UNIVERSITY OF

CALGARY

L5

University of Calgary
PRISM: University of Calgary's Digital Repository

University of Calgary Press University of Calgary Press Open Access Books

2021-11

The Material Theory of Induction

Norton, John D.

University of Calgary Press

Norton, J. D. (2021). The Material Theory of Induction. University of Calgary Press.
http://hdl.handle.net/1880/114133
book

https://creativecommons.org/licenses/by-nc-nd/4.0
Downloaded from PRISM: https://prism.ucalgary.ca



UNIVERSITY OF CALGARY
Press

THE MATERIAL THEORY OF INDUCTION
by John D. Norton

ISBN 978-1-77385-254-6

W= & |
The Material
The

of
THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic
version of a book that can be purchased in physical form through
any bookseller or on-line retailer, or from our distributors. Please
support this open access publication by requesting that your
university purchase a print copy of this book, or by purchasing

a copy yourself. If you have any questions, please contact us at
ucpress@ucalgary.ca

JOHN D. NORTON

RN Cover Art: The artwork on the cover of this book is not open
access and falls under traditional copyright provisions; it cannot
be reproduced in any way without written permission of the artists
and their agents. The cover can be displayed as a complete cover
image for the purposes of publicizing this work, but the artwork
cannot be extracted from the context of the cover of this specific
work without breaching the artist’s copyright.

BSPS|opEn

COPYRIGHT NOTICE: This Open Access work is published under a CC-BY-NC-ND 4.0
Creative Commons licence, available freely to readers everywhere, at no cost to authors.
This means that you are free to copy, distribute, display or perform the work as long as you
clearly attribute the work to its authors and publisher, that you do not use this work for any
commercial gain in any form, and that you in no way alter, transform, or build on the work
outside of its use in normal academic scholarship without our express permission. If you
want to reuse or distribute the work, you must inform its new audience of the licence terms
of this work. For more information, see details of the Creative Commons licence at: http:/
creativecommons.org/licenses/by-nc-nd/4.0

UNDER THE CREATIVE
COMMONS LICENCE YOU
MAY:

UNDER THE CREATIVE COMMONS LICENCE YOU
MAY NOT:
¢ gain financially from the work in any way;

* sell the work or seek monies in relation to the distribution
of the work;

¢ use the work in any commercial activity of any kind;

* read and store this
document free of charge;

e distribute it for personal

use free of charge;

¢ print sections of the work
for personal use;

¢ read or perform parts of
the work in a context where
no financial transactions
take place.

¢ profit a third party indirectly via use or distribution of
the work;

e alter or build on the work outside of normal academic
scholarship.

The cover can only be reproduced, distributed, and
stored within its function as a cover for this work, and

as a complete cover image for the purposes of publicizing
this work.

UNIVERSITY OF CALGARY

Press

press.ucalgary.ca

Acknowledgement: We acknowledge the wording around
open access used by Australian publisher, re.press, and
thank them for giving us permission to adapt their wording
to our policy http://www.re-press.org







The Material Theory of Induction



BSPS|ope N

— | —
BSPS Open SERIES

SERIES EDITORS:

Bryan W. Roberts, Associate Professor, Department of Philosophy, Logic and
Scientific Method, London School of Economics and Political Science

David Teira, Professeur, UFR Philosophie, Sorbonne Université

ISSN 2564-3169 (Print) ISSN 2564-3177 (Online)

BSPS Open publishes landmark, cutting edge works that represent the full breadth and
diversity of the philosophy of science. Diamond Open Access, all books in this series are
available freely to readers everywhere.

Published in collaboration with the British Society for the Philosophy of Science.

No.1  The Material Theory of Induction
John D. Norton



The Material
Theory of

Induction

JOHN D. NORTON

BSPSJJ PEN

BSPS Open SERIES
SSSSSSSS -3169 (Print) ISSN 2564-3177 (Online)



© 2021 John D. Norton

University of Calgary Press
2500 University Drive NW
Calgary, Alberta

Canada T2N 1N4
press.ucalgary.ca

All rights reserved.

This book is available in an Open Access digital format published under a CC-BY-NC-
ND 4.0 Creative Commons license, available freely to readers everywhere, at no cost to
authors. The publisher should be contacted for any commercial use which falls outside
the terms of that license.

LIBRARY AND ARCHIVES CANADA CATALOGUING IN PUBLICATION

Title: The material theory of induction / John D. Norton.

Names: Norton, John D., author.

Description: Series statement: BSPS open series ; 1 | Includes bibliographical references

and index.

Identifiers: Canadiana (print) 20210347260 | Canadiana (ebook) 20210347325 | ISBN
9781773852539 (softcover) | ISBN 9781773852751 (international hardcover) | ISBN
9781773852546 (open access PDF) | ISBN 9781773852553 (PDF) | ISBN 9781773852560
(EPUB)

Subjects: LCSH: Induction (Logic) | LCSH: Inference. | LCSH: Logic.

Classification: LCC BC91 .N67 2021 | DDC 161—dc23

Publication of this book has benefited from financial support provided by the
University of Calgary's Department of Philosophy, the Canada Research Chair in Logic
and Philosophy of Science (held by C. Kenneth Waters), and Libraries and Cultural
Resources, University of Calgary.

The University of Calgary Press acknowledges the support of the Government of Alberta
through the Alberta Media Fund for our publications. We acknowledge the financial
support of the Government of Canada. We acknowledge the financial support of the
Canada Council for the Arts for our publishing program.

Atbm) C d"' % Canada Council  Conseil des Arts
ana a A~ fortheArts du Canada

Government

Copyediting by Michael Gollner
Cover image: Colourbox 5217355
Cover design, page design, and typesetting by Melina Cusano



Preface

The project for this volume started modestly. It was classified as the “little
induction book” in my original notes. The plan was to write a short and
easy introduction to the main ideas of the material theory of induction.
As the writing proceeded, those modest ambitions were supplanted by in-
creasingly ambitious ones until the project had ballooned into something
enormous. There were three parts. The first dealt with qualitative notions
of inductive inference and the second with quantitative notions. They cor-
respond roughly to Chapters 1-9 and 10-16 of the present work. There was
no space for the third part that dealt with the global structure of inductive
support. It will be the subject of another volume. Readers anxious for a
taste of its content should consult the Epilog here.

The principal idea of the material theory of induction is that back-
ground facts obtaining in some domain tell us which are the good and bad
inductive inferences in that domain. This conception differs fundamen-
tally from virtually all approaches to inductive inference in the present
literature. There the good inductive inferences are distinguished from the
bad by checking whether the inference has appropriate formal properties,
such as fitting to an approved inferential template or preferred calculus.
Because the divergence from the present literature occurs at such a fun-
damental level, my experience is that philosophers of science who work in
inductive inference have trouble approaching the theory. The difficulty,
I conjecture, is that we approach new ideas by trying to assimilate them
into our existing conceptual system, which has in turn been shaped by our
own research agendas. What are we to do when an idea arrives that does
not neatly fit into any of our existing conceptual pigeonholes? Is this ma-
terial theory just another variant of enumerative induction? Is it inference
to the best explanation with some alternative notion of explanation? Is it
the proposal of a non-probabilistic, mathematical calculus of inductive in-
ference? Or is it another tiresome skeptical assault on inductive inference
and the evidential grounding of science?

The material theory of induction is none of these. The slogans “All
induction is local” and “No universal rules of induction” may appear



skeptical. They are not. They are an attempt to diagnose why inductive
inference has, for thousands of years, been a locus of trouble for philoso-
phers. The words “induction” and “problem” are nearest neighbors in any
philosophical lexicon. This enduring, troublesome character derives, I be-
lieve, from a foundational mistake that was made at the outset. We tried
and continue to try to understand inductive inference using the formal
methods that have proven so fertile for deductive inference. While differ-
ent formal approaches may work in different domains, a formal approach
is the wrong one for understanding inductive inference overall. This ap-
proach is responsible for the enduring trouble. The material approach
offers an alternative foundation for inductive inference that repairs the
trouble.

A prominent corollary of the material approach is that probabilistic
methods do not provide a universally applicable account of inductive in-
ference. For those enamored by Bayesianism, it will be tempting to drop
the material theory into the pigeonhole occupied by formal luddites whose
opposition to all mathematical approaches is grounded in a visceral antip-
athy to them. I do not belong in that company, as Chapter 16 will make
clear. My work elsewhere in history and philosophy of physics is very
hospitable to mathematical methods, whose power continues to astonish
me. [ am especially impressed with the power of probabilistic methods in
statistical physics. When they are applicable, they are wonders.

My advocacy and defense of probabilistic approaches extends to in-
ductive inference, but only on a case-by-case basis. When probabilistic
methods are warranted in some domain, they work and they work very
well. Where Bayesians err is in their belief that probabilistic methods are
a universal default that can be applied everywhere, automatically. Instead,
my view is that probabilistic methods can be applied only in some domain
when the background facts of that domain authorize it. We cannot just
assume that they apply in some new domain. We have a positive obligation
to show that they are warranted by background facts in each case.

A consequence is that I wilt every time I see yet another paper that
promises a Bayesian analysis of such-and-such, especially when such-and-
such is some aspect of inductive inference or evidential support. The pre-
tense is that the Bayesian analysis will provide universal understanding.
It cannot do this since Bayesian analysis cannot be applied everywhere.
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Instead, we are given a few elementary results in the probability calculus.
The terms of these formulae are then matched tendentiously with terms of
art from such-and-such. The relabeled formulae are supposed to provide
insight, but they only give us the illusion of understanding.

The style of analysis of this work falls within my conception of hist-
ory and philosophy of science. It begins by taking the pertinent science
seriously. This is especially important when it comes to inductive infer-
ence since the evidential successes of modern science are extraordinary.
That we philosophers of science are struggling to vindicate these successes
is more a commentary on our failures than any failure of the sciences.
The chapters that follow are rich in examples from science. I lean towards
grasping the science by exploring its history, for an emphasis on the hist-
ory provides some protection from the inevitable, modern textbook sim-
plifications of relations of inductive support. The presence of this history
is not mere decoration; it is essential to understanding of the evidential
relations in the science.

It is customary in a preface to acknowledge those who have been
helpful in the book’s project. This project has many distinct parts, com-
monly divided naturally by chapter. Rather than delivering here a long but
opaque list of names, I have acknowledged in individual chapters those
who have been especially helpful in those parts. Those acknowledgments
fall short of naming all those who have provided support, encouragement,
or helpful critical responses. To all those I have failed to name, I offer
apologies and thanks.

On 27-28 October 2018, there was a conference on the material
theory of induction at the Center for Philosophy of Science, University
of Pittsburgh, called “Norton for Everyone: The Material Theory of
Induction and Beyond.” It was beyond extraordinary and humbling for
me to have the material theory of induction scrutinized by so many talent-
ed and accomplished philosophers of science. I would like to thank once
again all those who participated. The conference organizers were John
Earman, Bryan W. Roberts, and Elay Shech. Speakers and discussion lead-
ers were Jonathan Bain, Nora Boyd, Jeremy Butterfield, Richard Dawid,
Siska De Baerdemaeker, Balazs Gyenis, Eric Hatleback, Leah Henderson,
Michel Janssen, Molly Kao, Jonathan Livengood, Wendy Parker, Dasha
Pruss, Bryan W. Roberts, Elay Shech, and David Wallace. Many more
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were present and contributed most valuably. With apologies to anyone
I may have omitted, I would also like to thank Harvey Brown, Hasok
Chang, Pat Corvini, Nick Huggett, Shahin Kaveh, Edouard Machery, John
McCaskey, Tom Pashby, Willy Penn, Mike Tamir, Jennifer Whyte, and
Jim Woodward.

After the conference, Elay Shech and Wendy Parker solicited contri-
butions from the speakers and elsewhere for a special issue on the ma-
terial theory of induction in Studies in History and Philosophy of Science.
The now complete special issue includes an editors’ introduction, fifteen
papers and a response to each from me.! Once again, I thank the con-
tributors for their interest and efforts. I reserve special thanks for Elay and
Wendy for having undertaken the burden of organizing this special issue
and shepherding its contributions through to completion.

When this manuscript was submitted to BSPSOpen, several anonym-
ous reviewers for the press read the manuscript carefully and sympathet-
ically. I thank them for their helpful remarks and corrections, which have
been incorporated as best I can into the manuscript. I am also grateful
to Michael Gollner for his thorough and sensitive copyediting of the
manuscript.

Finally, I offer the most profound gratitude to my wife Eve, who has
provided a happy home for my body and heart through the years of writ-
ing this work and many before it. Those who know the joy of true and
enduring love will understand what that means. No combination of words
can properly express it.

1 The collection of papers can be accessed through the journal’s website: https://
www.sciencedirect.com/journal/studies-in-history-and-philosophy-of-science-part-a/special-
issue/10205S9XGWG
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Prolog

The Wonder of Science

Our best science tells us wonderful things. The cold and dark skies of our
universe were not so long ago in their entirety in a state of unimaginably
high energy and temperature. The detritus that exploded from it con-
gealed into stars, planets, and galaxies. These systems of celestial masses
are in turn held together by a curvature of the geometry of space and time
itself. On a most minute scale, the matter of these systems and the light
they radiate consist of neither waves nor particles but a curious amal-
gam that is, at once, both and neither. The organisms that walk on one
of these planets, complete with their intricate eyes and thinking brains,
emerged incrementally from crude matter, in tiny steps over eons. They
were shaped only by the fact that a small, random change in one organism
might give it a slight advantage over its rivals. The design specification of
these accumulated advantages is recorded and transmitted through the
generations of the organisms by its encoding in hundreds of millions of
base pairs of a chemical found in every cell of each organism.

These, and many more ideas of science like them, are extraordinary.
Their contemplation must eventually overwhelm with wonder even the
most curious and flexible of minds. Only the dullest of wit or the most
soured of skeptics could resist their charms.

For me, there is a still greater wonder. These ideas are not the inven-
tions of writers of myth and fiction. They could not be so, for their content
far outstrips our meager human imaginations. Rather they are the result
of careful, painstaking, systematic investigations of nature, guided solely
by inventive insight and cautious reasoning. They are discoveries. When



these efforts go past the early speculative stages and succeed, their prod-
ucts are distinguished by a special relation with what we experience of
the world. These experiences provide the inductive support for successful
science. They tell us that this is how the world is.

The explosive expansion of the universe is supported by the reddening
of light from distant galaxies. That the curvature of the geometry of space
and time keeps the planets in their orbits is supported by the most deli-
cate measurements of slight anomalies in planetary motions. The curious
quantum nature of matter in the small is supported by how light from
excited gases is concentrated into just a few quite specific frequencies. The
evolution of humans from simpler organisms is supported by fossilized
bones, whose chronology is recorded by their positions in layers of rock
strata. The double spiral geometry of the molecules of deoxyribonucleic
acid is supported by the patterns formed when X-rays diffract off material
extracted from the nuclei of cells.

In all this, the essential relation is inductive support. It obtains be-
tween the general propositions of science and those particular ones that
express the evidence on which science rests. It enables us to assign an au-
thority to the ideas of science that no other narrative can match. Without
it, science becomes just another “way of knowing,” to use a popular oxy-
moron of the skeptics. Without this relation, we do not know anything of
the world. We “know” but do not know. Without it, the ideas of science
are no better than the fanciful creation stories of primitive mythologies.

Where the Philosophy of Science Literature Falls Short

If we are to understand how science succeeds where these other narratives
fail, we must understand how this relation of inductive support works.
This is a core task for philosophy of science. Its efforts reside in the expan-
sive literature on induction or inductive inference. The project of this book
results from an enduring dissatisfaction with this literature.

There is no shortage of approaches in this literature. However, what
is distinctive about these approaches is that they are fractured. There are
many of them. They rise and fall with the generations and even with the
particular philosopher consulted. Each approach has its successes and each
has its failures. None, it seems to me, is by itself fully adequate to the task.

2 The Material Theory of Induction



Loosely speaking, there are two traditions.! One is qualitative and a
few examples illustrate its pervasive problems. Evidence supports hypoth-
eses that, in various senses, generalize the evidence, or deductively entail
the evidence, or explain the evidence, or provide a severe test of the evi-
dence. Each case is troubled. There are so many ways one item of evidence
can be generalized that most generalizations cannot be supported. Most
applications of the simple scheme must fail. Similarly, there are very many
hypotheses that entail one item of evidence. The same problem arises.
Most applications of this scheme will fail. The problem of proliferation
is ameliorated if the hypothesis must not just entail the evidence but ex-
plain it. The meagerness of the gain is revealed when we realize that we
have no general account of explanation precise enough to support a theory
of inductive inference. The account rests ultimately on dubious intuitive
judgments of what explains what and how well it does so. Severe testing re-
quires a judgment that the evidence would likely not come about were the
favored hypothesis false. To apply the scheme, we must know what is likely
in the case of this falsity. Excepting contrived situations, like controlled
studies, such judgments are at best speculative and at worst self-serving
inventions.

The second tradition is quantitative. We assign a numerical measure
to the support. The measure used almost universally is probability. The
approach is appealing initially since we replace a vague “weakly supports”
or “strongly supports” by precise numbers that must be combined by quite
specific rules. Now we can calculate! My enthusiasm for this approach
dampened when I found that its central theoretical tool, Bayes’ theorem,
has a voracious appetite for prior probabilities and likelihoods. The trouble
is that the value of these probabilities must be specified by considerations
outside the calculation itself. Prudent or malicious choices of these values,
more than the niceties of mathematical theorems, control the final result.
Worse, as this Bayesian approach ascended to the dominance it presently
enjoys in the philosophy of science, its analyses became more and more
separated from real applications to inductive inference in the sciences.
These analyses have drifted towards self-contained exercise in recreational

1 This is a hasty dissection of an enormous literature. See Norton (2005) for a more
careful dissection and categorization.
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probability theory. This separation is disguised by tendentious labeling
of terms. A calculation best adapted to the accumulated results of many
coin tosses is represented as giving some sort of understanding of how the
accumulation of intricate and diverse evidence in science can support a
univocal result.

The situation has not been improved by a rash decision to conceive
of the prior probabilities of Bayes’ theorem subjectively—that is, as freely
chosen opinions that can vary from person to person. For once one has
let arbitrary opinion into the system, the probabilities cease to measure
strengths of inductive support, but only some indissoluble amalgam of
them with arbitrary opinion. These problems are not resolved but com-
pounded by dubious analogies. We are told a fable of a punter at a racetrack
making monetary bets with bookies who are determined to take every
advantage possible. This epistemic situation is supposed to be sufficiently
close to that of scientists weighing evidence for Big Bang cosmology or a
neural basis for cognition that all should conform to the same principles
of rationality.

The Material Approach

The upshot of these accumulated woes is that philosophy of science as a
discipline cannot now offer those outside it a univocal account of induct-
ive support. My goal in this book and in the larger program of research it
embodies is to solve this problem. The clue to its solution is found in the
observation that each of the accounts sketched above work somewhere. If
we are investigating controlled trials, then ideas about severe testing are
apt. If we are interested in matching DNA from blood samples with that
of accused offenders, then we can use Bayesian methods. When Einstein
found that his new general theory of relativity “explained” (as he put it)
the anomalous motion of Mercury, he could claim a wonderful “confirm-
ation” (as he wrote) of his theory.

The clue in all this is that the application of the various approaches
works when we add factual conditions that limit the domain in which they
are to be applied. The stronger the factual restriction, the more successful
the application. The material approach simply asks us to “take the limit.”
That is, what warrants the successful application of a particular inference

4 The Material Theory of Induction



is found entirely in the background factual conditions that delimit the do-
main of application.

This last assertion is the key idea of the material theory. It distinguish-
es the material theory from all other approaches, which use the standard
literature in deductive inference as the model for analyzing inductive in-
ference. This provides them with a formal model. According to this model,
the good inferences can be distinguished from the bad by checking wheth-
er the candidate inference fits in its form with some universal template or
schema. For example, take the following inference:

All men are mortal.
Therefore, some men are mortal.

This is a valid, deductive inference since it is derived from the universally
applicable schema that I will call all-some:

All As are B.
Therefore, some As are B.

We are allowed to make any substitution for A and B, and we are assured
that what results will be a good inference in its form. The schema is uni-
versally applicable. Its use is not restricted, for example, to inferences
about human mortality.

Since antiquity, philosophers have sought to recover similar schemas
for inductive inference. The successes have always been partial. One of the
earliest attempts was “enumerative induction™

Some As are B.
Therefore, all As are B.

The trouble is all too clear. It will almost never work. With obvious substi-
tutions, we might be happy to infer that

Some men are mortal.
Therefore, all men are mortal.

But we would be unhappy with almost every other variant of it, such as
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Some men are Greeks.
Therefore, all men are Greeks.

All of the approaches sketched above lie within this formal tradition. If we
just focus on simple examples like these, it becomes quite apparent that
they fail to have universal scope.

The all-some schema does have universal scope since it is fully
self-contained. Its cogency derives completely from the meanings of the
words “all” and “some.” If someone doubts the cogency of the inferences it
authorizes, we would gently inquire of them whether they understood the
meaning of the words.

In contrast, enumerative induction is not self-contained. It can work,
but only when we restrict the substitutions for A and B to terms hospitable
to the induction. When A is “men,” successful substitutions for B include
biological properties like “are mortal,” “are borne of a mother,” “have a
blood circulation system,” and so on. That is, if we restrict the domain in
which the schema is applied, it can warrant good inferences. However,
its success is entirely dependent on the restriction. The facts comprising
the restriction are the ultimate source of its warrant. They are biological
facts about living beings. The inference is warranted, in the last analysis,
because that is the way living beings are biologically. If some members of a
species have a blood circulation system, then likely all do. The correspond-
ing regularity does not hold for national identification.

Further, the inference is a good inference only in so far as the war-
ranting facts are true. If science advances to the extent that we can create
people entirely in a test tube from synthetic DNA without the need for a
gestating mother, some of these facts would cease to be true, and one of
the inferences would become an inductive fallacy.

It is easy to see how these conclusions about inductive inference gen-
eralize. All inductive inferences lead to conclusions that go beyond what is
necessitated logically by their premises. It follows that they are only good
so long as the inferences are carried out in domains that are factually hos-
pitable to the inferences. The facts that make the domain hospitable are
the facts that warrant the inference. Here it is helpful to remember that
a commonplace of deductive inference is that propositions can both state
factual matters and also serve as warrants for deductive inference. The
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proposition “If A then B” is both a factual proposition and also a warrant
that authorizes a deductive inference from A to B. The material theory
asserts that, ultimately, this dual role for factual propositions is the only
way that inductive inferences are warranted.

This applies even to Bayesian analysis inasmuch as it has any ambi-
tions of providing an account of inductive inference. It is true that the ma-
nipulations of Bayes’ theorem itself are deductive inferences lying within
the probability calculus. We deduce a value near unity for the probability
of Newton’s universal law of gravitation, conditioned on the motion of the
sun’s planets and their moons. An essential background fact is that these
deductions are implemented in a domain in which distributions of induct-
ive support are properly represented by probabilities. In the second half of
this book, we shall explore domains in which this presumption fails.

These last considerations constitute the core of the material approach
to inductive inference. It provides a single, unified approach that incor-
porates all the different approaches in the present literature; or at least it
incorporates them all in so far as they are sufficiently and precisely defined
to be viable in some domain.

The core ideas of the material theory can be encapsulated in a few
slogans. First, “All induction is local.” This slogan reminds us that any
regularity we may find among inductive inferences is restricted to some
domain and is dependent for its warrant on the particular facts that ob-
tain there. Second, “There are no universal rules for inductive inference.”
It reflects the core posit that the warrant of an inductive inference is not
traced back ultimately to some universal schema but to facts that obtain
only locally.

If one were to encounter this last slogan in isolation, one might mis-
take it for a skeptical thesis akin to Feyerabend’s notorious “anything
goes.” This is very far from its import. The slogan is merely a part of the
relocating of the warrant of inductive inferences from rules to facts. The
material theory does not seek to undermine inductive inference; it seeks to
save it. For the formal approaches that dominate the literature have simply
failed in their most important functions. None gives us a successful sys-
tem, applicable universally, for discerning the good from the bad induct-
ive inferences. None gives an account of why the inferences it does author-
ize are appropriate. This last failure stands in stark contrast to standard
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examples of deductive inference. Inferences warranted by the deductive
schema all-some are good inferences simply in virtue of the meaning of
“all” and “some.” These final considerations pose two problems that the
material theory solves.

First, inference schemas in the present literature cannot be used uni-
versally. While the writings of Bayesians are curiously silent on the ques-
tion, they will concede to me in conversation that their system does not
apply everywhere. This invites key questions about where the limits are
and how we identify them. The material theory answers: one must locate
the facts that can warrant the schema, Bayesian or otherwise. The schemas
can be applied only in domains where those facts obtain.

Second, merely stating an inference schema does not automatically
make it a good one. In familiar deductive cases, we discern that they are
good because of the meaning of the connectives. We cannot do the same
for inductive schemas. Instead, the material theory tells us that certain
inference schemas are good since they depend on factual matters in the
domain of application. Biological predicates, like “is mortal” and “has a
blood circulation system,” appear in living species in a regular manner,
which authorizes the inferences sketched above.?

Adopting the material approach to inductive inference leads one to
approach problems in inductive inference differently. There is no default
schema that can be applied mechanically and automatically. If one wants
to employ some mode of inductive inference in some context, one must
be able to supply positive reasons for why that mode is applicable in that
circumstance. This applies also to probabilistic inference. One should not
assume by default that this type of inference always applies. If it is to be
used in some domain, we have a positive obligation to provide the founda-
tions for its applicability. Otherwise, it cannot be used.

While this book is largely unconcerned with beliefs (credences) as op-
posed to objective relations of inductive support, the moral carries over.
There should not be a default presumption that credences are probabilities.
If credences are to be represented as probabilities in some circumstance,

2 Mortality is not assured. Symmetrically dividing bacteria and yeast cells can be
rejuventated in the division such that they may persist indefinitely.
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then positive reasons must be given for why they are appropriate in that
circumstance.

The Chapters

The book is divided into two parts. Chapters 1-9 are devoted to laying out
the basic ideas of the material theory and applying it to what are identi-
fied above as the qualitative approaches to inductive inference. Chapters
10-16 concern quantitative approaches, most notably the probabilistic ap-
proaches of Bayesianism.

Chapter 1 states the basic propositions of the material theory of in-
duction. These are developed with the help of Marie Curie’s inferences
from the crystallographic properties of her sample of radium chloride to
those of all possible samples. This is an instance of enumerative induction
of breathtaking scope. It depends on the evidence of just a few specks of
the only sample of radium chloride then known. This chapter also shows
how the material theory can warrant successful inferences of this form,
even inferences of breathtaking scope, by displaying the underlying facts
that warrant them. In this case, the pertinent fact is Haiiy’s principle. It
lies at the core of extensive investigations into the properties of crystals in
the nineteenth century and solves the vexing problem of discerning just
which of the many properties of crystals are projectable—that is, suitable
for enumerative inductions.

Chapter 2 elaborates the argument stated briefly above that justifies
the material theory of induction. The essential ideas of the justification
are these. No extant formal schema of inductive inference has proven to
be applicable universally. The successes of all these schemas can be ex-
plained by the material facts within the restricted domains in which they
succeed. Most importantly, inductive inference is by its nature ampliative.
This means that its conclusions are logically stronger than its premises.
Hence, an inductive inference can only succeed in domains in which fur-
ther background facts are hospitable to it. This chapter also poses the in-
ductive puzzle “1, 3, 5, 7. What’s next?” The puzzle is, of course, insoluble
non-trivially without some indication of the background facts that can
serve to warrant an inductive inference that answers the question “What’s
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next?” The chapter discusses the underappreciated and ingenious way
Galileo solved this problem.

Chapters 3 to 9 address specific rules and schemas proposed in the
literature for inductive inference. The goal of these chapters is to show that
when these rules or schemas work, they do so because of identifiable back-
ground facts, and that they can only work in domains with such hospit-
able facts. We also find in each case that the apparent unity of application
of the candidate rule survives only as long as we do not look too closely at
the details of the examples. As we consider these details more thoroughly,
we find the specific background facts taking on the primary burden of
warranting the inferences. The original rule survives only as a superficial
similarity among the examples.

In writing these chapters, I have tried as much as possible to use ex-
amples of inductive inference from real science. This literature can suffer
when commonplace, non-scientific examples are used to guide our in-
ductive inferences in science. The material theory predicts the problem:
since the background facts of ordinary life differ from those of abstruse
scientific contexts, there is no basis for expecting the same inferential
schemas to work in both contexts.

Chapter 3 looks at the idea of replication of experiment, which is rou-
tinely touted in the scientific literature as the “scientific gold standard.”
We find this merely a useful but defeasible rule of thumb. It has not been
given a precise enough formulation, comparable to those of the schemas
of deductive logic, that would enable its mechanical application. Through
a series of case studies, I show that the rule is defeasible and has been
overruled in every possible combination. Successful replications (interces-
sionary prayer) and failures of replication (Miller experiment) have both
been discarded as evidentially inert. However, on a case-by-case basis,
warrants for the strong inferences associated with individual replications
can be found in particular facts in their domains. A general principle of
replication is superfluous.

Chapter 4 investigates analogy, a traditionally recognized argument
form whose history extends back to Aristotle. However, a review of the
recent literature shows that efforts to express the form precisely as a uni-
versal rule devolve into an explosion of divisions into special cases and
further qualifying clauses. Each expansion produces new problems that
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require further expansions and, paradoxically, carries us farther from
any final formulation. This conception of analogy as an argument form
is contrasted with how analogies are treated by scientists. For them, an-
alogies are facts. This fits with a material analysis, for it allows analogies
to be both facts and warrants for inductive inferences. Among these war-
rants, there can be no universal, formal rules. Efforts to adapt a candidate
analogical rule to real examples will force a proliferation of conditions,
while the rules seek a unity not present in the details of the examples.
Instead, the inferences we label analogical are warranted by the facts of
analogy identified by the scientists. In the examples explored in the chap-
ter, Galileo infers analogically that there are mountains on the moon. His
inferences are justified by the dark patches visible on the moon’s surface
that are formed by the same processes that produce shadows on the earth.
The same factual basis for inference is found in two further case studies:
Reynolds analogy in transport phenomena in fluid engineering and the
liquid drop model of the nucleus of an atom.

Chapter 5 takes an unflinching look at the now-fashionable talk of
“epistemic values” or “epistemic virtues.” An early-twentieth-century
quantum physicist who prefers the logically inconsistent old quantum
theory does so, we are to suppose, because that physicist values simpli-
city over the competing virtue of logical consistency. The latter, however,
is valued more highly by a classical physicist who then finds a different
import for the same evidence. If the terms “virtue” and “value” have their
usual meanings, they are ends in themselves and can be freely chosen by
us. With this understanding, the physicists” inferences cease to be object-
ive. The bearing of evidence merely reflects the physicists’ freely chosen
biases and prejudices. This, I maintain, is not how notions of simplicity
and logical consistency are used, when used properly. They are not values
but criteria whose use is justified by their heuristic ability to lead us to the
truth. They are defeasible and can be discarded when they cease to serve
this end. Unless we wish to endorse an inductive skepticism by our use of
tendentious language, we should stop using the misleading language of
virtue and value. The term “criterion” serves better.

Chapter 6 examines the inductive criterion of simplicity in greater
detail. There is no precise rule that tells us when to prefer simpler hypoth-
eses. The principle that “entities must not be multiplied beyond necessity,”
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misattributed to William of Ockham, is vacuous by not specifying what
counts as an entity and what counts as necessary. We are deceived into
allowing the vacuity of the principle to pass, in part, because of the faux
dignity of its expression in Latin. Instead, appeals to parsimony in real
evidential situations are abbreviated appeals to specific background facts
that tell us which are the simplest cases. In curve fitting, for example,
straight lines are not necessarily the simplest starting point. If we are fit-
ting trajectories to the observed positions of comets, background facts tell
us to start with parabolas, then ellipses, and then hyperbolas. For tidal
data, we start with an elaborate set of sinusoidal curves whose periods are
adapted to the physical parameters of the tidal processes.

Chapter 7 probes the Akaike Information Criterion, which has been
offered as a vindication through statistical theory of a general principle
of parsimony. Closer scrutiny reveals that the criterion neither employs
a presumption of parsimony in its derivation nor does it entail any such
general principle. Its celebrated formula merely adds a term that corrects
for the overfitting of data in curve-fitting problems. We, not the statis-
tics, illicitly interpret this narrowly applicable term as a vindication of a
broader principle of parsimony. The presence of the term itself depends
upon strong background assumptions, most notably that the true curve
lies within the model being tested. Assumptions like these are the material
facts that warrant inferences that use the Akaike Information Criterion.

Chapter 8 addresses the popular argument form inference to the best
explanation. The hope of its proponents is that there is some feature, pe-
culiar to explanation, that can power inductive inferences. Close analysis,
however, proves unable to locate such a feature. Indeed, notions of explan-
ation are so varied that instances of inferences to the best explanation may
bear only superficial similarity to one another. At this superficial level,
these arguments share a rudimentary common form. Real examples in
science commonly begin as comparative arguments. One hypothesis is
favored over another because the first entails the evidence. The competing
hypothesis fails the evidence. It is either refuted deductively by the evi-
dence or must take on a substantial evidential debt in the form of further
unsupported assumptions if it is to remain compatible with the evidence.
The success of the favored hypothesis does not rest on any peculiar ex-
planatory prowess, but merely on its adequacy to the evidence and, more
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importantly, the failure of the competitor. The more fraught subsequent
step of the inference must show that the favored hypothesis prevails over
not just this one explicit competitor, but against all. This is often left tacit
in real cases in science.

Chapter 9 seeks to reverse a decline in the literature on inference to the
best explanation. This literature began rich in real examples drawn from
science. The most notable is Darwin’s self-conscious use of this argument
form in his On the Origin of Species. Since then, proper study of scientif-
ic examples has been replaced gradually by imperfect mentions of them
that often oversimplify and misinterpret them, and by prosaic illustrations
drawn from everyday life. The entirety of Peter Lipton’s canonical mono-
graph, Inference to the Best Explanation, contains only one example from
real science that is developed at length. It is Semmelweis’ identification of
the cause of childbed fever (Lipton 2004, chap. 3). The example is poorly
chosen since it is one of the few that happens to be treated more precisely
by the simple thinking of Mill’s methods.

This literature has been increasingly dominated by superficial exam-
ples. The best explanation for footprints in the snow, for example, is that
someone has walked there. This example is unlike those in science, for the
human explanation of a person making distinctive marks has no serious
competitors. Worse, it encourages explanation by intelligent intervention.
This would be an unwelcome encouragement to Darwin. He sought to
overthrow intelligent creation as an explanation for biological features.
My contribution is to provide a somewhat more detailed exposition of
eight cases in science to which the loose pattern of inference to the best ex-
planation can be fitted. I show in each case how some powerful, primitive
notion of explanation plays no role. The examples illustrate and support
the general claims made in Chapter 8 for the structure of inferences to the
best explanation in real science.

With Chapters 10 to 16, the narrative takes a different turn. The
Bayesian approach presently dominates thinking about inductive infer-
ence in the philosophy of science. According to this approach, relations
of inductive support are recoverable in some manner from probabilistic
relations among propositions. I have no quarrel with the use of these
probabilistic methods in domains where the background facts specific-
ally authorize them. There are many such domains. Where I differ from
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the Bayesians is over their ambitions of providing a universally applic-
able understanding of inductive relations. Contrary to the title of Edwin
Jaynes’ Bayesian manifesto, it is not “The Logic of Science’ it is only the
logic of certain special cases. My arguments against the ambitions of uni-
versality are laid out in these chapters.

Chapter 10 has the title “Why Not Bayes.” It is a statement, not a ques-
tion. I illustrate how background conditions can lead us to non-probabil-
istic representations of evidential relations using the extreme illustration
of completely neutral evidence. For this case, application of simple invari-
ances leads to a highly non-additive representation of inductive support.
It is quite contrary to the additivity of a probability measure. I argue that
even the contrivances of the new literature in “imprecise probability” can
sometimes fail to do justice to it.

Bayesian analysis is distinctive in that, laudably, it has taken seriously
the burden of proving the uniqueness of its probabilistic representations.
This chapter argues that all these efforts must fail since they all have the
same structure. Whether they are Dutch book arguments or employ rep-
resentation theorems, they proceed from some set of assumptions and
then deduce that the targeted beliefs or relations of inductive support must
conform to the probability calculus. This last conclusion is a contingent
proposition. It follows that it can only be deduced from assumptions that
are at least as strong as it logically. Hence, necessarily, the assumption
of probabilities must be hidden within the starting assumptions. The
proofs are not demonstrations of the necessity of probabilities, but merely
a restatement of a preference encoded in its premises. Once one realizes
this, it becomes a mechanical exercise to identify and expose the hidden
assumptions. I carry out the exercise for Dutch book arguments and rep-
resentation theorems and note that all similar arguments will fail in the
same way.

Chapter 11 contains an extended example of this last exercise. The
scoring rule or “accuracy-based” vindication of probabilism is based on a
dominance theorem. If our credences are not probabilistic, then the theor-
em tells us that we can always improve the accuracy of our credences, no
matter what the true situation may be, merely by shifting our credences to
a probability. The chapter shows that the theorem is sensitively dependent
on the particular scoring rule used to measure the inaccuracy of credences.
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It develops a family of scoring rules such that any desired deviation from
additivity in the credences can be secured simply by choosing the requi-
site rule from the family. Then, a variant theorem shows the dominance
of credences with the specified deviation from additivity. The literature
in accuracy-based vindications has sought to parry such possibilities by
seeking further reasons for why only those rules that deliver probabilities
are admissible. These efforts cannot succeed since they still seek to derive
probabilities deductively from further assumptions. I continue the exer-
cise of showing how these further assumptions still have the presumption
of probabilities hidden within them.

Chapter 12 addresses a more general problem facingall efforts to devise
a mathematical calculus for strengths of inductive support. Applications
of Bayes’ theorem require specification of prior probabilities, which make
a difference to the resulting posterior probabilities. Since these prior
probabilities must be determined by factors external to applications of
Bayes’ theorem, it follows that this specific computation is not inductively
self-contained. One might hope to eliminate this dependence on external
considerations by a suitable expansion of the scope of the application of
Bayes’ theorem. The prior probabilities would then be recovered as poster-
ior probabilities of antecedent applications of Bayes’ theorem. Continued
expansion might, we hope, eventually eliminate the intrusion of external
considerations. It is well known that such hopes fail. No matter how large
the scope of the application, one is never freed from the need to use exter-
nal considerations to fix prior probabilities.

It turns out that the inductive incompleteness of the Bayesian system
is not a failure unique to the Bayesian system. Rather, it is an instance
of a broader incompleteness that afflicts all candidate calculi of inductive
inference. That is, a theorem demonstrated elsewhere shows that this in-
completeness must arise in all such calculi that conform with weak and
broadly acceptable conditions. This chapter does not develop the theorem
in all its mathematical details but presents its core ideas and some illustra-
tions of it. The theorem gives a precise instantiation of the slogan “there
are no universal rules of inductive inference.” It shows that there are no
inductively complete calculi of inductive inference.

The remaining Chapters 13 to 16 present further situations in which
the background facts warrant formal treatments of inductive support that
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are not probabilistic. They illustrate the locality of inductive inference. In
each case, we must first find the facts prevailing in some domain and then
read from those facts the particular logic that would apply to the domain.

Chapter 13 considers an infinite lottery machine that chooses without
favor among a countable infinity of outcomes, labeled 1, 2, 3, 4, .... The
condition that the lottery machine chooses without favor is expressed as
an invariance, “label independence.” According to this independence, the
support accrued to any individual outcome, or set of outcomes, remains
the same no matter how we may permute the labels. This independence
exercises a profound restriction on the formal behavior of strengths of
support. For example, all infinite sets of outcomes whose complements are
also infinite must accrue the same support. This sector of the logic is highly
non-additive. A corollary is that the relative frequency of even-numbered
outcomes does not stabilize towards one half in many, repeated drawings.
Rather, all relative frequencies continue to accrue equal support. The fac-
tual conditions characteristic of the infinite lottery machine arise in a
particular problem in recent inflationary cosmology. The infinite lottery
machine logic is the applicable logic.

Chapter 14 undertakes the same exercise for an uncountably infinite
outcome set, particularly the continuum-sized set of outcomes formed by
the real numbers between zero and one. One might think that choosing
without favor among outcomes in this set is easily achieved probabilistic-
ally by a uniform probability distribution. This is a misleading assumption
since by foundational design such a probability distribution neglects to
assign probabilities to many subsets of outcomes of the space. If we re-
quire a representation that covers all subsets, we arrive at a logic similar
to that of the infinite lottery machine logic but with more sectors. The
chapter then considers successive restrictions that would move the logic
towards a probabilistic logic. With each restriction, we find a variant of
the non-probabilistic inductive logic warranted. One application of these
intermediate logics is the continuous creation of matter in the steady-state
cosmology of Bondi, Gold, and Hoyle. The most interesting cases technic-
ally arise with paradoxical decompositions of measure spaces. These de-
compositions show the existence of outcome sets not measurable by addi-
tive measures, such as a probability measure. To make the character of
these decompositions more concrete, the chapter develops nonmeasurable
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sets derived from coin tosses. It turns out that a variant but weak inductive
logic—an “ultrafilter logic”—applies to these sets.

Chapter 15 investigates the inductive logic warranted in two sorts
of indeterministic physical systems. The first are those whose temporal
behavior is indeterministic. They are quiescent for an arbitrary time and
then, without any specific triggering event, spontaneously move. The
chapter develops the especially simple example of the infinite domino
cascade, which is new in the literature. The second type of indeterminis-
tic system is that in which specification of one part of the system fails to
fix the remainder. Fixing the mass distribution in Newtonian cosmology
fails to fix the gravitational potential. It is also shown that no probability
measure can represent the indeterminacy. The infinite dimensionality of
the space of Newtonian potentials presents especially intractable problems
for additive measures. Instead, it is shown that the background facts of the
systems realize the invariance that led to the completely neutral support
elaborated in Chapter 10. This is the logic applicable to these indetermin-
istic systems.

The alternative inductive logics explored so far all tend to be simpler in
their structures than the additive measures of probability theory. Chapter
16 shows that this need not be so. The system considered is the spin of
electrons in quantum theory. While probabilities arise in the process of
quantum measurement, they do not turn out to be the structure repre-
senting inductive support that is warranted by the physical facts of quan-
tum theory. That structure, rather, is the density operator that also repre-
sents states in quantum theory. The chapter explains what these operators
are, how they come about, and how they represent inductive support. The
development is written at a level that presumes no special knowledge of
quantum theory but assumes some comfort with abstract mathematics.
We learn from the example that background facts in some domains can
warrant an inductive logic of some complexity that is quite different in its
structure from a probabilistic logic.

A Material Theory of Induction or The Material Theory of
Induction?

Finally, a note on terminology. Is it a material theory of induction or the
material theory of induction? I use both expressions. The first refers to
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the general idea of finding the warrants for inductive inferences in back-
ground facts. There is no presumption in this usage of a particular way
of proceeding beyond just the general idea. The second expression—the
material theory of induction—refers to the particular instantiation of the
general idea found in this book and my relevant papers.
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The Material Theory of Induction Stated
and Illustrated

1.1. The Terms “Induction” and “Inductive Inference”

This is a book about induction and inductive inference. Since these terms
may mean different things to different people, it is worth fixing what they
mean at the outset. Traditionally, induction has had a narrow meaning. At
its narrowest, it refers to “induction by simple enumeration,” the inference
from “Some As are B” to “All As are B.” This is an example of “ampliative
inference,” for we have amplified the instances to which our knowledge
applies. The premise applies just to the few cases of As at hand; the con-
clusion applies to all. I take this idea of ampliation in its most general
sense to be what induction is about. I shall use “induction” and “inductive
inference” as the general terms for any sort of ampliative inference. That
is, they are licit inferences that lead to conclusions stronger deductively
than the premises or even just conclusions that differ from those that can
be inferred deductively from the premises. Therefore, the terms embrace
what is sometimes called “abductive inference,” which is an inference to
something that explains an otherwise puzzling phenomenon.

A still broader form of induction commonly goes under the name of
“confirmation theory.” It typically has no inferences with premises and
conclusions. Rather, it looks at degrees of support between propositions.
The best-known and dominant form is probabilistic support. The condi-
tional probability P(H | E) represents the total inductive support an hy-
pothesis accrues from all evidence, including our background knowledge,
written as E. One then tracks how the support between hypothesis and
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evidence changes as the evidence changes. This form of analysis will be
included under the terms “induction” and “inductive inference.”

My use of the terms “inference” and “infer” will follow what I take to
be the traditional usage and the one that is still most common. That is, an
inference from proposition A to proposition B is a logical relation between
the two propositions as sanctioned by some logic. When we infer from A
to B, we merely trace through that logical relation. The usage is analogous
to that of “add.” When we add seven to five to arrive at twelve, we are
simply tracing through the relation 5 + 7 = 12 among the three numbers
as authorized by ordinary arithmetic.

This usage is to be contrasted with a psychologized notion of the term
“inference” that will not be employed here. According to this latter usage,
to say that we infer from proposition A to proposition B only records a
fact of our psychology: that we proceed from a belief in A to a belief in
B, without a requirement that this transition is authorized by some logic.
While I understand the distinction is important to those who work in the
psychology of belief, it seems to me a troublesome redefinition of a term
whose normal usage is already well established. Could not another word
have been found? Perhaps the redefinition is supported by the usage of the
term that presupposes an agent that infers. A similar redefinition might
insist that saying “we add seven to five to arrive at twelve” merely reports
our belief in the summation with no supposition that it conforms with
arithmetic. I would find that redefinition equally troublesome.!

Throughout this volume, unless some context demands an exception,
I will restrict notions of inference and logic to relations of deductive and
inductive support between propositions, independently of our beliefs and
thought processes.

1 Harman (2002, p. 173) gives a clear statement of the psychologized notion of inference
that is not employed in this book: “Inference and reasoning are psychological processes leading
to possible changes in belief (theoretical reasoning) or possible changes in plans and intentions
(practical reasoning). Implication is more directly a relation among propositions.” This usage is
incompatible with the longstanding and pervasive usage of “rules of inference” as designating licit
manipulations and argument schemas, such as modus ponens and various syllogisms. See, for
example, Boole (1854, chap. 15) and Copi (1967, p. 36 and inside back cover).
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1.2. The Formal Approach to Induction

My contention is that the broad literature on induction is built on faulty
foundations. It has long sought as its most basic goal to develop induct-
ive inference as a formal system akin to deductive logic and even ordin-
ary arithmetic. What is distinctive about these systems is that they are
non-contextual, universal, and governed by simple rules. If we have six
cartons of a dozen eggs each, arithmetic tells us that we have seventy-two
eggs overall. It also tells us that if we have six troupes of a dozen acrobats,
then we have seventy-two acrobats overall. Arithmetic tells us that when
it comes to counting problems like this we can ignore almost everything
except the numbers appearing in the descriptions. We extract those num-
bers and then see if our arithmetic provides a schema that covers them. In
this case, we find in our multiplication tables that

6x12=72.

This is really a schema that says (among other things) if you have six
groupings of twelve individuals, then you have seventy-two individuals
overall. It is a schema or template since it has empty slots, indicated by
the words “grouping” and “individuals” in italics; and we generate truths
about specific systems by inserting appropriate, specific terms into the
slots. Insert “carton” and “egg,” and we generate a numerical fact about
eggs. Insert “troupe” and “acrobat,” and we have a numerical fact about
acrobats.

This example illustrates the key features typically sought in an induct-
ive logic. It is to be non-contextual, universal, and formal. The numerical
facts of arithmetic are non-contextual—that is, independent of the con-
text. In abstracted form, they hold for eggs, acrobats, and every other sort
of individual. The rules are universal; they do not come with restrictions
to particular domains. It is the same arithmetic for eggs as for acrobats.
And the rules are formal in the sense that they attend only to the form of
the sentence asserting the data: six ... of twelve .... The matter—eggs or
acrobats—is ignored.

Deductive logic has developed similarly as a universal, non-context-
ual formal theory; and it enjoys extraordinary success. It has been a rea-
sonable and attractive project to try to find a similar account of inductive
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inference. A universal formal theory of induction would enable us to focus
attention just on the specifically inductive-logical parts, ignoring all the
material complications of the much larger inductive enterprise. And we
would hope eventually to generate great theorems of tremendous power
and scope, perhaps rivaling those of arithmetic and deductive metalogic.

1.3. Problems of the Formal Approach

However, the formal approach is a failed project. The simple formal rules
that worked so well for deductive inference have no counterpart in in-
ductive inference. In antiquity, we were quite confident of the deductive
schema

All As are B.
Therefore, some As are B.

Yet its inductive counterpart, enumerative induction—

Some As are B.
Therefore, all As are B.

—was already the subject of doubt and even ridicule in antiquity. Inductive
logic never really caught up. While deductive inference has settled into
the grey maturity of arcane theorem proving, inductive inference has
remained an erratic child. For philosophers, the words “induction” and
“problem” are routinely coupled.

There are, as we shall see later, a plethora of modern accounts of
induction. But none succeed with the simple clarity of deductive logic.
We should infer inductively, we are told, to the best explanation. But we
are given no comparably precise account of what makes one explanation
better than another—or even precisely what it is to explain something.
Efforts to make these notions precise raise more problems than they solve.
Elsewhere, we are told that all of inductive logic is subsumed by probability
theory. Chapters 10 to 16 are devoted to arguing that the resulting theory
has failed to provide a universal account of inductive inference. The prob-
abilistic enterprise has become so many-headed that no single formula
captures the difficulty. The account is sometimes too strong and imposes
properties on inductive inference it should not have. It is sometimes used
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too permissively so that any inductive manipulation one might conceive
of is somehow embraced by it. It is almost always too precise, fitting exact
numbers to relations that are not that exact.

So how are we to think about inductive inference? Formal theories
of induction distinguish the good inductive inferences from the bad by
means of universal schemas. In their place, I propose a material theory of
induction.” According to this view, what separates the good from the bad
inductive inferences are background facts—the matter of the inference, as
opposed to its form. To put it another way, we locate what authorizes an
inductive inference not in some universal, formal schema but in facts that
prevail in the domain of the inference.

1.4. Inductions on Crystal Forms®

An example will make the problems of the formal approaches clearer and
the idea of a material theory of induction more concrete. We shall con-
sider an elementary inductive inference in science that is so routine that
we may even fail to notice that it is an induction. Consider a chemist who
prepares a new salt of some metal and notes its particular crystalline form.
It is routine for the chemist to report the form not only as the form of the
particular sample but as the form of the salt generally. For crystals have
quite regular properties, and crystals of different substances have char-
acteristic differences. Nonetheless, it is an inductive inference from the
one sample to all. Even if the inductive character of the inference is easily
overlooked, we should expect a good treatment of it from an account of
inductive inference.

To develop the example, we need to appreciate that adequate reporting
of the crystalline structure of a new salt is somewhat delicate. For the in-
dividual crystals of one salt may have many different shapes. In the early
history of work on crystals, it proved to be quite complicated to find a
simple and robust system of classification. This complication will become
a central concern of the material analysis of these inductive inferences.

2 For earlier accounts, see Norton (2003, 2005).

3 My thanks to Pat Corvini for correcting errors in an earlier version of this section
and also Section 1.9 below; and later for providing an extensive list of typographical errors in the
Prolog and Chapters 1 and 2.
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Crystallographic analysis now categorizes crystal forms according to
the axes characteristic of the shape. The simplest of the seven crystallog-
raphic systems is the cubic or regular system. The crystals of common table
salt, sodium chloride, fall into this system. It is characterized by three
perpendicular axes of equal length. A cube conforms to this system; it
takes no great geometrical insight to see that a cube has these three per-
pendicular axes of equal length. The same is true of a regular octahedron,
which also conforms to the system. Sodium chloride normally crystallizes
in cubes. However, in special environments, such as in the presence of
urea, it can crystalize as octahedra.

One might imagine that the cube and octahedron are the only shapes
that crystals in the cubic system can adopt. Matters are more complicated,
however, for there are many more shapes in this system. The mineral spi-
nel lies within the cubic family and forms octahedral crystals. However,
spinel can also form many misshapen octahedral crystals, as shown in

Figure 1.1.

Figure 1.1. Misshapen octahedra.*

The octahedral character of the crystals arises from their faces being par-
allel to those of a fictional regular octahedron, which we might imagine
secretly buried within the crystal.

Crystals have natural cleavage planes. A crystal cube of sodium chlor-
ide will cleave along planes parallel to the cube’s surfaces. The mineral
fluorspar represents an unusual case. Although it is in the cubic family

4 TIllustration based on Miers (1902, p. 11, Figs. 9 and 10).
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and crystalizes in cubes, it cleaves along planes that eventually expose an
octahedral shape. Figure 1.2 shows successive cleavages.
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Figure 1.2. Cleaving fluorspar.®

In the process of cleavage, we pass through many more complicated cube
shapes with corners removed to different extents. The shape on the right
of Figure 1.2 is such an intermediate form. These multi-faceted shapes and
many more are licit forms for certain crystalline substances within the
cubic system.

All of these shapes are different from the crystalline shapes permitted
to barium chloride, for barium chloride is monoclinic. This means that its
crystals are characterized by three unequal axes, two of which intersect at
an oblique angle, and a third that is perpendicular to them. Instead of a
cube, its primitive form—the simplest crystal shape—is a right prism with
a parallelogram base. This is shown in Figure 1.3, where the parallelogram
is the rearmost face. Alternatively, one may generate the shape by starting
with a right prism with a rectangular base and inclining it to one side
(hence “mono-cline”). In Figure 1.3, the inclination is towards the right
of the figure.

5  Illustration based on Miers (1902, p. 14, Figs. 17 and 18).
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Figure 1.3. Primitive form of the monoclinic system.

The range of crystal shapes allowed in the monoclinic system is related
to this form in the same way that those allowed in the cubic system are
related to a cube.

When a new metallic salt is prepared, the chemist will simply assert
that such-and-such is the form of the salt’s crystals. This is an inductive
inference and one of breathtaking scope. On the strength of just a few
samples, the chemist is quite prepared to infer the crystal system of all

samples of the salt:

This sample of salt A belongs to crystallographic system B.
Therefore, all samples of salt A belong to crystallographic system B.

1.5. Curie and Radium

Perhaps the most famous of all episodes in crystal formation was Marie
Curie’s separation of radium from uranium ore by fractional crystalliza-
tion. The massive labor of extracting radium from the pitchblende ore is
the stuff of scientific legends, Nobel Prizes, and a 1943 MGM movie. The
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radioactive elements—polonium, radium, and actinium—exist in such
trace quantities that several tons of uranium ore residue had to be treated
to recover just a few decigrams of radium. A decigram, a tenth of a gram,
is a mere speck. The process of recovering the radium was arduous. From
each ton of ore, after much processing, about eight kilograms of barium
chloride was recovered. Radium chloride is present in barium chloride as
a trace impurity. Radium’s presence is revealed by its great radioactivity.

The final separation of the radium chloride from the barium chloride
was difficult to achieve since radium and barium behave in similar ways
chemically. The separation depends on the fact that radium chloride is less
soluble in water than barium chloride. If the barium chloride in solution
is concentrated by boiling and cooling until it forms crystals, the crys-
tals will harbor more radium chloride. The solution remaining above the
crystals had one fifth of the radioactivity of the original, Curie reported.
While that seems like a large increase, the quantity of radium present in
the crystals was so tiny that it fell far short of what was required for sub-
stantial separation. Curie needed to repeat the process over and over: re-
dissolving and recrystallizing to form more fractions, recombining them
according to their radioactivity, and doing it again and again. In all, she
needed to carry out several thousand crystallizations.

All of this is described in her doctoral dissertation (Curie 1904), pre-
sented to the Faculté des Sciences de Paris in June 1903. There, she re-
ported on the analytic work carried out in the few years before with her
husband, Pierre Curie. The feature of the radium chloride that attracted
most attention was its powerful radioactivity. In spite of the thousands
of crystallizations performed, the crystallographic properties of radium
chloride barely rated a mention. In the ninety-four pages of the disserta-
tion, there are only a few complete sentences on the crystallographic form,
and they bleed off into less certain reports on the colors of the crystals
that, she suspected, would prove of practical use in the separation:

The crystals, which form in very acid solution, are elon-
gated needles, those of barium chloride having exactly the
same appearance as those of radium chloride. Both show
double refraction. Crystals of barium chloride containing
radium are colourless, but when the proportion of radium
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becomes greater, they have a yellow colouration after some
hours, verging on orange, and sometimes a beautiful pink.
This colour disappears in solution. Crystals of pure radium
chloride are not coloured, so that the colouration appears
to be due to the mixture of radium and barium. The max-
imum colouration is obtained for a certain degree of radi-
um present, and this fact serves to check the progress of the
fractionation.

I have sometimes noticed that formation of a deposit
composed of crystals of which one part remained unco-
loured, whilst the other was coloured, and it seems possi-
ble that the colourless crystals might be sorted out. (Curie
1904, p. 26)

Curie and soon others separated out only minuscule quantities of radium.
Yet that radium chloride forms crystals just like those of barium chloride
entered the literature quite quickly. In his 1913 survey of radioactive sub-
stances, Ernest Rutherford reported:

Radium salts crystallise in exactly the same form as the
corresponding salts of barium. The crystals of radiferous
barium chloride several hours after preparation usually as-
sume a yellow or rose tint. The intensity of this colouration
depends on the relative proportions of barium and radium
present in the crystal. Nearly pure radium chloride crystals
do not show this colouration, indicating that the presence
of barium is necessary. (Rutherford 1913, p. 470)

The facts are reported as having quite general scope, even though the in-
stances of observed radium chloride crystals must have been few, given
the enormous labor needed to create them in tiny quantities. Nonetheless,
both Curie and Rutherford seemed quite certain of the generalization.
Rutherford’s report looks like little more than a paraphrase of Curie’s
remark.
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1.6. A Formal Analysis

If we approach inductive inference formally, how are we to accommodate
this induction? We need only investigate a few simple formal attempts to
see just how poor the formal analysis is. The inference looks like a type of
enumerative induction with the schema

Some (few) As are B.
Therefore, all As are B.

Yet this alone cannot be what authorizes the induction. For almost every
substitution of the As and Bs would yield a feeble induction. To get an
induction of the strength seen by Curie and Rutherford, we have to be
selective in what is substituted for A and B. The As have to be specific
chemical types, such as radium chloride or barium chloride, as opposed
to the hundred and one other types of stuff that Curie found in her vats.
More importantly, the induction works only for carefully chosen proper-
ties of B. There are many ways of describing crystal forms. Virtually none
of them support a strong inductive inference.

To revert to the simpler example, one may find that some particular
crystal of common salt is a perfect cube. However, no chemist would risk
the induction to all crystals of common salt having exactly that shape. It
was only after serviceable systems of crystallography were introduced that
the right property was found. Individual crystals of common salt fall into
the cubic or regular system, and this property can be inserted into the
schema of enumerative induction to form the generalization.

The problem of finding the right descriptions challenged genera-
tions of crystallographers. Indeed, for a long time, many held that crystal
forms admit no simple systematization so that exactly this sort of induc-
tion would be denied. The scientist, historian, and philosopher of science
William Whewell gave a lively account of these hesitations—and of how
Romé de I'Isle and René Just Haiiy after 1780 sought to resolve the prob-
lems—in his History of the Inductive Sciences (1837, vol. 3, book 15, chaps.
1-2).

These difficulties make it a matter of some delicacy to specify in for-
mal terms just what property of the radium chloride crystals can be gen-
eralized. Curie and Rutherford used parasitic locutions: the crystals of
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radium chloride are the same as those of barium chloride. Hence, Marie
Curie in her 1911 Nobel Prize address chose a technical locution to de-
scribe the crystal form of radium chloride: “In chemical terms radium
differs little from barium; the salts of these two elements are isomorph-
ic, while those of radium are usually less soluble than the barium salts”
(Curie [1911] 1999). Isomorphism is a term of art used then and now to
describe the circumstance in which two different substances have very
close chemical and crystalline properties (see Miers 1902, p. 213). Curie’s
use of the term saved her the need of describing in more detail the precise
structure possessed by the salts of radium. It was familiar knowledge for
chemists that barium chloride has such-and-such a monoclinic crystalline
form. The declaration of isomorphism indicated that radium chloride had
this form too.

If the schema of enumerative induction is to function as a general
logic, the restrictions on just what may be substituted for A and B have
to be abstracted, regularized, and formalized, and then included in the
schema. The problem is that the restrictions that must be added are so
specific that one despairs of finding a general formulation. Presumably, a
general logic cannot append clauses of the form: “If A is a substance that
manifests in crystalline form, then B must be one of the known crystal
forms as sanctioned by modern crystallography.” This is a little short of
offering a huge list in which we inventory the specific inferences that are
allowed. This would not be a logic but a catalog whose guiding rationale
would be hidden.

A more promising approach is to draw on a popular philosophical
notion devised for this sort of application: we require that A and B must
be natural-kind terms. These are terms adapted to the divisions arising in
nature (“is crystallographically regular”), as opposed to artificial divisions
introduced by humans (“looks like a cubist sculpture”). The hope is that
we succeed in delimiting the good inductive inferences by restricting the
schema explicitly to natural-kind terms.

The approach fails at multiple levels. First, it fails because the good
inductions on crystal forms are still narrower. It is surely a natural-kind
term for a crystal to be a perfect cube, one of the five Platonic solids. Yet an
induction on common salt that uses the property fails to be a good induc-
tion by the standards of the crystallographers. Second, the schema is only
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viable if one can give a general formula that specifies what a natural-kind
term is. A common characterization of natural-kind terms is that they
support induction (Bird and Tobin 2010, sec. 1.1). This means that we are
allowed to generalize relations found in a few cases to hold between natur-
al-kind terms. If we append this characterization of natural-kind terms to
the schema of enumerative induction, the schema is rendered circular. For
to require that the schema can only be used on terms A and B that support
induction is just a fancy way of saying that the schema only works when
it works. Another common characterization of natural-kind terms is that
they appear in natural laws. If we try to include this characterization in
the specification of the schema, we face similar circularities when we try
to state just what we mean by “law.” Are they true relations that obtain
between natural kinds?

1.7. A Bayesian Attempt®

The preceding section sought to develop the simple schema of enumera-
tive induction to convert it into a serviceable schema with universal appli-
cation. The efforts were unsuccessful. Might a different approach that em-
ploys probabilistic analysis fare better? What if we seek help from Bayesian
analysis? We seek a vindication of the inference from “Some (few) As are
B” to “All As are B” that relies essentially on the probabilistic character of
relations of support. It should not merely adopt antecedently some version
of the idea that the proposition “All As are B” accrues support from the
proposition that “Some As are B” and then just restate it in probabilistic
language. We saw that it was precisely this idea that proved unsustainable
in the last section. Simply translating the idea into probabilistic language
would only serve to hide the difficulties behind a veil of numbers and for-
mulae. In addition, we should like the probabilistic analysis to show us
that “Some (few) As are B” can provide strong support for “All As are B.”
There are many ways that one can give Bayesian analyses of this prob-
lem. Let me sketch just one. We write H for the hypothesis that a newly
prepared salt belongs to some particular crystallographic system. We

6  Ithank Nick Huggett for helping me to think through revisions to this section and the
next.
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write E for the evidence that a number of samples are each observed to
belong to that class. If there are n samples, we can write E=E, & E, & ...
& E,, where E; asserts the evidence in the ith case. The probability of in-
terest is P(H | E), the probability of the hypothesis H given the evidence E.
This represents the inductive support afforded to H by E if we think of the
probabilities objectively. Or, if we interpret the probabilities subjectively,
it is the belief that we have in H given that we know E. We are interested
in seeing how the posterior probability P(H | E) compares with the prior
probability P(H); that is, we seek to determine how the probability of H
changes when we incorporate our learning of evidence E. These changes
will tell us the evidential import of E. An increase in probability is favor-
able evidence; a decrease is unfavorable.

We can compute these changes by means of Bayes’ celebrated theor-
em. In a form suitable for this application, it asserts

P(H|E)  P(E|H) P(H)
P(~H|E) P(E|~H)P(~H)’

We will not compute P(H | E) directly but only how incorporating E alters
the balance of probability between the hypothesis H and its negation ~H.
That is, we can see how the ratio of the prior probabilities P(H)/P(~H)
changes to P(H | E)/P(~H | E) = r. From this last ratio, P(H | E) can be
recovered as
r
P(H|E) = ——.

Bayes’ theorem tells us that the controlling quantities are the two likeli-
hoods P(E | H) and P(E | ~H). The first is easy to compute. It expresses the
probability that we have the evidence E if the hypothesis H is true. The
hypothesis H says that all samples belong to a particular crystallographic
system. Hence, the n samples at hand must belong to that system. So the
probability is unity that we have evidence E: P(E | H) = 1.

The other likelihood, P(E | ~H), is much harder to determine. It re-
quires us to assess the probability of the evidence if the hypothesis is false.
Determining this quantity requires some creative imagination, for we
have no precise prescription for how the hypothesis might fail. The like-
lihood will vary depending on how we judge the hypothesis might fail. If
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the only possibility for failure is that the salt belongs to one of the other
crystallographic classes, then there is no possibility of the evidence E ob-
taining. Then P(E | ~H) = 0. Inserting this into Bayes’ theorem leads to P(E
| H) = 1; the hypothesis is maximally probable.

But things are more complicated. E can be reported if there are obser-
vational errors so that the evidence is misreported. Or it may turn out that
the salt is dimorphous or even polymorphous. This means that the salt can
crystallize into two or more systems. So there is some chance—perhaps
small, perhaps large—that the evidence E; obtains, even if H is false.

We will set these concerns aside. Let us set the probability to g so
that P(E; | ~H) = q and suppose that each of the samples is taken under
independent conditions with the supposition of the falsity of H. Then,
obtaining each E; is probabilistically independent of the others, and the
probability of the conjunction is just a simple product of terms:

P(E|~H)=P(E; & Ey & ... & E,)| ~H) = P(E; | ~H) - P(E5 | ~H) - ... - P(E,,| ~H) = ¢

Bayes’ theorem now becomes

P(H|E) _ 1 P(H)

P(~H|E) q"P(~H)’

Here we have a nice limit result. As n becomes large, g" can be brought
arbitrarily close to 0, as long as q < 1. Hence, the ratio of likelihoods
1/g" becomes arbitrarily large, so that the ratio r = P(H | E)/P(~H | E) also
grows arbitrarily large. This corresponds to the posterior P(H | E) = #/(r + 1)
coming arbitrarily close to unity. And this means that the support for or
belief in H approaches certainty. This limiting result is comforting, for it
means that we do not need to worry about the particular values that we
might assign to the priors. Whatever influence their values may have had
on the final result is “washed out” by the limit process. This is for the best
since the prior probabilities P(H) and P(~H) would have to be plucked
from the air.
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1.8. Where the Bayesian Analysis Fails

If one inclines to numerical and algebraic thinking, the foregoing may
seem like a very satisfactory analysis. It has brought mathematical pre-
cision to what at first seemed like an intractable problem. There is even a
little limit theorem in which priors are washed out. All that is an illusion.
There are few if any gains in the analysis. And the harm done is great since
we have convinced ourselves that we have solved a great problem when we
have not. Any positive result achieved has little to do with the probabilistic
properties supposed for relations of inductive support and everything to
do with the choices we make externally to the analysis. We shall see that
the long-term results are determined by our antecedent choice of prior
probabilities, which prove to be narrowly constrained to two extreme,
dogmatic possibilities. The short-term results depend critically on arbi-
trarily chosen numbers. Finally, the necessary condition for any success-
ful result lies in choosing a description of the hypotheses and evidence
that is delicately tuned to the properties of the system. Without such a
description, inductive success is impossible. With it, success is assured for
virtually any approach.

1.8.1. External Inductive Content

The first problem is that the analysis is heavily dependent on judgments
of probability that are supplied externally to the analysis. That is, we must
set prior probabilities that presume either a dogmatic skepticism or an
unreasonable credulity concerning the universal hypothesis H. There is
no other option.

To avoid the danger of these externally specified assumptions pre-
judging the result, we might require a prior probabilistic independence of
the individual items of evidence, E|, E,, ..., E,,. This avoids an antecedent
assumption of them being connected by the universal hypothesis H. That
is, we would have

P(E)=P(E,&Ey& ... & E,) = P(E)) P(Ey) & ... & P(E,)) = s",
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where for simplicity I have assumed an equal probability 0 < s < 1 for each
P(E)). The result is immediately disastrous. A version of Bayes’ theorem
now tells us that

P(E | H) 1
P& P(H) = = P(H).

P(H|E) =

As the number of instances of n increases, s decreases and can be brought
arbitrarily close to zero, which means that 1/s” can be made arbitrarily
large. Since P(E | H) can never exceed unity, probabilistic consistency
requires that we can no longer choose our prior probability P(H) freely.
We must have P(H) < s™. Since s” can be brought arbitrarily close to zero
when 7 is large enough, we must somehow choose a prior probability P(H)
close enough to zero that anticipates in advance the number of items of
evidence that may appear. The only secure value is a zero prior probability:
P(H) = 0. In this worst case, we preclude learning from the evidence, since
P(H) = 0 forces P(H | E) = 0 no matter what evidence E is presented. We
must commit to a prior skepticism about the universal hypothesis H.

It is entirely reasonable to respond that this shows that presuming pri-
or probabilistic independence of the individual items of evidence E,, E,,
..., E, is not benign after all. The assumption of independence encodes a
dogmatic skepticism concerning the universal hypothesis H. But the al-
ternative is equally troublesome. If we now admit the possibility of a prior
probabilistic dependence among the items of evidence, we commit to un-
reasonable credulity concerning the universal hypothesis H. Here is why:

To avoid prior skepticism about H, we must free ourselves of the need
to set P(H) arbitrarily close to zero. We do this by ensuring that P(E) =
P(E, & E, & ... & E,)) does not become arbitrarily small as n grows large.
We expand P(E) as

PE)=PE; & Ey & ... & Ey)
=P(E, Ey & Ey& ... & Ey_) P(E,_ | | E{ & Ey & ... & E,_y) ... P(Ey | Ey) P(EY).

We preclude P(E) becoming arbitrarily small by requiring that P(E,, | E,
& E, & ... & E,_)) approaches unity in the limit as n grows large. This re-
quirement says that conditioning on the evidence E,, E,, ..., E,_; requires
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the limiting probability of E,, to be arbitrarily close to unity. This is close
to assuming H itself. For informally it says that being an instance of H is
projectable in this sense: if we have seen n — 1 instances of H with increas-
ing n, we approach probabilistic certainty that the next, nth item will also
be an instance with H.

The credulity toward H lies in the permissiveness of this result. It
turns out that we approach probabilistic certainty not just for the next in-
stance of H, but for the next N instances of H after it—no matter how large
N is. For a simple variant of the last calculation shows that the conditional
probability

P(E,&Ep 1 & ... & By | Ey & Ey & ... & Epy_y)

must also approach unity as # and N grow large. Our confidence in pro-
jectability is not limited just to the universal hypothesis H, but to any hy-
pothesis of which the items of evidence are an instance, no matter how
curious the hypotheses. The hypothesis may be that all samples of radium
chloride were prepared by Curie; or that all are in Paris; or that all are in
the northern hemisphere.

In sum, we cannot simply present the evidence as bare data and have
the Bayesian analysis tell us its import. We have to add prior probabilities
and there is no benign way to set them. We must choose antecedently be-
tween those that commit us to a dogmatic skepticism or to an unreason-
able credulity. This difficulty of Bayesian analysis has long been recog-
nized.” Richard Jeffrey (1983, p. 194) was sufficiently disturbed by it that he
concluded “willingness to attribute positive [prior] probability to a univer-
sal generalization is tantamount to willingness to learn from experience at
so great a rate as to tempt one to speak of ‘jumping to conclusions.” This
example illustrates a quite general result reviewed in Chapter 12: formal
analyses within a calculus of inductive inference cannot be freed from
their dependence on externally supplied inductive content.

7 For abrief review, see Norton (2011, pp. 430-31).
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1.8.2. Curie Did Not Take a Large n Limit

The second issue is that the analysis has solved the wrong problem. Curie
was sure of the result already from just a few samples. She did not need to
look at n samples and ponder the result as this n grew arbitrarily large. This
“small n” result can be addressed in the Bayesian system, but it requires us
to insert numbers. We need concrete values for g and for the priors P(H)
and P(~H) in order to determine whether the analysis supports Curie’s an-
alysis. Which are the right values? Can we find them? Or are our selections
just hunches driven by dim feelings of what is reasonable?

We now must face the awkward problem of all Bayesian analysis:
namely, that it introduces specific probability numbers while no such
numbers are in evidence in the inductive practice. Just which value is ap-
propriate for P(E; | ~H)? Is it 0.12 Or 0.5? What of the prior probabilities?
If we think of the probabilities as measuring objective degrees of support,
then we have no good basis for assigning the prior probabilities, and the
whole small #n calculation will rest on a fabrication. If we think of prob-
abilities subjectively so that they merely reflect our freely chosen opinion,
we are no better off. The hope, in this case, is that the accumulation of evi-
dence will wash out the individual prejudices we introduced by arbitrary
stipulation of our prior belief. This washing out does not happen precisely
because we are limited to the small n analysis.

More generally, this “solving the wrong problem” is an infraction
committed repeatedly in Bayesian analyses. There are a few simple com-
putations that serve as examplars, and the exercise in Bayesian analysis is
to modify the problem actually posed in successive steps until it resembles
one of them. In this case, the original problem is transformed into the
problem of distinguishing a double-headed coin (hypothesis H) from a
coin that has probability g of showing a heads (hypothesis ~H). We are
given the evidence E of n independent tosses, all of which show heads.

These first two problems are familiar and generally addressed by mak-
ing the analysis more complicated. If selecting appropriate likelihoods or
prior probabilities is troublesome, then a skeptical reader may be reassured
that further Bayesian analysis will surely vindicate exactly the selections
needed to get the result promised. My prediction, however, is that this
maneuver will not solve the problem. It will merely enlarge the analysis
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and exile such problems to remote corners, where they will proliferate. The
problems will just be harder to see because the analysis will have become
so much more complicated.

1.8.3. Finding the Right Description

The third problem is, in my view, the most serious. The Bayesian analysis
began by declaring the hypothesis that the salt has crystals belonging to a
certain crystallographic system and that the observed instances all con-
formed to this system. Once this description is given, the most important
part of the inductive analysis is over; for once we know that these are the
terms in which the problem should be described, then almost any analysis
will succeed. Enumerative induction will quickly return something like
Curie’s result. Or, looking ahead to other accounts of induction, we can
declare the evidence a severe test of the hypothesis; or best explained by
the hypothesis.

Until we are able to describe things in these terms, no analysis will
work, not even the Bayesian. The alternative descriptions will either be
too coarse or too fine. If they are too coarse, the sorts of hypotheses inves-
tigated and affirmed under Bayesian analysis will likely end up as banal.
We may affirm that radium chloride forms crystals, for example. If the
descriptions are too fine, we will likely find that no hypothesis is well sup-
ported by the evidence. If, for example, we give too detailed a description
of the crystal form, then the several cases at hand will differ sufficiently
such that no single description fits and we will be left without a compatible
hypothesis to set for H in the analysis.

The damage done by the Bayesian analysis is that it obscures exactly
the most important part of the inductive analysis with a smokescreen of
numbers and theorems. The essential part of the analysis is the recogni-
tion that the hypothesis and the evidence need to be described in terms of
a narrow and hard-won vocabulary of crystallographic theory. The elab-
orate computations of Bayesian analysis mislead us into thinking that in-
ductive problems are solved by manipulating probabilities and by proving
theorems in the probability calculus. It is a seductive aura of precision that
is to be resisted if we are to understand inductive inference.

It is widely acknowledged that the real challenge lies in finding the
appropriate system of classification. In introducing crystallography as a
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“classificatory science,” William Whewell stressed that finding this appro-
priate description is the object of the science:

Our classification of objects must be made consistent and
systematic, in order to be scientific; we must discover marks
and characters, properties and conditions, which are con-
stant in their occurrence and relations; we must form our
classes, we must impose our names, according to such
marks. We can thus, and thus alone, arrive at that precise,
certain, and systematic knowledge, which we seek; that is, at
science. The object, then, of the classificatory sciences is to
obtain fixed characters of the kinds of things; the criterion
of the fitness of names is, that they make general proposi-
tions possible. (1837, pp. 212-13; emphasis in original)

Finding the right system of classification is what makes generalization
possible.?

1.9. A Material Analysis

Formal analysis presumes that one isolates the transition from knowledge
of a single case to all cases as a problem in inductive logic, and that we
establish the cogency of the transition by displaying its conformity with
formal principles. For example, we might seek to show conformity of the
transition with an abstract schema of enumerative induction or, in the
probabilistic case, with Bayes’ theorem. Hence, the inference from a single
sample to all is immediately beset with the familiar problems that have
troubled induction for millennia. They sustain the weary sense among
philosophers that induction, trouble, and woe all go together.

8  Looking ahead, a probabilistic analysis could avail itself of the “Weakened Haiiy’s
Principle” (discussed below), which I argue warrants the inference materially. The analysis would
derive directly from the principle that there is a high probability that all samples of radium
chloride crystals are monoclinic, conditioned on the fact that Curie’s few samples are monoclinic.
This is merely a probabilistic restatement of the final result already achieved. Probabilistic analysis
has added nothing beyond the illusion of quantitative precision.
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Chemists at the start of the twentieth century, pondering the crys-
talline structure of matter, would likely not have sensed that their pas-
sage from one sample to all was problematic. Indeed, they are unlikely to
have thought of it in the abstract terms of theories of inductive inference
at all. The century before had seen vigorous investigation into the ques-
tion of just how properly to characterize the crystalline forms so that the
passage from properties of one sample to all may be effected. Curie and
Rutherford, if called on to defend this transition, would not have recited
passages from logic books. They would have pointed to background know-
ledge then shared by all competent chemists.

The foundations of the successful approach to crystallographic cat-
egorization were laid by René Just Haily in the late eighteenth and early
nineteenth century. His approach was based on the idea that each distinct
substance that forms crystals is built up from many, primitive geometrical
nuclei, all of the same geometric shape. The mineral galena, in this theory,
is built from minute cubes. In his treatise published at the time Curie was
working on radium, Henry Miers (1902, p. 21) illustrated Haiiy’s account
as in Figure 1.4:
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Figure 1.4. Hally’s account of crystalline shapes.®

9 The figure on the left is based on Miers’ Fig. 38 and the figure on the rightis a
reproduction of Miers’ Fig. 37.
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The oblique face ABC of a galena crystal in Figure 1.4 is, at the smallest
scale, really many staircases of these cubes. But the scale is so small that
we perceive a perfectly smooth surface.

An account by a contemporary of Haiiy’s, Frederick Accum (1813, p.
110), summarized the theory: “He [Haiiy] has also shewn that all crystals,
however complicated their form may be, contain within them a primitive
geometrical nucleus, which has an invariable form in each chemical spe-
cies of crystallisable material.”® From this theory came the essential result
that every substance was characterized by a unique primitive form:

The diversity of primitive forms ought therefore to be re-
garded as a certain indication of a difference in nature be-
tween two substances and the identity of primitive form
indicates identity of composition, unless the nucleus is one
of those solids which have a marked character of regularity;
such as the cube, the regular octahedron, &c. (p. 117)

The essential qualification is that sometimes two substances may be com-
posed of nuclei of the same form; this was likely to happen for crystals
built from regular solids, like cubes. This was a quite essential qualifica-
tion since Accum could list numerous cases of substances with the same
crystalline form. For example, he listed ten substances based on the cube
(1813, p. liv), among which were native gold, native silver, native copper,
gray cobalt ore, leucite, common salt, galena, and iron pyrites.

A century later, Haiiy’s system had received multiple adjustments and
his basic supposition was commonly bowdlerized:

The Abbé Reny Just Hauy [sic], whom Dr Tutton designates
the “father of modern crystallography,” has enunciated the
great principle that to every specific substance of definite
chemical composition capable of existing in the solid condi-
tion there appears a crystallizing form peculiar to and char-
acteristics of that substance. (Anon, p. 365)

10 This account is more succinct than Haiiy’s own synopsis (cf. Hatiy 1807, pp. 86-101).
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The view outlined was not so much a principle as a simple consequence of
Haiiy’s theory, which, according to Accum, did not insist that each crys-
talline substance had its own “peculiar”—that is, unique—form.

For our purposes, the essential point is that if a chemist were to accept
Haiiy’s theory, then one good sample of a crystalline substance would be
sufficient to identify the crystallographic system to which all crystals of
that substance belong. We have the following inference:

Each crystalline substance has a single characteristic
crystallographic form (Haiiy’s Principle).

The sample of salt A has crystallographic form B.

Therefore, (deductively) all samples of salt A have crystallograph-
ic form B.

This is the crudest version of how chemists pass from a single sample to
all. What is notable is that it is not an inductive inference at all. The infer-
ence is deductive and authorized by early crystallographic theory.

Of course, this is an extreme case and a purely deductive inference
was possible only during a brief window of a few decades during the ear-
ly years of Haiiy’s crystallographic theory. The theory soon encountered
anomalies. The shapes Haily postulated for his nuclei could not always be
stacked so as to properly fill space. Whewell (1837, p. 235) reported the col-
lapse of Haiiy’s physical theory: “and when Haily, pressed by this difficulty,
as in the case of fluor-spar, put his integrant molecules together, touching
by the edges only, his method became an empty geometrical diagram, with
no physical meaning.” A still more serious problem was the recognition
mentioned above that one crystalline substance may form crystals that
belong to two, three, or more crystallographic systems—called “dimorph-
ism,” “trimorphism,” and “polymorphism,” respectively. It was not clear
how merely stacking nuclei of the same shape could yield these different
shapes. Mineralogy texts of the early twentieth century routinely reported
examples. William Ford’s list is presented as something of a reminder of
what everyone supposedly knew, rather than as a surprising novelty:

Carbon in the forms of graphite and diamond, calcium car-
bonate as calcite and aragonite, iron sulphide as pyrite and
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marcasite, are familiar examples of dimorphism. The two
minerals in each case differ from each other in such phys-
ical properties as crystallization, hardness, specific gravi-
ty, color, reactions with acids, etc. Titanium oxide, TiO,, is
trimorphous, since it occurs in the three distinct minerals,
rutile, octahedrite and brookite. (1912, p. 80)

This means that Haiiy’s principle of the earlier deduction was not true, for
there were cases of one substance routinely manifesting in several differ-
ent crystalline forms.

But the idea of a strict regularity in the crystal forms manifested by
one substance remained. So we might render a corrected version of the
earlier inference accordingly:

Generally, each crystalline substance has a single characteristic
crystallographic form (Weakened Haily’s Principle).

The sample of salt A has crystallographic form B.

Therefore, (inductively) all samples of salt A have crystallograph-
ic form B.

We now have an inductive inference. The warranting principle is what I
have called the “Weakened Haiiy’s Principle.” What makes it inductive is
the word “generally.” It licenses us to proceed from one sample to all, but
not with certainty.

One might imagine that this “generally” is, finally, a manifestation of
some universal inductive logic. Its schema might be represented as

Generally, X.
Therefore, X in this case.

While we may find many instances of propositions of the form “Generally,
..., they are not manifestations of a unique inductive logic. In each case,
the word “generally” will have a meaning peculiar to the context. In this
case, “generally” means “in so far as polymorphism does not interfere.” So
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the nature of the risk one takes in accepting the conclusion will differ with
each context."

This is one illustration of how background knowledge drives induct-
ive inferences and how such background knowledge is deeply entangled
with inductive practices. Once one knows to look for it, the extent of the
entanglement is quite profound. Another notion that was well established
in Curie’s day was isomorphism, mentioned earlier. This was then defined
more precisely by Ford (1912, p. 79) as “A series of compounds which
have analogous chemical compositions and closely similar crystal forms
are said to make an isomorphous group.” An early case of initially un-
recognized isomorphism became a celebrated triumph of crystallographic
analysis. Whewell (1837, pp. 226-28) reports confusion over the crystal-
line substance “heavy spar.” Haiiy found that its cleavage angles varied by
three and a half degrees, depending on the origin of sample. One sample
was from Sicily and one from Derbyshire. The variation was a great per-
plexity and a dire threat to Hatiy’s theory since the same nuclei could not
accommodate even such a small change of angle. It turned out that the
two samples were of different substances. The Sicilian sample was barium
sulphate and the one from Derbyshire was strontium sulphate. Barium
and strontium are both alkaline earth metals in the same column of the
periodic table and have similar chemistry. They also form crystals that are
very similar, although—crucially—not perfectly identical. This is a classic
case of isomorphism.

When Curie remarked that the radium chloride formed crystals with
“exactly the same appearance” as barium chloride, it would have been
with full knowledge that the chemistry of radium mimicked closely that
of barium. Indeed, that mimicry is what made the separation of the two
so difficult. Hence, the familiar idea of isomorphism would have indicated
that the crystals of the two chlorides should be similar. All that was really

11 While the inferences may look formally similar, they will be quite different if applied
to crystals or to astronomy. Take the following proposition: “Generally, orbiting objects in our
solar system orbit in the same direction as the earth.” From this, we may infer with a small risk
that a recently discovered asteroid will orbit in the same direction as the other objects in our solar
system. The risk we take is different from that taken in crystallography. We risk the possibility that
this asteroid was not formed by the same processes that formed most other objects in our solar
system.
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left to affirm was how close the similarity would be. It was, Curie found,
“exactly the same.”

Immediately after Curie’s work was published, the chemical and crys-
tallographic similarity of radium and barium was immediately investi-
gated and affirmed. Runge and Precht (1903) used spectrographic and
atomic weight measurements to locate radium with the other alkaline
earth metals, magnesium, calcium, strontium, and barium. The expected
similarity of crystalline forms was found by direct measurement of the
bromides of barium and radium. As Frederick Soddy reported,

E.Rinne ... has published a careful comparison of the crys-
tallographic relation between the bromides of radium and
barium and has shown that radium bromide crystallises in
the monoclinic system and is isomorphous with and crys-
tallographically closely related to barium bromide. (1907, p.
332)

To report the isomorphism of barium and radium became standard in the
literature.

We can now appreciate the great subtlety of Curie’s inference. As
long as the background theories of crystallography are to be trusted, the
possibility of polymorphism was the principal risk taken in generalizing
the crystalline form of radium chloride from one sample to many. Hence,
Curie and Rutherford were quite sanguine to report the radium salts’
crystalline form as an isomorphism with barium salts. For if there had
been any polymorphism of the radium salt, they could reasonably expect
a similar polymorphism to arise with the barium salt. So, with or without
polymorphism, their result would stand. With that canny formulation,
the result could be asserted with the confidence they showed. The only real
danger was a failure of the isomorphism and, given the multiple points of
agreement between barium and radium, that was easy to discount.

Let us take stock. Our starting point was a simple inductive inference
from a few crystal samples to all samples. It is the sort of simple induction
that should be explicated easily by an inductive logic. In particular, we
would expect the logical analysis to tell us why this particular inference
from “some” to “all” is so strong as to be essentially unquestioned. On
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closer inspection, we found appearances to be deceptive. The strength of
the passage from “some” to “all” in this particular case had little to do
with issues identifiable by a formal logic. It had all to do with background
chemical knowledge. The confidence the chemists had for the inference
resulted from the care with which Curie and Rutherford located the in-
ference within a complicated network of chemical ideas that had been
devised over the previous century precisely to admit such generalizations.

1.10. Main Ideas of a Material Theory of Induction

The preceding exemplifies how I believe we should understand inductive
inference. Let me collect the main ideas here:

Inductive inferences are warranted by facts not by formal schema.

What makes the inductive inference a good and strong one is not con-
formity with some universal formal schema; it is the facts pertaining to
the subject matter of the induction. Hence, the warrant is “material” and
not formal. Curie already knew of the closeness of the chemical proper-
ties of barium and radium. She knew of the well-established isomorphism
that arose in such cases and indicated a closeness of the corresponding
crystalline structures. Those facts assured her that the few cases she had
observed of similarity between radium and barium chloride crystals could
be generalized.

The essential idea here is that facts can serve a dual role, both as state-
ments of fact and as warrants of inference. This idea is actually quite fam-
iliar. In deductive logic, the conditional “If A then B” serves this dual role.
It can serve as a factual premise in an argument; or we can take the same
argument and understand its role as warranting a deductive inference
from A to B.

In chemistry, the facts that play this dual role look, loosely, like
“Generally, X.” For example, “Generally, salts that are chemically analo-
gous have similar crystalline structures.” This is both a fact in chemistry
and an authorization to infer that radium salts and barium salts will have
similar crystalline structures because of their chemical similarity. The
inference is authorized all the more strongly when Curie found a single
sample of radium chloride crystals that, as expected, exactly resembled
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barium chloride crystals. This diminished the possibility of smaller but
superficially detectable differences. The inference is inductive since the
chemical facts do not deductively entail Curie’s inference. This is the im-
port of the modifier “generally.” It accommodates the ways the inference
can still fail that are peculiar to this particular chemical example.

All induction is local. It is contextual.

The chemical facts that authorize these inductive inferences are truths of a
particular domain of chemistry. They warrant a local mini-logic, peculiar
to the context, in which evidence of chemical similarity and of a few sam-
ples warrants the generalizations indicated. This local mini-logic resem-
bles the universal schema of enumerative induction. But the resemblance
is superficial. There will, no doubt, be other domains in which other facts
will warrant inferences that also resemble enumerative induction. The
inferences of each domain will be distinct, carrying their own unique re-
strictions that do not derive from a universal schema, and bearing their
own unique form of inductive risk.

Inductive inference is generically variegated and imprecise.

The imprecision here designates a lack of formal properties such as appear
in mathematical theories of inductive inference. The inductive inferences
on crystalline structure surveyed above can be characterized as “strong”
or “reliable” or “very certain.” These terms have a meaning only within the
crystallographic context. Inferences to a unique crystallographic system
are prone to failure if the salt displays polymorphism. The inference is
“strong” just to the extent that polymorphism can be discounted.

Terms like these are variegated in that they have meanings peculiar
to their contexts. The term “strong” will have one meaning in crystallog-
raphy, another in some branch of physics, and yet another in some sub-
field of astronomy. What is missing generically is any precise means of
comparing the strengths of inferences deemed “strong” in crystallography
and in other domains, such as physics or astronomy. We also lack pre-
cise means of calibrating the difference between, say, “strong” and “very
strong,” within a single domain. This stands in contrast to contexts in
which probabilities are applicable. The probability of at least one heads
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in ten coin tosses is 1/1,024 = 0.99902. In another domain, we may find
that the probability that a parent passes on some specific genetic trait is
0.99. The two probabilities are comparable. The first exceeds the second by
1% and this slight difference will manifest eventually in slight frequency
differences among many repeated trials.

The qualification “generically” allows that there are important excep-
tions. Background facts may sometimes authorize a precise, mathematical
calculus of inductive inference. The most familiar case arises when we
perform inductive inferences specifically on systems governed by prob-
abilistic facts. Such systems include those undergoing radioactive decay,
the forensics of DNA, and games of chance in a casino. Later chapters
will describe systems in which other, non-probabilistic calculi of inductive
inference are warranted. These precise calculi are only applicable when
definite background facts warrant them.

The material theory does not authorize the default application of
numbers to measure strengths of inductive support. It may be appealing
to some to presume such numbers as a default. A probabilistic analysis
can supply a definite number—say 0.99—whose closeness to unity gives
the sought-for quantitative measure. As satisfying as this may be, without
specific background facts to authorize the numbers, applying them is an
exercise in spurious precision. It forces variegated notions of strength of
support into a single, uniform mold that supposedly enables comparisons
across domains. It neglects the domain-specific meaning for the strength
of inductive support in each domain. To demand a single number or a sin-
gle universal term to characterize inductive strengths across all domains
invents a uniformity that is not found in the variegated character of in-
ductive inference.

Inductive risk is assessed and controlled by factual investigation.

When one makes an inductive inference, one takes an inductive risk and
one seeks both to assess and to minimize the risk taken. In a formal theory
of induction, the assessment of the risk becomes an assessment of the reli-
ability of the inference schema used. If we infer to the best explanation, we
then need to ask how reliable it is to do that. And we are faced immediately
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with an intractable problem. There is no simple answer to this question;
and there is likely no serviceable, complicated answer either.

In a material theory of induction, things are quite different. The war-
rant for an induction is a fact, and we assess and then control the inductive
risk by exploring and developing that fact. Let us imagine that we notice
that only a few radium chloride crystals resemble those of barium chlor-
ide. The inference to a broader resemblance might then be warranted by a
chemical fact that salts manifest only a few crystalline forms. The strength
of the inductive inference depends essentially on the correctness of that
fact and just how many forms are admitted by the word “few.” All of that
can be checked by further investigation and just checking that is the nor-
mal business of research chemists. They developed theories of how crys-
tals are constituted to enable a better understanding of which crystalline
forms will appear in which circumstances. These investigations assure us
that two salts will manifest similar crystalline forms if they are chemically
similar; and this conclusion is in turn grounded both in other observa-
tions and a theoretical argument. Since radium and barium are chem-
ically very similar, the chlorine atoms in a barium chloride crystal will
permit the barium atoms to be replaced by radium atoms with minimum
alteration to the crystal structure.

We assess and control inductive risk by learning more facts. The new
facts provide new premises for inductive inference and new warranting
facts. What was an intractable problem for a formal theory of induction
becomes a routine problem in exploring the factual realm of chemistry for
a material theory.

Inductive inference is material at all levels.

The crystallographic example explored here looks at particular sorts of in-
ductive inferences at a specific level of refinement. One may wonder what
happens if we take a more fine-grained view that looks more narrowly at
specific inferences or—alternatively—if we take a coarser view that looks
at inductive practice at a more general level. Will we find that a formal
account of inductive inference succeeds there? Will we find that at levels of
great refinement the glue that inductively binds the corpuscles of analysis
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is formal? Or will we find at a general level that a universal, formal theory
emerges that can unify the diversity of the particular cases?

The claim here is that a material theory prevails at all levels. Of course,
at all levels there will be inferences that loosely fit with one or other formal
theory. We have seen in the case of crystallography that the inferences
resemble enumerative induction. We should expect such loose fits, else the
formal theories would not have survived in the literature. On closer exam-
ination, however, we will see that material facts are what warrant them.

1.11. Does the Material Theory Say That Inductive
Inferences Are Really Deductive? No!

No. No. NO. It does not say that. This is perhaps the most frequent mis-
reading of the material theory, and it can be put to rest here. The material
theory maintains the distinction between the two forms of inference. In
deductive inference, the truth of the premises assures the truth of the con-
clusion. In inductive inference, understood materially or otherwise, the
premises only lend support to the conclusion. Inductive inference is not
deductive inference.

The misreading of the material theory has it affirming that inductive
inference is really some form of disguised deductive inference. My sense is
that this misreading comes from a similarity between the material theory
and another approach to inductive inference. In this other approach, we
note that good inductive inferences are also deductive fallacies. For ex-
ample, we take the following as a premise:

This sample of salt A has crystallographic form B.
From this, we infer
All samples of salt A have crystallographic form B.

This is a deductive fallacy. We could imagine that the argument is real-
ly, secretly a valid deductive argument, but we do not see it because one
or more of the premises are unstated. That would make the argument an
“enthymeme,” a valid inference with unstated premises. In this case, a
suitable unstated premise would be the strong form of Haiiy’s Principle:
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Each crystalline substance has a single characteristic
crystallographic form.

With this added premise, the inference becomes deductively valid. In
the other approach, all inductive inferences are treated this way. They
are treated as failed deductions that are repaired by supplying missing or
unstated premises. This is not how the material theory treats inductive
inference, however.

If we transform the inductive inference to a deductive inference by
adding such premises, we have generated what is known as a “deduction
from the phenomena.” The best-known examples are given in Book 3 of
Newton’s Principia, where he shows how to infer deductively from the
phenomena of celestial motions to the basic ideas of his theory of gravita-
tion. His examples are so important that inferences of this type are often
called “Newtonian deductions from the phenomena.”

In admitting these cases, the material theory does allow that some
inductive inferences may turn out to have been deductive inferences
all along, once we make the background facts explicit.”> However—and
here is the key observation—this deductive outcome is an extreme and
relatively rare case. Most commonly, it does not arise. When we identify
the warranting facts, they supply an inductive warrant only. The strong
form of Hatiy’s Principle is false. The correct, weakened form of Haiiy’s
Principle merely asserts that “Generally, each crystalline substance has a
single characteristic crystallographic form.” The crucial word “generally”
makes all the difference. It reminds us that the original principle fails if
there is polymorphism. In accepting the conclusion, we take the risk that
polymorphism—if present—will undo the conclusion. That is, the warrant
supplied by the weakened form of the principle is not strong enough to
assure us of the conclusion with deductive certainty. The distinction be-
tween deductive and inductive inference is maintained.

12 This is not a bad outcome at all. We thought that we must take an inductive risk in
accepting the conclusion of the original inference. However, we learn that background facts assure
us that no inductive risk is taken in accepting the conclusion. The inference has become deductive
and, in effect, we already took the inductive risk needed when we accepted the background
assumptions.
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Chapters 2-9 will elaborate and illustrate these claims further through
examination of a sequence of inductive inference forms employed in the
literature: the replication of experiment, analogical inferences, inferences
grounded in notions of simplicity, and inference to the best explanation.
These chapters will be followed by an extensive investigation into the lim-
itations of the Bayesian approach in Chapters 10-16. Where the present
chapter has developed the material theory of induction by means of an
example, the next chapter will develop the general arguments for it.

Note added March 15, 2020.

Commentaries on the draft chapters of this book have been collected for
an issue of Studies in History and Philosophy of Science. It has become
apparent from those commentaries that the draft chapters had not ad-
equately distinguished two questions that arise within the material theory
of induction. They are

(inductive-logical)
Question: Which inductive inferences are licit?
Answer: Those that are warranted by a (true) fact.

(epistemic)

Question: How can we know that a specific inductive inference is
licit?

Answer: We must be assured of the truth of the appropriate
warranting fact.

The first question is answered by matters of fact that obtain independently
of any human beliefs, knowledge, or awareness. The answer to the second
question depends on the answer to the first question. To know that some
candidate inference is licit, we need to know the warranting fact. Gaining
that knowledge can sometimes be troublesome. We may have to conjec-
ture what the warranting fact is. In this case, we cannot be assured that
the associated inference is licit until further investigation assures us that
we have conjectured a factual truth.
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What Powers Inductive Inference?

2.1. Introduction

This chapter summarizes the case for the material theory of induction,
drawing on material in other parts of the book. There are three arguments
for the theory. The first two are the following:

1. Failure of universal schemas. Through many examples in
this text, we see that no attempt to produce a universally
applicable formal theory of induction has succeeded.

2. Accommodation of standard inferences. These same
examples show that the successes of many exemplars of
good inductive inferences can be explained by the material
theory of induction.

These first two arguments suffice, I believe, to make a solid case for the
material theory. They are developed in Sections 2.2 and 2.3. They make the
case without giving an intuitive grounding for why the material approach
is the right one. They establish that it is, not why it is. For the arguments
succeed by showing that the alternative, formal approach fails and that the
material approach works where its competitor fails. The third argument,

1 My thanks to the Fellows of and a visitor to the Center for Philosophy of Science for
discussions of a draft version of this chapter on 30 November 2011 and 23 November 2014: Yuichi
Amatani, Ari Duwell, Uljana Feest, Leah Henderson, Gabor Hofer-Szabo, Soazig LeBihan, Dana
Tulodziecki, Adrian Wuethrich, Adele Abrahamsen, Joshua Alexander, William Bechtel, Ingo
Brigandt (presenter), Sara Green, Nicholaos Jones, Maria Serban, and Raphael Scholl.
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however, is grounded in the foundational question, developed in Section
2.4, of why any inductive inference should work at all—that is, “What
powers inductive inference?” The question presumes that we cannot take
the success of inductive inference for granted. If it works, it does so for an
identifiable reason. The material theory answers:

3. Inductive inference is powered by facts. The ampliative
character of inductive inference precludes universal
schemas.

There are two steps in the argument for this conclusion, and they are de-
veloped more fully in Section 2.5. Briefly, the first step notes that inductive
inference is, by its nature, ampliative. That is, unlike deductive inference,
the conclusion asserts more than the premises. It amplifies what the prem-
ises say. For each sort of inductive inference, there will be worlds hostile
to its success. Generalizing chemical properties of samples, for example,
is futile in a world without stable chemical properties. Using an inductive
inference presupposes that, as a factual matter, we are not in one of those
hostile worlds. If the notion of these facts is construed broadly enough,
commitment to them is all there is to accepting the logic. These are the
facts warranting the inductive inference.

The second step specifies the character of these facts. They are not
universal contingencies such as would warrant a universally applicable in-
ductive logic. This is shown by our failure to identify a universally applic-
able inductive logic and our failure to exhibit such a universally war-
ranting fact explicitly. Rather, the facts hold true only in limited domains
so that there are many of them and the inductive logic each warrants has
local applicability only.

The two sections following Section 2.5 illustrate these two steps.
Sections 2.6 and 2.7 consider the inductive problem of extending the series
1, 3,5, 7. It is insoluble without background facts to warrant the inference.
Section 2.8 displays some more examples of warranting facts. Finally, our
predisposition for treating inference formally is strong. Section 2.9 will
seek to weaken the presumption that all theories of inference must be
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formal by indicating limitations in the formal, non-contextual treatment
of the most favorable case, deductive inference.

2.2. Failure of Universal Schemas

Formal approaches to inductive inference depend on supplying a universal
template or schema. For example, in the last chapter, we saw the schema of
enumerative induction

Some (few) As are B.
Therefore, all As are B.

Such templates are then used to generate the licit inductive inferences by
substituting the content of the placeholders A and B. The enduring diffi-
culty for formal theories is that no general account of inductive inference
has provided a clearly articulated exceptionless schema. Therefore, all
formal accounts fail, and by eliminating the only rivaling accounts, the
material theory gains support.

That all formal schemas fail is difficult to show directly since there are
many of them. What can be shown, however, is the failure of a representa-
tive sample, which is the approach taken in this book.? The mode of failure
displayed by a given sample is sufficiently straightforward to make it likely
that it will afflict all candidate schemas.

In the preceding chapter, we saw in the example of crystalline forms
that the schema of enumerative induction fails. For it to be applied success-
fully to crystalline forms, we needed to add additional, formal conditions
contrived to rule out all but the very small set of properties of crystals that
support inductive generalization. The sequence of additional conditions
seemed to have no discernible end. Once even a few were added, it became
clear that the schema lost all semblance of generality.

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments, which is often introduced as a gold standard of
evidence. On closer examination, however, it will be proven something

2 Inearlier work (Norton, 2003, 2005), I sought to be more systematic. I showed
how virtually all accounts of inductive inference fell into one of three families, each powered
inductively by a single idea. Since the sample of failures reviewed here are spread over the three
families, we have some assurance that they are adequately representative of the range of accounts.
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less. We will see that it is a guide whose verdict is sometimes accepted and
sometimes discarded. There is no formal rule that tells us when the prin-
ciple is to be upheld and when not. It is a principle that holds except when
it does not. The following chapter looks at reasoning by analogy, a form of
inductive inference whose use has pervaded science from antiquity to the
present. Once again, we will see that the bare schema is too impoverished
to be used exceptionlessly. Efforts over the past century to augment the
schema have led to supplements of monumental size while still not deliv-
ering a self-contained formal schema.

This pattern of failure continues in subsequent chapters. While con-
siderations of simplicity are often invoked in discerning the bearing of
evidence, they do not rest upon a factual principle of parsimony in nature.
Notions of simplicity prove sufficiently elusive that there is no clear for-
mulation of such a principle. Similarly the slogan “inference to the best
explanation” is so familiar that one might presume that there is some
hidden inductive power in explanation. The presumption fails on closer
examination. Our notions of explanation are too varied and vague to har-
bor powers sufficient to support a universal scheme of inductive inference.

Finally, a series of chapters investigates what is, momentarily, the
favored account of inductive inference in the literature in philosophy of
science, Bayesian inference. Any aspirations of universal applicability fail.
Several chapters develop cases in which a probabilistic logic cannot apply
since such alogic would contradict symmetries inhering in the cases. There
is a rich literature that seeks to establish the necessity of probabilities in
representations of belief and inductive support. An examination of these
arguments shows them all to be circular. This circularity is developed
at length in a chapter devoted to the scoring rule approach. Finally, any
Bayesian analysis is inductively incomplete in the sense that it always re-
quires inductively potent prior probabilities to be specified externally. I
report work elsewhere that shows that this incompleteness is not specific
to the Bayesian system but troubles any calculus meeting certain weak
requirements. It follows that no single calculus can cover all the inductive
inferences of science. To repeat an earlier conclusion: all induction is local.

These examples embody modes of failure that, I believe, afflict all
candidates for universal schemas of inductive inference. The schemas
may simply be too vaguely specified at the outset to count as a logic of
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induction, as is the case with inference to the best explanation. Or, if they
are precisely specified, they prove too permissive and authorize too much,
as is the case with enumerative induction. Efforts to restrict the schemas
may specialize them so narrowly to one particular domain that they lose
their universality. Or efforts may burden them with more conditions. And
in adding them, we may need to import new notions—natural kinds, ex-
planation, lawfulness—which in turn require further conditions for their
explication, and so on without termination.

2.3. Accommodation of Standard Inferences

The last section offered a preview of the failure of familiar, formal schem-
as for inductive inference. These schemas were devised because each, to
some degree, fits some collection of inductive inferences we deem licit.
The second argument for the material theory is merely the flip side of this
failure. Where the formal approach fails for these repositories of licit ex-
amples, the material theory succeeds.’

Once again, this can be read from the analyses of the previous and
subsequent chapters. Curie inferred inductively from the crystalline form
of mere specks of radium chloride to all samples of radium chloride.
What licensed the inference was a hard-won fact from nineteenth-century
work on crystals. It is what I have called the Weakened Haiiy’s Principle:
“Generally, each crystalline substance has a single characteristic crystal-
lographic form.”

In the next chapter, we will look at the requirement of the reprodu-
cibility of experiments. This requirement proves not to be a universal in-
ductive principle but is shown rather to arise in connection with a loosely
affiliated but irregular collection of inductive inferences concerning re-
peated experiments. The otherwise inexplicable irregularity of such in-
ferences becomes intelligible when we recognize that they are warranted
by two classes of facts: those specifying when some process will yield the

3 In Norton (2003), I worked through the three families of accounts of inductive
inference and showed briefly how the inferences of each account were materially warranted. The
treatment of so many accounts there is necessarily brief. In this book, I seek to show the material
warrant for standard examples of successful inductive inferences in much greater depth. As a
result, fewer examples are treated.
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experimental outcome of interest; and those specifying what may con-
found the experimental outcome. These facts specify when a replication of
an experiment is evidentially significant. More importantly, they specify
when the replication is not evidentially significant. The variation in the
facts from case to case explains the irregularity of the whole collection.

Arguments from analogy are so varied in their form that, as we shall
see in Chapter 4, they defy complete characterization even by quite elab-
orate formulae. The material theory resolves the problem by conceiving
analogy in the same manner as scientists. For them, analogy is not an
argument form but a fact that asserts the similarity of two systems. This
fact warrants inductive analogical inference. The resulting inferences have
as varied a form as the facts of analogy themselves. It is this broad range
of variation that defeats efforts to find a universal formal characterization.

This pattern of material reconstruction persists with the analysis of
inductive inferences grounded in notions of simplicity or explanation.
Invocations of simplicity in specific cases are shown to be abbreviated
invocations of background facts. Since the background facts vary from
case to case, their summary in an inductively potent principle of parsi-
mony is precluded. Similarly, in specific inferences to the best explanation,
explanatory relations contribute nothing to the evidential import. Real
examples of this sort of inference in science succeed through the mere
adequacy of the favored hypotheses to the evidence and our success in
eliminating its competitors by prosaic, non-explanatory means.

Finally, where the probabilistic representation of strengths of induct-
ive support is appropriate, it is because there are specific background facts
that warrant them. The examples are many, varied, and familiar. Both
quantum mechanical and statistical mechanical systems in physics are
governed by probabilistic physical laws. These laws provide the warrants
for the probabilistic inductive inferences over them. In biology, mechan-
isms of inheritance in population genetics are governed by probabilistic
laws. They, too, warrant probabilistic inferences. An important back-
ground probabilistic fact in many areas of the biological and social sci-
ences is the presumption of sampling randomly from a population. This
fact is important, for example, in the forensic identification of suspects
through DNA analysis. It warrants the probabilistic inferences reported.
A related case arises in controlled trials where subjects are randomized

60 The Material Theory of Induction



into a test and control group. If the randomization is probabilistic, it intro-
duces background probabilistic facts that can warrant probabilistic infer-
ences about whether the effect measured could arise in case the treatment
is ineffective.

These examples instantiate a familiar pattern. Whenever a cogent in-
ductive inference appears in a science, it has proven possible to trace the
warrant for the inference to background facts.

2.4. The Mystery of Inductive Inference

The discussion so far has been devoted to the two most visible problems
associated with inductive inference:

1. Which are the good inductive inferences?

To answer this, we must specify how we distinguish the good from the bad
inferences. The material theory of induction says we do so by identifying
warranting facts; we do not seek the warrant in universal schemas. This
first problem is entangled with another problem that is more fundamental
but largely overlooked in the present literature. How can inductive infer-
ence work at all? That is,

2. What powers inductive inference?

Once we accept that inductive inference is powered by background facts, it
becomes clear why the answer to the first question must lie in identifying
the warranting facts.

The second question needs some elaboration. It is easy to take for
granted that induction lets us do something remarkable. It lets us amplify
our knowledge. We pay a small price for this amplification. Our new know-
ledge is not as certain as the old knowledge from which we proceeded.
Sometimes the uncertainty is large. In important cases, the uncertainty
is minuscule. Whether it is small or large, we still seem to get more than
we should. The problem—the big mystery of induction—is to understand
how this amplification can happen.

To sharpen the sense of why we need a solution to this second problem,
consider an analogous problem. Imagine that we are in ancient Greece
and encounter an oracle. In the darkness, we see the dim outline of the
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sibyl, wailing and flailing. Her cries fall silent, and she issues several sharp
proclamations that, over the course of time, turn out to be mostly accur-
ate. And all of this for the price of a goat and few drachma in her bronze
bowl. Were this to happen, we would not be satisfied merely to note that
this oracle has extraordinary predictive powers. We would want to know
how this were possible. What is it in the order of things that enables this
sibyl to make these predictions?

The puzzle is the same with induction. It performs a similar miracle,
but without the movie-quality special effects. Experience gives us a small
part of space for a small span of time. Yet from knowledge of this frag-
ment, we come to be sure that all things began some 14,000,000,000 years
ago in an intense conflagration; that tiny smudges of light in the night sky
are great galaxies of stars that duplicate our sun many times; and much
more, down to the most minuscule structure of microbial life. We must
ask, then, what is it in the order of things that allows induction to do this?
What powers inductive inference?

The dominant trends in the present literature are incapable of satisfac-
torily answering these questions. To answer them adequately, both ques-
tions above need to be treated together. We cannot hope to know which
are the good inductions without a clear and explicit idea of what powers
induction. Answers to these questions in the literature have followed the
model of deductive inference. This has driven us astray for millennia. It
has led us to seek a non-contextual account of what powers induction and
a formal answer to the problem of which are the good inductive infer-
ences. Neither works for induction. The central claim of this chapter is
that a successful account of induction is contextual and material.

2.5. The Foundational Argument

The most compact argument for a material theory of induction proceeds
by answering the foundational question of what powers induction. It is
powered by facts. As indicated in the introduction, the argument has two
premises.

Premise 1. Inductive inference is ampliative. This means that the con-
clusion of an inductive inference amplifies. It asserts more than the prem-
ises. This distinguishes inductive inference from deductive inference.
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For deductive inferences merely restate what we have already presumed
or learned. There is no mystery in what powers deductive inference and
permits its conclusions. We are just restating what we already have in the
premises. The warrant lies fully within the premises. If we know all win-
ters are snowy, it follows deductively that some winters are snowy.* This
derives from the premise “all.” If something is true of all, it is thereby true
of some. The context in which we infer plays no role in powering the de-
ductive inference. The inference succeeds no matter what either “winter”
or “snowy” might mean. The meaning of “all” is enough to uphold the
conclusion regardless of context. The inference is valid independently of
whatever other facts may obtain about weather and climate.

It is quite different with inductive inference. From the premise that
all past winters have been snowy in some location, we infer inductively
that the next winter will be snowy there. Yet it is entirely possible that this
prediction fails. When we conclude in favor of the prediction, we assert
more than the premises warrant. Such a conclusion is viable only in cer-
tain worlds. Hospitable worlds include those where the climate is stable.
An inhospitable world would be one experiencing global warming, in
which the past pattern of snowy winters does not continue unaltered. We
can generalize the crystallographic family of a crystalline substance from
one sample to all because our world is hospitable through the background
fact of Haiiy’s principle. But we cannot generalize the size of the one sam-
ple to all, for there are no background facts providing for restrictions on
possible sample sizes. Correspondingly, we can generalize sizes of living
organisms, for different types of organisms are restricted by their physical
constitutions to specific scales. Insects cannot grow to human scale be-
cause their structures would be too weak to support their weight and they
could no longer breathe by diffusion. Similarly, humans cannot shrink to
the scale of insects. A shrunken human brain would have too few neurons
for our cognition. At least this is true in our world, which is hospitable
to the generalization. A science-fiction world, where the normal laws of
science are suspended, however, might be another story.

4 To be clear, I follow the informal conversational presumption and tacitly assume that
“All winters are snowy” is not true vacuously; that is, the truth of the proposition requires that
there are some winters.
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The examples above illustrate the general point: the factual assump-
tion that our world is a hospitable one is the fact that, if true, warrants
the inductive inference. But it may not always be apparent that this fact
warrants the inference. It may appear that the warrant is still provided
by some sort of schema. The inference to a future snowy winter, we may
think, is still warranted by the schema:

All past As have been B.
Therefore, the next A will be B.

This supposition, however, is incomplete. If used at all, the schema would
have a purely intermediate role. It does not have universal applicability.
We can use it in the case of a snowy winter only because the requisite
background facts authorize it when we make the specific substitutions:
“winter” for A; “snowy” for B. That is, a cascade of warrants may pass
through a schema. The cascade terminates in facts that are the final war-
rant of the inference.

It is essential here to distinguish two ways that an inductive infer-
ence can fail: either by loss of an inductive bet in a hospitable world or by
failure of an inductive inference in an inhospitable world. The first arises
because accepting a warranted inductive inference still involves a risk. In
a hospitable world with a stable climate, it is a warranted induction to infer
from a past history of snowy winters that the next winter will be snowy.
The next winter, however, may turn out not to be snowy. When a climate
is stable, such fluctuations would be rarer but nevertheless possible. Losing
an inductive bet like this must be distinguished from the second case in
which it is imprudent to take the bet in the first place. If the background
facts are of a warming climate in some location, then the background facts
do not warrant the inference. If one persists and makes the inference, the
conclusion may prove false. The failure reflects the lack of warrant of the
inference, not a failure arising from traditional inductive risk.

The material theory of induction arises from the recognition that the
truth of these background factual presumptions is all that is needed for the
inductive inference to be warranted. One might imagine that this might
not be so. The facts, we might suppose, play only a partial role in war-
ranting the inductive inference. Might there still be a residual universal
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formal schema or inductive rule that contributes to the warrant? If so,
such a schema or rule would be subject to the same analysis just given. If
it functions to authorize an inductive inference, then it amplifies what is
already asserted in the premises and all other background facts. It cannot
be universal in application, for there would be worlds inhospitable to it.
And we should only use the rule or schema where it is hospitable to do
so. That is, the warrant for its use is the factual supposition that the world
is hospitable to it. Once again, the inductive warrant has terminated in
facts that should be included with the true background facts needed to
warrant the inductive inference at issue. In other words, the truth of the
background factual assumptions, when construed broadly enough, is all
that is needed to authorize the inductive inference. With that, we arrive at
the first major tenet of a material theory of induction:

Inductive inferences are warranted by facts.

What remains open is the precise character of the warranting facts. There
is little we can say at the general level about the nature of these facts. In
particular cases, their character will be straightforward. Our inference to
a future of snowy winters is warranted by the assumption that our local
climate will persist pretty much as it has, so that winters without snow
are possible but unlikely. If the climate warms sufficiently, however, these
facts may fail and with them the inductive inference.

In some cases, the background facts may be such that the inductive
inference would be deductive if we explicitly added the warranting fact
as a premise. Then the inference would be an enthymeme, a deductive
inference with a hidden premise. An example is this version of Curie’s
inference from the preceding chapter:

This sample of radium chloride is monoclinic.
Generally, each crystalline substance has a single characteristic
crystallographic form (Weakened Haiiy’s Principle).

Unless exceptions encoded by “generally” intervene, all samples
of radium chloride are monoclinic.
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But it would also be entirely natural to detach the “Unless...” clause and
have the inference:

This sample of radium chloride is monoclinic.
Generally, each crystalline substance has a single characteristic
crystallographic form (Weakened Haiiy’s Principle).

All samples of radium chloride are monoclinic.

This inference is inductive for we are taking the risk that the exceptions
suggested by generally do not arise.

Corresponding complications arise if we infer inductively in the
Bayesian framework. If we infer from prior probabilities to posterior prob-
abilities by means of likelihoods using Bayes’ theorem, then the inference
is deductive. If we broaden the context, this ceases to be so. Propositions
asserting evidence and background facts are not provided to us with
probability measures. We add them. In doing so, we accept that we can
represent their mutual relations of inductive support probabilistically and
that their inductive consequences follow from the probability calculus. In
this process, we take an inductive risk that probabilistic analysis correct-
ly represents these relations. If we also proceed as normal people do and
accept a proposition with a very high posterior probability as established,
then we take a second inductive risk in detaching the qualification of high
probability.

The second premise places a restriction on the character of the war-
ranting facts:

Premise 2. There is no universally applicable warranting fact for induct-
ive inferences. This premise requires support, part of which is supplied by
other arguments in this book that seek to establish that there is no univer-
sally applicable logic of induction. For if there were, then there would be a
universally applicable warranting fact according to Premise 1.

A more direct grounding for the second premise lies in our failure
to exhibit such a universally applicable warranting fact. It has been long
sought, like the philosopher’s stone—and with equal success. The best-
known attempt at characterizing it is Mill’s principle of the uniformity of
nature: “The universe, so far as known to us, is so constituted that what-
ever is true in any one case is true in all cases of a certain description; the
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only difficulty is, to find what description” (Mill 1904, book 3, chap. 3, p.
223). To this, he added: “Whatever may be the proper mode of expressing
it, the proposition that the course of nature is uniform is the fundamental
principle, or general axiom of Induction” (p. 224). It is a general fact about
the world that holds in all domains in which we may seek to infer induct-
ively. It is the one, universal fact that would power all inductive inference.

The trouble with Mill’s principle is that, read literally, it is false; and
read charitably it is so vague as to be unusable. Take the literal reading.
Our world is not uniform in all its aspects. Indeed, the world fails to be
uniform in virtually all its aspects. Otherwise, we would live in a largely
homogenous environment. At best, the world is uniform in a very few,
quite special properties that end up figuring in what we take to be laws of
nature. This last statement is the charitable reading. The real challenge for
the principle is to specify just what its special properties are. Yet through
the vague generality of its formulations, it provides no such specification.
At best, the principle deflates to a weak existential claim: there are uni-
formly implemented properties in nature, but we do not know precisely
which they are. Or, more generally, nature is regular and orderly but in
a way that we cannot state or grasp compactly enough to implement as a
principle that can be employed practically in a logic of induction.

That the principle needs this shield of ignorance to protect it from
scrutiny suggests that there is no real content hidden behind the shield.
The principle has ceased to have any practical value in our inductive in-
vestigations. Wesley Salmon (1953, p. 44) long ago wrote its obituary: “the
general result seems to be that every formulation of the principle of the
uniformity of nature is either too strong to be true or else too weak to be
useful.” This completes the argument for the premise.

If the facts warranting inductive inference are not universal truths,
then they must be truths of restricted domains, and the inductive infer-
ences they warrant will be restricted to those domains. It may well be that
the inferences warranted in some restricted domain have a regular struc-
ture. Then we have an inductive logic applicable to just that domain. For
example, Hatly’s principle warrants an inductive logic that looks formally
like enumerative induction but is restricted to generalizations concerning
the crystallographic family of samples of crystalline substances. A general

2 | What Powers Inductive Inference? 67



statement of this restriction is the second major tenet of a material theory
of induction:

All induction is local.

Philosophers are good at finding clever but ineffective loopholes. The
following loophole is one that few can resist. If each domain has its own
material facts that warrant inductive inferences in it, why not just com-
bine them all? The resulting conjunction would be a single, huge fact that
warrants inductive inferences in all domains.

It would be correct to assume that this huge conjunction would war-
rant inductive inferences in all domains. But it would not provide an es-
cape from the necessarily local character of inductive inferences claimed
by the material theory. That locality now reappears in the irreducibility of
the huge conjunction to anything more compact. It remains just a single,
huge conjunction of this fact and that fact and that other fact and so on,
with many, many more conjuncts. To use the huge conjunction in any
particular domain, we have to locate within the immensity the particu-
lar facts that applies to that specific domain, extract the particular facts
while ignoring all others, and apply them. The warranting of inferences
in that specific domain will still be done by facts prevailing just in that
domain. The existence of the huge conjunction provides no universally
applicable schema beyond the one already central to the material theory
of induction: to identify the warrant of an inductive inference, seek facts
that prevail in that domain.

The next two sections will illustrate the first and second premises re-
spectively of the argument of this section.

2.6. The Inductive Inferenceon 1, 3, 5, 7, ...°

To quickly see the importance of background warranting facts, an in-
ductive inference problem bereft of background facts will help: Given
the initial sequence of numbers 1, 3, 5, 7, how should this sequence con-
tinue? That the sequence could continue in many different ways is a trivial

5  This example and a briefer version of the argument of the previous section are given in
Norton (2014).
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mathematical fact. If the only restriction is that these are the first four
terms of an infinite series, then there is an infinity of varying continu-
ations. The lack of specification makes it impossible to favor any one in
particular—that is, to pick among the deductively authorized possibilities.
Without some specification of background facts, to infer inductively about
the continuation is impossible.

The possibilities are greatly reduced if we assume naturally that the
sequence is governed by some simple rule. There are still many possible
continuations. The sequence may just be the odd numbers:

1,3,57911,13,15, ...

Or it may be the odd primes, including one:
1,3,5711,13,17, ...

Or it may be the digits of the decimal expansion of 359/2,645:
1,3,572,7,7,8,8,2,8, ...

While the possibilities in these cases are reduced, the inductive problem
is still intractable since the notion of a “simple rule” remains underspeci-
fied. This makes finding other continuations merely a challenge to our
ingenuity in writing laws that look simple in some sense we happen to find
congenial.

Another approach embeds the sequence in a context for which we
have more information. The numbers may be drawn from a randomizing
lottery machine. The fact of randomization then authorizes a probabilis-
tic analysis. Probabilistic inductive support is distributed uniformly over
the remaining, undrawn numbers. Or perhaps the numbers appear in a
question on an IQ test or in the interrogation of a psychologist we believe
is intent on tricking us. These different background facts would then au-
thorize different inferences about the continuations, although the com-
plexity of the background would make discerning their precise character
troublesome.
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2.7. The Law of Fall

It is easy to suppose that the preceding inductive problem is merely a con-
trivance, unrelated to real problems of inductive inference in science, and
thus one that we need not strive to accommodate in our account. This
supposition is wrong. The problem is in fact one of the classic problems of
inductive inference in science. This particular number sequence happens
to figure in one of the great discoveries in the history of science. In his
Two New Sciences (1638), Galileo presented his law of fall. In one form,
the law asserts that the distances fallen in successive units of time stand
in the ratios 1 to 3 to 5 to 7 and so on; that is, in the ratio of the odd
numbers. Galileo’s pathway to this law was long and convoluted. However,
at least one part of it quite likely involved experimentally measuring the
distances that bodies fall and the time this takes. In Two New Sciences
([1638] 1954, pp. 178-79), Galileo describes an experiment in which a ball
is timed rolling down a grooved ramp. The ramp is a surrogate for free
fall that slows the motion sufficiently to enable time measurements using
Galileo’s crude methods. Stillman Drake (1978, p. 89) has identified an
early Galileo manuscript that, Drake argues, records the results of just
such an experiment.

So let us pose a simple Galileo-like inductive problem. Given that the
incremental distances fallen in successive units of time are in the ratios 1
to 3 to 5 to 7, what will be the distances in subsequent times? Using resour-
ces available to Galileo, how might this be solved?

We have a good idea of Galileo’s methods. One element was that he
presumed fall to be governed by a rule that was expressible simply in the
mathematical techniques available to him. The idea is indicated in Two
New Sciences. Galileo reflects on the gains in speed of falling bodies and
asks of them, “why should I not believe that such increases take place in
a manner which is exceedingly simple and rather obvious to everyone?”
(p. 161). Galileo’s inference is warranted by a fact: the simple behavior of
bodies in free fall. Galileo’s rhetorical question leaves the notion of sim-
plicity at issue underspecified and thus leaves underspecified just which
inference is authorized. If we read Galileo’s writings more broadly, we find
a stronger statement that identifies the notion of simplicity at issue. In a
famous passage in The Assayer, he wrote:
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Philosophy is written in this grand book, the universe,
which stands continually open to our gaze. But the book
cannot be understood unless one first learns to comprehend
the language and read the letters in which it is composed. It
is written in the language of mathematics, and its charac-
ters are triangles, circles, and other geometric figures with-
out which it is humanly impossible to understand a single
word of it; without these, one wanders about in a dark laby-
rinth. (1623, pp. 237-38)

This is a form of Platonism, which asserts that the world is structured as
a copy of perfect mathematical forms. This factual statement about the
world then warrants an inference to a simple mathematical rule as the
continuation of the sequence 1, 3,5, 7, ....

This approach may at first be appealing. The world does admit simple
mathematical description. Why can we not use this fact to underwrite in-
ductive inferences? The appeal fades rapidly under closer scrutiny. There
are three problems.

First, if one is not a Platonist, one judges the warranting fact to be a
falsehood and thus the inference an inductive fallacy. The success of math-
ematical methods in science since Galileo does not, in my view, justify the
Platonic view. Rather, as I have argued elsewhere (Norton 2000, Appendix
D), the success merely reflects the post hoc adaptability of mathematics to
new scientific discoveries.

Second, attempts to employ the Platonic idea fall prey to the problem
that the mathematical imagination can conjure up vastly more structures
than are implemented in reality. Seek simple laws written in the wrong
mathematical language, and our investigations will stall and fail. Einstein
became a mathematical Platonist during his later-life search for a unified
field theory.® His efforts were stymied by just this problem since he sought
laws that could be simply expressed in the mathematics of tensors and the
like on four-dimensional space-time manifolds. Subsequent theorizing in
quantum gravity has branched out in the mathematical structures it uses

6 This is recounted in Norton (2000).
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and typically does not posit a four-dimensional space-time manifold as a
primitive.

Third, when Galileo investigated falling bodies, the mathematics ac-
cessible to him was limited to methods drawn from Euclid. They com-
prised the barest sliver of the mathematics we now employ. It would be
naive to assume that the Platonic blueprint of nature is drawn with the
mathematics of this tiny sliver.

2.8. Invariance under the Change of the Unit of Time

In the face of these mounting difficulties, we may well wonder whether
Galileo had the sufficient background facts to warrant what still appears
to be a good inference. Fortunately, he did assume another background
fact, which was perfectly tuned to warrant the inference and eliminate all
but one of the open possibilities. This aspect of his work, however, typical-
ly receives scant attention.

Galileo’s experimental methods were unable to fix a precise unit of
time. At best, he could determine that, in one experiment, successive
intervals of time were equal. He realized that his experimental result was
stable in spite of this variability of time units. In measuring fall, he re-
covered the same ratios, 1 to 3 to 5 to 7 and so on, no matter what unit of
time he used. This important fact is stated by Galileo in Two New Sciences
when he presents this odd-number formulation of his law of fall. He wrote:

Hence it is clear that if we take any equal intervals of time
whatever, counting from the beginning of the motion, such
as AD, DE, EF, FG, in which the spaces HL, LM, MN, NI
are traversed, these spaces will bear to one another the same
ratio as the series of odd numbers, 1, 3, 5, 7. ([1638] 1954, p.
175; emphasis added)

The invariance of the result is asserted by the text I have italicized.”

7 Galileo’s Latin quotcunque tempora aequalia is literally “however so many equal
times.” Crew and de Salvio render it as “any equal intervals of time whatever.” Their looser
rendering fits with the overall context in allowing both the number and duration of the intervals
to vary. An important part of the context is the earlier statement of the law of fall from which this
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With a little arithmetic, we can see how this invariance under change
of units of time works. In successive units of time, the body falls the fol-
lowing distances: 1, 3, 5,7, 9, 11, 13, 15, 17, 19, .... Now replace the original
unit of time with a new unit equal to two of the old units. The distances
fallen in successive units of time with the new unit are

1+3,5+7,9+11,13+15,17+ 19, ...
=4,12, 20, 28, 36, ...
=4x1,4x3,4x54x7,4%x9,....

Galileo’s law requires only that these distances be in the ratios 1 to 3 to
5 to 7 and so on. Hence, we can neglect the factor of 4 and observe that
the ratios conform to the law. This invariance obtains, Galileo asserts, no
matter which unit of time we select.

The remarkable fact is that there are few laws of fall that respect this
invariance. Using techniques in calculus and functional analysis not avail-
able to Galileo, it is possible to prove that the only laws are these. If d(f) is
the fall distance in the unit of time (¢ — 1) to t, then®

d(?) is proportional to # — (1 — 1)?,

where p is any real number greater than 0 (see Norton 2014a). This means
that prior to any measurements, the scope of the law admissible is already
reduced to these very few possibilities.

What now gives the inference great strength is that there is just one
free parameter in the law, p. It follows that securing just one ratio of dis-
tances experimentally fixes the law uniquely. For example, take the first
ratio that Galileo would have measured, d(2)/d(1) = 3. It follows that p
must satisfy

corollary is derived. The law is first introduced as “during any equal intervals of time whatever,
equal increments of speed are given to it” (p. 161). Galileo’s Latin dum temporibus quibuscunque
aequalibus is correctly rendered by Crew and de Salvio as “during any equal intervals of time
whatever,” where quibuscunque has no restriction to number or duration. These unrestricted,
equal time intervals are the ones that reappear in Corollary I.

8  Thereis a suppressed proportionality constant in the statement. It is suppressed since
Galileo’s law concerns ratios of the quantities d(t), and the constant will not affect those ratios.
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27— 271"

- = 27 ~1.
r-a-ny 1

The unique solution is p = 2 so that d(t) is proportional to

P—-12=2-(2-21+1)=21-1.

Hence, for successive times t =1, 2, 3,4, ..., we have d(t) = 1, 3,5, 7, ...—
that is, the odd numbers.

This is a remarkable result, and it is worth restating: if invariance
under change of units of time is to be respected, the only continuation of
the two-membered sequence of incremental distances fallen

1,3
is the sequence of odd numbers
1,3,5,7,9,11, 13, ....

Of course, Galileo could not have known this result in all generality. But it
is quite likely that he was aware of how restrictive the invariance was. One
needs only to try out a few alternatives to the odd-number sequence arith-
metically to realize that all simple alternatives fail. Drake (1969, pp. 349-
50) notes that a correspondent of Galileo’s, Baliani, reported that Galileo
had used the invariance as a “probable reason” for the odd-number rule.
While Galileo did not elaborate in Two New Sciences on this result,
Christiaan Huygens soon did. When he was only seventeen years old,
Huygens found the result independently, prior to reading Galileo’s Two
New Sciences.” One statement of what he found is given in a letter of 28
October 1646 to Marin Mersenne (Huygens 1888, pp. 24-28). We see there
that Huygens arrived at his result by considering two possibilities: that
either the incremental distances fallen in subsequent, equal intervals of
time increase in an arithmetic progression, or that they increase in a geo-
metric progression. Only one case gave non-trivial results: an arithmetic

9  Ithank Monica Solomon for drawing my attention to Huygens’ work and for sending
me a copy of his letter and other supporting materials.
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progression in the ratios of the odd numbers, 1, 3, 5, 7, .... The demon-
stration is creditable but less than general since it overlooks the possibility
of expressions for the incremental distances d(f) with values of p other
than 2 in the formula ' — (¢ — 1)’. Thus it precludes by supposition many
other progressions that would give a law of fall whose ratios would remain
unchanged under change of units of time. While one might imagine ways
that the demonstration could be rendered more general, there seems to
be no obvious way to arrive at the general proof without mathematical
techniques stronger than those available to Galileo and Huygens—for in-
stance, those used in Norton (2014a)."° This may explain why Galileo did
not elaborate on the result in Two New Sciences.

Our Galileo-like inductive inference problem admits a ready solution.
We take as a premise that the ratios of the incremental distances fallen in
successive units of time are 1 to 3 to 5 to 7. There are two warranting facts
accessible to Galileo: that the rule governing the sequence is expressible
simply; and that the rule is invariant under change of units of time. Only
a small amount of arithmetic exploration will show that this invariance
likely rules out all extensions other than the odd numbers. A fuller analy-
sis shows that the second invariance by itself is sufficient to warrant the
inference.

2.9. Can Bayes Help?

One might imagine that the general inductive problem of extending the
initial sequence 1, 3, 5, 7 is one where a Bayesian method would excel. But
would it succeed without the need for specific background facts despite
everything that has been said so far? In short, the answer is that it does
not provide a successful, universal treatment of the problem. There are
two striking failures in the analysis. First, Bayesian analysis fails to offer
any inductive learning from the evidence of the initial sequence 1, 3, 5, 7.
Second, prior probabilities control the analysis, but the requirement that
they normalize prevents them being set in a manner that is universally
benign.

10  One way is to consider not the incremental distances d(f) but the total distance s(f)
fallen by time ¢. Then it is easy to show that the invariance is satisfied by setting s(f) proportional to
# for any p > 0. However, showing that these are the only laws satisfying the invariance is harder.
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To proceed, we will see how a Bayesian analysis might help us decide
between two extensions of the sequence 1, 3, 5, 7:

The odd numbers H44: 1, 3, 5,7, 9, 11, 13, 15, ...
The odd primes with one H, :1,3,5,7,11, 13,17, ...

primex*

using the evidence E: 1, 3, 5, 7.
The ratio form of Bayes’ theorem asserts that

P(H,,|E) _ P(EIH,) P(H,,)
P(H_._ .|E) P(EIH_ .) P(H

prime* prime* prime* )

Since each H,qq and Hpype deductively entails E, we have P(E | Hyqq) =
P(E | Hpyimer) = 1. Therefore, Bayes’ theorem reduces to

P(H, |E) _ P(H,)
P(H . .|E) P(H

prime* prime* )

According to the theorem, what have we learned from the evidence E?
The prior probabilities P(H,qq) and P(H,ipe+) represent our initial uncer-
tainty about the two hypotheses; the posterior probabilities P(Hyyq | E)
and P(Hp,ime | E) represent their new values after incorporating evidence
E. The reduced form of Bayes” theorem just tells us that conditionalizing
on the evidence makes no difference to our comparative uncertainty con-
cerning the two hypotheses. The ratio of the prior probabilities is the same
as the ratio of the posterior probabilities. This will be true for any pair of
hypothesized sequence that starts with 1, 3, 5, 7. In short, we have learned
nothing new from the evidence as far as our decision between the two
hypotheses is concerned.

Hypotheses logically incompatible with the evidence will be eliminat-
ed. Take, for example, the natural numbers represented by H,,: 1, 2, 3, 4,
5,6, .... Since H,,, is logically incompatible with E, we have P(E | H,,,) = 0,
and the posterior probability will be P(H,,,, | E) = 0. But this result is not an
inductive result. We have simply eliminated all hypotheses deductively in-
compatible with the evidence. The deductive result is easily obtained with-
out the probability calculus or any other inductive manipulations. Where
we need help is with the inductive problem. Does the evidence E favor
some hypotheses among those with which it is deductively compatible?
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Here, the Bayesian analysis has failed to provide anything useful. Our in-
ductive preferences are unchanged by learning the evidence.

This is a somewhat discouraging start. Nevertheless, it will be instruct-
ive to press on and ask what our posterior probabilities may be with specif-
ic prior probabilities. The analysis bifurcates according to whether we are
subjective or objective Bayesians. If we are subjective Bayesians, then our
prior probabilities are merely expressions of prejudice, constrained only
by compatibility with the axioms of the probability calculus. We might de-
cide that these prejudices dictate that H 44 has three times the probability

of Hyyime+ Then we conclude for our posterior probabilities that

P(Hogd E) =3 P(Hppimer | E).

Looking at the equation, it may seem that we have learned something. But
we have not. The threefold difference in posterior probabilities is a direct
restatement of our prior prejudices.

If we are objective Bayesians, we will seek prior probabilities that ob-
jectively reflect what we know. In this case, by supposition, we know noth-
ing initially, so we have no reason to prefer one hypothetical sequence over
any other. Hence, the appropriate prior probability will assign the same,
small probability ¢ to each hypothesis. That is, we have

P(Hyqq) = P(Hprime*) =é&.
The reduced form of Bayes’ theorem now tells us:
P(Hpqq | E) = P(H primex | E).

Once again, we have learned nothing. Our initial assumption was that
all hypotheses are equally favored, and this remains true for any pair
compatible with the evidence.

This last conclusion overlooks a complication that will gravely trouble
both subjective and objective Bayesians. The prior probability distribution
must normalize; that is, the prior probabilities assigned to all the possible
sequences must sum to unity. There is an uncountable infinity of possible
sequences.” This means that, in a strong sense, most sequences must be

11 To see that the set is at least continuum sized, we should note that a subset of sequences
using the digits 1 and 2 only can be mapped one-to-one onto the real numbers in the interval [0, 1].
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assigned zero prior probability. Once a sequence has been assigned zero
prior probability, its posterior probability on any evidence whatever will
also be zero. This means that no evidence, no matter how favorable, will
move us to entertain the sequence in the slightest. Hence, both subjective
and objective Bayesians must make unavoidably damaging decisions, pri-
or to any evidence, as to which few sequences will be learnable.

Of course, there are ways we might try to work around the problem.
We might try to retain the uniform prior probability distribution simply
by dropping the requirement of normalization and using so-called “im-
proper priors.” This violation may be excused if it turns out that, after
conditionalization, the posterior probability distribution is normalizable.
Normalizability is not achieved in this case, however. There are infinitely
many sequences beginning with 1, 3, 5, 7. After we conditionalize on this
evidence, we will be assigning equal non-zero probability to each sequence
in this infinity of sequences. Normalization will fail.

More drastically, we might retain a uniform prior probability distri-
bution by the artifice of simply choosing a finite subset of sequences and
casting the rest into the darkness of zero probability. If we eschew the
uniformity of prior probabilities for variable probabilities, we can expand
the set of sequences with non-zero prior probabilities to a countably in-
finite set. As long as the prior probabilities diminish fast enough as we
proceed through the set, the sum of the probabilities can be unity, as nor-
malization requires. One way of achieving this diminution is to assign
these varying non-zero probabilities only to sequences that are arbitrarily
long, but always of finite length. If we do this, we need some rule to decide
which sequences are more probable and which are less. A popular choice
is to use a prior probability distribution advocated by Solomonoft (1964).
Briefly, describable sequences, like 1, 2, 1, 2, 1, 2, ..., have greater prior
probability than sequences without simple descriptions. A prior probabil-
ity distribution is implemented by penalizing each sequence’s probabil-
ity by an exponential factor (1/2)", where N is the length of the shortest

The sequence 1, 1,2, 2,1, 1,2, 2, ... is mapped to the fraction in binary notation 0.00110011..., etc.
To see that the set is no bigger, we should note that we can map any sequence to a real number in
[0, 1] by replacing the symbol “,” by the symbol “0”. The sequence 1, 3, 5,7,9, 11, 13 ... is mapped
to the real 0.1030507090110130..., etc. The map is not “onto” because some real numbers, such as
0.100010001, have no corresponding sequence.

78 The Material Theory of Induction



description possible for the sequence.” Bayesian analysis that employs this
prior probability distribution is celebrated with joyous but naive enthusi-
asm as providing a “complete theory of inductive inference” (Solomonoff
1964, p. 7) or “universal induction” (Rathmanner and Hutter 2011).

The difficulty is that the comparative judgments of a prior probability
distribution will never go away. They determine how we might discrimin-
ate between H,4q and H;,. on learning the evidence E = 1, 3, 5, 7. Thus
the selection of this prior probability distribution is not benign. It must be
justified by something solid. Are we to suppose that, as a general propos-
ition, our world favors sequences with short Turing machine programs?
This favoring might be credible in specific contexts, such as one where we
know that people are thinking up the sequences. But we are to suppose
that this favoring is true prior to any restriction whatever on where these
sequences may appear. It is hard to see any reason for why the world would
universally prefer to present us with number sequences that are comput-
able and in such a way that exponentially penalizes sequences with long-
er programs. The literature supporting the Solomonoft approach holds
otherwise and matches its joy in its solution of the inductive problem with
equally joyous pronouncements grounding the approach. Authors of this
literature often resort to appeals to simplicity through “Occam’s Razor”
(Solomonoft 1964, p. 7; Rathmanner and Hutter 2011, p. 1101). This reveals
an inflated reverence for the insights of a medieval scholastic who wrote
six centuries before Turing conceived the notion of a universal Turing ma-
chine. For more deflation of simplicity, see Chapter 6.

In short, the challenge of accommodating the requirement of nor-
malizability greatly complicates the analysis. More generally, the Bayesian
analysis itself creates troubles that multiply and whose intractability deep-
ens the more we try to resolve them. We could continue to wrestle with
them. Or we could see that the very fact that we face lingering problems
of this gravity tells us that Bayesian analysis is just the wrong instrument
for this inductive problem. Compare this with the simplicity of the ma-
terial analysis of the problem of extending 1, 3, 5, 7. Once we locate the
appropriate context, as in Galileo’s law of fall, we find that the requirement

12 Nis usually taken to be the length of the shortest Turing machine program that would
output the sequence.

2 | What Powers Inductive Inference? 79



of invariance under change of units of time fixes the extension all but
completely.

2.10. Warranting Facts

What might other warranting facts look like? Once we realize that familiar
facts may serve also to warrant inference, we see that we are surrounded
by such warranting facts.

Cosmology seeks to discover the structure of the universe on the lar-
gest scale. If the universe is infinite in spatial extent, then the finite por-
tion observable by us is minuscule. What we see is infinitely outweighed
by what we cannot see. The essential assumption that allows us to proceed
from what we can see to what we cannot is the “cosmological principle.” It
asserts that the universe is roughly homogenous in its large-scale proper-
ties. While this wording may seem somewhat vague, standard applications
of the principle employ it unambiguously. In our vicinity of the universe,
matter is distributed roughly uniformly in galaxies in a space of constant,
possibly zero, curvature. The cosmological principle authorizes us to infer
that this condition obtains everywhere in the whole universe. Much of
modern cosmological theory proceeds from this authorization.

Assume we have some isolated system with a given quantity of energy
and entropy. The principle of the conservation of energy—the first law of
thermodynamics—authorizes us to infer that, however else it changes, the
same isolated system will have the same energy at any point in the fu-
ture. The second law of thermodynamics authorizes us to infer a similar
conclusion about the entropy of the system: it will be the same or greater.
A careful statement of the second law merely allows that, with very high
probability, the entropy of such systems will be the same or greater. Hence,
the conclusion is warranted inductively but with very great certainty.

Assume we have some experiment performed in an isolated laboratory.
The principle of relativity authorizes us to infer that a uniformly moving
replica of the experiment will yield the same result. A more careful fac-
tual statement of the principle allows that it would hold only in regions
of space-time that are remote from intense gravitational fields and thus
unaffected by the curvature of space-time revealed through the general
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theory of relativity. So the factual principle informs us that, mostly, the
same experimental result will obtain. Thus, the inference is inductive.

These examples are designed to illustrate a progression in two aspects.
First, a progression from the more general to the more specific and local.
Second, a progression from examples where the mediating facts authorize
the conclusion deductively to those where they authorize them inductive-
ly. The next and final example extends the progression farther to a case of
greatly narrowed scope and greater inductive risk.

Assume we set up some simple chemical process whose feed includes
nitrogen gas. A general fact of chemistry is that nitrogen gas is quite un-
reactive. Its diatomic molecules are held together by a strong triple bond
that is hard to break. This general fact authorizes us to infer, at a relative-
ly high level of inductive certainty, that the simple chemical process will
leave the nitrogen gas unaltered. We are not assured of the conclusion with
deductive certainty. There are extreme conditions under which nitrogen
gas can be compelled to enter into reactions, as the Nobel Prize-winning
work of Haber and Bosch demonstrated a century ago. Their Haber-Bosch
process enables the chemical industry to synthesize ammonia from nitro-
gen and thereby manufacture both fertilizers and explosives.

This progression gives us factual principles of increasingly narrow
scope that warrant inferences inductively. The material theory of induc-
tion places no lower limit on the size of the domain over which these fac-
tual principles operate.

2.11. A Non-Contextual, Formal Logic is Exceptional

The scope of successful applications of deductive logic that are non-con-
textual and formal is enormous. It is one of the great achievements of hu-
man thought. Its success makes it easy to think that the right way and
only way to analyze inference is with non-contextual, formal theories.
Correspondingly, then, one might think of a materially warranted logic as
some kind of failure, perhaps the result of insufficient efforts to find that
elusive, universal formal logic of induction. I will argue in this section that
the success of non-contextual, formal accounts of deductive logic is excep-
tional. Hence, we should not use our familiarity with deductive logic to set
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our expectations for inductive logic. We should not allow this to make us
expect that there is a non-contextual, formal logic of induction.

2.11.1. The Undeserved Success

Which are the good deductive inferences? As long as the problems are kept
simple, most people have a good instinctive grasp of the deductive conse-
quences of their knowledge, and they manage without external guidance.
But the limits are readily breached. If each thing has a cause, does it fol-
low deductively that there is one ultimate cause for all things? If for every
moment of time there is a later moment of time, does it follow that time
endures infinitely? Novices relying on instinct can easily falter in the face
of such traps. Can we find an instrument that systematically and reliably
separates the good deductions from the bad? The means of discerning the
good deductions is so familiar to anyone with a familiarity with modern
logic that it is easy to underestimate the difficulty of the problem.

This problem was all but solved millennia ago with a simple, profound
observation. To illustrate with a modern example, if you know that “All
electrons have spin half,” then you know that “Some electrons have spin
half.” The deductive inference is assured even if you have no idea of what
an electron is and even less of an idea of what “spin half” is. You can make
the inference merely by attending to the form of the sentences and ignor-
ing the material. You start with “All As are B” and know that you are then
authorized to infer that “Some As are B.” You can ignore the details about
electrons and spin; all that matters is the form of the sentences.

That deductive inference can proceed in such a simple and efficient
manner is a marvel. It is the basis of a formal theory of inference, for we
separate out the allowed inferences from the prohibited inferences merely
by looking at their form. Specifying the logic then simply amounts to pro-
viding a list of schemas, such as

All As are B.
Therefore, some As are B.

To use the schemas, we replace A by anything we like and B by anything
else we like and—bingo!—there’s a valid deductive inference.
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This example shows that the success of the schema depends on the
non-contextuality of deductive inference. We can transport this schema
to any domain, substitute anything for A and B, and still be assured that a
valid inference results.

This simple schema is just the beginning. Generations of logicians
have supplied us with a growing repertoire of schemas that embrace many
logical operators. Sentential logic, for instance, employs the connectives
“not,” “or,” and “and.” One of De Morgan’s laws is the schema

» «

Not-(A and B).
Therefore, (not-A or not-B).

Predicate logic includes individuals and their relational properties, and it
allows us to quantity over the individuals. If all things “x” gravitate “G(x),”
then it is false that something exists that does not gravitate. This is an
application of the schema

For all x, G(x).
Therefore, not-(there exists x, not-G(x)).

Modal logic introduces modal operators, like “It is possible that...” and “It
is necessary that....” Tense logic introduces temporal operators, such as “It
is always...” and “It is sometimes....”

2.11.2. Context Dependence of Connectives

In the face of the successes of deductive logic, it may seem that the scope of
formal methods in logic is unlimited. However, lingering and recalcitrant
anomalies limit the scope of the formal approach. Such anomalies mani-
fest in deductive logic when the logical terms used have meanings that are
context dependent. Does “some” just mean “at least one”? Or does it mean
“more than one but not too many”? The answer varies with the context.
Consider this mathematical assertion: “For some x, the quotient 1/x is un-
defined.” Here, “some” can mean “one or more,” and the single case of x
= 0 is the one that makes the sentence true. But consider “some” in the
following context: “Some voters disapprove of the governor’s decision.”
This “some” requires more than one voter, but probably not a majority.
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This difference matters in the formal theory, for not all schemas we may
wish to use for “some” will apply everywhere. Consider

Some As are B.
Therefore, more than one A is B.

The schema applies to the “some” of the voters but not to the “some”
of division by x. The schema is context dependent; it is not universally
applicable.

The humble conditional “If A then B” has proven to be a more notori-
ous locus of this sort of trouble. A natural understanding is that this con-
ditional is true when knowing A authorizes you to know B as well. That
is, the conditional can be a premise in the argument form modus ponens:

If A then B.
A.
Therefore, B

The validity of the inference is secured if the conditional “If... then...”
is the “material conditional.” Accordingly, “If A then B” is the same as
“Either A is false or B is true.” Thus, if we happen to know that A is true,
then we know the first option (“A is false”) fails. So that leaves the second,
“Bis true.” Hence, the material conditional has done the job of allowing us
to proceed from knowing A to knowing B.

All of this may seem quite fine until one realizes that, with this under-
standing, the conditional “If A then B” turns out to be true whenever B is
true, no matter what A says. That is, both statements “If pigs have wings,
then the sky is blue” and “If the grass is green, then the sky is blue” turn
out to be true, material conditionals simply because the sky is blue. The
natural objection is that an “If A then B” statement can only be true if
there is something in the antecedent A that makes the consequence B true.
The objection fails in these last examples. Whether pigs have wings or the
grass is green is irrelevant to the blueness of the sky. But the statement “If
the sunset is red, then the sky is blue” can be a true conditional. For the
sunset is red because the blue light from a setting sun has been scattered
away by the air, and the blue light comprises the blue sky. The blue of the
sky is directly relevant to the red of the sunset.
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Ingenious systems of relevance logic have sought to formalize the
schemas into which “If... then...” properly enters, if understood relevant-
ly. However, deciding just what is relevant to what is a delicate issue that
may embroil us in significant portions of science. The blueness of the sky
results from the Rayleigh scattering of blue light by the air’s nitrogen and
oxygen atoms, which just happen to be the right size for the job. Likewise,
arcane facts in atomic theory are also relevant but perhaps not as directly
relevant as the redness of the sunset. This tells us that relevance is context
dependent and may vary in strength. Indeed, relevance may prove to be so
diffuse that it may not be possible to separate off a small, tight formal logic
of relevance as anything other than a crude gloss of a richer relation that is
inextricably connected with the factual material of the science.

More generally, the success of a universally applicable formal logic
of deduction depends on deductive inference being non-contextual.
Whenever simple connectives fail to have a non-contextual meaning, as in
the examples above, the logic in which they appear ceases to be universal.

2.11.3. Sellars’ and Brandom’s Material Inference

The anomalies for a formal theory of deductive inference above focused
narrowly on logical connectives (“If..., then...”) and operators (“Some...”).
And I have argued that such connectives have a context-dependent mean-
ing that is incompatible with their universal applicability—or at least
they cannot have such applicability if we fix their meanings once and for
all. Wilfrid Sellars and Robert Brandom developed a broader and more
powerful critique of formal approaches to inference in general, not just
deductive inference.

Their concerns were not limited to connectives but to all terms that
appear in inferences. Their core idea is that the meaning of the terms in
propositions is what makes good the inferences in which they correct-
ly appear. Brandom (2000, p. 52) provides an example of the inference
from “Pittsburgh is to the west of Princeton” to “Princeton is to the east
of Pittsburgh.” We recognize this as a good inference, but not for formal
reasons. Rather, it is good because of the contents of the concepts of east
and west. That is, the matter of the inference makes it good.

When I developed the material theory of induction, I was not aware
of Sellars’ and Brandom’s notion of material inference and, in particular,
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Brandom’s use of the term “material inference.” I learned of it through a
lovely note written by Ingo Brigandt (2010), which usefully develops and
applies the notion of material inference.

The difficulty is that my notion of material inference and that of
Sellars and Brandom differ slightly, as far as I can see. This means that
it would have been better at the outset if I had chosen another name. For
Brandom, the above inference is material since it is made good by the con-
cepts invoked in the premises. In my view, it is material since I locate the
warrant for the inference in the background material fact: if something
is east of something else, then the second is west of the first. Here, I leave
open whether this difference is consequential or merely a different entry
point into a collection of views that largely agree.
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Replicability of Experiment’

3.1. Introduction

The general idea of the replicability of experiment is simple and instantly
compelling. If an experimental result has succeeded in revealing a real
process or effect, then that success should be replicated when the experi-
ment is done again, whether it is done by the same experimenter in the
same lab (“repeatability”) or by others, elsewhere, using equivalent pro-
cedures (“reproducibility”). It is, at its base, the same idea that evokes the
near-universal reaction “Do it again!” when a conjurer makes a coin van-
ish. And this time, we will watch more closely.

One readily finds enthusiastic endorsements of the idea in the scientif-
ic literature. The opening sentence of a special section in Science on “Data
Replication and Reproducibility” says, “Replication—the confirmation
of results and conclusions from one study obtained independently in an-
other—is considered the scientific gold standard” (Jasny et al., 2011). An
editorial in Infection and Immunity on “Reproducible Science” begins its
abstract unequivocally: “The reproducibility of an experimental result is a
fundamental assumption in science” (Casadevall and Fang 2010, p. 4972).
There are few if any doubts about the notion. The principal concern is
that replication can be hard to achieve, either because of the difficulty of
replicating pertinent conditions or through a lack of institutional rewards
for the replicating experimenters.

1 Aself-contained adaptation of this chapter has been published as Norton (2015) under a
Creative Commons License: Attribution-Noncommercial-No Derivative Works 4.0 Generic.
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My concern in this chapter is inductive logic. Might replicability pro-
vide a universal schema or principle that figures in a formal logic of induc-
tion, or at least in that portion of the logic that treats experiments? I will
seek to establish in Section 3.2 that a principle of replicability cannot be
given a general formulation that would allow it to serve in a formal logic
of induction. I will argue that attempts to find such a general principle col-
lapse under the weight of mounting complexities arising from the multi-
tude of conditions and outcomes associated with replicability. Rather,
successful inductive inferences associated with replicability should be
understood as materially warranted. We can identify background facts
that authorize the relevant inferences on a case-by-case basis, without the
need for a universal principle. The types of background facts that serve
this function are described in Section 3.3. Once we have identified these
facts, the search for a general principle becomes unnecessary, in so far as
we are interested in finding the warrants of our inferences. Sections 3.4 to
3.7 will develop case studies that show that the import of replication or its
failure can be upheld or denied in all possible combinations. This reduces
the principle of replicability to one that works except when it does not. We
will see at the same time, however, that the successes and failures of the
examples are explicable materially. Conclusions are in Section 3.8.

My goal is not to discourage replication of experiments. On the con-
trary, replication is a powerful way to strengthen the evidential basis of
our hypotheses and theories. This analysis is intended only to impugn the
idea that replication gains its evidential power from some universal in-
ductive principle of replication.

Before proceeding, we need a brief terminological digression: the
terms “repeatability,” “reproducibility,” and “replicability” are often used
loosely and interchangeably. In some contexts, they have been given pre-
cise definitions. Accordingly, repeatability designates a replication of all
conditions as exactly as possible, including the same operators and appar-
atus; reproducibility, for its part, calls for changes of these conditions.” I

2 Inthe narrower context of standardized measurement, the International Organization
for Standardization has decreed (ISO 21748:2010(E), p. 3): “repeatability conditions include: the
same measurement procedure or test procedure; the same operator; the same measuring or test
equipment used under the same condition; the same location; repetition over a short period of
time.” Reproducibility requires only that the measurement reappear under changed conditions.
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will use the terms “replication” and “replicability” to cover both notions.
Most of the general analysis below applies equally to repeatability and
reproducibility.

3.2. Failure of Formal Analysis

What kind of an inductive notion is replicability? If we wish to pursue a
formal analysis, is it possible to state this as a general principle? A good
start might be this:

Successful replication of an experiment is a good indicator of a
veridical experimental outcome.

Failure of replication is a good indicator of a spurious experi-
mental outcome.

This is far from a self-contained principle. Each term needs further ex-
plication. We can start with the notions of veridical and spurious experi-
mental outcomes. They are more straightforward than the others:

A veridical experimental outcome is one that properly
demonstrates the process or effect sought by the
experimental design.

A spurious or artefactual experimental outcome is one that fails
to demonstrate the process or effect sought by the experi-
mental design; it arises from an unintended disruption to
the experimental design.

This is a rich enough characterization for us to proceed, even though
many details are left open.

How close have we come to a universal inductive principle? Do we have
an inductive analog of the universal, formal principles of deductive logic?
In asking this, we should bear in mind what the latter are like. One such

That is (ISO 21748:2010(E), p. 3), “reproducibility conditions|[:] observation conditions where
independent test/measurement results are obtained with the same method on identical test/
measurement items in different test or measurement facilities with different operators using
different equipment.” Similar definitions are found in the National Institute of Standards
and Technology’s Technical Note 1297 (1994, D.1.1.2-3) and in the Compendium of Chemical
Terminology (1997).
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universal deductive principle is the law of the excluded middle. It asserts,
“For any proposition P, either P is true or P is false.” This deductive prin-
ciple is a schema: we can insert any proposition we like for P and recover
a truth, the application of the principle to that proposition. It is self-con-
tained. There are no tacit conditions limiting just which propositions can
be substituted for P; and there is no ambiguity in what is meant by the
truth or falsity attributed to the proposition (or at least there is none be-
yond the usual evasions made by philosophers when they use these terms).

It is quite different with the replicability of experiment characterized
above. The first difficulty is that the characterization includes many no-
tions that require elaboration if the characterization is to rise to the level of
precision of the law of the excluded middle. Just what is “a process or effect
sought by the experimental design”? Just when is a second experiment
replicating an earlier experiment as opposed to being a different experi-
ment that just looks similar? Elaborating these and related questions is
likely to be tedious and unlikely ever to yield a formulation that can stand
without the need of further elucidation.

The second difficulty is more serious. The characterization employs
inductive notions whose explication is unlikely to be achievable by formal
means. It speaks of “good indicators.” This is an inherently vague notion.
In the case of a single successful or failed replication, the strength of the
indication can vary widely. Presumably there is some idea that multiple,
successful replications are better than just one. But how much better are
they? Is there a point of diminishing returns? When there are some suc-
cesses of replication and some failures, how do we trade them off to come
to our final assessment? Somehow the formal analysis will need to specify
in general, abstract terms how all of this accounting is to be effected.

Finally, the most serious problem facing a formal analysis of replic-
ability is that the principle appears to be defeasible in every way possible.
That is, there are cases of successful replication where the replications are
judged to be strong indicators of a veridical outcome; and there are cases
where the success is judged to be epistemically inert. Conversely, there
are cases of failure of replication that are judged to be strong indicators of
a spurious outcome; and there are cases where the failure is judged to be
epistemically inert. Thus, a full statement of the principle must provide
independent criteria for when it applies or when it does not. Without such
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independent criteria, it becomes a sad specter of a principle that applies
except when it does not.

Looking ahead, most of this chapter will be devoted to examples where
all of these combinations of success and failure are realized. The examples
are listed in Table 3.1.

Table 3.1. Examples of all combinations of success and failure of
replicability.

Import of replicability upheld Import of replicability discarded
Successful H. pylori stomach ulcers Intercessionary prayer
replication (result accepted as veridical) (result rejected as spurious)
Failed Cold fusion Miller experiment contradicts
replication (result rejected as spurious; relativity theory

skeptics discount cases of (relativity theory upheld)

successful replication)

The “import of replicability” refers to the standard reading: successful
replication indicates a veridical outcome; failure of replication indicates
a spurious outcome. For the cases in the middle column, the import of
replicability is upheld as expected; for those of the right-hand column, it
is discarded.

The three difficulties outlined above present formidable challenges
to formulating a precise principle of replicability: it must be complete
enough not to need further explication of its central terms; it must replace
the vague inductive term “good indicator” with something that allows
precise accounting for multiple successes and failure; and it must define
independent conditions of applicability flexibly enough to accommodate
the full range of cases where replication or its failure is taken to be epi-
stemically significant or inert.

3.3. A Material Analysis

While a formal account of replicability faces formidable obstacles, a
material analysis easily surmounts them. The hard question of whether
successful replication or its failure is epistemically significant or inert is
answered on a case-by-case basis. The inductive import of each outcome
is determined by the particular facts obtaining in the background of each
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case. They warrant the inductive arguments that proceed from those
outcomes.

Ultimately, each case is unique and requires its own detailed analysis.
However, at a more superficial level, it is possible to identify two general
classes of background facts that serve to license the different inferences
associated with replicability in each case. These facts are not narrowly
associated just with replicability. Rather, they are facts that warrant the
inference from the observed experimental outcome to the process or effect
sought by the experimental design. Or, if they take an inhospitable form,
they may warrant an inference from the observed outcome to the conclu-
sion that it is spurious. These facts are the following:

A. Experimental conditions. The background facts specify the
conditions under which the effect or process of interest
will manifest in a veridical experimental outcome.?

B. Confounding conditions. The background facts specify the
conditions conducive to spurious experimental outcomes.
The conditions simulate a veridical experimental outcome
when the effect or process sought is absent; or they may
interfere sufficiently to produce an unsuccessful outcome
when the effect or process is present.

A familiar illustration of the facts of class A and B arises in randomized
controlled trials. We wish to determine if some treatment—a new drug, for
example—is efficacious. We randomly assign subjects to a test and control
group, both blinded. The test group is given the treatment and the control
group is given a placebo. If the outcome is a statistically significant, bene-
ficial difference between the test and control group, then we infer from it
that the treatment is effective.

The inductive inference to this conclusion is warranted by appropriate
facts in class A and B. In class A, the key fact is that test subjects, not con-
trol subjects, are given the treatment, so a beneficial difference between
them can be due to the treatment. Implicit in this fact is another fact not
commonly made explicit: that there is at least some possibility that the

3 This is sometimes called “construct validity.”
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treatment can bring about the effect. While this sort of fact is not one that
we commonly call into question, it can be crucial. Critics of homeopathy
(such as me) will refuse to accept that a controlled trial of a homeopathic
remedy can demonstrate the remedy’s efficacy, for the remedy contains
no active ingredients by its formulation. Similarly, we shall see below that
skeptics of the healing efficacy of prayer find just this corresponding sort
of fact to be missing.

In class B, we require the facts that preclude a spurious outcome.
Randomization is important here, for it assures us that the only system-
atic difference between the test and control group is the administering of
the treatment so that any ensuing difference between them can only be
due to the treatment. Blinding is also important so that the subjects and
researchers do not know who is in the test or control group. For otherwise,
a statistically significant difference between the two groups might result
from this knowledge itself, through the placebo effect or through the ex-
pectations of the experimenters recording the results.

In short, the facts in class A warrant the inference to the conclusion
that the efficacy of the treatment can be responsible for a positive outcome.
The facts in class B warrant the inference to the conclusion that another
factor cannot be responsible for a positive outcome. We combine the two
to conclude that the efficacy of the treatment is responsible for a positive
outcome.

Now let us return to the issue of replicability. With any experiment,
we cannot be certain whether appropriate facts in class A and B will pre-
vail. Successful replication does not test all of them. Rather, it tests wheth-
er certain unfavorable confounding conditions of class B are present. If
we obtain the same positive outcome when a different operator performs
the experiment, then we know that the first positive outcome was not
due (solely) to some infelicity associated with the first operator. By sys-
tematically replicating the experiment with different operators, different
standards, different materials, different laboratories, and so on, we elim-
inate the possibility of confounding conditions associated with each of the
factors listed. If we test for repeatability in the technical sense—that is,
if we replicate the experiment with all of these factors unchanged—then
we are testing to see whether some random error in the execution of one
experiment might be responsible for a spurious outcome.
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This seems quite straightforward, so how is it that we find prominent
cases in which the normal import of replicability is denied? The reason is
that this import involves the complete inference from the observed out-
come to the effect or process sought. This requires facts in both classes A
and B to support the inference. In some of the disputed cases discussed
below, however, we find that the denial of the import of replicability re-
sults from a presumption of failure of facts in class A, which are not dir-
ectly tested by replication. In one case, however, we will find disagreement
over whether confounding conditions of class B have been appropriately
arranged.

In the following sections, we will see the four cases of Table 3.1 elab-
orated. In the case of intercessionary prayer, we shall see successtful repli-
cation of experiments judged by skeptics to be insufficient to establish the
process sought. Their reasoning is that they do not find the requisite facts
of class A to obtain. In the case of cold fusion, we shall see that establish-
ment skeptics and dissident supporters of cold fusion differ on the import
of the mixed record of successful and failed replication. Their differences
are traceable to differences of opinion on which facts in class A obtain. In
the Miller relativity experiments, however, failure to reproduce an earlier
experiment is judged not to impugn the earlier result since supporters of
the experiment became convinced that Miller had not eliminated con-
founding effects covered by facts in class B.

3.4. H. Pylori Stomach Ulcers: Successful Replication

In 2005, Barry Marshall and Robin Warren won the Nobel Prize in
Physiology or Medicine with a citation that read, “for their discovery of
the bacterium Helicobacter pylori and its role in gastritis and peptic ulcer
disease” (The Nobel Prize, 2005). Prior to their work, it had been assumed
that stomach ulcers were caused by stress and spicy food. The idea that a
bacterium may be involved was discounted. The stomach is highly acidic
and bacteria do not tolerate such environments well.

By taking biopsies from a hundred participant patients, as reported
in their initial letter (Marshall and Warren 1983), they were able to dem-
onstrate an association between the presence of the bacterium H. pylori
and gastritis and ulcers, with 100% association for duodenal ulcers. The
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importance of replication even at this early stage became clear when they
sought to publish a more complete account. Warren recounts the decisive
moment:

We sent our definitive paper to the Lancet in 1984 ([Mar-
shall and Warren, 1984]). Although the editors wanted to
publish, they were unable to find any reviewers who be-
lieved our findings. Our contact with Skirrow became cru-
cial here. We told him of our trouble, and he had our work
repeated in his laboratory, with similar results. He informed
the Lancet and shortly afterwards they published our paper,
unaltered. (2005, pp. 301-02)

Contrary to a persistent myth, the new work was assimilated and rapidly
repeated. As part of an account debunking this myth, Kimball Atwood
reported,

Within a couple of years of the original report, numerous
groups searched for, and most found, the same organism.
Bacteriologists were giddy over the discovery of a new
species. By 1987—virtually overnight, on the timescale of
medical science—reports from all over the world, including
Africa, the Soviet Union, China, Peru, and elsewhere, had
confirmed the finding of this bacterium in association with
gastritis and, to a lesser extent, ulcers. (Atwood 2004, p. 29)

One replication was more of a media stunt than controlled science. To
prove the association, Marshall drank a beaker of H. pylori and subse-
quently succumbed to gastritis.

This is a “textbook” case of the proper functioning of replication and
there is little in it to distinguish formal and material approaches. The ear-
lier reluctance to accept Marshall and Warren’s work is readily explained
materially. As long as it was taken as a background fact that bacteria do
not thrive in the highly acidic environment of the stomach, there were
insufficient background facts to support the facts in class A. Detection
of bacteria could only be through some coincidental contamination. The
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successful inference from the presence of the H. pylori bacteria to the con-
clusion that they cause gastritis and ulcers required acceptance of a new
fact in class A: that bacteria with the capacity to cause gastritis and ulcers
can survive in the stomach. The rapid replication of the outcome in many
laboratories affirmed the requisite fact of class B: that the presence of the
bacteria was not due to some confounding effect peculiar to Marshall and
Warren’s laboratory.

3.5. Cold Fusion: Failed Replication

The episode of controlled fusion is traditionally presented as one where an
avenue of research closed because of failure of replication. Superficially,
this may be a correct description. However, a closer look at the episode re-
veals something more complicated than the application of some principle
of reproducibility. There certainly were many failed attempts at replication
reported. But there were also many successful replications reported. This
has lead to a bifurcation in the community into those who discard the idea
of cold fusion (the establishment view) and those who continue to pursue
it (a dissident minority). No simple inductive principle concerning replic-
ability of experiment can capture the inductive reasoning associated with
this bifurcation. It derives essentially from differences in the background
assumptions of the groups. Talk of replication is really a gloss of more
complicated inferences, as the material theory of induction indicates.

Traditional nuclear power generation derives from the fission—the
splitting apart—of radioactive uranium or plutonium atoms. This fis-
sion is different from the nuclear reactions that power stars like our sun,
which are driven by fusion—the joining together—of atoms of hydrogen
and other light elements to form heavier elements. In both processes, pro-
digious quantities of energy are released. It has long been a goal of the
nuclear power industry to adapt fusion reactions to power generation.
The present terrestrial use of nuclear fusion is limited to the uncontrolled
reactions of hydrogen bombs. The difficulty is that enormously high tem-
peratures are needed to smash the hydrogen atoms together with sufficient
energy to ignite a fusion reaction. Materials at such high temperatures are
difficult to control in a power station and practical, fusion-based nuclear
power generation remains a distant dream.
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In March 1989, chemists Martin Fleischmann and B. Stanley Pons
announced in a press release from the University of Utah that they had
found a way of carrying out fusion reactions on a laboratory bench at
ordinary temperatures. Their experiments did not use hydrogen but
a heavier isotope of hydrogen—deuterium—in the form of deuterium
oxide, also known as “heavy water.” They electrolyzed the heavy water
using palladium electrodes. During a lengthy electrolysis, one of the pal-
ladium electrodes, the cathode, would become saturated with deuterium
and, as a result, the individual deuterium atoms would be driven close
enough together to ignite a nuclear fusion reaction. At least, that is what
they claimed had happened on the basis of the large quantities of heat
produced. These quantities were greater than what could be recovered
from chemical changes, they asserted. In one burst, the released heat had
melted and vaporized part of the electrode, destroying some of the equip-
ment. Then, Steven Jones, working at nearby Brigham Young University,
revealed that he had been working largely independently on a similar cold
fusion project and had experimental results involving not the generation
of heat, but the generation of neutrons, which are a familiar signature of
nuclear reactions.

Whether the researchers succeeded in igniting fusion reactions re-
mains a matter of debate. But they certainly ignited a scientific and popu-
lar frenzy. The principal trigger was the possibility of a new process that
would revolutionize the energy industry. There was a scramble to repli-
cate the cold fusion experiments in the US and internationally. The re-
sulting episode was complex and fascinating on many levels. If affirmed,
cold fusion would be a scientific discovery of the highest order. That lofty
goal was overshadowed by the possibility of new technology for a major
industry and its lucrative patent rights. These financial motivations lent
an uncommon urgency to what was otherwise the realm of arcane spe-
cialists. There were other tensions as well, such as the professional rivalry
of physicists and chemists. Here were physicists failing to tame nuclear
fusion with enormous, expensive devices. Now some chemists succeeded
with a project plotted in one of their kitchens and funded personally. Then
there was a soap-opera quality to the rivalry between the Fleischmann-
Pons and Jones projects. They had planned to coordinate their communi-
cations, but the arrangements had misfired, and Fleischmann and Pons
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took the unusual course of announcing their discovery through a press
release without Jones’ knowledge.

Let us set all these complications aside and focus on the inductive in-
ferences. While there was initially considerable confusion over the induct-
ive import of the experiments, the confusion resolved within a year into
two views, and it has largely remained so bifurcated. The establishment
response was that the experiments failed to demonstrate fusion on the
lab bench and that only modest resources should be assigned to further
research. The minority, dissident view was that a great discovery had been
made and all efforts should be put into developing it.

We find a clear statement of the establishment view in the November
1989 report of the Energy Research Advisory Board to the US Department
of Energy:

The Panel concludes that the experimental results on excess
heat from calorimetric cells reported to date do not present
convincing evidence that useful sources of energy will result
from the phenomena attributed to cold fusion. In addition,
the Panel concludes that experiments reported to date do
not present convincing evidence to associate the reported
anomalous heat with a nuclear process. (ERAB 1989, p. 1)

The Board was reserved in its recommendation for action:

The Panel recommends against the establishment of special
programs or research centers to develop cold fusion. How-
ever, there remain unresolved issues which may have inter-
esting implications. The Panel is, therefore, sympathetic to-
ward modest support for carefully focused and cooperative
experiments within the present funding system. (p. 1)

The dissident community continued its research and, in 2004, was suc-
cessful in pressing the US Department of Energy to reconsider its evalua-
tion. The community supplied a document, “New Physical Effects in Metal
Deuterides,” that was peer reviewed and discussed. It was found that “the
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conclusions reached by the reviewers today are similar to those found in
the 1989 review” (DOE 2004). The bifurcation remained.

Both sides deferred to reproducibility as a guiding standard. The 1989
Advisory Board report began its preamble by noting the failure of reliable
replication:

Ordinarily, new scientific discoveries are claimed to be con-
sistent and reproducible; as a result, if the experiments are
not complicated, the discovery can usually be confirmed
or disproved in a few months. The claims of cold fusion,
however, are unusual in that even the strongest proponents
of cold fusion assert that the experiments, for unknown
reasons, are not consistent and reproducible at the present
time. (ERAB 1989, p. 2)

But mere problems of reproducibility could not be the principal basis for
the solidly negative conclusions reached by the Advisory Board. For their
report documents both successful and failed replications of various types
of experiments aimed at testing cold fusion. For example, in relation to
experiments yielding excess heat, the report’s Table 2.1 listed five experi-
ments that found excess heat and thirteen that did not. While the ratio of
five to thirteen certainly favors the no-heat result, it is hardly sufficient to
dismiss the effect, especially when its reality, if demonstrated, would be of
great utility.

The deeper grounding for the negative report is laid out early in the re-
port (pp. 6-8), where answers are offered to the rhetorical question “Then
why the skepticism?” The first reason is developed only in a few sentences:
many researchers have been unable to replicate the excess heat effect; and
such calorimetric measurements are technically rather difficult. The two
remaining reasons are developed in some detail and amount to conflicts
between the particulars of the positive experiments and the accepted sci-
ence of nuclear reactions. The second reason was chalked up to “the dis-
crepancy between the claims of heat production and the failure to observe
commensurate levels of fusion products, which should be by far the most
sensitive signatures of fusion. The nuclear reactions proposed for cold
fusion involve fusion of two deuterium atoms to produce other atoms.
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Various reactions were possible and they would yield tritium, isotopes of
helium or other products. The quantities of these fusion products detected
did not match the quantities of heat reported. It was as if one burns wood
in a fire. From the heat generated, one can determine how much wood ash
must fall through the grate. The positive experiments were not finding the
right amounts of ash.

The most important discrepancy was in neutron production. The most
likely fusion reactions would produce neutrons and in large quantities.
The report noted,

The initial announcement by Pons and Fleischmann in
March 1989 exhibited the discrepancy between heat and
fusion products in sharp terms. Namely, the level of neu-
trons they claimed to observe was 109 times less than that
required if their stated heat output were due to fusion. (p. 6)

This discrepancy was noted very early by critics and, by itself, was deemed
sufficient for instant dismissal of the claims of cold fusion. Here is how one
popular narrative from 1989 reported the problem:

According to Robert L. McCrory of the University of Roch-
ester’s Laboratory of Laser Energetics, for example, if nucle-
ar fusion was really taking place, then the only way to make
sense of all that heat was to have a trillion neutrons being
emitted each second—enough to kill everyone in the room.

By now the following joke had begun to circulate
around the world’s laboratories:

FIRST SCIENTIST: Have you heard about the dead-gradu-
ate-student problem?

SECOND SCIENTIST: No, what'’s that.

FIRST SCIENTIST: There are no dead graduate students.
(Peat 1989, p. 82)
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The third reason was summarized as “cold fusion should not be possible
based on established theory” (ERAB 1989, p. 6). Deuterium does not
undergo fusion reactions under normal conditions because the electro-
static repulsion of the nuclei prevent its atoms from approaching closer
than about 0.1 nanometers, which is too great a separation for a nuclear
reaction to start. The hope of the cold fusion researchers was that a pal-
ladium electrode could be so densely laden with deuterium that atoms
would approach sufficiently closely. The report, however, dashed these
hopes. The closest approach of deuterium atoms in palladium is just 0.17
nanometers. That is over twice the distance (0.074 nanometers) separat-
ing two deuterium atoms in molecular deuterium, D,. The cold fusion
researchers would be bringing the deuterium atoms closer if they merely
left them in the form of free molecular deuterium.

Supporters of cold fusion also defer to the idea of reproducibility.
Edmund Sturms initiated the discussion of the challenges to cold fusion
with the resounding affirmation:

Replication is the gold standard of reality. If enough people
are able to make an effect work, the consensus of science
and the general public accept the effect as being real and not
error or figment of imagination. (Sturms 2007, p. 49)

He affirmed that replication was successful:

A Myth has formed about cold fusion not being duplicated,
being based on error, and being an example of “pathological
science,” [...] i.e. wishful thinking. None of this description
is correct. The basic claims have been duplicated hundreds
of times and continue to be duplicated by laboratories all
over the world, although success is difficult to achieve. (p. 49)

However, he also allowed that the replication was not uniformly successful:
Replication occurs when other people observe the same ef-

fects using essentially the same conditions. Unfortunately,
in the case of cold fusion, the required conditions are not
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known. Occasionally, when a lucky combination of condi-
tions has been created, the effects are observed. These effects
have been seen many times, as the results listed throughout
the book demonstrate, but not always on command. This
failure of the effects to occur every time they are sought has
beco