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Abstract

Bargaining games have played a prominent role in modeling the evolution of
social conventions. Previous models generally assumed that agents must choose
from a predetermined, finite set of strategy options. Here, I present a new model of
two agents learning in bargaining games in which new strategies must be invented
and reinforced. I use simulations to study the dynamics of the model and to test
the extent to which it leads to outcomes that are fair or efficient. Mean demands
peak a little below the fair solution, with a moderate variation around this. Mean
rewards are a little lower than mean demands. The outcomes are somewhat efficient,
but a significant part of the resource is wasted nonetheless. I investigate several
modifications of the model, by implementing two forms of forgetting, and restricting
the set of strategies that can be invented. One form of forgetting increases the
average fairness and decreases the variation and improves the efficiency, a second
form widens the variation, with little change to the efficiency. I test one restriction
of the possible strategies, which has little overall effect on the fairness and efficiency.

1 Introduction

Bargaining games have played an important role in models of the evolution of social
conventions, particularly with regards to norms around fairness and distributive jus-
tice (see Alexander and Skyrms 1999; Axtell et al. 2000; Binmore 2005,1; O’Connor
2019; Skyrms 2014). In particular, they have been used in analyses of the emergence
of social contracts, and further, to what extent such contracts or conventions will
be efficient or fair towards all agents.

These games represent situations in which agents must decide how to divide
a finite resource. Such situations may arise whenever humans jointly produce or
discover sharable goods, and must allocate who receives what proportion. Each
wants to earn as much as possible, but they cannot collectively claim more than the
resource’s total value.

These models have generally rested on the assumption that there is a predeter-
mined, finite, set of strategy options from which the agents must choose. This fixed
set of strategies is an artificial imposition: in nature, any strategy must be invented,
for example through learning or evolution. This idea of agents inventing new strate-
gies has only recently begun to be explored, in certain game theoretic contexts such
as signaling games (see Alexander et al. 2012; Schreiber 2001; Young 1993). They
have demonstrated that different evolutionary outcomes can arise in such cases,
suggesting the importance of applying invention models to other situations.

Invention can serve a particularly important role in understanding how or why
a social contract or convention might evolve. We cannot suppose that agents begin
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with a cooperative strategy in mind. We might imagine agents beginning in a state
of conflict or war, in which each agent seeks to claim a resource for themselves, from
which cooperative strategies may, or may not, evolve.1. Or we could imagine agents
starting from an entirely neutral position, with no initial strategies at all.

I seek to understand better whether agents can learn or evolve social conventions
naturally in a bargaining situation. Of particular interest are the extent to which
evolved social conventions will be fair or efficient in their allocation of resources.
To this end, it makes sense to relax this assumption that agents must select from
a fixed, finite set of strategies. What is needed is a model of the process of the
evolution of agents interacting in which strategies must be invented, rather than
handed out to agents at the start of the game.

I present a new dynamical model of agents learning in bargaining games in which
new strategies must be invented and reinforced. I consider two starting conditions.
First I consider an initial condition in which agents begin in a state of conflict, only
able to demand the whole value of resource, or none at all, a hypothetical“state of
nature” in which cooperation has not been learned or evolved. Second, I consider
a “neutral” initial condition, in which the agents start with no initial strategies
at all, and all strategies must be invented. Such models should provide a further
step towards understanding whether, and how, agents can learn or evolve social
conventions naturally.

I use simulations to study the dynamics of the model and to test the extent to
which it leads to outcomes that are fair or efficient. On average the players make
demands that peak a little below the fair solution, but with a moderate variation
of outcomes on any particular run. The players’ rewards are on average a little
lower than their demands, with a similar variability. The strategies are somewhat
inefficient, with around 15% of the resource being wasted on average. I investi-
gate several modifications of the model, by implementing three different forms of
forgetting, and restricting the set of strategies that can be invented. One form of
forgetting increases the average fairness and decreases the variation and improves
the efficiency, a second form widens the variation, with little change to the efficiency.
The third increases fairness at the expense of efficiency. I also investigate a method
of restricting the possible strategies, which has little overall effect on the fairness
and efficiency.

In section 2, I provide some background to the model. I outline some impor-
tant results in bargaining games, and explain some basic models of invention and
forgetting in evolutionary contexts. In section 3, I provide a more detailed descrip-
tion and present the results from running the model. In section 4, I propose three
methods by which the agent may also forget strategies as well as invent them. In
section 5, I modify the model to restrict the strategies that can be invented. In
section 6 I adapt the model to a single, finite population, better suited to represent
evolutionary dynamics.

1One could imagine such a model representing traditional dynamical theories of the development of a
social contract from people beginning in a state of nature in the language of evolutionary game theory–
see Skyrms 2014 and Binmore 2005
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2 Background and Literature

2.1 Bargaining Games and Divide-the-Dollar

In a bargaining game, two agents compete over a resource. Each demands some
fraction. The Nash demand game provides a model of bargaining situations in which
two players may each demand any proportion of the resource. If their demands sum
to less than the resource’s total value, each receives their demands. If the demands
exceed the value of the resource, the players receive a fixed low payoff, often set to
zero, representing the failure to come to an agreement.2

More precisely, the agents have access to any agreements in some convex feasi-
bility set, S ⊂ R2. If agents can agree on some choice within the feasibility set, then
they get these corresponding payoffs. Otherwise their payoffs come from a disagree-
ment point, d = (d1, d2), where d1 and d2 are the rewards each player receives in
this case. Divide-the-dollar is a special case of this game, in which the two agents
are identical, with the the same disagreement points, and the same utility functions,
with utilities proportional to the fraction of the resource earned.

Bargaining games have played a pivotal role in studies of distributive justice
(Alexander and Skyrms, 1999; Axtell et al., 2000; Binmore, 2005,1; O’Connor, 2019;
Skyrms, 2014). They are used in explantions of human preferences towards fair out-
comes, as well as the processes by which fairness may or may not arise. Intuitively,
one might think of a “fair solution” for two identical agents as one in which both
agents receive exactly half the reward.3

Evolutionary models of bargaining have led variously led to mostly fair or unfair
outcomes, depending on the modeling assumptions used (see Axtell et al., 2000;
Skyrms, 1994; Young, 1993 and O’Connor, 2019, pages 89-110 for a review). The
fair solution dominates under replicator dynamics with a single, randomly matched
population. An entire population demanding half of a good’s value will always suc-
cessfully coordinate their demands, whereas a population playing any other strate-
gies will sometimes mis-coordinate, and part of the resource will be wasted. As such,
the fair solution has the largest basin of attraction (Skyrms, 1994, 2014).

In contrast to the one population case, if I divide the population into types4,
efficient but unfair outcomes can arise. For example, one type of agent may learn
to always make high demands when playing the second type, who learn to demand
low against the first type. The outcome is efficient because resources are not wasted
when the two types play against each other, yet it is unfair.

2.2 Invention and Learning

The model will be based upon Roth-Erev type learning, and the Hoppe-Polya model
of invention. I study the Roth-Erev model in particular because it provides an

2Note that zero does not have a special meaning here. It simply represents a baseline that the actors
receive if they fail to arrive at a coordinated agreement.

3This will suffice as a meaning of the fair solution in the case of divide-the-dollar. However, one might
consider other ideas of fairness in more complicated scenarios (see Sen, 2009 for a discussion).

4Types, or tags, refer to observable markers with no inherent significance, by which otherwise identical
agents can identify each other. In certain particular contexts, they might be used represent social
categories as class, race, or gender. If agents know which type they are playing against, they may learn
to play different strategies against different types, for example against in-group and out-group members
(O’Connor, 2019).
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especially natural learning dynamic to combine with an invention process. Here,
I briefly review these methods. First I introduce the Polya model. This can be
modified by adding invention, leading to the Hoppe-Polya model, or by adding
differential reinforcement. Models with differential reinforcement include Roth-Erev
learning, and the Schreiber model of evolution for finite populations.

In the unmodified Polya urn model, I represent objects of interest with balls
within an urn, with a finite number of colors, where each color represents a different
category of object. Each round, a ball is drawn from the urn and then returned.
This process is random, with each ball having equal probability of being drawn.
Each time a ball is drawn, a second ball of the same color is also added to the
urn. All colors are treated identically, but colors that have been drawn many times
will accumulate more balls. As a result, the probability of further reinforcement
increases with the proportion of balls of that color. With probability 1, the limiting
probabilities of each color will converge, although they could converge to anything.

The Hoppe-Polya urn model (Hoppe, 1984) can represent “neutral evolution,” in
which there is no selection pressure, or situations of reinforcement learning process
in which there is no distinction worth learning. I modify the Polya model by adding
a process of invention. I add a “mutator” or “invention” ball to the urn. When I
draw the mutator, rather than reinforcing, I add a single ball of a new color to the
game, representing the invention of a new category. The color is randomly generated
from a uniform distribution over an infinite set of available colours. All color choices
are reinforced equally.

Roth and Erev (1995,9) use a model of differential reinforcement to account for
the behavior of subjects in experiments, but without invention. The probability of
choosing an action is proportional to the total accumulated rewards from choosing it
in the past. Schreiber (2001) includes differential reinforcement in a finite population
urn model, to represent evolution in finite populations with interacting genotypes.
Each round, players are selected at random to play a game with payoffs representing
fitness. Strategies are reinforced in proportion to the payoffs from the game.

If we combine Roth-Erev differential reinforcement with a process of invention,
such as that used in the Hoppe-Polya urn, then we have a model capable of invention
and reinforcement. Alexander et al. (2012) apply a model of this sort to represent
agents inventing and reinforcing new signals in the context of sender-receiver games
with reinforcement learning. I will adapt a similar model to the context of bargaining
games (see also Skyrms, 2010).

2.3 Forgetting

Some models of learning and evolution also include a process of “forgetting”, whereby
unsuccessful strategies become rarer, or may go extinct. Forgetting may be realistic
in many contexts. It can represent the death of members of an evolutionary pop-
ulation, or literal forgetting in the case of individuals. I will study versions of my
model both with and without forgetting implemented.

Forgetting may lead to more successful learning outcomes in situations where
there are suboptimal equilibria. Barrett and Zollman (2009) study three different
learning strategies in signaling games, each of which allows the agents to forget.
Significantly, they find that learning rules with forgetting outperform their counter-
parts without forgetting in such games. It does so by allowing agents to forget past
successes that would have driven them to suboptimal equilibria.
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Schreiber (2001) uses the Polya urn to model finite populations of different phe-
notypes (colors). In addition to reinforcement, all balls have a finite probability of
being removed from the urn altogether each turn. As a result, phenotypes that are
not reinforced will eventually become extinct.

Roth and Erev (1995) introduce “forgetting” by applying a discount factor that
reduces the weights of every strategy, each turn, in an urn-type model. Each weight
is multiplied by a factor, (1 − x), for some x ∈ (0, 1). As a strategy is reinforced
more, it will be discounted more, in proporiton to its weight. In effect, this caps the
maximum possible weight of each strategy at some value, above which it will not
grow further.

Alexander et al. (2012) develop models of sender-receiver games, in which two
different forms of forgetting are implemented. In the first, with some specified
probability each round, we pick an urn at random, with an equal probability for
each urn, and remove a colored ball at random, with equal probability for each
color, from that urn. In the second, with some specified probability each round, we
pick an urn at random, then pick a color represented in that urn at random, with an
equal probability for each urn, with an equal probability for each color, and remove
a ball of that specific color.

3 Basic Invention Model Without Forgetting

I study a dynamical model of learning, reinforcement with invention for the the
divide-the-dollar game. I use a method of invention based on the Hoppe-Polya
urn, with Roth-Erev-type differential reinforcement. There are two identical agents,
players 1 and 2, who must share a resource.5 Both have the same utility functions,
with utilities proportional to the quantity of the resource that they win. The players
each have a list of strategies, including a mutator, with corresponding weights. They
reinforce the weights according to the reward that they receive each turn.

More formally, I assign both agents the same utility function, u(r) = r, where
r is the quantity of the resource that they win, with the total value of the resource
set equal to 1. Each turn, t, each player, p ∈ {1, 2}, has an ordered list of strate-
gies, Sp,t = (Mp, sp1, . . . s

p
n), with corresponding weights, W p,t = (wpM , wp,t1 , . . . wp,tn ),

where M is the mutator strategy, spj ∈ [0, 1] refers to player p’s jth strategy of de-

manding some fraction, spj , of the total resource, and wp,tj is the associated weight
at turn t.

Each turn, each player draws a strategy, with probability proportional to its
weight,

P t(spj ) =
wp,tj

wpM +
∑n
i=1 w

p,t
i

.

If the sum of both players’ demands comes to less than or equal 1, then the players
reinforce the strategy they just played by the amount that they demanded. I will
refer to this as a “successful reinforcement”. If the sum of the demands exceeds 1,
then neither player reinforces their strategy. Thus, if strategy spj , with weight wp,tj

5The fact that there are two agents, playing against each other might make the results here resemble
the two population models discussed in section 2.1. Like the two population models, an unfair outcome
could, in principle, be efficient here. The two players learn by always playing against each other.
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is succesfully reinforced at turn t, then at turn t + 1, we have wp,t+1
j = wp,tj + spj ; if

it is not successfully reinforced, then the weights remain unchanged, wp,t+1
j = wp,tj .

For example, suppose at turn t, player 1 chooses strategy s1a = 0.3 with weight
w1,t
a = 1.0 and player 2 chooses strategy s2b = 0.5 with weight w2,t

b = 1.5. Now, these
demands sum to 0.8 < 1.0, so both players successfully reinforce: the new weights
of these strategies will be, w1,t+1

a = 1.3, w2,t+1
b = 2.0. Alternatively, suppose that

at turn t, player 1 chooses strategy s1c = 0.7 with weight w1,t
c = 1.0, and player

2 chooses strategy s2d = 0.4 with weight w2,t
d = 1.4. Now, these demands sum

to 1.1 > 1.0, so the players earn rewards of 0, and the weights are unchanged:
w1,t+1
c = 1.0, w2,t+1

d = 1.4.
Each turn, each player may draw the mutator, with probability,

P t(Mp) =
wpM

wpM +
∑n
i=1 w

p,t
i

.

Then the corresponding player “invents” a new strategy, by drawing from a uniform
distribution over all possible demands in the interval [0, 1].6 Upon inventing a new
strategy, the player adds this to their ordered list of playable strategies and plays this
strategy, reinforcing the weight accordingly. The other player picks their demand and
plays the turn as usual. Thus if, at turn t, player p has the set of n strategies, Sp,t =
(Mp, sp1, . . . s

p
n), with weights W p,t = (wpM , wp,t1 , . . . sp,tn ), and draws the mutator

strategy, selecting strategy spn+1, then the new set of strategies will be Sp,t+1 =

(Mp, sp1, . . . s
p
n, s

p
n+1, ), with weights W p,t = (wpM , wp,t1 , . . . wp,tn+1).

The agents begin with a limited initial collection of strategies: Sp,0 = (M, 0, 1),
W p,0 = (1, 1, 1). That is, the players may demand everything, relinquish everything,
or invent a new strategy. The dynamics will allow us to study agents learning to
negotiate by inventing compromise strategies in which they demand some fraction
of the resource.7

6Of course, the computer algorithm cannot really selected from a continuous interval. The computer
algorithm chooses a double-precision floating-point number, with a 53-bit significand precision, meaning
that there are 253 possible numbers in the given range (IEEE Standard for Floating-Point Arithmetic,
2019). If I run the simulation for 100,000 turns, then at most there will be 100, 002 strategies for each
player (excluding the mutator). So the number of possible strategies is many orders higher than the
maximal number of strategies that could be invented.

However, for a truly continuous distribution in the interval [0, 1], each player would never “invent”
the same strategy twice. By contrast, there would be a greater than zero, albeit tiny, probability for
the computer algorithm to draw the same number twice. In such a situation, the player would have
two identical strategies, possibly with different weights, but which would experience identical selection
pressures. I do not exclude such possibilities from the algorithm: after all, it is conceivable that in nature,
the same mutation could arise independently more than once, or different learners could independently
discover identical strategies more than once.

7This initial collection of strategies might resemble agents who have learnt to seize upon or renounce
a resource, but have not yet learnt to bargain or compromise with others by demanding some fraction.
Such dynamics might be appropriate for studying how the agents move from a situation of conflict
to one characterized by negotiation. This could perhaps be relevant for representing the emergence
of some social contracts, for example. However, such initial strategies may not be appropriate for all
circumstances, so it may be valuable to explore other possible choices of starting strategies. In appendix
A.1, I consider a set of starting strategies, in which the agents start with no strategies at all, except
for the mutator. Such a choice does not make a significant qualitative difference to the results and only
leads to small quantitative differences after 100,000 turns.
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The mutator strategy is not reinforced, so the probability with which the mutator
is selected will decrease as the number of balls in the urn increases. Thus, in this
basic model, as new strategies are invented, or existing strategies are reinforced,
the probability that the mutator is drawn will fall. At the beginning, the rate of
invention will be high, but this rate will gradually drop off.

From this small number of strategies as a starting point, one can see how the
process evolves. As with the number of balls in the Hoppe-Polya urn model, the
limiting number of different strategies for each player will be infinite; one can further
show that the number of times each player will play each strategy diverges. I prove
these claims in appendices A.2 and A.3.

Let us walk through the first few turns of an imagined scenario as an example.
Player 1 and player 2 each start with just the three basic strategies. Suppose that
on turn 1, player 1 draws demand 1 and player 2 draws demand 1. The sum of the
demands exceeds 1, so neither player reinforces. Now, suppose that for turn 2, player
1 draws demand 0 and player 2 draws demand 1. The sum of these demands does
not exceed 1, so both players reinforce: player 2 reinforces that strategy by their
reward of 1: W p=2,t=2 = (1, 1, 2), and is more likely to play it again. However, player
1’s reward is zero, so their weights remain unchanged. In turn 3, let us suppose that
player 1 draws the mutator ball, and selects a new strategy, demand 0.4. Player 2
plays demand 0. These sum to less than 1, so again the players reinforce. Now player
1’s strategies and weights are: Sp=1,t=3 = (M, 0, 1, 0.4), W p=1,t=3 = (1, 1, 1, 0.4).
Player 1’s strategies and weights are: Sp=2,t=3 = (M, 0, 1), W p=2,t=3 = (1, 1, 2).

3.1 Basic Model: Results

I observe the results from 10,000 runs of the simulation. Each run covers 100,000
turns, appropriate for an investigation of the “intermediate dynamics” of this model.
The histograms in figure 1, show certain key results. Shown are histograms of the
average rewards and demands in each run, averaged for both players, and averaged
over all 100,000 turns. These histograms show how much players were demanding
or receiving in reward on average, for each of the 10,000 simulation runs. Likewise, I
show histograms for each run, of the mean demand differences and reward differences
between the two players, averaged over all 100,000 turns. These histograms indicate
how much player 1 was demanding or receiving more or less than player 2 on average,
for each of the 10,000 simulation runs.

The demand and reward histograms histograms peak a little below the fair so-
lution, indicating that in most runs, players demand and receive rewards a little
below one half, on average across all 100,000 turns. However, in many particular
runs, players may make demands, and receive rewards some way above or below
this, on average across all 100,000 turns. The histograms of reward and demand
differences give some indictation of the unfairness between the two players: these
histograms peak around 0, indicating that in many runs, the demands and rewards
are close to equal, averaged over 100,000 turns. However, in many runs one player or
the other systemically demands or receives more than the other, across the 100,000
turns.

Table 1 summarizes further results. Mean outcomes are calculated for each
player by averaging over each turn; averages are then taken over all the simulation
runs. Player mean demands are found to fall within the interal [0.4, 0.6] 49% of the
time, and player mean rewards fall within the interval the interal [0.4, 0.6] 46% of
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the time.
Mean and standard deviation of the player mean demands are calculated as

follows. First, I find the average demands for players 1 and 2 each turn, and then
over all 100,000 turns, for each individual run. Then I take the mean and standard
deviation of the distribution for both players over all 10,000 runs. I calculate the
mean and standard deviation for the player mean rewards, signed differences and
absolute differences analagously. I define the signed and absolute differences in
player demands as follows. Let player 1’s demand in some turn be D1, and let
players 2’s demand be D2. Then the signed difference is given by D1 − D2. The
absolute difference is defined by |D1 −D2|. Once again, I take the average over all
100,000 turns for each individual run, and then calculate the mean and standard
deviation of the distributions of the signed and absolute differences over all 10,000
runs.

The means give an indication of average outcomes, but the standard deviations
inform us how much an individual run might typically deviate from that average.
For example, a mean demand close to 0.5, and a very narrow standard deviation
would suggest that the players typically make demands close to the fair solution.
The signed difference between the two players’ demands and rewards should always
be close to zero, providing a check that the two players are treated identically.
The standard deviation of the signed difference between the two players gives an
indication of how unequal the two players’ demands and rewards are on average.
The absolute value of the difference between the two players’ demands and rewards
gives us a second indication of how unequal the two players’ demands and rewards
are on average, given that the signed difference should be zero on average.

Mean Standard deviation

Demands 0.46 0.13
Rewards 0.42 0.13
Signed demand difference 0.00 0.26
Signed reward difference 0.00 0.25
Absolute demand difference 0.21 0.14
Absolute reward difference 0.20 0.15

Table 1: Results from 10,000 runs of the simulation. Each run covers 100,000
turns. Mean demands and rewards are shown for each player, as well as the signed
and absolute differences in the demands and rewards. Outcomes are averaged for
each player, over 100,000 turns for each run; the means and standard deviations
are then taken for the distributions of both players over all 10,000 runs. PDM

3.2 Basic Model: Analysis

Fair outcomes are favored strongly, but by no means overwhelmingly. Mean de-
mands peak a little below the fair solution of 0.5; however, in a typical run, the
players may vary a some way from this. Mean rewards are a little lower than mean
demands. Many runs result in outcomes quite far from the fair solution. Further-
more, the players are somewhat, but not completely efficient. Even after 100,000
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Figure 1: Results from 10,000 runs of the simulation. Top: frequency of runs
against mean demands and rewards over 100,000 turns. Bottom: frequency of
runs against mean demand and reward differences, between players 1 and 2, over
100,000 turns.

turns, around 1
15 of the resource is wasted on average each turn. Sometimes the

players overshoot, making collective demands that sum to greater than 1; at other
times they undershoot, with demands that sum well below 1. The mean rewards
have a lower peak than the demands due to overshooting in particular.

The distributions of the differences between the rewards and demands reveal
that the two players are symmetric, as expected. The standard deviation and mean
signed difference suggests that in any particular run of the simulation, the players are
close together in their demands, but not wholly balanced in a typical run. Outcomes
are somewhat, but not wholly, fair.
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It seems that certain factors may be favoring fair outcomes, but are not suffi-
ciently strong to guarantee that a wholly fair outcome will result. In the early turns,
players generally start by opting for 0 or 1, but soon invent and deploy new strate-
gies. The rate of mutations is high, and strategies are not yet highly reinforced.
After a large number of turns have taken place, both players generally settle on ei-
ther a single strategy or a cluster of similar strategies (in which the player demands
a similar proportion of the resource each turn). The sum of the two players’ typical
demands are usually a little below 1.

Why does a degree of inequality persist under these dynamics? Luck plays an
important role, especially early on, when strategies have not been highly reinforced,
and when the rate of invention is still high. Suppose that player 1 has a few lucky
successes with a high demand strategy early, let us say demand x, then this strategy
may be highly reinforced. In response to this strategy, player 2 will only positively
reinforce strategies that demand 1 − x or less. Over time the rate of invention
decreases, and both players settle into this unfair outcome.

However, the resultant rewards for both players may be low. Player 2’s low
reward strategies will be reinforced, but by a small amount. As a result, the proba-
bility of choosing the mutator may remain relatively higher than it would otherwise,
so player 2 may also continue to experiment with other strategies for longer. If
player 1’s demands are very high, there is a high chance that the players will over-
shoot in their demands, especially when player 2 is experimenting, resulting in both
players earning no reward. As a result, player 1’s very high demand strategy may
not continue to receive further high rewards, and the player may eventually settle
on a lower demand strategy.

The persistence of unfairness is unsurprising. Given that the model involves two
interacting agents, it is possible (in principle) for the two agents to coordinate on an
unfair equilibrium that is still efficient. For example, player 1 might demand 0.75
almost always, and player 2 might demand 0.25, resulting in an efficient outcome.
This could be compared to the two-type dynamics I explained in section, section 2.1.
Of course, in practice, given that the strategies are drawn from a random, uniform
distribution, the players will almost never perfectly co-ordinate after a finite number
of terms. One should expect some inefficiency to persist. However, with time, agents
might adopt strategies that reduce this inefficiency.

The combination of these factors leads to average demands peaking a little below
the fair division, but with a wide spread of possibilities. Likewise, the two players’
rewards after 100,000 turns sum only to around 0.85 on average, revealing a moderate
degree of inefficiency. A significant proportion of the resource is wasted, granted to
neither player.

4 Invention Model With Forgetting

In section 2.3, I argued that some models of evolution or learning should perhaps
include the possibility of strategies being forgotten, or even going extinct. Further-
more, there is some evidence that forgetting can promote learning in games that have
suboptimal equilibria (Barrett and Zollman, 2009). Let us adapt the three forms of
forgetting, suggested by Alexander et al. (2012) and Roth and Erev (1995). Using
the analogy of balls in urns, first, we might imagine that with some finite probability
each turn, nature picks a ball at random of any color and removes it from the urn.
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Second, we might imagine that with some finite probability each turn, nature picks
a color at random, and removes a ball of that color. That is, the natural process
might reduce the weight of each strategy with equal probability, or in proportion to
the weight assigned to that strategy. Finally, we might imagine a form of forgetting
in which nature simply discounts the weight of every strategy every turn, by some
amount proportional to its weight.

Each method of forgetting takes place, for each player, at the start of each turn.
For the first two, I have some assigned probability of forgetting pf , set equal for both
players. A second parameter, rf , determines the quantity by which the forgetting
reduces a chosen strategy’s weight. I label the two types of forgetting as,

Forgetting A: One of the player’s strategies is chosen at random, with probability
proportional to its weight. The weight assigned to this strategy is reduced by
rf . If the strategy’s weight is already less than rf , then the strategy’s weight
is set to 0.

Forgetting B: One of the player’s strategies is chosen at random, with equal prob-
ability assigned to each strategy. The weight assigned to this strategy is reduced
by rf . If the strategy’s weight is already less than rf , then the strategy’s weight
is set to 0.

The third type of forgetting depends on a single parameter, df ,

Roth-Erev discounting: The weight of each strategy (except for the mutator) for
each agentis multiplied by the discount factor, (1− df ) each turn.

4.1 Forgetting A: Results

I observe the results from 10,000 runs of the simulation of this model, each over
100,000 turns, with forgetting method A implemented, and pf = 0.3 and rf = 1 for
both players. In figure 2, I show the mean demands and rewards for each player,
averaged over all turns, as well as the differences between the average demands
and the average rewards for the two players. I summarize the results, averaged for
the two identical players, in table 2. Player mean demands fall within the interal
[0.4, 0.6] 66% of the time, and player mean rewards also fall within this interval
66% of the time significantly higher than in the no-forgetting case. With forgetting
method A implemented, many more runs lie close to the fair solution, and the results
are more efficient.

4.2 Forgetting A: Analysis

Interestingly, introducing forgetting A changes the distribution shape significantly,
as compared to the case in which no forgetting takes place. Mean demands for
each player are a little higher than in the case of no forgetting, but with a clearly
right-skewed distribution. Mean rewards average significantly higher than the no-
forgetting case, but this distribution is left-skewed, with a long tail. Large differences
between the two players’ rewards or demands are significantly more rare.

Forgetting method A provides a more ruthless evolutionary environment, red in
tooth and claw, for successful strategies especially. Strategies that are reinforced
are also more likely experience some forgetting, in proportional to their weight.
As a result, only strategies that can be reinforced faster than the rate at which
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Figure 2: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with forgetting method A, pf = 0.3, rf = 1 for each player. Top: fre-
quency of runs against mean demands and rewards over 100,000 turns. Bottom:
frequency of runs against mean demand and reward differences, between players
1 and 2, over 100,000 turns.

they are forgotten will continue to survive and flourish. Low demand strategies are
particularly punished: they can rarely reinforce fast enough to overcome the rate of
forgetting. High demand strategies are also punished, but they may survive more
often. These strategies can lead to a high enough rate of reinforcement, as long as
the other player does not also reinforce high demand strategies. This results in the
skewed shape of the distributions seen.

For example, suppose that player 2 has highly reinforced the strategy demand
0.75. Then player 1 will be most rewarded with a strategy of demanding something
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Mean Standard deviation

Demands 0.48 0.09
Rewards 0.47 0.09
Signed demand difference 0.00 0.18
Signed reward difference 0.00 0.18
Absolute demand difference 0.15 0.09
Absolute reward difference 0.15 0.10

Table 2: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with forgetting method A. Mean demands and rewards are shown for each
player, as well as the signed and absolute differences in the demands and rewards.
Average outcomes are calculated for each player, over 100,000 turns for each run;
the means and standard deviations are then taken for the distributions of both
players over all 10,000 runs.

close to 0.25; let us suppose that they begin to reinforce the strategy demand 0.2,
and this becomes their highest weight strategy. However, under forgetting method
A, player 1 is also most likely to forget this strategy: if it is their only strategy, then
they have a pf = 0.3 chance to forget this strategy each turn, reducing it by rf = 1.
In the limit that this were player 1’s only strategy, it would have an expected net
decrease in weight of 0.1 each turn, so the strategy would in fact be slowly forgotten.
Nor should player 2 expect to benefit from this strategy in the long run: if player
2 plays demand 0.75 and player 1 demands greater than 0.3, then the players will
overshoot and neither will receive any reward.

In general, demands of less than pf × rf or greater than 1 − pf × rf cannot
become dominant in the long run, as they will will be forgotten faster than they
are reinforced. We see this effect in play in the shape of the distributions: average
demands are above 0.3 in all runs and below 0.7 in nearly all runs for both players.8

Players are more likely to continue experimenting rather than settling into a
low demand strategy; as a result the rewards for players who keep making high
demands are also lower due to the possibility of overshooting. As a consequence, it
is more likely that players will settle close to the fair distribution. The low-reward
tail (seen in the mean reward, top-right, plot of figure 2, roughly those cases for
which the mean reward . 0.3) represents cases where the players still have not
settled on a single or close cluster of highly reinforced strategies, even after 100,000
turns. However, they do not represent cases where the players settle on very uneven
outcomes: these almost never happen (as seen in the lower two plots of figure 2).
Rather, in such cases, both players are still “experimenting” with a wide variety of
strategies.

One can build an intuition for why the low reward tail persists with a simple

8If we set pf × rf ≥ 0.5, then no strategy will be successful for long. Strategies of demand x, x ≤ 0.5
will be forgotten faster than they are reinforced. Strategies of demand x, x > 0.5 will not fair any better
in the long run, as they require an opposite player demanding less than 1−x, or will otherwise overshoot.
They, too, are forgotten faster than they can be reinforced, on average. Thus, players will continually
invent new strategies, resulting in extremely low average rewards.
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example. Suppose that player 1 forgets the demand 1 strategy in the first few turns,
before they have invented another strategy. Then the only strategy available to
player 1 is to keep playing demand 0. In response, the strategy of player 2 most
likely to get reinforced is demand 1. Once the demand 1 outcome is highly reinforced
for player 2, player 2 are likely to keep playing it. However, now, it will be hard
for player 1 to successfully reinforce any newly invented strategy: any such strategy
will give player 1 a reward of 0 if player 2 keeps playing demand 1. Thus any new
strategies of player 1 will rarely be reinforced. However, player 2 will often also
receive 0 reward, whenever player 1 plays any strategy other than demand 0.

The result is that in a few unlucky cases, a highly inefficient outcome will result,
in which neither player settles on a successful strategy, leading to the low-reward
tails. One can gain more information by studying the results of individual simulation
runs. I show the results for the first 1,000 turns of one such simulation run in
appendix A.4.

4.3 Forgetting B: Results

I observe the results from 10,000 runs of the simulation of this model over 100,000
turns, with forgetting method B implemented, and pf = 0.3 and rf = 1 for both
players. In figure 3, I show the mean demands and rewards for each player, averaged
over all turns, as well as the differences between the average demands and the average
rewards for the two players. I summarize the results, averaged for the two identical
players, in table 3. Player mean demands fall within the interal [0.4, 0.6] 42% of the
time, and player mean rewards also fall within this interval 46% of the time. More
runs result in outcomes far from the fair solution than with forgetting method A or
the no-forgetting case.

Mean Standard deviation

Demands 0.46 0.15
Rewards 0.46 0.16
Signed demand difference 0.00 0.31
Signed reward difference 0.00 0.31
Absolute demand difference 0.26 0.18
Absolute reward difference 0.26 0.18

Table 3: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with forgetting method B. Mean demands and rewards are shown for each
player, as well as the signed and absolute differences in the demands and rewards.
Average outcomes are calculated for each player, over 100,000 turns for each run;
the means and standard deviations are then taken for the distributions of both
players over all 10,000 runs.

4.4 Forgetting B: Analysis

Introducing forgetting B does not change the distribution shape as much as forget-
ting method A. In section 4.2, we saw that Forgetting method A is particularly
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Figure 3: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with forgetting method B. Top: frequency of runs against mean demands
and rewards over 100,000 turns. Bottom: frequency of runs against mean demand
and reward differences, between players 1 and 2, over 100,000 turns.

likely to punish low demand strategies because they cannot keep up with the rate
of forgetting. By contrast, method B is not so likely to punish low demand strate-
gies: even if they are highly reinforced, a player is just as likely to forget any other
strategy.

Averaging over all the simulations, player average demands with forgetting B are
similar to forgetting A, and so are the average rewards. However, the distribution
is wider: the rewards are often further from the fair distribution. The increase in
the standard deviations for the demands and rewards reflects the fact that it will
usually take longer for players to settle on a cluster of successful strategies. The
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result is that typical outcomes are less fair than the no-forgetting case.

4.5 Roth-Erev discounting: Results

I observe the results from 10,000 runs of the simulation of this model over 100,000
turns, with forgetting Roth-Erev discounting implemented, and the same values of
df for both players. I consider values of df of 0.00, 0.005, 0.01, 0.05, 0.10, 0.50, 1.00.
In figure 4, I show the mean demands and rewards for each player for the value of
df = 0.01, averaged over all turns, as well as the differences between the average
demands and the average rewards for the two players. I summarize the results,
averaged for the two identical players, in table 4.

0.00 0.005 0.01 0.05 0.10 0.50

Mean Demands 0.46 0.47 0.47 0.48 0.49 0.49
Mean Rewards 0.46 0.45 0.43 0.23 0.19 0.18
Mean absolute demand difference 0.26 0.19 0.15 0.01 0.00 0.00
Mean absolute reward difference 0.26 0.19 0.14 0.00 0.00 0.00

Table 4: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with Roth-Erev discounting. Average outcomes are calculated for each
player, over 100,000 turns for each run; the means and standard deviations are
then taken for the distributions of both players over all 10,000 runs.

In general, Roth-Erev discounting leads to results that are significantly fairer, yet
less efficient than the no-forgetting case. Furthermore, there is a tradeoff. Higher
values of df result in outcomes that are more fair, but less efficient.

I also observe the results of adding a small error rate in combination with the
Roth-Erev discounting. Each agent has a small probability each turn of selecting
strategies with uniform probability, rather than in proportion to their weights. I
consider three different error probabilities, 0.01, 0.05 and 0.1 for each of the above
values of df . However, the effects of these error rates are small after 100,000 turns,
changing the mean demands by less than 1%, and slightly decreasing the mean
rewards, by less than 5%.

4.6 Roth-Erev discounting: Analysis

As noted by Roth and Erev (1995), this form of discounting will effectively put
an upper limit on the total weight that can be assigned to any particular strategy.
Suppose that some strategy, i, has weight wti at turn t and earns a maximal reward of
rmax, and an expected reward of rµ each turn. The strategy weights are discounted
by a quantity, wti × (1 − df ). Once a strategy is reinforced by sufficiently high
weight, such that wti × (1 − df ) = rmax, it cannot be reinforced further. Moreover,
we should expect the strategy to no longer increase average weight after reaching
wti × (1− df ) = rµ.

Of course, given that I allow infinitely many possible strategies, this does not
prevent the invention of a new strategy, arbitrarily close to the strategy that has
reached its maximum weight. However, the invention of such a strategy will depend
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Figure 4: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with Roth-Erev discounting, df = 0.01. Top: frequency of runs against
mean demands and rewards over 100,000 turns. Bottom: frequency of runs
against mean demand and reward differences, between players 1 and 2, over
100,000 turns.

on random draws of the mutator, which may take some time. The result is that the
total amount of reinforcement is lower, and so the relative probability of drawing the
mutator does not decrease to zero as quickly. The two players will keep inventing
new strategies for longer, even after having discovered a highly effective strategy.
On the one hand, this prolonged experimentation helps the players to find strategies
that are more fair on average, rather than being trapped in a highly unfair strategy
pair. On the other hand, this also leads to a continued, high rate of experimentation,
causing a considerable degree of overshooting to take place for longer. This results
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in lower efficiency when the discounting factor is larger.
When the discounting parameter is very large, highly equal outcomes are ensured,

because both players will continue to experiment with many strategies. However,
the result is very low efficiency. However, even with very small discounting param-
eter values, I attain more equal outcomes than the no forgetting case, with only a
small loss in efficiency. In such cases, the increase in fair arises from the increased
experimentation, allowing players to escape being trapped in unfair strategy pairs.

5 Invention with a Restricted Number of Strategies

In many situations, when deciding how to divide a resource, there may be a limited
number of possible, or most natural, ways to do so. For example, physical currency
has a smallest possible unit. When playing divide the dollar with actual currency,
it is natural that both players will claim an integer number of cents. When deciding
how to divide a pre-sliced pizza, each person might tend to claim an integer number
of slices. There is empirical evidence that economic contracts tend to split goods
according to simple fractions, and that these are resilient under changing circum-
stances. For example this has been observed in the records of sharecropping data
over long time periods (Allen and Lueck, 2009; Young and Burke, 2001).

The model can be modified by restricting the set of strategies that may be
invented. Previously, once the mutator is drawn, the player draws randomly from
a uniform distribution over the interval [0, 1]. I will investigate a case for which
the strategy be chosen from the set { x20 : x ∈ N , 0 ≤ x ≤ 20}. As explained in
section 3, I allow the same strategy to be “invented” anew multiple times. Multiple
copies of the same strategies are reinforced separately. I will refer to this process as
“restricted invention”.

5.1 Restricted Invention: Results

I observe the results from 10,000 runs of the simulation of this model over 100,000
turns, with restricted invention. I show the results with no forgetting in figure 5.
I summarize the findings with all types of forgetting in table 5, with parameters
pf = 0.3, rf = 1, and df = 0.01.

With restricted strategies but no forgetting implemented, player mean demands
fall within the interal [0.4, 0.6] 49% of the time, and player mean rewards fall within
this interval 46% of the time, approximately the same as with no restriction in place.
With forgetting method A implemented, player mean demands fall within the interal
[0.4, 0.6] 65% of the time, and player mean rewards fall within this interval 63% of
the time, slightly lower than with no restriction in place. With forgetting method
B implemented, player mean demands fall within the interal [0.4, 0.6] 43% of the
time, and player mean rewards fall within this interval 41% of the time, similar to
the no-restriction case. All of these differences are fairly small: this restriction of
strategies does not greatly alter the proportion of runs that fall close to the fair
solution.

5.2 Restricted Invention: Analysis

One might expect that the restriction of the strategies in this way that could be
invented would have relatively little effect on the average demands and rewards.
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Mean Standard deviation

No forgetting
Demands 0.47 0.14
Rewards 0.44 0.14
Signed demand difference 0.00 0.27
Signed reward difference 0.00 0.26
Absolute demand difference 0.22 0.16
Absolute reward difference 0.22 0.15

Forgetting A
Demands 0.49 0.10
Rewards 0.48 0.10
Signed demand difference 0.00 0.20
Signed reward difference 0.00 0.19
Absolute demand difference 0.16 0.10
Absolute reward difference 0.16 0.11

Forgetting B
Demands 0.46 0.16
Rewards 0.46 0.16
Signed demand difference 0.00 0.31
Signed reward difference 0.00 0.31
Absolute demand difference 0.26 0.18
Absolute reward difference 0.26 0.18

Roth-Erev discounting
Demands 0.47 0.10
Rewards 0.43 0.10
Signed demand difference 0.00 0.19
Signed reward difference 0.00 0.18
Absolute demand difference 0.19 0.15
Absolute reward difference 0.19 0.15

Table 5: Results from running 10,000 runs of the simulation, for 100,000 turns
each with two methods of forgetting and with no forgetting and possible strategies
restricted to the set { x20 : x ∈ N , 0 ≤ x ≤ 20}. Mean demands and rewards
are shown for each player, as well as the signed and absolute differences in the
demands and rewards. Average outcomes are calculated for each player, over
100,000 turns for each run; the means and standard deviations are then taken for
the distributions of both players over all 10,000 runs.
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Figure 5: Results from running simulation for 100,000 turns. There is no forget-
ting implemented, and invention is restricted to 20 strategies. Top: frequency of
runs against mean demands and rewards over 100,000 turns. Bottom: frequency
of runs against mean demand and reward differences, between players 1 and 2,
over 100,000 turns. The shape of the peaks is discussed in section 5.2.
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After all, the possible strategies are still evenly spaced between 0 and 1, and a
variety of compromises are possible. As expected, the restriction of strategies in
this way does lead to only small changes in the average demands and rewards for
each players, and has little overall effect on the standard deviations. The overall
fairness and efficiency of the results is not significantly affected by this particular
restriction of the strategies.This applies to the no-forgetting case, as well as when
the three methods of forgetting are applied.9

However, the shape of the histograms seen in figures 5 looks strikingly different.
We can discern a pattern of sharp peaks above a smoother shape; this is not due
to a choice in rounding or binning. The sharp peaks correspond to cases where just
one of the restricted strategies is almost wholly dominant. For example, the players
may have quickly settled on an outcome in which demand 0.45 is highly reinforced
for player 1 and demand 0.55 is highly reinforced for player 2. If the players make
these demands almost every turn, so the average demands and rewards will be close
to these values.

6 Single, finite population model

The model can be adapted to represent the dynamics of a large (finite or infinite)
population, from which pairs of agents are randomly selected. Such a model could
better represent evolutionary dynamics in which agents from a population may ran-
domly encounter and compete against each other for resources (as in Schreiber,
2001). One might anticipate that such a model would lead to different dynamics:
for example, strategies that are efficient between just two players, might be expected
to no longer be efficient if pairs of agents are chosen at random. Such results could
also provide a robustness check against evolutionary models of bargaining in finite
population or replicator dynamics, in which the assumption of a fixed, finite set of
strategies is dropped.

I adapt the model to represent a single, finite population. Now, all strategies are
drawn from the same single collection. There is an ordered list of strategies at each
turn (t), St = (M, s1, . . . sn), with corresponding weights, W t = (wtM , wt1, . . . w

t
n),

where M is the mutator strategy. The weights can be thought of as representing
the population with a particular strategy assigned.

Each turn, two strategies are drawn with probability proportional to their weights

(P t(sj) =
wt

j

wt
M+

∑n
i=1 w

t
i
) and played against each other. If the sum of both demands

comes to less than or equal 1, then I reinforce each strategy by the amount that they
demanded. If the sum of the demands exceeds 1, then neither strategy is reinforced.
Thus, if strategy sj , with weight wtj is succesfully reinforced at turn t, then at turn

t + 1, we have wt+1
j = wtj + sj ; if it is not successfully reinforced, then the weights

remain unchanged, wt+1
j = wtj . If the mutator is drawn, a new strategy is added,

drawing from a uniform distribution over all possible demands in the interval [0, 1]

9Naively one might expect this restriction of strategies to have a significant effect under Roth-Erev
discounting. After all, if there are only a finite number of strategies that can be reinforced, a finite
number of times, then one might expect that this would prevent the rate of mutation from ever falling
below some lower bound. However, recall that I allow the same strategy to be re-invented multiple times
in this model. In consequence, the number of strategies rises indefinitely over time (including many
repeated strategies), and so the mutation can continue to fall.
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and then played.

6.1 Single, finite population: Results

I consider the cases with no forgetting, forgetting A and forgetting B and Roth-Erev
discounting, with parameters pf = 0.3, rf = 1, df = 0.01. I run the simulations over
100,000 turns, and I run 10,000 simulations for each set of parameters. Histograms
for the no forgetting case are shown in figure 6. Results are summarized in table 6.

Figure 6: Results from running 10,000 runs of the single population dynamics,
for 100,000 turns, with no forgetting. Shown are the frequency of runs against
mean demands and rewards, over 100,000 turns, averaged over all 10,000 runs.

6.2 Single, finite population: Analysis

The single, finite population dynamics result in much narrower peaks, much closer
to the fair solution than the two-player dynamics. However, the overall effect of
each type of forgetting is qualitatively similar. Forgetting method A narrows the
variation of the outcomes and leads to outcomes closer to the fair solution on average.
Forgetting method B has the opposite effect, widening the variation, and leading to
outcomes slightly further from the fair solution on average. Forgetting method A
increases the efficiency significantly, whereas forgetting method B has little overall
effect on the efficiency. Roth-Erev discounting leads to fairer outcomes than the no-
forgetting case, with very little variation. Like the two-player case, this also leads
to a decrease in the efficiency of the solutions, arising from a continued higher rate
of mutation; however, the decrease in efficiency is much lower. In the single player
case, outcomes juts below the fair solution are likely to be relatively efficient also:
as there is a lower chance of overshooting in such cases.

It is unsurprising that the single population results overall lead to fairer and
more efficient outcomes than the two-player case. In principle, there is only one
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Mean Standard deviation

No forgetting
Demands 0.43 0.05
Rewards 0.43 0.05

Forgetting A
Demands 0.45 0.02
Rewards 0.45 0.02

Forgetting B
Demands 0.40 0.04
Rewards 0.40 0.04

Roth-Ereth discounting
Demands 0.49 0.00
Rewards 0.46 0.00

Table 6: Results from running 10,000 runs of the simulation, for 100,000 turns
each with two methods of forgetting and with no forgetting. Mean demands
and rewards are shown for each player. Average outcomes are calculated over
100,000 turns for each run; the means and standard deviations are then taken for
the distributions over all 10,000 runs.

strict Nash equilibrium possible in the single population case, the fair solution. This
stands in contrast to the two player model discussed previously: here, at least in
principle, there are infinitely many possible mixed equilibria that could be reached.
In this sense, the two player game model is comparable to a two type population
(see Axtell et al. 2000; O’Connor 2019).

Significantly, in this model, strategies of demand x, x > 1
2 never become domi-

nant across the population. Such agents would be guaranteed to always play against
each other, and receive zero rewards, so these strategies can always be defeated by
mutant strategies that demand less than 1

2 . As a result, average demands and aver-
age rewards are very similar. Agents are much less likely to “overshoot”, resulting
in demands that collectively sum to greater than 1.

However, some unfairness continues to persist. Given that the model involved
two interacting agents, it is possible (in principle) for the two agents to coordinate on
an unfair equilibrium that is still efficient. For example, player 1 might demand 0.75
almost always, and player 2 might demand 0.25, resulting in an efficient outcome.
This could be compared to dynamics in two populations, or with two types. This
is no longer the case under the single-population dynamics in the current model. In
effect we have dynamics with just a single type, and agents who demand greater
than 1

2 are likely to be heavily punished, whilst strategies closer to 1
2 lead to higher

overall reinforcements. As a result, it is unsurprising that the results are closer to
the fair solution and more efficient.
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7 Conclusions

I have studied a dynamic model of learning in a resource-division game, in which the
players must invent new strategies and reinforce them. I considered two settings:
two agents learning to interact with one another, and a randomly mixing finite
population. The models here contribute towards answering several related questions.
First, can agents learn or evolve social conventions in resource-division settings in
which strategies must be invented, rather than handed out to agents at the start of
the process? Second, to what extent will the outcomes be efficient in their allocation
of resources, and fair towards all participants in the process?

In all cases, fairer outcomes are favored over unfair outcomes, but the extent of
this varies greatly depending on the assumptions of the model. Inevitably, given the
infinite number of possible strategies, outcomes are rarely wholly efficient, but the
proportion of the resource wasted again depends on the particular assumptions of
the model.

The results here broadly fit the results established by other studies that use
finite sets of strategies, and considering other learning dynamics, such as replicator
dynamics and fictitious play (for example Alexander and Skyrms 1999; O’Connor
2019; Skyrms 2014; Vanderschraaf 2018). Across a range of dynamics, fair solutions
have been found to have the largest basin of attraction, but other equilibria are
possible. As the number of strategies increases, it becomes more and more likely
that the dynamics will not settle on the fairest equilibrium. In this study, with
infinitely many possible equilibria, we see that fairer solutions are favored over unfair
solutions, but in general the dynamics may end some way from the fair solution.
Furthermore, inevitably, the outcome will have some inefficiency, as agents will not
generally settle upon exactly complementary strategies. Thus egalitarianism and
efficiency are favored, but only so far.

Two starting conditions were considered. First is one in which the agents begin in
a state of conflict, and can only demand or relinquish the entire value of a resource.
Second is one in which the agents begin with no strategies at all, and all strategies
must be invented. After a large number of turns, the effects of the starting strategies
are washed out by the dynamics. New strategies are invented and reinforced based
on their degree of success. The results are also only changed slightly by reducing
the possible strategies from infinitely many to a restricted set of twenty strategies.

I studied three methods by which agents could forget strategies, in addition to re-
inforcing them. The forgetting method A leads to outcomes that were typically fairer
and more efficient than the other methods. This method creates a more punishing
evolutionary environment for low demand strategies in particular. The forgetting
method B has a smaller effect. It leads to a wider distribution of demands, typically
further from the fair division, but with a similar efficiency, and with a similar effi-
ciency to the no forgetting case. Finally, Roth-Erev discounting leads to a tradeoff
between fairness and efficiency, depending on the value of the discounting param-
eter. However, in the case of a single finite population this method of discounting
leads to results that are significantly fairer, with only a small loss of efficiency. All
methods of forgetting prolong the time taken for agents to settle on a small cluster
of highly reinforced strategies. The type of forgetting that is most appropriate or
natural is likely to vary from one scenario to another. It is therefore important to
note that each type of forgetting has very different effects in terms of fairness and
efficiency after a finite number of terms, and indeed these effects sometimes pull in

24



opposing directions.
The comparison of the two-player and single-finite population studies mesh with

results in the literature using finite strategies and other learning dynamics (see Ax-
tell et al. 2000; O’Connor 2019). It is well known that evolutionary dynamics for a
population with two or more types are less likely to lead to the fair solution. The
the two-player game is analogous to a two-type population in that many equilibria
are possible in principle. This leads to results that are further from the fair solu-
tion on average. 10 In the one population model, only one strict Nash equilibrium
is possible in principle; however, in the two-player model, there are infinitely many
suboptimal mixed equilibria that could be reached (although in practice, exact equi-
librium strategies are unlikely to evolve). A more detailed study on the relationship
between finite-player models and typing could prove to be a valuable direction for
future research.

The model provides a flexible framework, offering rich opportunities for further
study. Possible variations of the modeling choices provide obvious targets that would
merit further investigation. It would be of great interest to investigate alternative
models of forgetting, such as forms that selectively penalize the least-used strategies.
These might be more realistic for representing certain contexts, such as human
memory. A full dynamical analysis of these models has not been performed; however,
I demonstrate some limiting results. For example, the total number of strategies will
increase indefinitely if forgetting is not implemented, as will the number of times
that each strategy is played. However, there is room for a more systematic analysis
of the models’ long-run effects.

Finally, it should be noted that the work here has explored one one dynamical
model, based upon reinforcement learning. This model provides a natural method for
including the invention of new strategies using the mutator. It would be of interest
to discover whether an analogous model could be developed with other dynamics
such as fictitious play, and if so whether the same general results would apply. This
could prove to be a promising route for future research.

The parameter space has not been thoroughly sampled. For example, it would be
instructive to better understand how the model behaves over larger turn numbers
and a greater variety of starting strategies. Little can be said so far about how
robust or generic the observed properties are within this parameter space. Nor is it
known whether different models of invention would reveal similar results. Finally,
it would be natural to extend this framework to other games, such as asymmetric
Nash demand games. Notably, the two-player model could be naturally extended to
games in which the players are not identical, either through their reward functions
or starting strategies. Likewise, such dynamics could be adapted to a multiplayer
model. These cases present additional avenues for further research.

10However, invention will typically lead to less precise coordination in the two-player model studied
here, as compared to two-type models without invention studied in Axtell et al. 2000. Imperfect co-
ordination can lead to greater inefficiency in the outcomes, as compared to two players with precisely
coordinated strategies. On the other hand, this can also lead to more sustained periods of exploration,
ultimately resulting in more fair (and therefore potentially more efficient outcomes) than in a model
without invention.

25



A Appendix

A.1 Other starting strategies

In the main examples studied, I start the agents with the strategies Sp,0 = (M, 0, 1),
and weights, W p,0 = (1, 1, 1). This might represent a situation in which the agents
have learned how to seize or avoid a reward, but have not learned anything about
how to negotiate or cooperate with other agents. However, one might want to
consider other possible starting points. For example, as a neutral starting point,
one might suppose that the agents begin with no strategies at all, except for the
mutator, Sp,0 = (M), W p,0 = (1). Results are summarized in table 7 (compare to
the results in figure 1 and table 1). The dispersions are marginally wider, suggesting
more unpredictability in the outcomes, although these differences are small. The
mean outcomes are very similar in value. Overall, the effect after 100,000 turns is
extremely small.

Mean over 100,000 turns Standard deviation

Player demands 0.46 0.14
Player rewards 0.43 0.14
Signed Demand difference 0.00 0.27
Signed Reward difference 0.00 0.26
Absolute Demand difference 0.22 0.15
Absolute Reward difference 0.21 0.15

Table 7: Results from running 10,000 runs of the simulation, for 100,000 turns
each, with starting strategies Sp,0 = (M) and weights W p,0 = (1). Shown are
the mean demands and rewards for each player, as well as the difference in the
demands and rewards, defined by the player 1 demand − player 2 demand and
player 1 reward− player 2 reward.

A.2 Proof that the Number of Strategies for Each Player Diverges

Let Fn denote the history of the process up to the nth trial and let ω denote the
entire infinite history of a specific realization of our reinforcement process, i.e., it
represents an infinite sequence of demands and rewards for each player. Let An be
the event that on the nth trial a new strategy is invented (i.e. the mutator ball is
selected). Let

P (An|Fn−1)(ω),

notate the conditional probability that An occurs up to step n − 1, given some
particular realization, ω, of the whole process.

To show that the number of strategies diverges almost surely, one must show
that the mutator ball is drawn infinitely often almost surely for each player. First,
by the martingale generalization of the second Borel–Cantelli lemma (see Durrett
1996, page 249; for a similar application of the lemma, see Alexander et al. 2012),
the following two events are the same, up to a set of probability zero:
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1. The mutator ball is drawn infinitely many times for a player, i.e. the player
has infinitely many strategies.

{ω : ω ∈ AN infinitely often.} (1)

2. The sum, over infinite steps, of the probability of selecting the mutator ball
each turn, is infinite.

{An infinitely often} =
{ ∞∑
n=1

P (An|Fn−1) =∞
}
, (2)

Thus in order to show that the number of strategies diverges almost surely, it
would be sufficient to show that,

P

({
ω :

∞∑
n=1

P (An|Fn−1) =∞
})

= 1. (3)

I will show something stronger, namely that for every history, ω,

∞∑
n=1

P (An|Fn−1) =∞. (4)

Recall that at the first turn, there are three strategies, each with weight 1, one
of which is the mutator. Each turn, either a new strategy is drawn and reinforced,
or an existing strategy is reinforced, with a weight between 0 and 1. Consequently,
each turn the total weight is increased by at most one (at most one ball is added
into the urn), either for a new strategy or an existing strategy. The mutator ball
is not reinforced. So at the nth turn, the following inequality must hold for the
probability of drawing the mutator ball:

P (An|Fn−1) ≥ 1

n + 2
.

Summing over all turns,

∞∑
n=1

P (An|Fn−1) ≥
∞∑
n=1

1

n + 2
=

∞∑
n=3

1

n
=∞,

proving equation (4), and thus condition (1).

A.3 Proof that the Number of Times Each Strategy is Chosen Diverges

Let us use Bn to denote the event that any particular strategy, is chosen on turn
n. Upon being invented for the first time on turn i > 0, every strategy has an
initial weight 1

N+2 , and each time it is chosen, is reinforced by weight w, 0 ≤ w ≤ 1.
Then, by the same reasoning as for the mutator ball, the probability of choosing the
strategy at turn n is given by,

P (Bn|Fn−1) ≥ 1

n + 2
.
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Let us suppose the strategy was first selected at some finite turn number, k.
Then, summing over all turns,

∞∑
n=1

P (Bn|Fn−1) ≥
∞∑
n=k

1

n + 2
=

∞∑
n=k+2

1

n
=∞.

The number of times each strategy initially will be played and reinforced will
diverge.

A.4 Individual Simulation from the “Low Reward Tail” with Forgetting A

Figure 7 shows the results from running the simulation a single time, for the first
1,000 turns, with forgetting method A implemented. The run chosen was a typical
instance of the low-reward tails seen in figure 2. Here, player 1 forgets the demand
1 strategy almost right away, and for the first few turns only plays demand 0. In
consequence, player 2 highly reinforces the strategy demand 1, and keeps playing
this. As a result, player 1 is unable to settle on a successful strategy, and continues
to invent a variety of strategies, usually with little success. Only towards the end
of the 1,000 turns do the players begin to find an alternative settlement, in which
player 2 makes a demand close to 0.6, and player 1 around 0.25, but even this is
inefficient. Over the course of the 1,000 turns, both players received a reward of 0
most of the time.

Figure 7: Heatmaps for player demands and rewards from running the simulation
once for the first 1,000 turns, with forgetting method A, probability 0.3 for each
player, showing the relative densities of dermands and rewards for players 1 and
2. The player demand are divided into 20 bins of width 0.05, and the turns into
100 bins, each of width 10 turns. The color shows the frequencies with which
strategies are selected.
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