurement 
process is foundationally quite troublesome in quantum theory, as we 
shall see below. However, for present purposes, all that matters is that the 
measurement will yield some definite direction. We do not know in ad-
vance which that will be. Quantum theory only gives us probabilities for 
the different possible directions. Once we know the spin direction of one 
of the electrons in a singlet state, then we know the spin direction of the 
other electron, no matter how distant that electron is from us.

The inductive inference problem starts with the evidence that we have 
two electrons in some state, such as a singlet state. How much support does 
this evidence give to the various spin direction measurement outcomes 
that may arise for each of the electrons? How much support does this evi-
dence give to possible connections between the spin direction measure-
ments of the two electrons? These questions are the analogs of those asked 
above about the children and rare mutations. Given the background facts 
of the distribution of the random mutation, what is the probability that 
the first child carries the mutation? Given that one is a carrier, what is the 
probability for the other?

There are probabilities in the quantum inductive problem. However 
they prove not to be the fundamental quantities. The uncertainty is not 
the sort of probabilistic uncertainty that arises with random selection. 
For in random selection, there is a single probability measure that covers 
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all possible outcomes. In the quantum case, there is no single probability 
measure covering all outcomes.

To proceed, we need to develop the elements of the quantum theory 
of electron spin.

16.5. Vector Spaces
An electron spin can point in any direction in space. It turns out that we 
can recover all possibilities if we start with two states, a spin that points 
up and a spin that points in the opposite direction, down. All other possi-
bilities are recovered by adding together or subtracting—“superposing”—
these states. Left and right pointing spin states are recovered by adding 
and, respectively, subtracting the up and down spin states. 

This is not the way more familiar displacement vectors in space add 
and subtract. If we add a displacement of one foot north to a displacement 
of one foot south, they cancel each other out. They do not give us a dis-
placement to the east or the west, as would spin vectors. In this respect, 
spin vectors are not quite like ordinary displacement vectors. However 
spin vectors do share the essential property with displacement vectors that 
we can always add two vectors to produce another with an intermediate 
direction. What counts as an intermediate direction, however, will be dif-
ferent in the two cases.

To keep track of these different directions, we will label them in the 
familiar way with Cartesian coordinate axes, x, y, and z and identify the 
“up” direction as the positive z direction. That we can add and subtract 
the different spin states to produce new ones, relying on the fact that they 
form a vector space.

Dirac’s “ket” notation is a convenient and compact way to write the 
vectors. The vectors of unit length corresponding to the to the +z (up) and 
−z (down) directions are written as kets |z> and |−z>. The x and −x point-
ing vectors of unit length, |x> and |−x>, are recovered by superposition as7 

7 The vector space is a Hilbert space, which means that there is also a notion of the length 
of the vectors.
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The summations can be pictured in the familiar vector diagram of Figure 
16.1.

-z

x

-x

|-z>

|x>

|-x>

|z> |z>
z

1

1

2
-z

x

-x
-|-z>

z

Figure 16.1. Superposition of vectors.

The figure also makes apparent the need for the factor of 1/√2. For simply 
adding vectors |z> and |−z> of unit length produces a vector of length √2. 
It must be rescaled by this factor to recover a unit vector.

So far we have spin states pointing in the x and z directions. We can 
also introduce spin states in the y direction by means of superpositions 
that employ i =√−1.

In general any superposition of these vector states produces a new vector 
state. There is a symmetry among them all; none is more fundamental. 
We can start by labeling any direction as the z direction and use the above 
formulae to produce the complete spin space.

Figure 16.1 allows the vector addition to look like the familiar addi-
tion of vector displacements in space. But it is in other ways a poor rep-
resentation of the spin space. It allows us to draw the vectors |−z> and 
(−1)|−z> = −|−z> as two separate vectors, with the second pointing in a 
direction opposite to the first. This gives the appearance of a difference 
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where there is no physical difference. The distinguishing phase factor (−1) 
in quantum theory has no physical import so that |−z> and (−1)|−z> rep-
resent the same state. A simpler picture eradicates the duplication. It is the 
Bloch sphere shown in Figure 16.2.

|z>|-z>

|-x>

|x>

|y>

|-y>

Figure 16.2. The Bloch sphere.

The figure looks so familiar that it is easy to misread. What is orthog-
onal—“perpendicular”—to what differs from Euclidean expectations. In 
this space, |z> and |−z> are orthogonal; as are |x> and |−x>; and |y> and 
|−y>. Yet |x> and |z> are not orthogonal, even though Euclidean expecta-
tions suggest otherwise. The sphere also looks like it is a three dimension-
al vector space that must be built from three independent basis vectors. 
However, it is a two dimensional space, with |z> and |−z> as its basis vec-
tors. Their linear superpositions can span the whole sphere since complex 
numbers can be used in forming linear superpositions; and this shift from 
real to complex numbers gives the added degree of freedom needed.
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16.6. Measurement

16.6.1. An Oddity in Quantum Theory
In non-quantum systems, measuring the state of a system is merely a tech-
nical challenge, not a foundational problem. If we have a spinning top, in 
principle, we can determine the direction of its axis of spin without having 
to destroy the top. Things are different in quantum theory.

We can learn something of the direction of the spin axis of an electron 
by passing it through an inhomogeneous magnetic field in a Stern-Gerlach 
apparatus. The magnetic dipole moment of the electron aligns with its 
spin and that moment determines how the electron is deflected by the 
magnetic field. The direction of the deflection tells us the direction of the 
spin. We need not delay with further details of this measuring operation 
except to mention one point:

To perform the measurement, we must choose in advance some direc-
tion in space along which to align the magnetic field of the Stern-Gerlach 
apparatus. Our measurement will be performed along that direction. The 
curious and foundationally troublesome property of measurement in the 
quantum context is that the measurement will always return a definite 
result along the direction chosen, no matter what the spin state of the 
electron.

If we measure the z-spin of an electron that has z-spin up, that is, its 
state is |z>, we will measure z-spin up with certainty. If we measure the 
z-spin of an electron with z-spin down, that is, its state is |−z> we will 
measure z-spin down with certainty. So far, there is nothing unexpected. 
But if we measure the z-spin of an electron in state |x> with x spin up, 
something odd happens. Since a state of x-spin up is different from either 
z-spin up or z-spin down, you might expect the measurement to fail in 
some way. It might, perhaps, give a muddled answer of both z-spin up 
and z-spin down and the same time; or perhaps no result at all. This does 
not happen. We still get a definite z-spin measurement outcome. It will be 
either z-spin up or z-spin down, without any confounding. Which of the 
two will happen? The formalism gives us a probability of 0.5 for each.
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16.6.2. The Born Rule
In general, a z-spin measurement always returns either a z-spin up or z-spin 
down outcome. The probability of each will vary according to the state 
measured. Standard quantum theory provides a simple rule—the “Born 
rule”—for computing these probabilities. Assume that we are measuring 
the z-spin of an electron with some general state |f>. We can decompose 
the state vector |f> into two components in the |z> and |−z> directions.

z
z

|φ>

P  |φ>

-zP   |φ>

-z

Figure 16.3. Components of |f>.

The two components are Pz|f> and P−z|f>, where the projection operator 
Pz picks out the component of |f> in the |z> direction; and the projection 
operator P−z picks out the component of |f> in the |−z> direction. The 
vector |f> is the sum of these two components: 

The Born rule tells us that the probability of measuring each outcome is 
given by the (length)2 of each of these two component vectors, where we 
recall that by supposition |f> has unit length. 

For the general case of a |y> measurement on a state |f>, we have

For the case of  |y> = |z> and |f>=|x>, we have from (6) that
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so that 

as shown in Figure 16.4. The probability of each outcome is just (length)2 
=  = 0.5.

-z
x

|x>-zP  |x>

zP |x>
z

1

1/  2 

1/  2 

Figure 16.4. Projections of |x>.

16.6.3. The Basis of the Difference between Probabilistic and 
Quantum Inductive Logics
That the Born rule gives us the correct probabilities for measurement out-
comes is well established by experiment. How it does so and what happens 
during the measurement process, however, remains a troublesome issue in 
the foundations of quantum theory.

In the standard, textbook account, the electron state vector of the 
electron undergoing measurement “collapses” onto one of the two meas-
urement states |z> or |−z>, with the probabilities given by the Born rule. 
That is, measurement instantly transforms a |x> state into a different one, 
a |z> state or a |−z> state, according to the outcome. Measurement changes 
the state. That measurement can do this is odd and puzzling. Yet it is an 
essential part of the standard account of quantum theory. An expansive 
literature has sought to find alternative accounts of measurement that 
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avoid this oddity. None has produced a view that has been accepted widely 
enough to be the new standard.

Fortunately, my present purposes require no decision on how the 
measurement problem should be solved. I need to adopt only the bare ac-
count in which the Born rule gives us the correct probabilities for meas-
urement outcomes.

This oddity of quantum theory is decisive as far as inductive logics 
are concerned. For the probabilities introduced by measurement do not 
merely reflection an uncertainty over which prior, existing state is at hand. 
Measurement changes the state and then attaches probabilities to the re-
sult. As a result, the probabilities of outcomes associated with different 
measurement scenarios cannot be combined into a single probability 
measure. Rather, a different quantity synthesizes these measures, and that 
quantity forms the basis of a quantum inductive logic.

16.7. Density Operators
The goal here is to find the inductive logic warranted by the quantum facts 
concerning electrons in entangled states. To proceed, we need to iden-
tify the structure in the quantum case that is analogous to the probability 
measure of probabilistic logic. This inductive structure is the density oper-
ator. It arises as follows.

For a single particle, in the most definite case, we assuredly have just 
one quantum state, such as |z>. It is called a “pure state.” What if we are 
uncertain as to which of two such pure states, |z> and |−z>, is at hand? 
It would be nice if our uncertainty could be captured merely by taking a 
suitably weighted sum of the two pure state vectors. This simple option 
fails. We already saw that adding these two vectors just gives us another 
pure state vector. If we add them with equal weight, for example, we mere-
ly recover |x>, as (6) shows.

While this simple option fails, something very close to it succeeds. 
An alternative way of representing a pure state is by a projection oper-
ator. There is a one-to-one correspondence between them, so picking one 
amounts to picking the other. We have already seen projection operators 
in the context of the Born rule of measurement above in equation (8). They 
pick out the component of a vector parallel to the direction of projection. 
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For each unit vector, such as |z>, there will be just one projection operator 
that finds all of |z> to be in the direction in which it projects. We have 
written that unique projection operator as Pz. More compactly, the pure 
state |z> is associated uniquely with the projection operator Pz that has the 
property that Pz |z> = |z>. 

Since these projection operators are a special case of density operators, 
let us explore them a little more. Operators in vector spaces are the analogs 
of functions in ordinary algebra. A function maps numbers to numbers. 
The square function maps 2 to 4, 3 to 9, and so on. An operator in the 
vector space maps vectors to vectors. The projection operator is one of the 
simplest. The behavior of the projection operator Pz associated with the 
vector |z> is fully specified by two facts. First is that the operator takes |z> 
back to itself and takes the vector |−z> to zero: 

Second is that the projection operator is linear, so that

for all complex numbers A and B. Since an arbitrary vector |y> can always 
be written as this sort of linear sum |y> = (A |z> + B |−z>), linearity and 
(10) fix how the projection operator acts on any vector.

Now we return to the original problem. What if we are unsure as to 
which of |z> and |−z> is at hand? As long as we represent the states directly 
by vectors, we cannot just add the two vectors in a suitably weighted sum-
mation. We saw that would give us a new vector, which is just a different 
pure state. If we represent states with projection operators, then we can 
add them without this happening. If we weight the two states equally, then 
we produce the new operator for a so-called “mixed state,” in contrast to 
the pure states with which we started: 

The subscript “max” indicates that the state is maximally mixed—that is, 
as far away as possible—from a pure state. (We will see how this comes 
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about below.) This new operator is no longer a projection operator.8 It is a 
density operator. We do not need to use the ½ to ½ weighting. We merely 
need to use two positive real weights that sum to unity. The ½ to ½ weight-
ing, however, is the case that will interest us most. We arrive at the most 
general density operator for the single electron spin by choosing arbitrary 
positive, real number weights wz and w−z, 

such that the weights sum to unity, wz + w−z = 1.
At this stage, it looks as if the density operators of (11) and (12) are 

behaving just like probability measures. We appear to be uncertain over 
which of |z> or |−z> we have with probabilities wz and w−z, respectively. 
That appearance is reinforced by the term “mixed state.” Something like 
this is correct. But it is not quite like this. The unqualified term “mixed 
state” is misleading and it is in the qualifications needed that the novelty 
of the quantum logic will be found.

16.8. Tensor Product Spaces
A density operator is the appropriate structure for an inductive logic when 
we are inferring inductively over the properties of electrons in entangled 
states. These states arise as follows. Consider two electrons. Each has 
its own spin vector space. The first is formed by taking all linear super-
positions of the states |z>1 and |−z>1 of the first electron. The second is 
formed by taking all linear superpositions of the states |z>2 and |−z>2 of 
the second particle. (The subscripts 1 and 2 just number the particles.) 
The two electrons together form a combined physical system with its own 
vector space. One state in it will be a product state such as |z>1|z>2. That 
is, the first electron state is z-spin up and the second is z-spin up also. All 
four of these possibilities are

8 The quickest way to see that is to note that projection operators have the property of 
“idempotency.” That is, after they have been applied once, nothing changes if they are applied a 
second or third time. That is, Pz Pz = Pz and P−z P−z = P−z. The operator rmax is not idempotent, 

since rmaxrmax = ¼ Pz Pz + ¼P−z P−z + ¼Pz P−z + ¼P−z Pz = ¼ Pz + ¼P−z = ½ rmax ≠ rmax. (Note 

Pz P−z = P−z Pz = 0.)
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We form a new vector space, the combined space of all possible states of 
the two particles, by taking all linear superpositions of these four states. 
The space is formed in the same way as we formed the one electron vector 
space by taking all linear superpositions of |z> and |−z>. This new space 
is the tensor product of the vector spaces associated with the individual 
particles.

This new vector space contains many new states. We will investigate 
one, the singlet state of total spin angular momentum of zero. It is 9

It is a superposition of two states: |z>1|−z>2 in which the first particle spin 
points “up” and the second “down”; and |−z>1|z>2 in which the first par-
ticle spin points “down” and the second “up.”

16.9. Reduced Density Operators
Consider two entangled electrons, such as the singlet state (13). The two elec-
trons can remain entangled in the singlet state, even when they are widely 
separated spatially. If we have access to just one of these electrons, we can 
make a measurement of the spin direction of that one electron. The entangle-
ment means that whatever measurement outcomes we obtain on our nearby 
electron will be correlated with the measurement outcomes that someone 
else finds on the other remote electron. We read that correlation directly 
from the two terms in the singlet formula (13). The first term |z>1|−z>2 tells 
us that whenever the first electron produces z-spin up on measurement, the 
second electron produces z-spin down (and conversely). The second term  
|−z>1|z>2 tell us that whenever the first electron produces z-spin down on 
measurement, the second produces z-spin up (and conversely). In short, 
our measurement on the nearby electron will always give a spin of the op-
posite direction from the result of a measurement on the remote electron.

When we make our measurements on the nearby electron, we will 
know nothing of these remote outcomes. Let us set them aside and ask 
what outcomes we should expect for measurements on the one electron to 

9 The factor of 1/√2 ensures that the state |s> has unit length. Since the spins in each term 
point in opposite directions, the total angular momentum of the singlet state is zero.
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which we have access. Quantum theory provides the following recipe for 
determining the probabilities of the various outcomes.

The first step is to eliminate explicit appearance of the second, remote 
electron from the description of the two-electron system to arrive at a re-
duced description of the first, nearby electron only. We begin by replacing 
the vector representation of the entangled state by its corresponding pro-
jection operator, P12. For example, the projection operator associated with 
the pure singlet state |s> can be written as a sum that includes projection 
operators associated with the individual particles that comprise it: 

where the “, 1” and “, 2” notation labels the nearby and remote electrons 
(respectively) to which the individual projection operators belong. The 
“further cross terms” contain operators that are not projection operators. 
While important in some applications, these further terms drop out of the 
calculations below.10

We now suppress the details of the second remote particle “2” by 
means of a “trace” operation “Tr.” This linear operator replaces the degrees 
of freedom in its scope by their expectation values. The trace operator Tr2 
of the remote electron vector space suppresses the properties of the remote 
electron. If P12 is the projection operator associated with the entangled 
pair of electrons, we arrive at an operator that represents the properties of 
the first electron only by means of 

The operator r1 need no longer be a projection operator but will in gen-
eral be a density operator. Since they are produced in the reducing of the 
two-electron vector space to a one-electron space, they are called reduced 
density operators. For the case of the singlet state when P12 = Ps, we have 11

10 For completeness, the “further cross terms” are −½|z>1<−z|1|−z>2<z|2 −½|−z>1<z|1|z>2<−z|2 
where the linear operator |z>1<−z|1 maps |−z>1 to |z>1 and |z>1 to 0; and so on for the remaining 
three operators.

11 Since Tr2 [Pz, 2] = Tr2 [P−z, 2] = 1 and the trace operator is linear, we have

Tr2 [Ps] = Tr2 [½ Pz, 1 P−z, 2 + ½ P−z, 1 Pz, 2 + further cross terms]

= ½ Pz, 1Tr2 [P−z, 2] + ½ P−z, 1Tr2 [Pz, 1] = ½ Pz, 1 + ½ P−z, 1, where Tr2 [further cross terms] = 0.
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The operator rs1 is not a projection operator.
That the reduced density operator for the nearby electron is not a pro-

jection operator captures the fact that the electron is in no definite spin 
state. If the entangled pair is in a singlet state, then the reduced density 
operator of the nearby electron (16) is the maximally mixed state (11). One 
might expect that the two factors of ½ are just the probabilities of measur-
ing z-spin up and measuring z-spin down. They are.

This follows from the Born rule (9) for measurement outcomes for 
density operators. In its general form, the rule says that the probability 
of measuring a spin state |y> when we have an electron described by a 
density operator r is12 

The projection operator Py is just the projection operator associated with 
the vector |y>. Applying this formula to the maximally mixed state rmax 
we find:13 

12 While it is written differently, this version of the Born rule is equivalent to (9). Briefly, 
to go from (17) to (9), set r as the projection operator Pf associated with the pure state |f>, then 
Tr[Py Pf] = (length Py|f>)2. To go in the reverse direction, set the pure state |f> in (9) to be a many 
electron entangled state and Py the projection operator associated with the |y> state of one of the 
entangled electrons.

13 We have Tr[P|z> rmax] = Tr[Pz (½Pz + ½ P−z)] = Tr[½Pz Pz + ½ Pz P−z] = Tr[ ½ Pz] = ½ 

Tr[Pz] = ½, where we have used that Tr[Pz] = 1, Pz Pz = Pz, Pz P−z = 0 and the linearity of Tr.
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16.10. Density Operators Do Not Represent 
Probabilistic Ignorance of a Unique, True State

16.10.1. Many Probability Measures
The density operator rmax for the maximally mixed state looks initially as 
if it just represents a familiar probabilistic uncertainty over whether the 
true state is |z> or |−z>. The two coefficents of  for the states |z> and |−z> in 
the expression (11) reappear as the probabilities of measuring these states 
according to the Born rule (18).

What makes this mixed state different from mere probabilistic un-
certainty is an important fact about the density operators of mixed states: 
they can be written in many ways, each indicating a different sort of 
uncertainty with a distinct probability measure associated with it. That 
makes the term “mixed state” potentially quite misleading. The state is not 
a simple mixture that can be decomposed uniquely into its components. It 
is not like a mixture of sand and iron filings that can be unmixed uniquely 
with a magnet. 

Since this is the key point for all that follows, let us be clear on how 
this comes about. The density operator is simply a map that takes vec-
tors to vectors. Two density operators are the same if they map the same 
vectors to the same vectors. In this respect, they are no different from 
ordinary functions. Take f(x) = x2. It is a function that maps numbers to 
their squares. While their expressions look different when written down, 
the functions g(x) = (x + 1)(x − 1) + 1 and h(x) = (x + 2)(x − 2) + 4 perform 
exactly the same mappings. So they are the same function.

It turns out that the mapping of the maximally mixed state rmax of 
(11) can be represented equally well by many equivalent expressions

Here, Px is the projection operator associated with |x>, Py with |y>, etc., 
and Py is the projection operator associated with some arbitrarily chosen 
unit vector |y> in the Bloch sphere, pointing in any direction. I is the 
identity map that takes each vector back to itself.

Each of the expressions for rmax in (19) represent the same map on the 
vector space, which is written most simply as the last expression on the 
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list, I. That is, rmax is the map that merely takes each vector in the space 
back to a half-sized version of itself. To see that they are equivalent, we 
need only recall from (7) that an arbitrary vector |f> is the sum of its two 
components, when decomposed in the + y and – y directions:

It follows that (Py + P−y ) is just the identity operator I—that is the oper-
ator that merely maps a vector back to itself. Thus  (Py + P−y ) =   Py +  
P−y =   I. This is true no matter which unit vector |y> is used to define it. 
Thus, the maximally mixed state density operator rmax is defined equally 
well by any of the formulae in (19).

These equivalent representations of the maximally mixed state rmax 
provide further probabilities for measurement outcomes analogous to (18) 

16.10.2. No Single Probability Measure Unifies Them
The combined measurement outcomes of (18) and (20) are incompatible 
with the ordinary notion of probabilistic uncertainty as mere ignorance of 
some definite but unknown state. This sort of ignorance can be captured 
by a single probability measure, whereas there can be no single probability 
measure covering all the results of (20). For each of the states returned by 
measurement are incompatible with all the others. An x-spin up state is 
different from either a y-spin up and a z-spin up state. An effort to treat 
these probabilities as generated by ignorance over some true but unknown 
state fails and does so rapidly.
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Take the probabilities of (18). If we interpret them as this sort of ignor-
ance, then we have with probability one that the true state of the system is 
|z> or |−z>. For the two states are mutually exclusive so that

It now follows that the probabilities of all the other states must be zero, 
which contradicts the probabilities reported in (20).

Might we solve the problem with a simple expedient? Take a large out-
come space whose primitive events are of the following form:

We can form a single probability measure over this larger outcome space, 
such that the probabilities of (20) can be recovered as conditional prob-
abilities. For example,

The difficulty with this proposal is that our space now includes probabil-
ities over our freely chosen actions, such as:14

The probabilities of (20) are provided directly by quantum theory itself. 
These new probabilities over our actions bring nothing but trouble. What 
grounds these new probabilities? To secure a grounding in physical chan-
ces, we might employ some physical randomizer to instruct us in which 
measurement to make. Then our inductive logic has been restricted to this 
special case. Or if we wish to leave the setting as open as possible, then this 

14 Since Probability (we measure x-spin) = Probability(x-spin up on x-spin measurement) 
+ Probability(x-spin down on x-spin measurement).
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very openness means that there are no specific facts that warrant the intro-
duction of the probabilities. In the worst case, they are arbitrarily chosen 
subjective probabilities and we corrupt the objectivity of our inductive 
logic by mingling them with the objective probabilities of (20). Setting 
aside this extreme case, we have still compromised the quantum induct-
ive logic by interweaving inductive support from two distinct arenas: the 
inductive support for various quantum measurement outcomes as guided 
by quantum theory; and the inductive support for certain of our choices 
as guided by the vagaries of the human circumstances surrounding our 
choices.

These are serious difficulties and best avoided. Inductive support for 
quantum outcomes ought to be independent of human affairs. There is no 
need for us to face these difficulties. For nothing compels us to combine 
the probability measures of (20) into a single huge measure. We can arrive 
at an inductive logic that does not need them, as long as we are willing to 
give up the idea that an inductive logic must be probabilistic.

16.10.3. Density Operators as the Fundamental Inductive 
Structures
The maximally mixed state rmax already represents some sort of uncer-
tainty over the electron state. It is not the same as the probabilistic uncer-
tainty familiar from cases of ignorance arising through random sampling, 
for such uncertainty cannot issue in the measurement probabilities (20). 
The direct way to understand the sort of uncertainty represented by rmax 
is that it is the inductive structure that manifests as the infinite list of the 
measurement probabilities (20). It is a compact representation of them all.

For many, the predisposition to favor probabilities is strong. They 
might be inclined to say that this means that the logic is still probabilis-
tic—here, finally we have probabilities. However, these probabilities are 
not the central quantities. They are intermediates that mediate between 
the density operator and the measurement outcomes. To capture the 
inductive situation fully, we need the entire infinite set. It is insufficient 
merely to report a subset associated with fewer than all directions of meas-
urement. One cannot use the rules of the probability calculus to infer from 
the measurement probabilities for x-spin measurements, for example, to 
those for y-spin measurements.



The Material Theory of Induction638

The density operator is the natural and compact representation of the 
capacity of the electron to deliver different measurement results. When we 
form the new inductive logic adapted to this quantum case, the density 
operator is the central quantity that replaces the probability measure of 
the more familiar probabilistic inductive logics. It is the quantity that fig-
ures centrally in the physics of entangled electrons, in the same way as 
physical chances figure centrally in the physics of roulette wheels. It is the 
quantity around which we should build an inductive logic for entangled 
electrons, just as we build an inductive logic for roulette wheel outcomes 
around physical chances.15

16.11. Is the Density Operator Really an Inductive 
Structure?
Is it really admissible to treat density operators as inductive structures that 
can serve in an inductive logic? They seem to be a poor choice, for it is 
hard to say precisely what sort of uncertainty they represent. They do not 
represent the familiar sort of uncertainty captured by probabilities. Why 
should we erect an inductive logic for quantum theory around density 
operators when, perhaps with some effort, we might find a way to replace 
them with probability measures?

The short answer is that we should use these density operators since 
they are the appropriate structures delivered by the applicable physics. The 
uncertainty they represent is more opaque to us than that represented by a 
probability measure merely because the latter are familiar and their prob-
lems largely tamed. We should not mistake the resulting transparency of 
probability measures for their necessity in inductive logics. Indeed, the 

15 Note for experts in quantum foundations: My goal here is not to contribute to the 
literature in the foundations of quantum theory. Rather it is to find a context in which a non-
probabilistic inductive logic is warranted. Such a context arises, I argue here, with the bare version 
of quantum theory that merely employs the Born rule to determine measurement outcomes 
but does not probe what happens in the measurement process. If we deviate from this bare 
formulation, matters may change. If, for example, we adopt a Bohmian approach, then we augment 
our ontology to include hidden electron position properties, possessed always by electrons 
and revealed on measurement. Our uncertainties may then revert to the sort of probabilistic 
uncertainties that arise with random sampling. Exploring that possibility is not my project here.
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sorts of analyses that make probability measures interpretationally trans-
parent can be applied equally successfully to density operators.

To see this, note that probability measures initially require considerable 
interpretive work before their meaning becomes clear or clear enough. If we 
are unprepared, we encounter severe difficulties when we try to give an ex-
plicit definition of probability talk. The challenge is to complete the formula:

The difficulty is that “probability” always seems to creep into the text re-
quested. We cannot complete the formula by saying that the frequency 
of success in repeated, independent trials approaches 0.65 in the limit of 
arbitrarily many trials. We must say that this limit is approached with 
probability one.

While these are serious difficulties, they do not mean that probability 
talk is meaningless. Recalling the lengthier discussion in Section 13.8.1, 
we can constrain the meaning of probability talk quite effectively with 
a simple device.16 First, we recall that a probability measure conforms to 
the standard axioms of probability theory. Second, we give interpretations 
of near certainty to the probabilistic extremes: a probability near one is a 
near certainty of occurring; a probability near zero is a near certainty of 
not occurring. We can use these components to provide interpretations 
for cases of intermediate probability. The trick is to embed the probability 
talk into a larger discourse in which the already interpreted cases of near 
unit or near zero probability arise.

For example, take the proposition that an outcome has probability 
0.65. The weak law of large numbers is a most useful theorem of the prob-
ability calculus. It tell us that we can always carry out sufficiently many 

16 I set aside other approaches that interpret probabilities operationally in terms of 
the behavior supposedly manifested by people who harbor those probabilities as belief states. 
For example, to believe that the probability of an outcome is 1/2 is to be equally ready to accept 
either side of an equal stakes bet on the outcome. In so far as these operational definitions 
are constitutive of the probability of an inductive logic, they must be resisted. They entangle 
probabilities with human utilities and that is a mortal threat to the objectivity of the bearing of 
evidence in a probabilistic logic. For our preference for $100 over $10 ought to have no bearing on 
whether observation of the 3K cosmic background radiation increases the probability of the Big 
Bang. 
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repeated, independent trials to bring the frequency of success as close as 
we like to 0.65 with a probability as close as we like to one. Most people 
find that this gives them enough to grasp the difference between the two 
propositions:

An outcome has probability 0.65.
An outcome has probability 0.05.

Loosely speaking, the first outcome happens thirteen times as often in 
repeated, independent trials.

If this sort of interpretive apparatus is sufficient to dispel the clouds 
around probability talk, then the clouds surrounding the density operator 
as an inductive structure can also be dispelled. For a quite analogous in-
terpretive apparatus can be employed for them.

First, density operators obey a quite definite axiom set and thereby ac-
crue meaning implicitly, just as do probabilities.17 Second, we can identify 
extreme cases. The most definite is the density operator corresponding to 
a pure state such as |z>, a projection operator such as Pz. This projection 
operator expresses certainty that we do have the state |z>; and certainty 
that we do not have the state |−z>. It is analogous to an outcome of prob-
ability one if |z> is the true state at hand. The maximally mixed density 
operator of rmax is the least definite. It favors all spin directions equally, 
for under it every possible spin direction has the same probability upon 
measurement. It is the analog of a uniform probability measure that as-
signs the same probability to all simple outcomes. 

These most and least definite density operators are the extreme cases. 
For all the intermediate cases, we will be able to give a list analogous to (75) 
of the probabilities of all possible measurement results. That list gives us 
the same sort of interpretive purchase on the associated density operator 
as does saying something like “probability 0.65 means that the outcome 
happens roughly 65% of the time.” Analogously, we can say that having 
some particular density operator entails that we have such and such prob-
abilities of outcomes on this or that measurement, where the list includes 
all possible measurement and outcomes. That is, we know probabilistically 

17 The details do not matter but are stated here: A density operator is linear operator in the 
vector space that is positive and of unit trace.
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what it is to have some density operator as an inductive structure in terms 
or all possible measurement experiences in the world. If we are confident 
in our understanding of probabilities as inductive structures, then we 
should be confident in our understanding of these density operators as 
inductive structures.

16.12. A Geometric Picture of an Electron Spin 
Density Operator
Part of our comfort with probability measures is that there are simple 
physical or geometric models for them. For example, distributing prob-
abilities over different outcomes is akin to dividing a unit mass into 
parts and locating different parts on the different outcomes. The weight 
of evidence appears directly in the analogy as a mass. Additivity of the 
probability measure is captured by the fact that we can only increase the 
mass on one outcome by reducing the mass on others by exactly the same 
amount.18 If we have a probability density over some continuous space of 
outcomes, we can picture the space as an area and the probability density 
at each point as the altitude of some mountainous surface spread over it.

A fertile picture of all possible probability distributions over n + 1 mu-
tually exclusive outcomes is provided by an n-simplex. For three mutually 
exclusive outcomes, A, B, and C, the n-simplex is a triangle, as shown in 
Figure 16.5. The three vertices represent A, B, and C and each point in 
the triangle represents a distinct probability measure. The probabilities of 
each of A, B, or C increase with the proximity of the point to the corres-
ponding vertices. The figure shows contours of constant probability for 
P(A), P(B), and P(C). 

18 This makes it natural for us to think that increasing belief or inductive support in 
one outcome must come from diminishing it for other outcomes. There is no necessity for this 
compensation. It is or it should be a reflection of the fact that our system happens to be one for 
which additive measures are warranted as the appropriate inductive structures.
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Figure 16.5. Probability measures for mutually exclusive outcomes 
A, B, and C.

The interior point shown in the figure represents a probability measure for 
which P(A) = 0.5 and P(B) = P(C) = 0.25. For this measure, P(A) is greater 
than P(B) or P(C) since the representative point is closer to the A vertex 
than to the B or C vertex.

In general, there are no correspondingly simple geometric pictures for 
density operators. The exception is the special case of the spin space of an 
electron. All possible density operators can be represented elegantly in a 
three-dimensional sphere, as shown in Figure 16.6.19 Each density oper-
ator is represented by a single point in or on the sphere.

19 This beautiful picture is elaborated in Penrose (2004), §29.4 and Fig. 29.3.
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Figure 16.6. Pure and mixed states.

The pure states, corresponding to projection operators, occupy the surface 
of the sphere. (This surface by itself is the Bloch sphere we saw in Figure 
16.2 above.) These surface points correspond to the most definite cases of 
a single pure state. The points inside the sphere represent density operators 
that are not also projection operators. They represent mixed states. The 
ones closest to the surface are least mixed and closest in their properties 
to pure states. The deeper one proceeds inside the sphere the more mixed 
the states become. The central point is the maximally mixed state rmax.

The sphere representation also affords a simple picture of which pure 
states are mixed to yield each density operator. The maximally mixed 
density operator rmax lies at the center of the sphere. Any diameter 
through the center connects two opposite points on the surface of the 
sphere, as shown in Figure 16.7. The points connected are two pure states 
that form rmax.
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Figure 16.7. The maximally mixed state.

We read directly from the figure that rmax can be formed by equal mix-
tures of pure states |x> and |−x>; or |y> and |−y>; and so on, as summar-
ized in (19). The multiplicity of possible decompositions of the mixture is 
represented by the multiplicity of possible diameters through the center.

There is a corresponding representation for the remaining density 
operators. Consider another density operator r that is not the maximally 
mixed rmax. Any chord through it will intersect the surface of the sphere 
at two points, as shown in Figure 16.8.
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Figure 16.8. A mixed state.

The two pure states at either end of the chord, |a> and |b>, are the two that 
are mixed to form r. Since there are infinitely many chords through an 
arbitrary point inside a sphere, a given density operator r can be consti-
tuted from infinitely many distinct pairs of pure states.

For each case, the geometric construction provides the weighting. The 
point representing r on the chord divides it into two lengths, la and lb, 
where the lengths have been scaled so that la + lb = 1. (Note that la is 
the length of the chord segment between r and |b>; and similarly for lb.) 
These are the two weights used to form r. That is, if Pa and Pb are the pro-
jection operators associated with pure states |a> and |b>, then20 

The general density operator of (21) can no longer by recovered by tracing 
away the degrees of freedom of a remote particle in a singlet state (13). We 

20 (For experts) To see this, note that density operators r are mapped onto the unit sphere 
by r(r) = (I + ss·r)/2, where ss = (sx, sy, sz) are the three Pauli matrices and r = (x, y, z) are the 
Cartesian coordinates of the unit sphere r2 ≤ 1. (Nielsen and Chuang, p. 105.) A point r = lara + 
lbrb, where la > 0, lb > 0 and la + lb = 1, lies on the straight line connecting ra and rb. Since the 
map is linear, the density operator r(r) at r satisfies r(r) = r(lara + lbrb) = lar(ra) + lbr(rb) and is 
the l-weighted sum of the two density operators r(ra) and r(rb) at the endpoints ra and rb.
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need to replace the entangled singlet state by another. Many choices are 
possible. A simple one is:

When we trace away the degrees of freedom of the second particle, this 
operator reduces to the density operator (21).

The maximally mixed rmax divides each unit diameter into two equal 
parts of length 1/2 and these weighting factors correspond to the prob-
ability of measurement outcomes coinciding with the pure states at either 
end of the diameter. Something similar holds for the general case of (21), 
in which the density operator lies on the chord connecting pure states Pa 
and Pb. We have21

where 

That is, the probability of an a-outcome on an a-measurement is given 
by the weighting factor la, with the addition of a correction factor in P(a | b).  
This correction factor arises only when the two states mixed, |a> and |b>, 
are not orthogonal, that is, not mutually exclusive. It does not appear in 
the case of the maximally mixed rmax, since rmax arises from mixing 
orthogonal states such as |z> and |−z>.

Combining all these considerations, we recover a quite serviceable 
representation of the sort of uncertainty represented by density operators 
in this simple case. A density operator Pa on the sphere’s surface is a pro-
jection operator associated with a pure state |a>. It is the most definite case. 
For an a-measurement, it will assuredly give us an a-outcome. A density 
operator close to Pa will give an a-outcome on an a-measurement with 
high probability. For it will most commonly be associated with a value of 
la close to one.22 As the location of the density operator approaches the 

21 The probability of an a-measurement on r = la Pa + lb Pb yielding |a> is  
Tr[Pa r] = Tr[Pa (la Pa + lbPb)] = la Tr[PaPa] + lb Tr[PaPb] = la + lbP(a | b)

22 If the density operator is close to Pa but la is not close to one, it is because the density 
operator lies on a chord whose other endpoint, Pb, is also close to Pa. Then the correction term 
lbP(a | b) will ensure that the probability of an a-outcome on a-measurement remains high.
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mid-point, the probability of an a-outcome on a-measurement will ap-
proach 0.5, which is the probability associated with the maximally mixed 
density operator at the center of the sphere. This maximally mixed density 
operator treats all pure states alike: the probability of an a-outcome on 
a-measurement is 0.5, no matter what |a> is. That it must do this is im-
mediately clear from the fact that the sphere has a rotational symmetry 
about the center of the sphere. From that central point, no pure state is 
closer than any other. It must treat all alike.

16.13. Leifer and Spekkens’ System of Quantum 
Inference
So far, we have seen only a part of the inductive logic appropriate to en-
tangled electrons. We have identified the reduced density operator in each 
single electron’s vector space as the structure corresponding to the prob-
ability measure in a probabilistic logic. We need to do only a little more to 
specify the full logic. That is, we need a full specification of which density 
operators arise in which circumstances. As it happens, no further theoriz-
ing is needed to arrive at this specification. It is given to us by the standard 
formalism of quantum theory. When the theory lays out the physics of 
how the reduced density operators of entangled electrons relate, it is also 
giving us the inductive logic.

One may wonder, however, if what results really is an inductive logic. 
If one is used to and is expecting a probabilistic logic, it will be unfamiliar, 
just as density operators are not quite like probability measures. But that is 
no reason to dismiss it. Lack of familiarity is not the same as failure.

Leifer and Spekkens (2013) have shown, however, that the inductive 
logic based on density operators is not so unfamiliar after all. Once we 
adopt the density operator as the basic inductive structure, they have 
shown how we can rewrite basic results in quantum theory so that they are 
structurally analogous to formulae in a probabilistic logic. Their system is 
elaborate and distinguishes connections between variables according to 
whether they are causally or acausally related. To give a quite preliminary 
sense of the system, I will describe how it treats the case of acausally relat-
ed systems, such as the two particles in a singlet state.
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The following Table 16.1, based on Leifer and Spekkens (2013, p. 7), 
summarizes the correspondences:
Probabilistic logic Quantum inductive logic

Classical variables R, S, … over an outcome 
space.

Systems A, B, … supporting (Hilbert) 
vector spaces HA, HB,

Probability measures P(R), P(S), … Density operators rA, rB, …

Joint probability distribution P(S & R) over 
Cartesian product space.

Density operator rAB over the tensor 
product Hilbert space HAB =  HA⊗ HB

Conditional probability measure P(S | R) 
defined through
P(S & R) = P(S | R) P(R)
P(S | R) = P(S & R) / P(R)

Conditional density operator defined 
through

rAB =  rB|A  rA 

rB|A =  rAB  rA
−1

Normalization
SS P(S | R) = 1

Normalization
TrB (rB|A) = IA
where IA is the identity operator in HA.

Total probability 23

P(S) = SR P(S & R) = SR P(S | R) P(R)

rB = TrA (rAB) = TrA (rB|A  rA)

Table 16.1. Correspondences between probabilistic and quantum 
logics 

These correspondences are fairly straightforward. In the mutation ex-
ample, the classical variables R, S, … are the genetic make-ups of each 
child. When R, S, etc. take specific values, then the genetic makeup of the 
child is specified as a particular mutation, m1, m2, … and their totality 
forms the outcome space. In the case of entangled electrons, systems A, B, 
… correspond to electron1, electron2, …, and the vector spaces HA, HB, … 
are the vector spaces of electron states described above.

The remaining formulae have been written in a way that emphasizes 
the parallels between the two cases. The classical summation operation 
“SS…” sums away the variable S. Correspondingly, the trace operator 
TrB (...) averages away the degrees of freedom associated with B. The star 
operation  is a particular multiplication operation designed to keep 
the parallel in the formulae as close as possible. The goal is to find the 

23 This the same rule at (5) above, but here written in the notation used by Leifer and 
Spekkens.
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quantum analog of P(S & R) = P(S | R) × P(R), where the “×” is just ordin-
ary arithmetic multiplication, since the probabilities P(.) are real numbers. 
One might write rAB =  rB|A ⋅ rA, as a direct analog of the probabilistic 
formula. But caution is needed, since there are important disanalogies. 
The operation joining rB|A and rA is not simple multiplication, but the 
sequential application of operators, since rB|A and rA are operators that 
act on vectors. This produces two problems.

The first is that the two operators act on different vector spaces. rB|A 
acts on vectors in HA⊕ HB. rA acts on vectors in HA. If they are to be 
combined, they must act on the same vector space. The simple remedy is to 
expand rA to rA⊕ IB, where the addition of …⊕ IB makes a new operator 
that acts as rA on HA and as the identity (“do nothing”) on HB.

The second is that the order in which we combine the operators will 
matter, whereas it does not matter when we multiply real numbers. The 
formula rB|A ⋅ rA says first act with rA and then with rB|A. The formula 
rA ⋅ rB|A says first act with rB|A and then with rA. There is no assurance 
that the two will yield the same result; and in general they will not. Which 
is the correct order? It turns out that neither is correct if the resulting 
product is to be a new density operator. To make sure it will be a density 
operator, we split the operator rA into a product of its square root, so that 
rA = rA

1/2 ⋅ rA
1/2. Instead of multiplying rB|A by rA, we multiply it from 

either side by rA
1/2. The formula that results from both changes is the 

definition of the star operator: 

An inversion gives an explicit expression for rB|A

16.14. Analogous Inferences: Mutations and Electrons
In the case of mutations among children, we used the rule of total prob-
ability (5) in the series of computation (2), (3), and (4), to infer from the 
probabilities of various mutations in one child to the corresponding prob-
abilities for a second child. We can use these new quantum formulae to 



The Material Theory of Induction650

display the corresponding inference for pairs of electrons in the singlet 
state.

Take two electrons in the singlet state (13)/(14) with projection oper-
ator P12. Using (16) and (19), the reduced density operator representing 
each of the electrons individually is

These are the quantum analogs of the probabilistic equation (1) of the 
mutation case:

A short calculation shows that24

The analog of the rule of total probability in Table 1 is

Substituting for P1|2 and r2, we use this rule to infer from state r2 of the 
second electron to that of the first r1. We find

in agreement with (25). This last computation (27) is the quantum analog 
of the application of the classical rule of total probability in (2), (3), and (4).

16.15. Disanalogies
These last comparisons underscore the analogies between a probabilistic 
inductive logic and the quantum inductive logic induced by the laws of 
quantum theory onto electrons in entangled states. That these analogies 
are present shows that the quantum logic is of comparable richness to the 
probabilistic logic. The key point for our purposes, however, is that the an-
alogies are incomplete. The quantum inductive logic is a distinct inductive 
logic.

24 This follows directly from (74) once we note that r1
1/2 = I1/ √2 so that r1

–1/2 = √2 I1.
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That the analogies are incomplete is already established by the inves-
tigation of the properties of density operators in Section 16.10. When the 
formal properties of the quantum inductive logic are explored, further 
disanalogies emerge. They derive from the fact that probabilities are num-
bers, whose products are insensitive to the order of multiplication, where-
as density operators are sensitive to the order of multiplication. Switch 
that order and one may get a different result.

One consequence of the lack of commutativity of operators is the 
following disanalogy discussed in Leifer and Spekkens (2013, p. 33). The 
probability P(S & R) can be expanded as a simple product

The rule is robust and holds if all the probabilities are themselves further 
conditionalized on another variable T:

This is extremely useful in probabilistic analysis since it means that we 
can collect all background information into some huge proposition T and 
then treat all probabilities conditionalized on T, P(. | T), as if they were 
unconditional probabilities P(.).

The first of these two formulae has a quantum analog

However, the second does not. That is, we do not in general have

This means that the rule for forming conditional states will differ accord-
ing to whether or not we begin with a state that is itself already conditional.

16.16. Conclusion
The material theory of induction requires that the inductive logic applic-
able in some domain be dictated by the facts that prevail in that domain. 
In many domains, facts do warrant a probabilistic inductive logic. The 
prevalence of such domains has helped foster the mistaken impression 
that a probabilistic logic is the universal logic of induction.
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The burden of this chapter has been to illustrate how a formally rich, 
alternative inductive logic can be warranted. The domain is that of en-
tangled quantum mechanical particles. The inductive logic appropriate 
to them employs density operators where a probabilistic inductive logic 
employs probability measures. This new logic looks very different, initial-
ly, from a probabilistic logic. There is no single real-valued measure of 
support that tells us which state is more or less well supported. Differences 
of support are expressed by density operators. In the most definite case of 
narrowest support, the density operator is a projection operator. It iden-
tifies a unique state as the true state. At the opposite extreme of the most 
distributed support, the maximally mixed density operator accords equal 
support to all states, just as does a uniform probability measure in the 
probabilistic case. The intermediate cases are captured by density oper-
ators between these extremes. For the case of a single electron, the range 
of cases and their properties are represented in readily interpretable form 
by the spheres of Section 16.12.

There are further structural analogies between the quantum inductive 
logic and a probabilistic logic, as described in Leifer and Spekkens (2013). 
This assures us that we do have a logic of comparable richness. Eventually, 
the analogies break down, for the two logics are different.
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Epilog

The many chapters of this book have all aimed to sustain a single con-
clusion. Inductive inferences are not warranted by formal schemas or 
rules. They are warranted by background facts. Over the last few years, I 
have had the opportunity of presenting this thesis and arguments for it in 
various philosophical forums. The reactions to it have been varied. Some 
find the idea illuminating and even obvious, once it is made explicit. They 
are supportive and I am grateful for it. Others are more neutral, reacting 
with various forms of indifference or incomprehension. Some set aside the 
question of whether they are or are not convinced by the main claim; or 
whether there is some way that they could help the speaker advance the 
project. They hold to the lamentable idea that, no matter what, the job of 
an audience in a philosophy talk is to try to trip up the speaker with some 
artful sophistry. Still others are, perhaps, not quite sure of precisely what I 
am proposing and arguing. But they are nonetheless sure that it is a Very 
Bad Thing that must be opposed and stopped.

For audiences in these last two categories, a common strat-
egy is to pursue this line:

“If every inductive inference is warranted by contingent 
facts, how do we know those warranting facts?”

“By more inductive inferences, warranted by further 
warranting facts?”

“Doesn’t that mean that there’s a regress problem?”
“Aha—Gotcha!”



The Material Theory of Induction654

My response to them then, and to you now, is the same. Yes—they are 
right. There’s something like a regress lurking about. It is something I 
should address. It is, very roughly, the analog of Hume’s problem of in-
duction, but now played out in the material theory.1

Hume’s problem of induction is the classic exemplar of an intract-
able philosophical problem. While many solutions for it are offered in the 
philosophy literature, I do not think that there is any one solution that 
commands universal assent. To have a theory of inductive inference that 
does not also solve Hume’s problem would put me in good company with 
all the other accounts of inductive inference. If failing to solve Hume’s 
problem is sufficient to damn the material theory, then we must also damn 
all other accounts.

For the purposes of this book, I wish to stop with that last conclusion. 
My hope is that readers will think about the issues I do raise and the argu-
ments I do offer in this book. There is ample material here for readers to 
ponder, endorse, and dispute. I hope that they will not let themselves be 
distracted by an easy critique afforded by Hume’s problem. It is one that 
can be applied to all accounts of inductive inference and fails to connect 
with what is distinctive about the material approach.

It is precisely because I wish to avoid this distraction that I have not 
raised the issue of Hume’s problem so far in this book. For I find it en-
tirely adequate to say that, if the material theory fails to halt the regress 
of justifications of Hume’s problem, then it fares no worse than all the 
other accounts. However, in closing, I alert readers that I do believe that 
the material theory is not derailed by a regress akin to Hume’s problem. 
My reasons have already been summarized in a paper (Norton 2014) and I 
have elaborations in preparation.

In short, I argue that Hume’s problem is an artifact of the formal ap-
proach to inductive inference. There we warrant an inductive inference by 
an appeal to a rule; and we justify that rule by inferring inductively over its 
past usage using another rule; and so on indefinitely. We thereby trigger 
a fanciful regress of inference rules applied to inference rules applied to 
inference rules… It is fanciful since it is nothing like what we see in real 

1 Hume’s problem can be set up as a circularity or an infinite regress. Something like this 
second regress form is the one that threatens in the material theory.
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science. Attempts to implement even the first few steps of the regress lead 
us far from contexts in which reasonable judgments can be made. How 
do we apply rules of severe testing to vindicate the use of inferences to the 
best explanation when they are used to justify instances of enumerative 
induction?

In the material theory, we have something similar. An inductive in-
ference is warranted by a fact; and we support that fact by an inductive 
inference warranted by another fact; and so on. As we trace out these con-
nections, we find ourselves mapping out an increasingly tangled network 
of inferential pathways that can quite quickly span across much science. 
However, this regress is not fanciful. Rather, it is a mundane exploration 
of the connections among the facts that support our science. Curie’s infer-
ence on the crystallographic form of radium chloride is justified by Haüy’s 
principle that in turn is justified by inferences that draw on much of the 
physics and chemistry of the nineteenth century. It is complicated, but not 
fanciful.

So far all is well. Yet one may still wonder: Must not all the pathways 
of this network terminate in something like the singular facts of brute ex-
perience? The totality of these singular facts cannot warrant any universal 
generalization. For, when all we have are singular facts, we can call up 
no warranting facts of general scope to support inductions from singular 
facts to generalities. Or so it might appear.

Here, appearances are deceptive. This last failure requires as a tacit as-
sumption that relations of inductive support are hierarchical, something 
like the courses of stones used to build a tower. Each course is supported 
solely by the course below it. Analogously, the propositions of science res-
ide in layers, with lower layers closer to the singular facts of experience. 
An inductive inference that starts with facts in one layer can only call 
upon warranting facts in that same layer or those below it.

This hierarchical assumption fails for science. Its relations of induct-
ive support are not hierarchical like the relations of structural support 
among courses of stones in a tower. They are interconnected in many 
complex ways. Relations of inductive support are closer to the relations of 
structural support in complicated systems of arches and vaulted ceilings. 
Each stone in such a system is supported structurally both by those below 
it and those above it.
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How can these structures come about? An arch cannot be built simply 
by piling up stones, layer by layer. Rather, we must temporarily support 
stones higher up in the arch by scaffolding. As further stones are put in 
place, support for these higher stones shifts to the permanent security of 
other stones and the scaffolding can be removed.

It is the same in science. To get our inductive inferences started, we 
make various general hypotheses. These hypotheses are used to warrant 
inferences, even though they are themselves inductively unsupported at 
this initial stage. They are the analog of stones in arches supported by scaf-
folding. We must recall which these hypotheses are, for their use places an 
obligation on us. As our investigations proceed, we must return to them 
and give them proper support. When we do this fully, what results is an 
inductively self-supporting structure. Its simplest propositions will be sin-
gular; but nonetheless they are able to support inductively other propos-
itions of universal scope. When this process is complete, every proposition 
is well-supported inductively.

Here, I have sketched my account so that readers see that my impu-
dent boast of having evaded Hume’s problem has a real basis. However, 
I hope that readers can keep their interest and focus on the material in 
the many chapters preceding this Epilog. There will, I promise, be ample 
opportunity elsewhere to dispute my solution of the regress problem in 
the material theory of induction.

R E F E R E N C E S

Norton, John D. 2014. “A Material Dissolution of the Problem of Induction.” Synthese 
191: pp. 671–90.



657

analogical inferences: distinguishing good from 
bad, 119, 122; as facts, 11, 51, 60, 120, 132–33; 
good, 120; negative analogy, 125–26, 128, 
133, 141; positive analogy, 125–26, 128, 133, 
140; prior association, 128; source to target, 
125–28, 131–33; as warrants, 11. See also 
analogy

analogy: as argument form, 10–11, 60, 121; 
articulation model, 127–30; bare analogy, 119, 
121, 124; as criterion for explanation, 258–59; 
facts of, 60, 135, 142; as form of inference, 
51, 120; logic of, 127; material analogy, 
129; and material theory of induction, 
131; principle of similarity, 133, 142; 
problems with articulation model, 131–32; 
problems with two-dimensional approach, 
128–29; reasoning by, 119, 122–124, 128; two-
dimensional approach, 124–126, 128–29. See 
also analogical inferences; formal approach 
to analogy

Aquinas, Thomas, 184
Aristotle, 10, 119, 184
astrology, 154
astronomy: Copernican, 161, 223; as domain 

of inference, 47, 160; fitting orbits, 175; 
geocentric and heliocentric, 155–56, 160; 
Ptolemaic, 223. See also Copernicus; 
Copernican system; Ptolemaic system; 
Ptolemy; 

asymptotic stability, 437, 459–61, 463–64
atoms: atomic theory, 85; liquid drop model of 

nucleus, 11; model of, 163; as propositions, 
438, 445–48, 450, 455–59, 461; radioactive 
decay of, 590–91

Atwood, Kimball, 97
axiom of choice, 507–08, 521, 546, 547n, 554–56, 

567

abduction: as argument form, 249, 271; and 
Darwin, 249, 253–54; and Einstein, 253, 305–
12; examples in science, 248, 262–65, 273–76; 
as form of induction, 19; formal and material 
approaches, 251, 260; and inference to the 
best explanation, 247; no universal account of, 
248; and notions of explanation, 247–49, 253, 
257–58; and Peirce, 253–55; two-step scheme, 
251, 267–69, 273, 310, 319, 323, 330. See also 
inference to the best explanation 

abductive inference. See abduction
Accum, Frederick, 41–42
Adams, John, 209
additivity: of calculi, 383, 396, 435; and chance 

values, 537; and completely neutral support, 
353; countable, 470, 472, 508, 598–99, 593–94; 
in credences, 15, 396, 398; deviations from, 
400, 401–02; divergence additivity, 419; finite, 
472, 474–75, 597, 474–80, 508; of a probability 
measure, 14, 601, 641; of strengths, 379; 
subadditivity, 399–04, 420; superadditivity, 
358, 399–04, 420; violated, 345, 352, 396, 466, 
601. See also credences

Aharonov, Yakir, 582
AIC. See Akaike Information Criterion 
Akaike Information Criterion: and coin tosses, 

234–39, 243–46; correcting for overfitting, 
232; described, 229–30; and d-parameter 
model, 239; as elaboration of Maximum 
Likelihood Criterion, 226, 228–30; failure of, 
242–43; and material theory of induction, 
240–41; and model selection, 224–25, 242; 
and one-parameter model, 236, 238–40, 
243; and probability distribution, 231–32; 
and simplicity, 12, 243; and zero-parameter 
model, 239–40

Akaike, Hirotogu, 228–29. See also Akaike 
Information Criterion 

Index



Index658

Bohm, David, 582
Bohr, Niels, 139, 163
Bondi, Hermann, 16, 520–21, 539–41, 546. See 

also cosmology; steady-state cosmology 
Boolean algebra, 446–47, 451–52, 458
Boolean operators, 446, 464
Born, Max, 306, 309
Bosch, Carl, 81
Brandom, Robert, 85–86
Brewster, David, 327
Bridgman, Percy, 365
Brier score, 389–96, 399, 401, 407, 409–10, 421
Brier, Glenn, 390–93
Brigandt, Ingo, 86
British Medical Journal, 114
Byrd, R., 112

calculi of inductive inference: alternatives to 
probability calculus, 469; appeal of, 438–40; 
completeness, 436–37; failure of ideal of 
completeness, 444–45, 465–67; ideal of 
completeness, 443–44; lack of universality, 
467, 469, 603; necessity of incompleteness, 
437, 466; neutral initial state, 435–36; non-
trivial, 435–36, 465–66; probabilistic, 451–52

“Cathode Rays” (paper by J. J. Thomson), 
289–90, 293, 296–97. See also cathode rays; 
particle theory; Thomson, J. J. 

cathode rays: as charged particles, 290–91, 
293–95; as example of abduction, 276, 
289–303; as waves, 290, 292–96; nature of, 
289–90. See also “Cathode Rays”; particle 
theory; Thomson, J. J.

causation, 129–30; multiplicity of causal factors, 
179–80

celestial mechanics: eccentric orbits, 203–05; 
ellipses, 203–05; gravitation theory, 204; 
hyperbolas, 203–05; orbital trajectories, 
203–04; parabolas, 203–05; perturbations, 
208–09; perturbed ellipses, 208–09. See also 
curve fitting; Newtonian gravitation theory; 
orbital trajectories 

Chibnall, John, 113
childbed fever: cause of, 13, 261, 265–67
COBE satellite, 314
Coherent Admissibility, 411
coin tosses: accumulated results of, 4; and 

Akaike Information Criterion, 234–39, 
243–46; invariances involving, 352; and 
nonmeasurable sets, 16–17, 521–22, 558–66; 
and probabilities, 37, 47–48, 352, 485–86; as 

Bacon, Francis, 322
Banach-Tarski paradox, 547, 548n, 556
barium chloride: monoclinic form, 25; 

separation from radium chloride, 17, 27; 
similarity to radium chloride, 27–30, 44–47, 
49

barium sulphate, 44. See also barium chloride 
Bartha, Paul, 119, 125, 127–28, 130, 475, 477
Bayes property, 383. See also Bayes’ theorem; 

Bayesian approach 
Bayes’ theorem: and deductive inferences, 7; 

and posterior probabilities, 15, 32–33, 66, 
76–78, 335–36; and prior probabilities, 3–4, 
15, 32–37, 58, 66, 75–79, 335; and probability 
calculus, 7, 38, 66, 335; ratio form of, 441. 
See also Bayesian approach; Bayesian 
epistemology

Bayesian analysis. See Bayesian approach 
Bayesian approach: account of 

induction, 7; applicability of, 8, 14, 
75–76, 80; complications with, 66, 79; and 
crystallography, 31; distinctiveness of, 
14; and Dutch book arguments, 363–64; 
failure of, 34–39, 76–77, 341–43; inductive 
incompleteness of, 15, 58; for matching 
DNA samples, 4; objective, 77–78, 338, 
340–42, 381–82, 480; preference for simpler 
hypotheses, 440; present dominance of, 3, 
13, 58; problem of priors, 436–37, 465–66; 
simplicity, 436, 440–41; subjective, 4, 77–78, 
338, 340–42, 382, 465, 485; varieties, 340. See 
also Bayes’ theorem; Bayesian epistemology

Bayesian epistemology, 335–36, 338–39. See also 
Bayes’ theorem; Bayesian approach

Bayesianism. See Bayesian approach 
beliefs. See credences 
Benci, Vieri, 472
Benétreau-Dupin, Yann, 348, 357–58
Besso, Michele, 110
betting: behaviors, 359, 366–67, 373, 375; 

fair bets, 364, 367, 371–72, 374; quotients, 
364–65, 367–75; refusing to bet, 366, 368–69; 
scenarios, 4, 359, 363, 368, 372, 374–75

Big Bang: and cosmic background radiation, 
159–60, 247, 250, 262, 275, 312–19, 341; 
evidence for, 4, 159–60, 318; and relativistic 
cosmology, 604; versus steady-state theory, 
316–17, 319. See also cosmology

black hole, 604
Blackwell, David, 521, 558, 563
Blatt, John, 140–42



659Index

Cox, Richard, 338, 360, 377–80
credences: accuracy of, 14–15, 388, 395, 397, 

407–08; and additivity, 15, 404, 425, 429; 
dominating, 396–98, 400–02, 406–07; 
eliciting, 393–95; “immodest,”  417–18; 
non-additive, 404; non-probabilistic, 
388–89, 394–97, 412–14, 417–18; probabilistic, 
388–89, 394–97, 408–15, 417–18, 420; and 
probabilities, 8–9, 14, 359; and probability 
calculus, 396; and strengths of inductive 
support, 341; subadditive, 399–04, 408, 412, 
420, 426, 429–30; superadditive, 399–04, 408, 
412, 420, 426, 429–30. See also additivity

criteria for explanation: analogy, 258–59; 
consilience, 258–60; simplicity, 258–59. See 
also notions of explanation; Thagard, Paul

crystallographic forms: cubic system, 24–26; 
dimorphism, 33, 42; and enumerative 
induction, 57; fluorspar, 24–25; Haüy’s 
account, 40–42; heavy spar, 44; isomorphism, 
30, 44–47; monoclinic system, 25–26, 30, 39n, 
66; octahedral, 24–25; polymorphism, 33, 
42–43, 45, 47, 51; process of cleavage, 24–25; 
properties of, 9; regular system, 24; system of 
classification, 23–24; trimorphism, 42

Curie, Marie: 1911 Nobel Prize address, 30; 
doctoral dissertation, 27; extraction of 
radium, 26–28, 39n, 40; generalization about 
radium, 46–47; hypothesis about radium, 
36; inference from radium sample, 9, 28–30, 
37–38, 59, 65; observations about radium, 
44–47. See also radium chloride

Curie, Pierre, 27
curve fitting: constant, 189, 190, 202; cubic, 

190, 200–01, 232–34; defined, 196; error 
model,  196–98; linear, 189–90, 200–02, 
232–34; and material theory of induction, 
195–98; and model selection, 225, 227; and 
Moody chart, 182; and orbital trajectories, 
202–11; order hierarchy, 202; overfitting, 12, 
190; parametrization, 199–202; polynomial 
curves, 189–90, 200, 202, 232; problems with, 
193; quadratic, 189–90, 200–02, 232; quartic, 
190, 200–01, 232–33; and simplicity, 175, 189, 
191, 193; sinusoidal curves, 12; and theory 
of relativity, 211. See also simplicity; orbital 
trajectories; tides

Czech book, 367

Darwin, Charles: and abduction, 249, 253–54; 
account of the eye, 274, 279–80; defense 

probabilistic randomizer, 505–09; principle of 
indifference, 347; repeated scenarios of, 370

cold fusion, 93, 96, 98–106
comets: energy of, 206–07; orbital trajectories of, 

203, 205–06
common salt. See sodium chloride 
completely neutral support, 348–59; and 

additivity, 345, 353, 383; and background 
conditions, 14; and Dutch book, 368–69; 
and indeterministic physical systems, 
604; and invariances, 17, 574, 601–02; and 
label independence, 520; and principle of 
indifference, 337

conditionalization, 76, 78, 440, 465, 592, 594
confirmation theory, 19, 253
connectives, 83–86
consilience: as criterion for explanation, 258–60, 

278, 282
consistency: as criterion for theory choice, 11, 

166–67, 169–71
construct validity, 94n
containment principle, 470, 504–05
continual (continuous) reaction of matter, 

539–43 
controlled trials, 94–95, 112, 114–15
Copernican system, 156; aesthetic superiority of, 

157–58; appeal of, 156, 161; argument against 
by Osiander, 160; versus Ptolemaic system, 
158, 223; victory over Ptolemaic, 157–58. See 
also Copernicus

Copernicus: On the Revolutions of the Heavenly 
Spheres, 157; versus Ptolemy, 156–57. See also 
Copernican system

corpuscular theory of light, 324–30; defined, 
325. See also emission theory

cosmic background radiation: and Big Bang 
159–60, 247, 250, 275, 312–19, 341; competing 
theories for, 314–19; as example of abduction, 
312–19; Penzias and Wilson, 159; thermal 
character of, 312–15, 317–18

cosmic matter distribution, 584–88
cosmological principle, 80
cosmology: continual creation of matter, 539–43; 

and cosmic background radiation, 275; and 
cosmological principle, 80; eternal inflation, 
471, 509–10, 512–14; inflationary, 16, 480, 
509, 512–14; Newtonian, 17, 583–88, 596–97, 
607–10; pre-inflationary, 604; and simplicity, 
173. See also Big Bang; steady-state cosmology

Coulomb electrostatics, 129
Cournot’s Principle, 486



Index660

dominoes: infinite domino cascade, 17, 573, 
579–81; toppling of, 605–07

Douglas, Heather, 153n
Drake, Stillman, 70, 74
Dutch book arguments, 14, 363–77

Earman, John, 576
Ehrenfest’s theorem, 303
Einstein, Albert: and abduction, 253, 306; and 

anomalous motion of Mercury, 305–12; 
appraisal of Miller experiment, 106n, 108–10; 
arguments against Newton, 161–62; Herbert 
Spencer Lecture, 192; as mathematical 
Platonist, 71–72, 191–92; and notion of 
simplicity, 191, 193–95

—theory of relativity: completion of, 305; 
complexity of, 252–53; cosmological constant, 
584; and the ether, 122 and Mercury, 4, 
210–11, 253; and von Neumann, John 195; 
special relativity, 107, 329; versus zodiacal 
light, 274–75

electrons: and atoms, 138–39; discovery of, 
289; and ellipses, 12, 203–05; orbit of, 141; 
as spin-half particles, 82, 164; spin of, 17, 82, 
469; wave-like properties of, 275; as waves, 
302–05; and perturbed ellipses, 208–09. See 
also celestial mechanics 

emission theory of light, 274, 325–30; defined, 
325; and evidential debt, 330; versus wave 
theory, 325–30. See also corpuscular theory; 
wave theory 

Energy Research Advisory Board (ERAB), 
100–01, 103–05

enthymeme, 50, 65
enumerative induction: authorizing too much, 

59; of breathtaking scope, 9; contrast with all-
some schema, 6, 22; and crystallography, 50; 
early attempt at, 5; failure of, 438; and Haüy’s 
principle, 68; and Marie Curie, 38; schema of, 
29–31, 39, 47, 57

epistemic values and virtues, 11; and skepticism, 
162; and Thomas Kuhn, 168; as criteria for 
theory choice, 154–55, 169; and evidential 
relations, 159; and inductive support, 158, 
161; and material theory of induction, 158; as 
means and ends, 154; as surrogates for facts, 
155, 159; role in assessing evidence, 153; role 
in inductive inference, 162; as warrants for 
induction, 159. See also theory choice; values; 
value judgments

of abduction, 252, 256, 288; description of 
natural selection, 277–78; influence of Lyell 
on, 285, 287; influence of wave theory on, 324; 
influence of Whewell on, 278; and intelligent 
creation, 13, 276, 279–82; and notions of 
explanation, 282–83; voyage on the Beagle, 
285. See also natural selection; On the Origin 
of Species

Davisson, Clinton, 302
Dawid, Richard, 594
Dawkins, Richard, 113; The God Delusion, 113
Day, Timothy, 249
de Broglie waves, 302
Decomposition, 419–20
deduction: all-some schema, 5; and analogical 

inferences, 127, 132, 135; contrast with 
inductive inferences, 56, 62–63; deductions 
from the phenomena, 51, 269; and deductive 
arguments, 136; and deductive validity, 50–
51; deductive fallacy, 109, 124; distinguishing 
good from bad, 82; good, 5, 82; with hidden 
premise, 65; and hypothetico-deductive 
confirmation, 160; logic of, 82, 85, 91, 106n, 
124; non-contextual, 83, 85; universal 
principle of, 5, 6, 91–92; validity of, 50–51; 
warrants for, 5–8, 46. See also hypothetico-
deductive confirmation  

deductive inferences. See deduction
deductive structure, 437, 445–48, 455, 465
de Finetti, Bruno: and betting scenarios, 359, 

363–65, 374–75; and Dutch book arguments, 
337, 360; and infinite lottery, 485, 504; and 
probabilities, 393, 471–72; as subjective 
Bayesian, 340

De Morgan’s laws, 83
De Vito, Scott, 242
Department of Energy (US), 100–01
determinism, 573; general idea of, 575; temporal, 

576
deterministic physical systems, 575–76
deuterium, 99, 101, 103–06
Diaconis, Persi, 521, 558, 563
Dirac, Paul, 195
Divergence Additivity, 419
Divergence Continuity, 419–20
dome: as example of indeterminism, 576–77, 

594–95; as Newtonian system, 577
dominance: condition of, 409–11; dominance 

argument, 388, 394–98, 401, 414–17; 
dominance relations, 399, 406–07, 424–28; 
theorem, 14



661Index

120–22, 133–137; Siderius Nuncius, 133; Two 
New Sciences, 70, 72, 74–75

Galton, Francis, 111
gambler’s streak, 595–96
gauge systems, 582–83, 601–02
Germer, Lester, 302
The God Delusion, 113. See also Dawkins, 

Richard 
Gödel, Kurt, 444
Goedel’s theorem, 557
Gold, Thomas, 16, 520–21, 539. See also 

cosmology; steady-state cosmology 
Goldstein, Eugen, 293
Grand Unified Theory, 508
gravitational potential, 17
Guth, Alan, 509–14

H. pylori, 93, 96–97
Haber-Bosch process, 81
Haber, Fritz, 81
Hacking, Ian, 312–13
Hájek, Alan, 367
Hale, George Ellery, 193
Hall, Asaph, 210, 308–09; modified law of 

attraction, 210
Harman, Gilbert, 255
Harmonic functions, 587–88
Harper, William, 242
Harris, William, 112
Haüy, René Just, 29, 40–41; account of crystalline 

shapes, 40–42. See also Haüy’s Principle 
Haüy’s Principle, 9, 43, 63, 68; strong, 50, 51; 

weakened, 39n, 43, 59, 65. See also Haüy, René 
Just 

Hawking, Stephen, 114
Hempel, Carl, 265
Herschel, John, 322–23
Hertz, Heinrich, 290, 292–93, 295, 297 
Hesse, Mary, 119, 124–127, 129
Hilbert space, 359
History of the Inductive Sciences, 29, 326–27. See 

also Whewell, William 
Hooke’s laws, 578
Horsten, Leon, 472, 477
Hoyle, Fred, 16, 520–21. See also cosmology; 

steady-state cosmology 
Hubble, Edwin, 269–70
Hutter, Marcus,  79
Hutton, James, 285
Huygens, Christiaan, 74–75, 325

eternal inflation: defined, 509–10; and label 
independence, 509; measure problem, 471, 
509–15

ether, 107–10, 122
ether-wave theory. See wave theory 
Euclid, 72
Euclidean geometry, 195
Euclidean space, 584
Eva, Benjamin, 348
evidential debt: and abduction, 268; and Charles 

Lyell, 289; defined, 251; and inference to the 
best explanation, 268; and natural selection, 
278–79, 282–83; and Newtonian theory, 311; 
and theory of relativity, 307, 310–11; and wave 
theory, 330

evolution, 1, 2
explanatory virtues: Lipton, Peter, 310; 

loveliness, 310–12; oxygen and phlogiston, 
321, 323

Extension Theorem, 527
external considerations, 15. See also external 

inductive content 
external inductive content, 34, 36, 442–43, 466. 

See also external considerations 

fallacies: analogical, 122–23; deductive, 50, 109, 
124; gambler’s streak, 595–96; inductive, 6

Feyarabend, Paul, 7
Fleischmann, Martin, 99, 102
fluid flow in pipes, 181–83, 198. See also 

Reynolds analogy 
Ford, William 42, 44
formal approach to analogy: and bare analogy, 

124, 128; development of, 119, 124; and 
material approach, 130, 142; problems 
with, 122, 129, 131–32, 142; requirement for 
success, 129–31. See also analogy 

Forster, Malcolm, 223, 242–43
Fourier analysis,  202, 211–12
frequencies of outcomes: and chance, 488, 495, 

498–502; and probabilities, 470, 497, 502–03, 
554, 592; relative frequencies, 16, 474, 479, 
494–95, 594

Fresnel, Augustin, 326
Freundlich, Erwin, 307–09
Frisch, Otto, 139

Galilean spaces, 161–62
Galileo, Galilei: The Assayer, 71; and invariance 

under units of time, 10, 74–75; law of fall, 
70–73, 80, 181; mountains on moon, 11, 



Index662

assumptions, 302; as distinct from deductive 
inferences, 42, 50–52; distinguishing good 
from bad, 23, 30, 61, 142; and epistemic 
values and virtues, 155, 162, 261; and factual 
propositions, 7; failure of universal schemas 
of, 22, 57–59, 653; formal approaches to, 
21–23, 29, 119–20, 142, 187, 654; foundational 
problems of, 382, 436; general inductive 
principles of, 109, 115; good, 30, 50, 55, 61; 
and Hume’s problem, 654; and imprecise 
probability, 359; and indeterministic systems, 
581–83, 589; and inductive risk, 48, 64, 123, 
186; and inference to the best explanation, 
12, 247–48, 266, 270; and the law of fall, 
70–72, 75; licit, 52, 57, 59; limitations of, 
132, 557–58, 569, 575; literature on, 2, 10, 52; 
local character of, 7, 16, 47, 56, 68; modern 
accounts of, 22; mystery of, 61–62; and 
nonmeasurable sets, 521; non-trivial, 599; no 
universal rules for, 7, 159, 335, 653; powers of, 
55–56, 61–62; premises of, 6, 51, 63, 65; and 
probabilistic facts, 48; and probabilistic logic, 
618; and probability calculus, 443–45, 466, 
469, 575; probability measures in, 548, 604–
05; qualitative and quantitative approaches to, 
9; and replicability, 90; and reproducibility, 
112; schemas for, 5, 10; and simplicity, 60, 
173–74;  and skeptical relativism, 153–54; 
standard collections of, 59–61; and strengths 
of support, 581–82, 603–04; terms for, 19–20; 
theories of, 3, 40, 79; universal induction, 79, 
90; universal principle of, 90, 109; and Vitali 
sets, 553; warranted by facts, 7, 23, 46, 65–68, 
159, 196, 613. See also calculi of inductive 
inference; enumerative induction; inductive 
import; inductive logic; inductive risk 

inductive import: confusion over, 100; 
determined by background facts, 93–94; and 
Einstein, 109; and inductive logic, 462; and 
Mercury, 311; replication without inductive 
import, 106–15. See also induction; inductive 
logic

inductive inferences. See induction
inductive logic: and asymptotic stability, 

460–62; and completely neutral support, 
353, 574, 604; constraints on, 454; and 
continuum-sized sets, 519–21; and deductive 
logic, 81–82; and deductive structure, 445; 
deductively definable, 454–57, 464; and 
density operators, 628–30, 638, 647; for 
entangled electrons, 647; failure of universally 

hydrogen: atoms of, 98, 138–39, 483; bombs, 98; 
and deuterium, 99

hyperbolas, 12, 203–05. See also celestial 
mechanics; orbital trajectories 

hypotheses: competing, 12–13, 60, 76–77, 173; 
descriptive simplicity of, 175–78; evaluating 
probability of, 32–33

—favored hypotheses: adequate to the evidence, 
12, 60, 268; authorized inference to, 273; 
competing foils, 275–76, 330–31; establishing 
superiority of, 275–76, 330–31; and evidential 
debt, 251; failure of competitor, 13, 60; falsity 
of, 3; multiple, 77; preference for simpler 
hypotheses, 439–40, 442–44

hypothetico-deductive confirmation: as account 
of induction, 159; augmenting, 452; basic 
notion of, 451; defined, 159;  problem with, 
155, 160–62; repairing, 159–62. See also 
deduction 

implicit definitions, 449–54
imprecise probabilities, 14, 344–46, 356–60
indeterminism: among components of a system, 

581–88, 596–99; and degrees of freedom, 578, 
581; elimination of, 577; and physics, 595–96; 
without physics, 583. See also indeterministic 
physical systems 

indeterministic physical systems, 17, 469, 515; 
common characteristic, 573; commonness 
of, 576; and degrees of freedom, 573; and 
empirical observation, 594–96; of infinite 
three-dimensional crystals, 578; and 
probabilities, 594–96. See also indeterminism 

induction: and abduction, 12, 247–48; account 
by Bayesian analysis, 7, 38, 79, 339, 341–43; 
ampliative nature of, 9, 19,  56, 61–62, 65; 
analogy as form of, 58, 119, 131; axioms 
governing, 570; and bare analogy, 123, 128; 
and belief, 335–36; of breathtaking scope, 
26; calculus governing, 342–43; appeal 
of, 438–40; example of, 448–52; failure of 
universal, 437, 469, 603; formal analysis 
within, 36; in particular domains, 466–67, 
469; and restrictions, 346; comprehensive 
account of, 153; concerning crystalline forms, 
43–45; concerning genetic mutations, 616–20; 
concerning spin of electrons, 615, 618–21; 
conclusions of, 6; contextual nature of, 8, 47; 
contrast with deductive inferences, 56, 62–63; 
and controlled trials, 94; and countably 
infinite sets, 519; dependence on background 



663Index

257–58; and Peter Lipton, 13, 260–62, 274; 
problems with, 12–13, 22, 48, 250, 438; and 
Paul Thagard, 256–58; two-step scheme, 
251, 267–69, 310, 319, 323, 330–31; vagueness 
of,  58–59; visceral appeal of, 248–49; and 
William Whewell 258–59. See also abduction; 
Lipton, Peter

infinite lottery machines: chance properties 
of, 470, 478, 523; and countably infinite 
outcomes, 469, 519, 522; difficulties with, 
471–72; fairness of, 472–73, 503, 522; and 
label independence, 475, 477–78, 481, 489–91; 
in the literature, 470–71; logic of, 345, 359, 
481–90, 508, 519–21, 537–39, 553–54; and 
non-standard calculus, 470; and probability 
measures, 470–71, 478–79; physical properties 
of, 470–71

invariances: and coin tossing, 352; from 
ignorance, 352–53; under negation, 351–52, 
602–03; from positive warrant, 352–53; under 
redescription, 348–50, 601–02

Isaacs, Rufus, 535

Jaynes, Edwin, 14, 338, 342, 360, 377–82, 480
Jeffreys, Harold, 441, 443
Joyce, James, 410–12, 417–18
Jupiter, 209

Kaufman, M., 316
Kelly, Kevin, 180
Kepler’s laws: area law, 204; planetary motion, 

269
Keynes, John Maynard, 347–49, 379
Khalifa, Kareem, 249
Kincaid, Harold, 249
Kolmogorov axioms, 437, 449, 450, 452
Kolmogorov, Andrey, 344–45, 486–87, 526, 560
Kuhn, Thomas: Kuhn loss, 321; Matchette 

Lecture, 155, 165–71; obfuscation by, 162, 
165–68; and skeptical relativism, 169; and 
theory choice, 155; The Structure of Scientific 
Revolutions, 165–66, 168

Kullback-Leibler discrepancy, 230

label independence: and choosing without favor, 
471–73; compatibility with probabilistic logic, 
520; condition of, 470; and continuum-sized 
sets, 520, 522, 523; defined, 470, 473; and 
infinite lottery machines, 475, 477–78, 481, 
489–91; metrically adapted, 520, 535–37, 539, 
545, 553; and restriction on permutations, 

applicable, 56, 116, 241; formal, 283; and 
formal approach to induction, 22, 39; general 
principle of, 159; generalization, 43, 45 and 
Gödel, 444; and Haüy’s principle, 67 and 
imprecise probabilities, 360; and infinite 
lottery machine, 470, 481–90, 519–21, 537, 
541; and label independence, 494, 539; 
material, 283; non-additive, 337, 601; and 
nonmeasurable sets, 554; non-probabilistic, 
16, 346, 514, 571, 618–19; objectivity of, 637; 
and prior probabilities, 382; and probabilistic 
randomizers, 636, 508; and probability 
calculus, 471; and probability measure, 
638–39; and problem of probabilities, 343; 
and replicability of experiment, 89–90; for a 
roulette wheel, 638; and simplicity, 187; and 
ultrafilter logic, 522; 

—probabilistic: applicability of, 575; compared 
to quantum inductive logic, 614–16, 627–28, 
648, 650–52; and electrons, 620; and genetic 
mutations, 616; necessity of, 361, 637; 
prevalence of, 613

—quantum: and density operators, 638; and 
disanalogies, 651; and electrons, 618–20, 628; 
and genetic mutations, 618; and violation 
of real-valued functions, 345; compared to 
probabilistic inductive logic, 613–16, 627–28, 
648, 650–52; strengths of support for, 367; 
warranted by facts in a domain, 343, 470, 
599, 620, 651; weak, 17, 532, 559, 570. See also 
induction; inductive inferences; material 
theory of induction

inductive risk: and background assumptions, 
51n; in chemistry, 29; controlling, 49; in 
crystallography, 45; degrees of, 44n, 81; 
differing conclusions, 44; and Galileo, 136; 
inescapability of, 123, 132; and probabilistic 
analysis, 66; unique forms of, 47; with 
warranted inductive inference, 64. See also 
induction 

Infection and Immunity (journal), 89
inference to the best explanation: as argument 

form, 250, 271; canonical examples, 262–65, 
273–76; credentials in science, 252; and 
Charles Lyell, 286; and cosmic background 
radiation, 312–19; defined, 247–251; and 
Albert Einstein, 305–12; explanatory 
relations, 60; as form of induction, 51; and 
Gilbert Harman, 255–56; and material 
theory of induction, 271; no universally 
applicable schema, 273; notion of explanation, 



Index664

and simplicity, 166, 173, 186; and size of 
domains, 81; stated and illustrated, 19–20; 
summary of case for, 55–57; terminology, 
17–18; versus formal approaches, 57, 59; and 
warranting facts, 61, 115–16, 188, 195, 481, 
534, 574–75. See also induction; inductive 
logic; simplicity

Mathematical Foundations of Quantum 
Mechanics, 195. See also von Neumann, John 

Maximum Likelihood Criterion: defined, 227; as 
elaboration of Akaike Information Criterion, 
226, 228

McCarthy, John, 393
McMullin, Ernan, 170–71
measure theory, 506, 526
Mercury: advancing orbit of, 209
—anomalous motion: account by Erwin 

Freundlich, 307–09; and Newtonian 
gravitation theory, 305, 307; explained by 
theory of relativity, 4, 210–11, 253, 263, 
268, 306; explained by zodiacal light, 
274; perihelion of, 211, 253, 274, 305–06; 
perturbations of, 209–10, 310

Mill, John Stuart, 255; methods of, 255, 266–67
model selection: and Akaike Information 

Criterion, 225, 242; best fitting, 226–27; 
defined, 225; d-parameter model, 238–39; 
one-parameter model, 235–40; overfitting, 
224–29; and simplicity, 223–26; and statistical 
noise, 225–26; two-parameter model, 242; 
zero-parameter model, 234–35, 239–40

modus ponens, 20n, 84, 124, 439
monotonicity, 352
Moody chart, 181–82, 198. See also curve fitting 
Moody, Lewis, 181
Myrvold, Wayne, 242

Narlikar, Jayant, 316
National Oceanic and Atmospheric 

Administration (NOAA), US,  218–20
natural selection: aesthetics elegance of, 283; 

complexity of, 270, 277–78; and evidential 
debt, 278–79, 282–83; and independent 
creation, 279–82, 285; obstacles facing, 
278–80, 282; summary of, 277–78; warranted 
acceptance of, 284–85. See also Darwin, 
Charles; On the Origin of Species 

necessary conditions: for strengths of inductive 
support, 377–81

Neptune, 209, 311
New York Times, 193

526; and roulette wheels, 473–74; requirement 
of, 473, 524; unrestricted requirement, 553; 
weakening of, 520, 524

label permutation: and continuum-sized sets 
520, 523; defined, 473; and infinite lottery 
machines, 476, 479, 481; and roulette wheels, 
474

Laplace’s equation, 608
Lavoisier, Antoine, 320–23
Layzer, David, 316
Le Verrier, Urbain,  209
Leibovici, Leonard, 114–15
Leitgeb, Hannes, 411
Lenard, Philipp: and abduction, 275, 290, 293; 

argument against particle theory, 293–96; 
cathode rays as waves, 290, 292–96

Levi-Civita, Tullio, 195
Lipton, Peter, 260–62, 265, 267, 274, 310
Lloyd, Humphrey, 327–28
Lorentz force law, 290
Lorentz, Hendrick, 194
loveliness as explanatory virtue, 310–12
Lyell, Charles: and catastrophist theories, 

286–88; and evidential debt, 289; influence 
on Darwin, 285; summary of approach, 286. 
See also Principles of Geology; uniformitarian 
geology 

Mach, Ernst, 180–81
Maher, Patrick, 376–77
Malament, David, 609–10
Manchak, John, 578
Manhattan project, 164
masses and springs: as example indeterminism, 

577–78; as Newtonian system, 577–78; 
temporal behavior of, 578

material theory of induction: and analogy, 
60, 131–33; and background assumptions, 
302; and curve fitting, 196–98; as distinct 
from deductive inference, 50–52; as distinct 
from other approaches, 5; and Dutch book 
argument, 367; and epistemic virtues 
and values, 153–55, 158–59; and formal 
approaches, 260; and foundational problem 
of induction, 382; and Hume’s problem, 
654; and inductive logic, 651; and inference 
to the best explanation, 247, 260, 271, 273; 
foundational argument for, 62–68; main 
ideas of, 7–9, 46–50; regress problem in, 656; 
relation to Akaike Information Criterion, 
240–43; and replication of experiment, 98; 



665Index

oxygen: oxygen chemistry, 320–24; oxygen 
theory, 320–21; and phlogiston, 320–24; and 
weight, 322; and William Whewell, 323

parabolas, 203–05, 440. See also celestial 
mechanics; orbital trajectories 

paradoxical decompositions, 16, 521, 543–48
parsimony: aesthetic of, 158; failure of, universal 

principle of, 224; principle of, 175, 177–78, 
180, 188, 224; of the world, 241. See also 
simplicity 

particle theory: cathode rays, 275, 289, 295; 
failure of, 295; fit with experimental results, 
290–91, 298–99; versus wave theory, 297–99

Partridge, Bruce, 315–17
Pauli, Wolfgang, 306, 309
Peano’s axioms, 444
Peebles, P. J. E. “Jim,” 317–18
Peirce, Charles, 253–55, 260
Penzias, Arno, 247, 275, 313, 319, 539
perfect cosmological principle, 539, 546
Pettigrew, Richard, 360, 411, 419
Philosophy of Natural Science, 265. See also 

Hempel, Carl 
Philosophy of Science (journal), 162
phlogiston: and levity, 322–23; and oxygen, 320–

24; phlogiston chemistry, 320–23; phlogiston 
theory, 320–22; and Whewell, 323

Physical Cosmology, 317. See also Peebles, P. J. 
E. “Jim” 

pocket universes, 480, 510–11, 514
Poisson’s equation, 608–10
Pons, B. Stanley, 99, 102
Popper, Karl, 180
posterior probabilities: and Bayes’ theorem, 

335–36, 344, 441; fixed, 465n
Precht, J., 45
Primer on Determinism, 576. See also Earman, 

John 
Principia, 51, 176, 187. See also Newton, Isaac 
principle of indifference, 346–48, 350, 355
Principles of Geology: and catastrophist theories, 

286–88; as example of abduction, 276, 
285–89; impact on Darwin, 285; and notions 
of explanation, 285–86; methodological 
discussion, 286. See also Lyell, Charles; 
uniformitarian geology 

Principles of Physical Cosmology, 318. See also 
Peebles, Phillip 

prior probabilities: and arbitrariness, 381–82; 
and Bayesianism, 335, 435; distribution, 

Newcomb, Simon, 210, 308
Newton, Isaac: accused by Einstein of ad hocery, 

161; and gravity, 187–88; corpuscular theory 
of light, 324–30; Principia, 51, 176, 187; “Rules 
of Reasoning in Philosophy,” 176–77, 184–87. 
See also Newtonian gravitation theory; 
Newtonian cosmology; Newtonian physics; 
Newtonian potentials; Newtonian systems 

Newtonian cosmology, 17, 583–88, 596–97, 
607–10

Newtonian gravitation theory: and elliptical 
orbits, 305; as example of indeterminism, 573; 
and gravitational constant G, 191, 582–83; 
and indeterministic systems, 573, 583–85; 
inverse square law of, 269, 309; Mercury’s 
motion explained by, 307; perturbations 
explained by, 208–09; potentials of, 588; 
probability of, 7. See also Newton, Isaac; 
Newtonian cosmology; Newtonian physics; 
Newtonian potentials; Newtonian systems

Newtonian physics, 311, 595
Newtonian potentials, 17, 573–74, 584, 586–88, 

598, 608
Newtonian systems, 577–78
no-go results, 463–65
notions of explanation: and abduction, 253, 257–

58; attempts to define, 22, 257–58; elusiveness 
of, 13, 251; and favored hypotheses, 330; 
heterogeneity of, 248–49, 260; and induction, 
3; varied and vague, 58. See also criteria for 
explanation 

nuclear reactions: fission, 98, 139–40, 142, 163; 
fusion, 98–99, 101–02, 104–05, 188. See also 
cold fusion 

Ockham, William of, 183–84; Ockham’s razor 
174–76, 183–84, 316

On the Origin of Species, 256; analogical 
reasoning in, 121; and abduction, 254; 
argument of, 121, 252, 256, 277–78, 281–82; 
as example of abduction 276–85; influence 
of wave theory on  324; similarity to Charles 
Lyell’s argument, 287–88. See also Darwin, 
Charles; natural selection 

On the Revolutions of the Heavenly Spheres, 157. 
See also Copernicus 

orbital trajectories: elliptical orbits, 207–08; 
perturbed orbits, 207–11. See also celestial 
mechanics; curve fitting 



Index666

isomorphism of, 45; monoclinic form, 39n, 
66; and Marie Curie, 26–27, 36; separation 
from uranium, 26–28 

Ramsey, Frank, 337, 360, 363, 365
randomization, 60–61, 69, 94–95, 112, 114–15
Rathmanner, Samuel, 79
Rayleigh scattering, 85
recession of galaxies, 179, 269
repeatability of experiment, 89–91, 95, 97. See 

also replicability; reproducibility 
replicability of experiment: defined, 89–91; 

evidential significance of, 60; import of, 90, 
93; failure of, 10, 91–93, 98–104, 106–07, 115; 
and induction, 51; and material analysis, 
93–96; as “scientific gold standard,” 10; 
success of, 10, 91–93, 96–98, 111–13, 115. See 
also repeatability; reproducibility 

reproducibility of experiment. See replicability; 
repeatability 

Reynolds analogy: defined, 137–38; for fluid 
flow, 120, 133, 137, 145–46, 148–49; heat 
transfer, 138, 143–149; modern, 146–50; 
momentum transfer, 138, 143, 144–47, 
149; original, 144–45; technical details, 
143–50. See also fluid flow in pipes; transport 
phenomena 

Reynolds, Osborne, 137, 145–46. See also 
Reynolds analogy

Roberts, Bryan, 578
Roche, William, 249
Romé de l’Isle, 29
Rosenkrantz, Roger, 409
Rosenthal, Jeffrey, 560
roulette wheel, 473–74, 595–96, 615, 638
Rudner, Richard, 155, 162–65, 168, 170–71
Runge, C., 45
Russell set, 555
Russell’s paradox, 555
Rutherford, Ernest, 28–29, 40, 45–46

Salmon, Wesley, 67
Savage, Leonard, 360, 375
saving the appearances, 156, 158. See also saving 

the phenomena 
saving the phenomena, 156, 160–61, 322. See 

also saving the appearances 
Schervish, Mark, 416
Schrödinger equation, 303
scoring rules: and accuracy of credences, 388; 

choice of, 388–89, 398–99, 408–12, 420, 423; 
and frequencies, 390–92; literature on, 388–

340, 440–42, 466; necessity of, 382; one 
correct, 340; problem of, 381; ratio of, 441; 
unambiguous, 341; washed out, 33–34, 37, 
465n

probabilistic law, 590–92, 596
probabilities: 336, 339, 348, 357–58; acceptance 

or rejection, 382–83; additivity of, 14, 16, 470, 
483, 508, 601; and chance properties, 478; 
and coin tosses, 37, 47–48;  conditional, 335, 
648; and continuum-sized outcome sets, 520; 
dominance of, 395–99;  necessity of, 337–38, 
360–62, 382, 387–89, 395, 410–11, 423; 
no-memory property of, 590; as strengths 
of support, 574, 589–90, 599–600; and non-
additive logic, 594; and nonmeasurable sets, 
521; and pocket universes, 480–81; necessity 
of, 478; normalization, 574; representation of 
indeterminacy, 17; strengths of support, 575, 
603–05; uniform, 574; and volumes in space, 
597–99. See also prior probabilities: posterior 
probabilities 

probability calculus: additivity of, 396, 601; 
axioms of, 336–38, 340, 352, 365, 369, 371–73; 
and Bayesianism, 335, 383; and beliefs, 364; 
and Brier score, 392; computational rules 
of, 338, 377, 379; and credences, 396; and 
induction, 335; as incomplete, 436; as “logic 
of science,” 342; limits of, 343, 435; problems 
with, 382; success of, 536; weakening of, 345

Probability Theory: The Logic of Science, 342. See 
also Jaynes, Edwin 

protons, 138, 140
Pruss, Alexander, 472, 506
Ptolemaic system, 156; versus Copernican, 157, 

223. See also Ptolemy 
Ptolemy: versus Copernicus 156. See also 

Ptolemaic system 
Pythagoras, 411, 535–36, 557

quantum measurement, 17, 576
quantum mechanics, 60, 114, 141, 195, 302, 615, 

620
quantum theory, 17, 163, 191, 291, 302–03, 

614–32, 636–38, 647–50

radioactivity, 27
radioactive decay: law of, 590; probabilistic 

analysis of, 591
radium chloride: and barium chloride, 27–30, 

44–46, 49; crystalline form of, 44, 46, 59; 
crystallographic properties of, 9, 27, 38; 



667Index

Statistical Reasoning with Imprecise Probabilities, 
373. See also Walley, Peter 

steady-state cosmology, 16, 247, 276, 316–19, 
483, 520–21, 539. See also cosmology; Bondi, 
Hermann; Hoyle, Fred; Gold, Thomas  

Steinhardt, Paul, 512–14
string theory, 114
strontium sulphate, 44
The Structure of Scientific Revolutions, 165–66, 

168. See also Kuhn, Thomas 
Studies in History and Philosophy of Science, 52
Sturms, Edmund, 103–05
Symmetry, 409–10, 422

tail events, 558–66
temporally indeterministic systems, 575, 589–94
Thagard, Paul, 256–60, 320, 324
The Assayer, 71. See also Galileo, Galilei 
theory choice, 154–55, 166–67, 169
theory of evolution, 277, 341. See also natural 

selection 
theory of gases, 185
theory of relativity: aesthetics of, 307; complexity 

of, 252–53, 270; correction to Newtonian 
motions, 306; and curve fitting, 211; and 
the ether, 122; and evidential debt, 307, 
310; explanation of motion of Mercury, 4, 
210–11, 253, 263, 306–07, 311; explanation 
of curvature of space-time, 80–81; extension 
by Hermann Weyl, 311–12; and Miller 
experiment, 93; popularizations of, 194, 
306; simplicity of, 310; special relativity, 107, 
329; versus zodiacal light, 274–75. See also 
Einstein, Albert 

thermal background radiation. See cosmic 
background radiation 

Thirring, Hans, 109
Thompson, William, 212, 218
Thomson, J. J.: and abduction, 302; argument 

against wave theory, 292, 296; and cathode 
rays, 275–76, 289–303; “Cathode Rays,” 289, 
293, 297; and notions of explanation, 291. See 
also cathode rays; particle theory 

tides: astronomical effects, 217; complications in 
tidal analysis, 216–17; compound tides, 217; 
and curve fitting, 12, 211; harmonic analysis 
of, 175, 211–20; harmonic constituents, 
218–19; neap tides, 214–15; overtides, 217; 
spring tides, 214; tidal bulges, 213–14, 216; 
tidal prediction, 211, 216–18, 220

Tolstoy, Leo, 560

90, 423; multiplicity of, 423; and probabilistic 
credences, 418, 423; and probabilities, 389, 
418, 423; quadradic, 420–23; strictly proper, 
390, 412–20, 423, 431–32; and subjective 
Bayesianism, 389; vindications of, 387; with 0 
< n < 1, 403–05 with n = 1, 405–07; with n > 1, 
399–403, 424–30

Sellars, Wilfrid, 85
Selten, Reinhard, 420–23
Semmelweis, Ignaz, 13, 261, 265–67
Shafer-Dempster theory, 358–59, 411–12, 435, 

466
Shankland, R. S., 110
Shapiro, Alan, 326
Siderius Nuncius, 133. See also Galileo, Galilei 
simplicity: and Bayesian analysis, 436, 440–41, 

443; and counting entities, 174–76, 183, 
185–86; as criterion for explanation, 258–59; 
as criterion for theory choice, 11, 166–67, 
169–70; descriptive simplicity, 183, 188–95, 
202; as economy of expression, 180–81; in 
evidential assessment, 58, 153; as evidential 
truism, 186–87; explanation for popular 
appeal of, 173; in Galileo’s reasoning, 70–71; 
as grounds for inference, 51, 60; in heuristic 
search, 180; of hypotheses, 175–78; inductive 
power of, 159; and material theory of 
induction, 186–87; metaphysics of, 241, 243; 
in model selection, 223–26; ontic simplicity, 
183–84; pragmatic justifications of, 178–82; as 
surrogate for facts, 159, 169, 173–76, 178, 224. 
See also parsimony 

skepticism: and cold fusion, 101; dogmatic, 34, 
36; and epistemic virtues and values, 153–55, 
162, 169–70; inductive, 11; and Kuhn, 155; 
and Thomson, 297; prior, 35; radical, 155

Smith, Cedric, 373
Snow, John, 179
Sober, Elliot, 174, 223, 242, 249
Soddy, Frederick, 45
sodium chloride, 24, 29
Solomon, Monica, 75n
Solomonoff, Ray, 79
space-time, 72, 81, 604
Space-Time-Matter, 306–07. See also Weyl, 

Hermann 
spontaneous movement, 17, 574, 577–79, 581, 

591–94, 599–600 
Stanford, Kyle, 251
Stanton number, 138, 144, 147, 149
statistical mechanical systems, 60



Index668

Warren, Robin, 96
Watson, James, 205
wave theory of light: and cathode rays, 290–96; 

and Darwin, 324; and electromagnetic theory, 
329; versus emission theory, 274, 324–30; 
as example of abduction, 324–330; fit with 
experimental results, 290, 295–96; multiple 
theories, 324–25; obstacles facing, 274, 329; 
versus particle theory, 297–99

Weak Convexity, 409–10
Weinberg, Steven, 314–15
Weintraub, Ruth, 472
Weisskopf, Victor, 140–42
Wenmackers, Sylvia, 472, 477
Weyl, Hermann, 306–07, 311
Whewell, William: and catastrophist theories, 

285; and crystallography, 29, 39, 42, 44; and 
inference to the best explanation, 258–59; 
History of the Inductive Sciences, 29, 326–27; 
influence on Darwin, 278; oxygen and 
phlogiston, 323

white hole, 604
Wickramasinghe, Chandra, 316
Wiedemann, Eilhard, 293
Williamson, Timothy, 472
Wilson, Robert, 247, 275, 313, 319, 539
Worrall, John, 114

Young, Thomas, 326

Zermelo-Fraenkel set theory, 555–56
Zero-One Law, 560
zodiacal light, 210, 274, 308–09
Zorn’s lemma, 556

σ-algebras. See σ-fields 
σ-fields, 526–31

transport phenomena, 11, 121, 137, 144. See also 
Reynolds analogy 

Tribus, Myron, 378, 380, 381n
Truth-Directedness, 420
Turing machine, 79–80, 441
Two New Sciences, 70, 72, 74–75. See also Galileo, 

Galilei 
Tyndall, John, 111, 327

ultrafilter logic, 17, 522, 568–70
ultrafilter theorem, 565, 567
unified field theory, 72
uniform probability distribution, 16, 382n, 

524–25, 527–30, 534–36, 592
uniformitarian geology: and catastrophist 

theories, 285, 289; as example of abduction, 
276, 285–89; similarity to Darwin’s argument, 
287–88. See also Lyell Charles; Principles of 
Geology 

uniformity of chance, 520, 522–24
uranium: and nuclear fission, 98, 139–40; 

separation of radium, 26–27
Uranus: anomalous motions of, 311; source of 

perturbations, 209

value judgments: as criterion for theory choice, 
170; ethical judgments of scientists, 155, 
162–64; irresolvable, 168. See also epistemic 
values and virtues; values 

values: as criteria of theory choice, 168; as 
distinguished from facts, 154; non-epistemic, 
162. See also epistemic values and virtues; 
value judgments 

Van Fraassen, Bas, 249
Vossiche Zeitung, 108, 110
Vitali sets: and axiom of choice, 555–56; 

construction of, 548–52, 567; chance 
properties of, 553–54; defined 521; logic 
of 521; as simple nonmeasurable set, 548; 
specification of, 554–55

von Mises, Richard, 337, 353–56, 369
von Neumann, John, 195; Mathematical 

Foundations of Quantum Mechanics, 195
von Seeliger, Hugo, 274–75, 308–09
Vulcan, 210, 308, 310–11

Wagon, Stan, 521, 543, 545
Walker, James, 329–30
Wallace, David, 583–84, 610
Walley, Peter, 359, 373–75
War and Peace, 560. See also Tolstoy, Leo 



The fundamental burden of a theory of inductive inference is to 
determine which are the good inductive inferences or relations of 
inductive support and why it is that they are so. The traditional 
approach is modeled on that taken in accounts of deductive inference. 
It seeks universally applicable schemas or rules or a single formal 
device, such as the probability calculus. After millennia of halting 
efforts, none of these approaches has been unequivocally successful 
and debates between approaches persist. 

The Material Theory of Induction identifies the source of these 
enduring problems in the assumption taken at the outset: that 
inductive inference can be accommodated by a single formal account 
with universal applicability. Instead, it argues that that there is no 
single, universally applicable formal account. Rather, each domain has 
an inductive logic native to it. The content of that logic and where it 
can be applied are determined by the facts prevailing in that domain. 

Paying close attention to how inductive inference is conducted in 
science and copiously illustrated with real-world examples, The 
Material Theory of Induction will initiate a new tradition in the 
analysis of inductive inference. 
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