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Abstract

A standard formalization of a scientific theory is a system of axioms for that the-
ory in a first-order language (possibly many-sorted; possibly with the membership
primitive ∈). Patrick Suppes (Suppes (1992)) expressed skepticism about whether
there is a “simple or elegant method” for presenting mathematicized scientific theo-
ries in such a standard formalization, because they “assume a great deal of mathe-
matics as part of their substructure”.

The major difficulties amount to these. First, as the theories of interest are
mathematicized, one must specify the underlying applied mathematics base theory,
which the physical axioms live on top of. Second, such theories are typically geo-
metric, concerning quantities or trajectories in space/time: so, one must specify the
underlying physical geometry. Third, the differential equations involved generally
refer to coordinate representations of these physical quantities with respect to some
implicit coordinate chart, not to the original quantities.

These issues may be resolved. Once this is done, constructing standard formal-
izations is not so difficult—at least for the theories where the mathematics has been
worked out rigorously. Here we give what may be claimed to be a simple and ele-
gant means of doing that. This is for mathematicized scientific theories comprising
differential equations for R-valued quantities Q (that is, scalar fields), defined on n
(“spatial” or “temporal”) dimensions, taken to be isomorphic to the usual Euclidean
space Rn. For illustration, I give standard (in a sense, “text-book”) formalizations:
for the simple harmonic oscillator equation in one-dimension and for the Laplace
equation in two dimensions.
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1 Introduction
A major point I want to make is that a simple standard formalization of most
theories in the empirical sciences is not possible. The source of the difficulty
is easy to describe. Almost all systematic scientific theories of any interest
or power assume a great deal of mathematics as part of their substructure.
There is no simple or elegant way to include this mathematical substructure in
a standard formalization that assumes only the apparatus of elementary logic.
(Suppes (1992): 207)

1.1 Differential Equations in Physics

In mathematical physics, one is often dealing with laws expressed as differential equations.
Familiar examples are:

Harmonic oscillator
d2F

dx2
= −ω2F (1)

Heat equation
∂T

∂t
= D

∂2T

∂x2
(2)

Wave equation
(
∇2 − 1

v2
∂2

∂t2

)
U = 0 (3)

Laplace’s equation ∇2U = 0 (4)

Gauss’s Law ∇ •E =
ρ

ε0
. (5)

Schrödinger equation (harmonic oscillator)
(
− ~2

2m
∂xx +

1

2
mω2x2

)
ψ = Eψ (6)

Schrödinger equation (Hydrogen)
(
− ~2

2µ
∇2 − e2

4πε0r

)
ψ = Eψ (7)

In mathematics and the mathematical sciences, these differential equations are fairly
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well-understood.1 This is especially so when the quantities involved are considered to
be functions defined on R or Rn, or perhaps on a differentiable manifold M .2 Suppes,
though, is worrying about how to formalize these laws in the context of mathematical
physics. Indeed, Suppes is expressing a form of scepticism about such. Indeed, this
scepticism is fairly widespread.

My aim here is to show that this scepticism is misplaced. The requirement is to
provide standard formalization, or a machinery to generate standard formalizations, for
a large class of theories in theoretical physics—and not just “toy theories”. This what I
shall do.

One might contrast the differential equations above with very simple, perhaps even
trivial, examples:

∀x(P (x)→ Q(x)) (8)

These are, mathematically speaking, often completely trivial.3 If we conflate the
predicate symbols and corresponding set constants, (8) just says:

P ⊆ Q (9)

However, it’s by no means clear how one might do something similar for, say, (1):

∂xxF (x) + ω2F (x) = 0 (10)

We ignore, at least for a moment, that these differential equations are meant to
“express” physical laws, and focus first on the issue of formalization: i.e., their encoding
into a formalized language. First, note that the equation (1) has an implicit universal
quantifier hiding there. Making it explicit, the equation becomes:4

(∀x : R)
(
∂xxF (x) + ω2F (x) = 0

)
(11)

Second, we see this equation governs a function

F : R→ R, (12)
1There is a vast literature on differential equations in mathematical physics. Classics are Som-

merfeld (1964), Courant & Hilbert (1953/1962) and Jeffreys & Jeffreys (1966), and Arnold (1989).
There are many standard undergraduate level texts, which I would recommend: e.g, Arfken & Weber
(2005) for physicists and Olver (2014) for mathematicians. There exist very good advanced undergrad-
uate/graduate level texts which develop the framework of differential geometry: e.g., Schutz (1980); and
the quite advanced Frankel (2011). Additionally, there are “differential equation solvers” for software
packages (e.g., Matlab, Mathematica and R). I use one of these below in §7.2 to compare an analytic
solution of Laplace’s equation to a numerically integrated one. The interested reader who knows R
programming might consult the book Soetaert et al. (2012).

2Nice explanations of differential geometry may be found in, say, Schutz (1980), Wald (1984), Frankel
(2011), or Robin & Salamon (2012).

3Epistemologically, perhaps not so trivial, I need to add: as, in their own ways, Hume, Popper,
Hempel and Goodman have all pointed out.

4Here I use type/sort notation: (∀x : R). It’s equivalent to (∀x ∈ R).
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assumed to be at least twice differentiable. I.e., F is an element of the function space
C2(R):

F ∈ C2(R) (13)

This means that whatever formalization we should like to provide, it will certainly
require the resources to define and name the function space C2(R) (and many others too,
obviously).5

1.2 Formalizability in L∈

It is clear that there is an L∈-formula ΦC2(R)(F ) expressing (13), and there is an L∈-
formula Φsho(F, ω) expressing the Simple Harmonic Oscillator equation (11):6

ΦC2(R)(F ) F ∈ C2(R) (14)

Φsho(F, ω) (∀x : R)((∂xx + ω2)F = 0) (15)

Below, after we have settled several other important matters, we incorporate these
into the standard formalization.

2 Mixed Functions and Impure Structures

2.1 The Idea of a Number at Every Point

We return to equation (11),

(∀x : R)
(
∂xxF (x) + ω2F (x) = 0

)
(16)

Here we see what I take to be the first conceptual problem. The equation (11) is
assumed to hold for some function, in C2(R):

5On the usual reduction of reals to sets, each real lives inside Vω+1 (which is, more or less, P(N)),
where the Vα’s are “the von Neumann levels” in the hierarchy of pure (well-founded) sets. V0 is defined
to be ∅; and, for any ordinal α, Vα+1 is defined to be P (Vα) (i.e., the power set of Vα); and, if λ is a
limit ordinal (i.e., λ is not equal to α + 1, for any ordinal α), then Vλ is defined to be the union of all
the Vα’s with α < λ. This is the definition of the von Neumann hierarchy. It is analogous to defining
the factorial function by, F (0) = 1 and F (n + 1) = (n + 1)F (n), except that it uses ordinals instead
of numbers and it has a special “infinity clause”. So, since ω is the smallest infinite ordinal, Vω is the
smallest infinite level: it is the set of all well-founded finite pure sets. From the definition, Vω+1 is P (Vω).
There are several ways to encode N into Vω (including a bijective way, called the Ackermann encoding;
computer scientists call it the BIT predicate). And there are ways to encode each real number as a
subset X ⊆ N, and conversely too, and indeed bijectively. So, one can think of Vω+1 as (encoding) the
set of reals. Each function F : R → R lives inside Vω+2; and thus a class of such functions lives inside
Vω+3. Somewhat loosely speaking, the arena of almost all theoretical physics—the function spaces, Lie
groups & algebras, topological spaces, manifolds, distribution spaces, bundles, etc.—is Vω+n, for some
smallish n. This material is explained in a set theory textbook, such as Jech (2002), Potter (2004), or
Enderton (1977).

6A sketch of the construction of the formula ΦC2(R)(F ) is given below, in §5, Example 3.
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F : R→ R. (17)

But there is an important sense in which the law that the physicist is interested
in governs a closely related mixed, physical function, F, which I’ll express somewhat
schematically as follows:

F : point→ R (18)

This is called a mixed function because its domain is the set of non-mathematical
space (or time, or spacetime) points.

If I have, say, a flat sheet of metal and using sensors, I measure the temperature
T (p) at 100 points, p1, . . . , p100, on this sheet, then I have a database approximating the
mixed function T . If the function doesn’t vary too rapidly over distance, a “smoothing”
of this database may give a very accurate approximation of this function.7 This is a
physical function; its domain is physical. Typically, the laws of physics are about mixed
functions—scalar fields, vector fields, tensor fields, wavefunctions, and so on.

If the physical function were not mixed, the relevant law could have no physical, or
even empirical, content! For one cannot derive a physical prediction from some known
property of, let’s say, e−x2 or a Bessel function.8 One needs physical assumptions, relating
some physical function to that Bessel function. The domain of the Bessel function is R.
The domain of the physical function is physical space. If the Bessel function has a
certain property P , then this is a necessity. If a physical function F—e.g., the radiation
energy density at points in spacetime—has a certain property P , this is contingent.
When Penzias and Wilson in 1964 discovered an all-pervading energy density in space
(corresponding to a black body radiation distribution, at temperature around 3K), this
was an empirical discovery.

To simplify the discussion a bit, instead of writing the domain as above, I prefer
to lift the corresponding “sort” point to a set constant, “P” (the set of points), using
comprehension:

∀a(point(a)↔ a ∈ P) (20)

This reformulates (18), giving:

F : P→ R (21)
7In data science, to “smooth” a dataset (usually a time series), one interpolates a smooth curve

between the datapoints, usually not lying on those points, but rather averages. For example, the usual
visualizations for the global temperature time series are smoothed using a moving average. A “low pass
filter” is also a special kind of smoothing function (which eliminates high frequencies). Likewise, image
processing filters.

8A real-valued Bessel function (on the reals) is a function F : R→ R satisfying:

x2
d2F

dx2
+ x

dF

dx
+

(
x2 − α2)F = 0 (19)

for some constant α. Such functions turn up in many applications involving waves.
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The domain set P, as defined by (20), is an “impure set”: its elements are physical
points. Thus, the physical function F assigns a real number F(p) to each space or
temporal point p ∈ P. As I see it, this raises three interesting puzzles. The first, though,
is purely technical:

(T) How are the pure mathematical function F : R → R and the physical field
F : P→ R “connected”?

The answer to this is fairly simple: coordinate representation with respect to a chart
ϕ : P→ Rn. I shall explain it in §4.6.

The second and third puzzles I have in mind are of a more metaphysical nature. They
were raised by Richard Feynman:9

From a mathematical view, there is an electric field vector and a magnetic field
vector at every point in space; that is, there are six numbers associated with
every point. ... But I honestly do not understand the idea of a number at every
point. (Feynman (1970): §20-3: “The Scientific Imagination”).

Feynman went to say that there is no real way of avoiding the assumption here, even
if we can’t “understand” it. For it lies at the basis of the extra-ordinary predictive success
of science. So Feynman is arguing, much in the spirit of Quine and Putnam, that what
Hartry Field calls “Heavy Duty Platonism” is unavoidable.10 A few years later, Hilary
Putnam made a very similar point to Feynman’s:

. . . one wants to say that the Law of Gravitation makes an objective state-
ment about bodies—not just about sense data or meter readings. What is this
statement? It is just that bodies behave in such a way that the quotient of
two numbers associated with the bodies is equal to a third number associated
with the bodies. But how can such a statement have any objective content at
all if numbers and associations (i.e., functions) are alike mere fictions? It is
like trying to maintain that God does not exist and angels do not exist while
maintaining at the same time that it is an objective fact that God has put an
angel in charge of each star and the angels in charge of each binary star were
always created at the same time! If talk of numbers and associations between
masses, etc., and numbers is theology (in the pejorative sense), then the Law
of Universal Gravitation is likewise theology. (Putnam (1975): 74–75)

Putnam’s conclusion is:

. . . mathematics and physics are integrated in such a way that it is not possible
to be a realist with respect to physical theory and a nominalist with respect to
mathematical theory. (Putnam (1975): 74)

9Feynman’s puzzle here corresponds to what Hartry Field calls “Heavy Duty Platonism”. See Field
(1989): 186–200. The rejection of Heavy Duty Platonism plays a central role also in Field’s main anti-
nominalist arguments in Field (1980). See also Knowles (2015) for a recent discussion of this. Knowles
defines it as “the view that physical magnitudes, such as mass and temperature, are cases of physical
objects being related to numbers”.

10I allude here to the Quine-Putnam Indispensability Argument (see Colyvan (2019)). Quine’s views
on this are scattered across several decades (e.g., Quine (1948), Quine (1986)). Putnam’s canonical
formulations are given in Putnam (1971) and Putnam (1975).
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Feynman’s second puzzle is the following:

I find it quite amazing that it is possible to predict what will happen by math-
ematics, which is simply following rules which really have nothing to do with
the original thing. (Feynman (1965): 171.)

I hope that the discussion below in §6, §7 and §8, especially the discussion of applica-
tion conditionals, does indeed help explain the logical machinery of how this occurs. In
mathematics, one can certainly obtain conclusions about some initial object, where the
conclusion seems amazing: for example, if we are given an affine incidence plane (A,L),
satisfying just a few axioms, one may show that each line ` ∈ L is isomorphic to the field
Fn, where n is the number of points on the line (with respect to any two distinct points,
O, I ∈ ` and certain addition and multiplication operations one can define on the line
`).11 This indeed carries over to the infinite case too, and with suitable axioms in place,
each line is isomorphic to the standard real field R.

The situation is entirely analogous in mathematical physics. It is indeed amazing,
but it is quite analogous.

2.2 Impure Structure

A related, secondary point is that, from the perspective of physics, the domain set P of
points is not merely treated as an unstructured impure set. It is an impure set carrying
distinguished physical structure. For example, there are physical geometric relationships
between the points in P, such as the physical 3-place betweenness relation B ⊆ P3 and
physical 4-place equidistance relation ≡ ⊆ P4. These are then “impure relations”. Taken
together, Nature gives us a structured system Pgeom, defined on the point set P:12

Pgeom := (P, B,≡) (22)

One may call such a structured system an “impure structure”. It is a mathematical
structure, to be sure. But it is an impure structure.

2.3 Summary

The ontology of applied mathematics and mathematicized science contains these objects:

Object of applied mathematics Example
Mixed function Q : P→ R Physical field
Mixed function ϕ : P→ Rn Coordinate chart
Impure relation B ⊆ P3 Geometric relation
Impure structure (P, B,≡) Physical system

11For details, see, for example, Bennett (1995), Theorem 1, p. 72.
12I must stress that the claim that the points of space do indeed carry such relations is an approxima-

tion. Yet it holds to an extremely good approximation.
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More generally, the mixed functions appearing in theoretical physics include: mea-
surement scales, coordinate charts and field functions. As we just noted, the structured
system Pgeom has an impure carrier set P and two distinguished impure relations, B
and ≡. When we use mathematicized scientific theories, the mathematical objects that
in some sense “mediate” between “purely non-mathematical” content (if this even makes
sense) and “purely mathematical” content are precisely these mixed and impure mathe-
matical objects.

3 Applied Mathematics Base Theory

3.1 Urelements/atoms

Let us assume we fully recognize the import of all this. Physical quantities and fields
are mixed mathematical functions Q on a subdomain P of non-mathematical urelements
or atoms (here, geometric points) to the reals R (or sometimes to C, or to some vector
space V). Similar considerations tell us that the physical structures or systems involved
are impure: they contain “non-mathematical atoms” (here, geometric points): Pgeom =
(P, B,≡).

It follows that, if we wish to carry out what Suppes is somewhat sceptical about—to
formalize such theories—one needs a specification of the underlying applied mathematics
base theory, which the physical theory lives “on top of”, as it were. Such a formalized
mathematicized physical theory T will then take the generic form

T = Appl.Math + Θ (23)

where Appl.Math is our desired applied mathematics base theory, and where Θ is the
set of physical axioms for the theory in question. We shall need the base theory to prove
that certain (physical) conclusions follow from certain (physical) assumptions. Otherwise,
the phenomenon that Feynman noted, and called “amazing”, becomes impossible.

3.2 Specifying the Applied Mathematics Base Theory

So: what then is Appl.Math?
Loosely speaking, there are four main approaches that one might wish to consider:

Sets Set existence axioms.
Sorts Many-sorted system.
Types Type theory, including arithmetic.
Orders Higher-order logic, including arithmetic.

There are also fairly detailed known interpretability connections between these foun-
dational systems. In general, any of these can be interpreted into a sufficiently rich
set-existence approach, indeed an entirely first-order approach. The set-existence ap-
proach is given in Field (1980), Ketland (1998), Leng (2010) and Ketland (2021). There
is a close relationship between type theories and higher-order logics, and so it is not

8



clear how to classify, say, the approach sketched in Carnap (1928), Carnap (1939), Car-
nap (1956) and Carnap (1966) (it could be understood either way). Roughly speaking,
Carnap’s base theory is a version of Russell & Whitehead’s Principia Mathematica, PM
(Russell & Whitehead (1912)). And higher-order systems can be considered many-sorted
first-order systems. For example, it is routine to treat second-order arithmetic PA2 as a
first-order two-sorted theory : indeed, this is how all mathematical logicians study PA2

and its subsystems (see, e.g., Hájek & Pudlák (2017) or Simpson (2009)).13 The many-
sorted approach is developed in Burgess (1984), Burgess & Rosen (1997), Andréka et al.
(2012) (their base theories are algebraic in character, containing a system of axioms for
real numbers), and incorporated into Ketland (2021) too.

One may compare these choices to the choice of themachine code language or assembly
language, into which high-level programming language is compiled. On a standard com-
puter, one generally programs in something at a moderately high level—such as Python,
or R, or Javascript, or C++ and so on. The compiler or interpreter then automatically
translates this down into underlying C code and Fortran code, and ultimately into
assembly and machine code. This translation is automated and built-in, and is the result
of many decades of work by software designers and developers. In this way, a high-level
instruction, like

plot(db, type = "l") (24)

gets translated into barely intelligible machine code and carried out by the hardware,
producing a nice visual screen plot of your database db. The (high-level) programmer,
or computer user, does not need to worry about how the automated translation works:
that has all been worked out already and is built-in. Somewhat different compilers may
generate quite different machine code renditions for the same high-level instruction: but
this non-uniqueness is harmless.

Similarly, the working mathematician or physicist, does not need to worry about
the machine code translation of, for example, “f is a continuous function from R to R”
when deriving various results and theorems. This notion does indeed have a machine
code—i.e., L∈—translation,

Φcont.fun.reals(f) (25)

And then theorems such as the Intermediate Value Theorem,

(Φcont.fun.reals(f) ∧ a < b ∧ f(a) < 0 ∧ f(b) > 0)→ (∃c ∈ R)(f(c) = 0) (26)
13The reason for this is that when PA2 is treated as a two-sorted first-order theory, one may use

The Completeness Theorem—Henkin’s Completeness Theorem (Henkin (1950))—to transfer between
model-theoretic and proof-theoretic results.
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are provable using the axioms of set theory. The working mathematician or physicist
does not need to advert to such facts. However, when we are examining the meta-theory
of mathematical or scientific theories, we must point out that this is how it works.

So, a formalized scientific theory sits on top of its underlying base mathematical the-
ory. The relevant “high-level” predicates (used by the scientist) are, or could in principle
be, translated into machine code through a long and complicated series of (usually im-
plicit) definitions. This means that the base theory has been extended with all of these
explicit definitions. So that, for any standard mathematical theorem φ, one can write,

Appl.Math ` φ (27)

The situation is somewhat analogous to formalized truth theories, where the base
theory is Peano arithmetic, PA, whose basic “machine code” symbols are 0, S,+,×.14

The axioms are, say, those for compositional truth:

CT1 (∀t, u : ClTerm) [T(equal(t, u))↔ val(t) = val(t))] (28)
CT2 (∀x : Sent) [T(neg(x))↔ ¬T(x)] (29)
CT3 (∀x, y : Sent) [T(and(x, y))↔ T(x) ∧ T(y)] (30)
CT4 (∀x : Form1)(∀v : Var) [T(forall(v, x))↔ ∀n(T(sub(num(n), v, x)))] (31)

where ClTerm(t), equal(t, u), val(t), . . . are defined function symbols and predicates,
ultimately expressible in terms of 0, S,+,×. Without such definitions, we should be
unable to study formalized truth theories.15

Admittedly, there are squabbles amongst workers in these fields as regards which
machine-code level approach is “truly foundational”. I do not wish to participate in
these frog-mouse battles. For it’s clear that detailed interpretability mappings and inter-
translations exist. These largely settle the matter of “fundamentality”, modulo further
understanding of the concepts involved. It is akin to arguing about whether a blue
electric guitar is better than a red electric guitar. So long as you can tune it up, plug it
in and pluck the strings with the amplified notes coming out, it does its job.

There are remaining differences, which come down to implementation features. How
complex are the definitions? How complex are the rules? How natural, or awkward, are
the axioms? What is the basic language and its syntax? These may vary significantly
and, indeed, surprisingly.16

14See, e.g., Halbach (2014) or Cieśliński (2017).
15I have seen it remarked that a formalized theory, in particular for scientific theories, must always be

stated directly in machine code. This is incorrect. The requirement is only that it uses predicates and
function symbols which are definable. Axioms “higher-up”, so to speak, are stated using these defined
predicates. CT1-CT4 above are examples. But there are many others, well-known in mathematical logic.

16One example is the following: Georg Kreisel conjectured that if there is some fixed k such that, for
all n ∈ N, PA proves φ(Sn(0)) in at most k steps, then PA proves ∀xφ(x). Does Kreisel’s Conjecture (KC)
hold for Peano arithmetic? It turns out to be implementation dependent. Parikh (1973) showed that
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But all that said, I shall focus on a foundational system which incorporates set exis-
tence axioms, including atoms (urelements), in a many-sorted logic.17 In Ketland (2021),
such an applied mathematics base theory is specified out in some detail, adopting a com-
bination of the first two listed approaches: a many-sorted set theory with atoms, with
a variable application signature. The slimmed down approach given in Ketland (2021)
has four “basic sorts”, {global, atom, bool, set} and defined the four-sorted (first-order) set
theory with atoms on top of that. Here, it turns out to be convenient to include a few
more basic sorts:

S0 = {global, atom, bool, set, point, nat, real}

It will simplify things if we rewrite these base sorts (types) as follows:

S0 = {G,A,B,S,P,N,R}

Associated with each sort is special set of variables:

Base Sort Variables Range over
G x, y, x1, x2, . . . everything (at first-order level)
A a, a1, a2, . . . atoms
B b,b1,b2, . . . booleans (>,⊥)
S X,Y, Z,X1, X2, . . . sets
P p, p1, p2, . . . points
N n,m, n1, n2, . . . natural numbers
R r, r1, r2, . . . reals

I allow equations between any sort variables. In this way (following Barwise (1975)),
I may explicitly define each sort, using a global variable and a variable for the relevant
sort in S0:

atom(x) := ∃a(a = x) bool(x) := ∃b(b = x)
set(x) := ∃X(X = x) point(x) := ∃p(p = x)
nat(x) := ∃n(n = x) real(x) := ∃r(r = x).

In addition, we impose the following subsort structure (the arrows represent subsort):

KC holds for an implementation called PA∗, where the function symbols +, • are replaced by appropriate
predicates, say, A(x, y, z) and M(x, y, z), with suitable axioms stating existence and uniqueness. The
proof of this is quite difficult. But, cleverly choosing φ(x), it is easy to give a formulation PAφ of PA, in
the same language L(0, S,+, •) and with the same theorems as standard PA, such that KC does not hold.
See Cavagnetto (2009), Proposition 1.2 (we choose φ(x) to be any formula witnessing ω-incompleteness).

17The theories of Russell and Zermelo included atoms (Zermelo (1908), Russell (1903), Russell (1908))
as did Church’s type theory (Church (1940)). Recent examples are: Mendelson (2010) (§4.6.5); Jech
(2002) (p. 250 ff.); Potter (2004). A detailed exposition of many-sorted logic appears in Manzano (1996)
and recent applications to questions concerning theory formalization in Halvorson (2019).
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G = A ∪ B ∪ S

A S B

P N R C

And the following “exclusion structure”

A ∩ B = ∅ = A ∩ S = B ∩ S

An application signature σ over the seven sorts has the form,

σ = {ci}i∈I1 ∪ {Pi}i∈I2 ∪ {Fi}i∈I3 (32)

where ci are primitive constants, Pi are primitive predicates, and Fi are primitive function
symbols, whose sorts are declared with explicit “type declarations” of the form:

c : s (33)
P : s1 ⇒ · · · ⇒ sn ⇒ bool (34)
F : s1 ⇒ · · · ⇒ sn ⇒ sn+1 (35)

where the si are the basic sorts/types. If the type of predicate P is s1 ⇒ · · · ⇒ sn ⇒ bool,
we say it is an n-place predicate. If the type of function symbol F is s1 ⇒ · · · ⇒ sn ⇒
sn+1, we say it is an n-place function symbol. If all the sorts, the si’s, in a type declaration
(except bool) are atom, we say that the symbol is “on atoms” or is “purely atomic”.

I treat identity and membership as global binary predicates:18

= : global⇒ global⇒ bool (36)
∈ : global⇒ global⇒ bool (37)

The extended signature, written σ∈, is obtained by adding the binary membership
predicate ∈. L(σ) is the first-order language over σ, and L(σ∈) is the first-order language
over σ∈.

3.3 Axioms for ZCAσ

Definition 1 (Set theory with atoms over a given signature, ZCAσ). Given a signature
σ, the axioms of ZCAσ in L(σ∈) are:19

18So vi = vj and vi ∈ vj are well-formed primitive formulas irrespective of the sorts of the variables
vi, vj .

19See, e.g., Jech (2002) or Enderton (1977) for a detailed exposition of these axioms.
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Atoms set. ∃X1∀x1(x1 ∈ X1 ↔ atom(x1)). (38)
Extensionality. ∀x1(x1 ∈ X1 ↔ x1 ∈ X2)→ X1 = X2. (39)

Separation. ∃X1∀x1
(
x1 ∈ X1 ↔ (x1 ∈ X2 ∧ φ(x1, . . . ))

)
. (40)

Pairing. ∃X1∀x1
(
x1 ∈ X ↔ (x1 = x2 ∨ x1 = x3)

)
. (41)

Union. ∃X1∀x1
(
x1 ∈ X1 ↔ ∃X2(x1 ∈ X2 ∧X2 ∈ X3)

)
. (42)

Power set. ∃X1∀x1
(
x1 ∈ X1 ↔ ∃X2(x1 = X2 ∧X2 ⊆ X3)

)
. (43)

Infinity. ∃X1

(
∅ ∈ X1 ∧ ∀X2(X2 ∈ X1 → X2 ∪ {X2} ∈ X1)

)
. (44)

Choice. ∅ /∈ X1 → ∃X2(∀X3 ∈ X1)∃x1(X3 ∩X2 = {x1}) (45)

In addition, there are various explicit definitions of required L(σ∈)-formulas (see below),
and a number of “sort axioms” implementing the above sort structure, and the following
two axioms:

(a) nat(x)↔ ∀X(inductive(X)→ x ∈ X) (46)
(b) real(x)↔ R∈(x) (47)

(where the L(σ∈)-formula inductive(X) is defined below, and the L(σ∈)-formula R∈(x)
can be reconstructed from any decent set theory textbook: e.g., by stating that x is a
Dedekind section of rationals).

This corresponds, more or less, to what is called ZCAσ in Ketland (2021), except that
there I included Foundation, which in this context, is unnecessary and Empty Set, but
that is redundant, as it follows from Separation. We assume below that all the usual
notions from core mathematics have been explicitly defined using L(σ∈)-formulas. For
example,

New Formula Explicit Definition
ord.pair(X1, x1, x2) X1 = {{x1}, {x1, x2}}.
prod(X1, X2, X3) ∀x1(x1 ∈ X1 ↔ (ord.pair(x1, x2, x3) ∧ x2 ∈ X2 ∧ x3 ∈ X3)).
X1 = X2 ×X3 prod(X1, X2, X3).
bin.rel(X1, X2) X1 ⊆ X2 ×X2.
inductive(X1) ∅ ∈ X1 ∧ (∀X2 ∈ X1)(X2 ∪ {X2} ∈ X1).
etc.

The additional sort-matching axioms (a) and (b) ensure that the (elements of the)
primitive sorts nat and real, match their explicit definitions in set-theoretical language.
These ensure that, in a (seven-sorted) model M for L(σ∈), the interpretation natM of
the sort nat will be exactly what the model “thinks” the elements of N are (i.e., finite
ordinals), and the interpretation realM of the sort real will be exactly what the model
“thinks” the elements of R are (i.e., Dedekind sections of rationals). Henceforth, I assume
these axioms, along with the sort axioms, are contained in ZCAσ. So, the system ZCAσ
contains the various sort axioms, along with the usual set-existence axioms above, along
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with some implicit collection of explicit definitions of the usual notions of mathematics,
as sketched above, and sort-matching axioms (a) and (b).20

ZCAσ is a powerful mathematical theory which interprets a large amount of core
mathematics. For example, it interprets higher-order logic (HOL) for all finite orders;
it interprets nth-order arithmetic, PAn, for all n. Because ZCAσ is a set theory with
atoms (over application signature σ), it will allow us easily to apply mathematics to
impure mathematical objects—impure sets, relations and structures—and to mixed ob-
jects—mixed relations and functions (e.g., coordinate charts, measurement scales and
various field quantities).

I include the Axiom of Choice (one may omit it if one wishes, to obtain ZAσ). The
degree to which scientifically applicable mathematics and theoretical physics rests on
Choice is, at least at present, difficult to establish.21 Certainly, functional analysis re-
quires versions of Choice and functional analysis is central to parts of theoretical physics.
An example of the use of Choice to prove a result important to theoretical physics is the
Initial Value Problem in General Relativity, with the first standard result being Choquet-
Bruhat & Geroch (1969), who showed that a specification of initial data on a spacelike
hypersurface leads to a unique full solution—a Cauchy maximal development—satisfying
Einstein’s field equations.22 A recent contribution to the question concerning “how much”
Choice is required is Sbierski (2016), where a slightly weaker form of Choice is used in
establishing the Cauchy maximal development results for GR.

4 Physical Geometry

4.1 Euclidean Geometry

The differential equations listed above are fairly well-understood when the quantities
involved are considered to be functions defined on R or Rn. So, the equations, on which
such physical theories are based, are, typically, living on a geometric background which
“modelled” by Rn.23 But this geometric background (in the physical case) is physical ge-
ometry—not simply Rn, say. This means that, in order to provide a proper formalization,
we shall need to somehow incorporate physical geometry, along with required coordinate

20So, what is called “ZCAσ” below is, strictly speaking, a definitional extension of the given axioms.
21An interesting discussion of the mathematical needs of scientifically applicable mathematics is Fe-

ferman (1992), in which Feferman discusses a predicative system W (descended from that set out by
Hermann Weyl in Weyl (1918)) which is proof-theoretically conservative over PA. However, this all
seems besides the central point, which derives from Quine and Putnam: physical quantities, fields, and
so on, are themselves mixed functions and impure structures. It seems irrelevant then whether the set
theory one uses, say, is conservative over PA or not. Even if it is, these physical, mixed quantities exist
(and their values, etc.) and that contradicts nominalism. The realism of Quine and Putnam in question
concerns these physical, mixed quantities.

22See Hawking & Ellis (1973), Ch. 7, especially pp. 249–251; see Wald (1984), Theorem 10.2.2, p.
264.

23Note that, using numerical integration, one may also model geometry on a discrete grid. An example
of this is briefly explained in §7.2, where we look at the analytic solution for Laplace equation in 2
dimensions (with Dirichlet boundary conditions on a unit square) and compare that with the numerical
solution obtained using a software partial differential equation solver.
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charts (which map points to elements of Rn). So, how do we specify, axiomatically, the
physical geometry?

There are a great many approaches to the formalization of Euclidean geometry (and
variants). For our purposes, the most important are the axiomatizations of Euclidean ge-
ometry, both first-order and second-order, associated with David Hilbert (Hilbert (1899)),
Alfred Tarski (Tarski (1959), Tarski & Givant (1999)), Karol Borsuk & Wanda Szmielew
(Borsuk & Szmielew (1960)) and related work. I shall not write out the Tarski axioms
for n-dimensional Euclidean geometry, as there are slight differences accounting for di-
mensionality, and there is a slight peculiarity in the one-dimensional case. Instead, I
refer the reader to the detailed discussion in Tarski & Givant (1999). And for a compre-
hensive survey of axiomatizations of “ordered geometry” based, usually, on “betweenness”
notions, I refer to the reader to the survey Pambuccian (2011).

For our purposes, we are interested in (physical) geometry formulated with primitives:

B(x, y, z) the point y lies inclusively between points x and z.
xy ≡ zu the segment xy has the same length as the segment zu.

and we are interested in the second-order axiomatizations: this means that the theory
includes set variables and quantifiers, ranging over sets of points. Below, I shall call this
(finite) axiom system EG(n) (excluding the comprehension axioms).

Definition 2 (Signature for Euclidean Geometry). The signature

σ = {B,≡}

with type declarations:

B : P⇒ P⇒ P⇒ B (geometric betweenness primitive)
≡ : P⇒ P⇒ P⇒ P⇒ B (geometric congruence/equidistance primitive)

is the Tarskian betweenness-congruence (or betweenness-equidistance) signature for Eu-
clidean geometry. (Below, Definition 8, we call signatures containing B and ≡ “bet-cong
signatures”.)

Given σ = {B,≡}, let L2(σ) be the second-order language over σ.24

Definition 3 (Euclidean Geometry). EG(n) (second-order Euclidean geometry in n di-
mensions) is the theory in L2(σ), whose axioms are Tarski’s axioms (for dimensionality
n), along with the second-order Dedekind Continuity Axiom:

Cont ∃p3∀p1∀p2 (p1 ∈ X1 ∧ p2 ∈ X2 → B(p3, p1, p2))

→ ∃p4∀p1∀p2 (p1 ∈ X1 ∧ p2 ∈ X2 → B(p1, p4, p2))

24To obtain L2(σ), we add second-order variables X(j)
i (i.e., the ith variable for j-place relations),

and atomic formulas X(j)
i (p1, . . . , pj) (and equations X(j)

i = X
(j)
k ), and corresponding second-order

quantifiers. In a clear sense, one can interpret L2(σ) into the full set-theoretic extended language L(σ∈).
For the set-theoretic translation (X

(j)
i (p1, . . . , pj))

◦ of an atomic formula X(j)
i (p1, . . . , pj) is given as:

(p1, . . . , pj) ∈ X(j)
i , using pairing.
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Definition 4. Given σ = {B,≡}, we define (within ZCAσ, using Separation, Extension-
ality and Pairing) the following sets and relations:25

A := {x | ∃a(x = a)} (48)
P := {p ∈ A | ∃x(x = p)} (49)
B := {(a1, a2, a3) ∈ P3 | B(a1, a2, a3)} (50)
≡ := {(a1, a2, a3, a4) ∈ P4 | a1a2 ≡ a3a4)} (51)

Pgeom := (P,B,≡) (52)

These are examples of the enormously useful Comprehension feature of applied math-
ematics. We may then, whenever need be, use the equivalences:

x ∈ A ↔ atom(x) (53)
x ∈ P ↔ point(x) (54)

(x1, x2, x3) ∈ B ↔ B(x1, x2, x3) (55)
(x1, x2, x3, x4) ∈ ≡ ↔ x1x2 ≡ x3x4 (56)

4.2 Models

Definition 5 (Euclidean spaces). Let σ = {B,≡} be the betweenness-congruence sig-
nature for Euclidean geometry. Let M = (D,B,C) be an L2(σ)-structure, with D =
dom(M), B = BM and C = ≡M . Let EG(n) in in L2(σ) be Tarski’s system of second-
order Euclidean geometry, for n dimensions. Then a Euclidean space (of n dimensions)
is a full model

(D,B,C) |=2 EG(n). (57)

(We write “|=2” to emphasize we mean a full model.)

Next, I define the “standard coordinate models” for Euclidean geometry.

Definition 6 (E(n)(F)). Let F = (F, 0, 1,+, •,≤) be a Euclidean ordered field (an ordered
field in which each positive element is a square). The “Cartesian spaces” over F are defined
as follows. We use the notation “x = (x1, . . . , xn)” to mean that x is a tuple of length n,

25I conflate the function symbol B and the set constant B naming its extension; likewise ≡. But this
conflation is harmless, since context always disambiguates.
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where each xi ∈ F . We define:

〈x,y〉Fn :=
∑
i

xi • yi (58)

‖x‖Fn :=
√
〈x,x〉Fn (59)

dFn(x,y) := ‖x− y‖Fn (60)
BFnxyz := (∃λ ∈ [0, 1])(y− x = λ(z− x)) (61)

xy ≡Fn zu := d(x,y) = d(z,u) (62)
En(F) := (Fn, BFn ,≡Fn) (63)

En := En(R) = (Rn, BRn ,≡Rn) (64)

Though I have not given the axioms, it is not difficult to show that:

Lemma 1. En |=2 EG(n).

What is more interesting is that a powerful converse holds:

Theorem 1 (Representation Theorem: Tarski). LetM = (D,B,C) be a L(σ)-structure.
Then M |=2 EG(n) if and only if there is an isomorphism ϕ : M → En.

So, En is the standard coordinate model (over R) for Euclidean geometry. All (full)
models of EG(n) are isomorphic to En. And these isomorphisms are in fact (standard)
coordinate charts on En. They are standard because they respect isomorphism conditions
for betweenness and congruence on Rn. That is, given a model M |=2 EG(n), we have,
for any p1, . . . , p4 ∈ D,

(p1, p2, p3) ∈ B iff (ϕ(p1), ϕ(p2), ϕ(p3)) ∈ BRn (65)
(p1, p2, p3, p4) ∈ C iff (ϕ(p1), ϕ(p2), ϕ(p3), ϕ(p4)) ∈ ≡Rn (66)

4.3 Geometry Axiom

The Representation Theorem 1 for Euclidean geometry can be formalized and proved
inside ZCAσ.26 Nowadays, such a result is called an Internal Representation Theorem.27

For geometry, we have the corresponding:28

Theorem 2. ZCAσ `
[
(∃ϕ : P→ Rn) (Pgeom

ϕ∼= En)

]
↔ EG(n).

Proof. The notion of “satisfaction” can be formalized inside ZCAσ, yielding a disquotation
sentence:

(a) ZCAσ ` Sat2(Pgeom, pEG(n)q)↔ EG(n)

26This is analogous to the fact that one can prove a Representation Theorem for second-order Peano
arithmetic PA2 inside set theory: any (full) model M |= PA2 is isomorphic to (ω,∅, (.)+,+ω, •ω).

27See also Väänänen & Wang (2015); Button & Walsh (2018) (pp. 223–50); Ketland (2021).
28For us, it is important that EG(n) be expressed as a single axiom, and one can do this because the

Continuity Axiom is a single second-order sentence quantifying over sets of points.
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The Tarski Representation Theorem 1 can be formalized inside ZCAσ (using satisfaction):

(b) ZCAσ ` (∀M : Strσ)

(
Sat2(M, pEG(n)q)↔ (∃ϕ : dom(M)→ Rn)(M

ϕ∼= En)

)
where Strσ(x) is a defined predicate, “x is a structure of signature σ”. Now ZCAσ can
certainly prove that Pgeom is a structure satisfying Strσ(x). I.e., it proves Strσ(Pgeom).
And it proves that its domain is P. So, instantiating (b) with the term “Pgeom”:

(c) ZCAσ ` Sat2(Pgeom, pEG(n)q)↔ (∃ϕ : P→ Rn)(Pgeom
ϕ∼= En)

Immediately, applying disquotation (a), we obtain:

(d) ZCAσ `
[
(∃ϕ : P→ Rn)(Pgeom

ϕ∼= En)

]
↔ EG(n)

as claimed.

This says, provably inside ZCAσ, that the (full) models of EG(n) are isomorphic to
the corresponding Cartesian space En, with the isomorphism given by some relevant
coordinate chart. And thus, within ZCAσ + EG(n), we can prove the isomorphism claim.
This corresponds, more or less, to the following comment by John Burgess:

Within ZFU one can define the pure sets as those none of whose elements,
elements of elements, and so on, is an urelement or non-set. . . .WithinG0+ZFU
it can be proved that the system of point surrogates (and sets thereof, and sets
of sets thereof) is isomorphic to the system of points (and sets thereof, and
sets of sets thereof). (Burgess (1988): 461)

4.4 Reformulation

Definition 7. We extend σ = {B,≡} to σ+ = {B,≡, ϕ}, introducing a new function
symbol ϕ, with type/sort:29

ϕ : P⇒ Rn

We define the n-dimensional geometry axiom Geom(n), in L(σ+∈ ) as follows:30

Geom(n) : Pgeom
ϕ∼= En (67)

I will occasionally call this the “Representation Hypothesis” (for geometry).
29Strictly speaking, this is a bit sloppy as I have not defined the product sort Rn. In our setting, with

the given basic sorts, the correct sort of ϕ is P⇒ S; but we add a new axiom (called a codomain axiom
in Ketland (2021)): (∀p ∈ P)(ϕ(p) ∈ Rn).

30One may then regard the symbol “ϕ” as a skolem constant for the existential quantifier in “(∃ϕ :

P→ Rn) (Pgeom
ϕ∼= En)”.
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4.5 Bet-Cong Application Signatures

Definition 8. A bet-cong signature is an application signature of the following form,

σ = {
geometry︷ ︸︸ ︷
B,≡, ϕ,

quantity primitives︷ ︸︸ ︷
Q1, . . . , Qk ,

parameters︷ ︸︸ ︷
ω1, . . . , ωm} (68)

with type/sort declarations:31

B : P⇒ P⇒ P⇒ B (geometric betweenness primitive)
≡ : P⇒ P⇒ P⇒ P⇒ B (geometric congruence primitive)
ϕ : P⇒ Rn (a fixed (global) coordinate chart)
Qi : P⇒ Vi (for i = 1 to k;Vi is usually R or C)

ωi : R (for i = 1 to m)

4.6 Coordinate Representation

The physical laws involved, concerning physical quantities (and fields), are usually ex-
pressed as differential equations referring to coordinate representations of physical quan-
tities (and fields) with respect to some implicit coordinate chart, not the original mixed
quantities/fields which are defined on the physical points of space or time or spacetime.
How is the original field related to its coordinate representation?

In the simplest case (where there is a global coordinate chart), the relationship is
given by an explicit definition,

F := F ◦ ϕ−1, (69)

where

ϕ : P→ R (70)

is a coordinate chart (1-dimensional, in this case). The functions F and F have
different domains, clearly; but the same codomain (R):

R

RP

F

ϕ

F

31Strictly speaking, again, the sort declaration given for Qi is a bit sloppy as I have not defined the
relevant sort V (i.e., elements of some vector space). In our setting, with the given basic sorts, the correct
sort of Qi is P⇒ S; but, for each Qi, we add a new codomain axiom: (∀p ∈ P)(Qi(p) ∈ V), where X ∈ V
is the L∈-formula defining V (e.g., R or C, . . . ).
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Definition 9. Given a bet-cong signature σ, for each quantity primitive function symbol
Qi, with type declaration,

Qi : P⇒ Vi (71)

we introduce a new function symbol Qϕi with type declaration

Qϕi : Rn ⇒ Vi (72)

which is explicitly defined by:

Dfn(Qϕi ) : (∀x : Rn)
(
Qϕi (x) = (Qi ◦ ϕ−1)(x)

)
(73)

Qϕi is called the coordinate representation of Qi wrt ϕ.

5 State Space Axioms and Dynamical Axioms

The remaining aspects concern the far more specific features of the detailed theories
in question. In moderately simple cases, the remainder of constructing a standard for-
malization amount to specifying a “state space axiom” and specifying the “dynamical
axioms”, which will be differential equation(s) governing the quantities involved.

Definition 10 (State Space Axiom). A state space axiom takes the following form:

State : Qϕ ∈ StateSpace (74)

where StateSpace is defined separately.

Example 1. An example of a state space is Ck(Rn) (k ∈ N), or C∞(Rn). 4

Example 2. Another standard example of a state space is L2(Rn). 4

It is clear that such state spaces are definable using rather complicated L∈-formulas.

Example 3. Defining C2(R)
Consider a state space axiom saying

Qϕ ∈ C2(R). (75)

We have defined Qϕ explicitly, given Q and ϕ (by functional composition). So, we
wish to find an L∈ formula expressing:

X ∈ C2(R) (76)

To do this, first, I assume we already defined R. Then I need to explain what it is
for X to be a function with the right domain and codomain: i.e., R; and then I need to
explain what it is for such an X to be continuous and (twice) differentiable.
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(Function) We first require thatX be a function with domain R and codomain
R. That is, X is a set of pairs (r1, r2), where r1, r2 ∈ R, and this
set X is such that if (r1, r2) ∈ X and (r1, r3) ∈ X, then r2 = r3,
and also is such that, for all r ∈ R, there exists r1 ∈ R, such that
(r, r1) ∈ R. X is thus a total function R→ R.
So, whenever r ∈ R, we can write X(r) as the value of X at r:
i.e., the unique r′ ∈ R such that (r, r′) ∈ X.

Next we need to express that X is continuous (at all points r ∈ R).

(Continuous) Suppose we begin by considering a point r ∈ R. Consider any
open interval (a, b) containing the value X(r). We work out the
preimage of (a, b) wrt X. If this preimage is always open in R,
then X is continuous at r, and if this holds for all r, then X is
continuous.

(Differentiable) Next one, in effect, defines a second set, X ′ (of ordered pairs),
which is also a function, and which is the derivative of this function
X. So, fixing a point r, and small positive real ε ∈ R, we work
out X(r + ε) − X(r) divided by ε. In order for X to belong
to C1(R), we need, for any r, the limit, as ε goes to zero, to
exist. If this limit does exist, it defines our new function X ′ (i.e.,
X ′(r) := limε→0

X(r+ε)−X(r)
ε ). We next repeat this for X ′, and

if this limit exists (for all r) we obtain a new function X ′′ (i.e.,
X ′′(r) := limε→0

X′(r+ε)−X′(r)
ε ).

I don’t wish to write out this L∈-formula, which we can call ΦC2(R)(X), expressing thatX
is a twice differentiable function R→ R, in detail, as it would take probably a few hours
to check the gruesome details (and I’d probably make a mistake) and, what is more,
would result in an extremely long formula. This would be akin to rewriting plot(db)
down into Fortran, or even machine code. But it is perfectly clear that such a formula
does indeed exist. As noted above, we are perfectly entitled to use defined predicates in
formalizations, just as mathematical logicians, truth theorists and so on, routinely do.

Finally, note that, since any such function X is a function R → R, it follows that
X ⊆ R×R. So any such function is an element of P(R×R). Then we define the function
space itself by Separation:

C2(R) := {X ∈ P(R× R) | ΦC2(R)(X)} (77)

4

The final part of the jigsaw is to specify the formalization of the relevant differential
equation or dynamical law. I call such a specification a “dynamical axiom”:

Definition 11 (Dynamical Axiom). Assuming a state space F is fixed, a dynamical
axiom takes the following form:

Dyn : D(Qϕ, . . . ) = 0 (78)

where D : F → F is a differential operator on the state space.
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Notice, by the way, how the dynamical law, Dyn, has an explicit ϕ dependence: in
other words, Dyn can be thought of as a formula

Dyn(ϕ, . . . ), (79)

containing ϕ as a variable. Though I shall not go into details, one can explain quite
precisely what is meant by “covariance under a certain class of coordinate transforma-
tions”. It means that one can prove the biconditional:

Dyn(ϕ, . . . )↔ Dyn(ϕ′, . . . ), (80)

for all coordinate charts ϕ,ϕ′ related by the relevant group transformations (in our
case, the Euclidean group relating Cartesian coordinate charts).

Example 4. ∂x is a differential operator on Ck(R) (with k ≥ 1). 4

Example 5. ∂xx + ∂yy is the Laplace differential operator on Ck(R2) (with k ≥ 2). 4

I have simplified the above discussion a little bit, in order to avoid getting drawn into
rather subtle questions about singularities, Green’s functions, distributions and so on,
and instead sticking to cases where the quantities and functions we are interested in are
sufficiently smooth. How to deal with such important cases is, of course, well-understood
mathematically. They are excluded here entirely for reasons of expositional simplicity.

6 Constructing Standard Formalizations: Two Examples

6.1 Assembly

Many conceptually awkward, and philosophically interesting, aspects of constructing
standard formalizations of theories that physicists give as differential equations are lo-
cated in what we’ve discussed above:

(1) The applied mathematics base theory.
(2) The geometric representation hypothesis.
(3) Coordinate representation (definition).

These have been discussed in some depth, and, I believe, settled in Sections 3, 4 and
4.6 above. I next restate some of Suppes’s concerns regarding formalization:

It is a natural thing to talk about theories as linguistic entities, that is, to speak
explicitly of the precisely defined set of sentences of the theory and the like,
when the theories are given what is called standard formalization. Theories
are ordinarily said to have a standard formalization when they are formulated
within first-order logic. Roughly speaking, when a theory assumes more than
first-order logic, it neither natural nor simple to formalize it in this fashion.
For example, if in axiomatizing geometry we want to define lines as certain sets
of points, we must work within a framework that already includes the ideas of
set theory. (Suppes (2002), §1.2, p. 4)
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And indeed that is precisely what we have done above in Sections 3 and 4. Suppes’
passage continues:

To be sure, it is theoretically possible to axiomatize simultaneously geometry
and the relevant portions of set theory, but this is awkward and unduly la-
borious. Theories of a more complicated structure, like quantum mechanics,
classical thermodynamics, or a modern quantitative version of learning theory,
need to use not only general ideas of set theory but also many results con-
cerning the real numbers. Formalization of such theories in first-order logic is
utterly impractical. (Suppes (2002), §1.2, p. 4)

Regarding the first point and second points, we have done precisely this in Section 4.
One of our main results, Theorem 2, is:

ZCAσ `
[
(∃ϕ : P→ Rn) (Pgeom

ϕ∼= En)

]
↔ EG(n) (81)

In my view, this is not “awkward or unduly laborious”. And we shall give several
formalizations below using real numbers. It is simply not true that such formalization is
“utterly impractical”. It is true that it is, in some sense, laborious and requires quite a
bit of interdisciplinary knowledge: concerning axiomatic set theory, axiomatic geometry,
model theory, certain parts of physics and the like.

In addition to (1)–(3) above, we noted:

(4) The state (space) axiom(s).
(5) The dynamical axiom(s).

Once this is all—at least to some moderate degree of clarity—properly identified
and specified, we can next assemble these pieces, and begin to construct examples of
standard formalizations, of the kind Suppes referred to, using ZCAσ as underlying applied
mathematical base theory. And, indeed, this is all first-order.

Our applied mathematics base theory ZCAσ, in the extended signature σ∈, sits in
the background. We fix a bet-cong signature σ (over the system given above of base
sorts/types),

σ = {
geometry︷ ︸︸ ︷
B,≡, ϕ,

quantity primitives︷ ︸︸ ︷
Q1, . . . , Qk ,

parameters︷ ︸︸ ︷
ω1, . . . , ωm} (82)

We then specify the underlying geometric axiom, the state space axiom(s) and the
dynamical axiom(s). Schematically, the standard formalization, in L(σ∈), will then look
like this:

Standard Formalization

Physical axioms Θ := Geom(n) ∧ Dfn(Qϕi ) ∧ State ∧ Dyn
Mathematicized physical theory T := ZCAσ + Θ

(83)
(84)

Here the state space axiom(s) State and the dynamical axiom(s) Dyn are fixed on a
“case by case” basis.

A large class of mathematicized theories from theoretical physics can be given a
standard formalization exactly as above.
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6.2 Example 1: The Simple Harmonic Oscillator

Definition 12. The signature for the Simple Harmonic Oscillator theory is an bet-cong
signature:

σsho = {B,≡, ϕ,Q, ω} (85)

with additional type declarations:

Q : P⇒ R
ω : R

The extended signature is σsho,∈ = σsho ∪ {∈}.

We have a (function symbol for a) single mixed function Q (the quantity that is
“oscillating”) and a (constant for a) single real-valued parameter ω (which fixes its fre-
quency, relative to the scale implicit in ϕ). Recall that in §1.2, we agreed that there is
an L∈-formula expressing the Simple Harmonic Oscillator equation:

Φsho(F, ω) (∀x : R)((∂xx + ω2)F = 0) (86)

But since we know that this is expressible, one may simply write (∀x : R)((∂xx ∧
z2)F = 0) in good conscience, bearing its expressibility in mind. Recall also, from §1.2
and §5 (Example 3), that the State Space Axiom

(Qϕ ∈ C2(R)) (87)

is also expressible as a L∈-formula, and we may also write (Qϕ ∈ C2(R)) in good
conscience, bearing its expressibility in mind.

We may now assemble all this—along with the geometry axiom, the mathematics
base theory and the definition of the coordinate representation—to obtain the standard
formalization:

Definition 13 (Simple Harmonic Oscillator Standard Formalization). To simplify nota-
tion, let σ = σsho and let σ∈ = σsho,∈. We can now define the mathematicized physical
theory Tsho (with ZCAσ as underlying applied mathematics base theory) in L(σ∈) as
follows. The physical axioms in in L(σ∈) are:

Θsho :=

Geom(1)︷ ︸︸ ︷(
Pgeom

ϕ∼= E1

)
∧

Dfn(Qϕ)︷ ︸︸ ︷(
Qϕ = Q ◦ ϕ−1

)
∧

Statesho︷ ︸︸ ︷
(Qϕ ∈ C2(R))∧

Dynsho︷ ︸︸ ︷
(∀x : R)(∂xx ∧ ω2)Qϕ = 0)

(88)

And the overall mathematicized theory is:

Tsho := ZCAσ + Θsho (89)
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In my view, (89) is a “simple and elegant formalization”.32

The formalized theory Tsho in L(σ∈) isolates the physical content of the theory of
the simple harmonic oscillator. It is “standard” because it is first-order (but, of course,
it contains a built-in set theory). Admittedly, all the required definitions—especially to
encode core mathematics inside ZCAσ—have not been explicitly set out. But such work
is standard, well-known and presented in any set theory textbook, like Jech (2002), etc.
For example, Potter (2004), Chapters 5–12 provides a detailed exposition of the required
definitions: pairs, relations, functions, natural numbers, lines, real numbers, structures
and so on.

Given the methods indicated above, it is relatively straightforward to transfer them
to a multitude of other examples. It is true that I have ignored time, because properly
dealing with time introduces certain complexities related to the underlying space-time
geometry. Yet, it is indeed possible to present the basic geometric axioms required for
Galilean spacetime and for Minkowski spacetime, just as was done for Euclidean geometry
above. And one indeed can provide “Representation Hypothesis” axiomatizations, just
as above, for the spacetime case too. For example, for Galilean spacetime (and thus
classical mechanics and field theory), the single axiom needed is:33

(P, B,∼,≡∼) ∼= (R4, BR4 ,∼R4 ,≡∼R4) (90)

I prefer to simply bypass all these complexities for the time being.34

That said, the range of cases—differential equations on Rn assumed to have its Eu-
clidean structure, given by a coordinate chart on space—to which one can apply the
above methods remains extremely large; and, when the above extension is added, I’m
not sure there are any mathematicized theories in theoretical physics to which these
methods don’t apply.

6.3 Example 2: Laplace’s Equation in Two Dimensions

I rerun the construction next, for Laplace’s equation in two dimensions:

Laplace’s equation (2D) (∀x, y : R) (∂xxU + ∂yyU = 0) (91)

Recall again, from §1.2, that we agreed that there is an L∈-formula Φlap,2(U) express-
ing Laplace’s Equation:

Φlap,2(U) (∀x, y : R)((∂xx + ∂yy)U = 0) (92)

And likewise, there is an L∈-formula expressing Uϕ ∈ C2(R2).
32Henceforth I shall suppress reference to explicit definitions such as Dfn(Qϕ): one might consider

them absorbed into a definitional extension of ZCAσ.
33It seems fairly clear that much the same can be done for General Relativity, where the geometric

axiom will be: (P, chart, metric) is a relativistic spacetime.
34As I noted above, I have also deliberately ignored singularities and distributions. There are ways to

handle these, but they introduce orthogonal and, in a sense, “higher-level” complexities not relevant to
the current level of analysis: i.e., geometric structure and point fields on the geometry satisfying some
differential equation.
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Definition 14. The application signature for the Laplace equation (in two dimensions)
is a bet-cong signature:

σlap,2 = {B,≡, ϕ, U} (93)

with additional type declaration, for the physical quantity involved:

U : P⇒ R (94)

As before, we now assemble all this—the mathematics base theory, the geometry
axiom, the definition of the coordinate representation, the state axiom and the dynamical
axiom—to obtain the standard formalization:

Definition 15. The physical axioms for the standard formalization of Laplace’s equation
is the following:

Θlap,2 :=

Geom(2)︷ ︸︸ ︷
(Pgeom

ϕ∼= E2) ∧

Statelap︷ ︸︸ ︷
Uϕ ∈ C2(R2) ∧

Dynlap︷ ︸︸ ︷
(∀x, y : R) ((∂xx + ∂yy)U

ϕ = 0) (95)

And the overall mathematicized theory is then:

Tlap,2 := ZCAσlap,2 + Θlap,2 (96)

Again, in my view, (96) is a simple and elegant formalization.

7 Solution Statements & Boundary Conditions

7.1 Solution Statements

The formalized mathematicized theories given above have the form ZCAσ + Θ, where
Θ is some set of L(σ∈)-sentences expressing the physical content of the theory. Yet,
as everyone who has worked through the standard parts of a theoretical physics degree
knows, once we have gotten the differential equation(s) set down, then the hard work
has only just begun: we must try to find solutions. It is all very well, and not especially
difficult, to define the model class corresponding to a differential equation. But it is
far harder to see what lives inside this model class. The undergraduate physics student
spends several years learning countless tricks and methods to solve differential equations.
My aim here is solely to discuss the meta-theory of this acquired knowledge.

Statements expressing those solutions, or expressing properties of those solutions, may
be thought of as “solution formulas” in L(σ∈) too. What is important from the meta-
theoretic point of view is that there are always mathematical derivations of such formulas
from the assumptions of the theory: i.e., from Θ (usually with boundary conditions
and/or initial value conditions).

Consider a fairly simple result in applied mathematics:35

35This is taught to first-year undergraduates, as how to solve the differential equation (∂xx+k2)F = 0,
though not quite in the way we describe it here!
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Theorem 3. Let σsho be the signature for the formalized theory of the simple harmonic
oscillator and let Θsho be the physical axioms. Then:

ZCAσsho ` Θsho → (∃x1, x2 : R)(∀x3 : R)(Qϕ(x3) = x1 sin(ωx3) + x2 cos(ωx3)).

I’ve expressed this in a very peculiar way, which would no doubt make no sense to a
physicist. But even so, this is what the physicist establishes (or just routinely assumes).
The more conventional way to put this is to say that a solution of the SHO has the form:

Q(x) = A sin(ωx) +B cos(ωx) (97)

An immediate corollary is:

Corollary 1. Tsho ` (∃r1, r2 : R)(∀r : R)(Qϕ(r) = r1 sin(ωr) + r2 cos(ωr)).

I give this example mainly to illustrate the metalogic here. But this result itself is
very simple, and not particularly interesting. A perhaps more interesting example is that
one can rerun our standard formalization technique for the time-independent Schrödinger
equation: essentially an eigenvalue problem:

LΨ = EΨ (98)

For example, we may do this for the quantum simple harmonic oscillator (in one
dimension), or for the hydrogen atom, with the Coulomb potential. In both cases, the
bet-cong signature includes a number of parameters as primitives and the basic quantity
primitive Ψ is a function from points to C, and the state axiom says that Ψϕ ∈ L2(R)
(for the quantum harmonic oscillator) or Ψϕ ∈ L2(R3) (for the electron orbitals).36

I call the corresponding physical axioms Θqho and Θhyd and the overall standard
formalization (i.e., mathematicized theory) Tqho and Thyd.

Theorem 4. The following metatheorems hold:

ZCAσqho ` Θqho →
(

(∃n : N)(Ψ(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mω2x
~ Hn(

√
mω

~
x)

)
(99)

ZCAσqho ` Θqho → ((∃n : N)(E = ~ω(n+ 1/2))) (100)

ZCAσhyd ` Θhyd →
(
E < 0→ (∃n : N+)(E = − me4

2(4πε0)2~2
1

n2
)

)
. (101)

where the functions Hn(x) are the Hermite polynomials, defined as follows (Arfken &
Weber (2005): 430):37

Hn(x) := (−1)nex
2
(∂x)ne−x

2
(102)

36E.g., for the quantum harmonic oscillator, these additional parameters are m, ~, ω, E.
37The first four are: H0(x) = 1; H1(x) = 2x; H2(x) = 4x2 − 2; H3(x) = 8x3 − 12x; . . .
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We have the corollaries:

Corollary 2. Tqho ` (∃n : N) (E = ~ω(n+ 1/2)).

Corollary 3. Thyd ` E < 0→ (∃n : N+)
(
E = − me4

2(4πε0)2~2
1
n2

)
.

Thus, statements expressing the discrete energy spectrum in each case are derivable
theorems of the mathematicized theory, Tqho or Thyd.

7.2 Boundary Conditions

I consider the solution of Laplace’s equation in two dimensions, with Dirichlet boundary
conditions. Recall that we defined the physical axioms Θlap,2 for the Laplace equation in
2-dimensions as follows:

Θlap,2 := Geom(2) ∧ (Uϕ ∈ C2(R2)) ∧ (∀x, y : R)((∂xx + ∂yy)U
ϕ = 0) (103)

Let’s see how we use the standard applied mathematics tricks to solve the Laplace
equation, subject to Dirichlet boundary conditions.38 Suppose that the (coordinate rep-
resentation) Uϕ vanishes along the lines y = 0 (i.e., the x-axis), y = 1 and x = 0 (the
y-axis):

Uϕ(x, 0) = 0 (104)
Uϕ(x, 1) = 0 (105)
Uϕ(0, y) = 0 (106)

Assume Uϕ coincides with some function f(y) along the line x = 1, say:

Uϕ(1, y) = f(y) (107)

We aim to solve

∂xxU
ϕ + ∂yyU

ϕ = 0 (108)

subject to the above Dirichlet boundary conditions on [0, 1]×[0, 1]. We assume separation
of variables:

Uϕ(x, y) = X(x)Y (y) (109)

This yields two simple ODEs, one for X and one for Y .

1

X

d2X

dx2
= k2 (110)

1

Y

d2Y

dy2
= −k2 (111)

38These methods are described in any textbook on differential equations. See, for example, Arfken &
Weber (2005), Ch. 9, §9.4 (p. 554), for explanation of separation of variables.
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By imposing three of the boundary conditions and using linearity, a general solution
takes the form of a superposition:

Uϕ(x, y) =
∞∑
n=1

An sinh(nπx) sin(nπy) (112)

The remaining boundary condition is: U(1, y) = f(y). Hence

Uϕ(1, y) =
∞∑
n=1

An sinh(nπ) sin(nπy) = f(y) (113)

We should like to solve this for the coefficientsAn. To do this, we use the orthogonality
of the functions sin(nπy) over the interval [0, 1] (see Arfken & Weber (2005), p. 884). In
our case, this is: ∫ 1

0
sin(nπy) sin(mπy)dy =

{
1
2δn,m for m 6= 0

0 for m = 0
(114)

This implies:

An =
2

sinh(nπ)

∫ 1

0
f(y) sin(nπy)dy (115)

Let us now set the specific boundary function (on the line x = 0):

f(y) = sin(πy) (116)

we see the only coefficient which is non-zero is A1. So:

Uϕ(x, y) =
1

sinh(π)
sinh(πx) sin(πy) (117)

It is clear that this mathematical reasoning could, in principle, be formalized.39 Let
us introduce a statement expressing the Dirichlet boundary conditions for Uϕ:

BC := ∀x(Uϕ(x, 0) = 0∧Uϕ(x, 1) = 0)∧∀y(Uϕ(0, y) = 0∧Uϕ(1, y) = sin(πy)) (118)

By the reasoning above, we have derived the conclusion:(
Θlap,2 ∧ BC

)
→ (∀x, y : R)

(
Uϕ(x, y) =

1

sinh(π)
sinh(πx) sin(πy)

)
(119)

And since we have derived it, in semi-formal background mathematics:
39Though it is clear that this is so, it is certainly not easily so—I do not volunteer to specify every

detail and lemma. One could, in principle, formalize all this in a theorem-proving assistant like Isabelle,
Lean and so on. But it would be something like a year-long MSc research project for a mathematics or
computer science student.
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Theorem 5. Formalizing the reasoning above inside the applied mathematics base the-
ory, we have:

ZCAσ `
(
Θlap,2 ∧ BC

)
→ (∀x, y : R)

(
Uϕ(x, y) =

1

sinh(π)
sinh(πx) sin(πy)

)
(120)

The conditional (119) is a theorem of your favourite foundational system for applied
mathematics.40

7.3 Numerical Integration

Above, we showed how to derive the analytic solution (117) for Laplace’s equation on R2

with Dirichlet boundary conditions defined on [0, 1] × [0, 1]. We have noted that (119)
is derivable from the axioms Θlap,2 ∧BC, describing the field satisfying the equation and
its boundary conditions, within the applied mathematics base theory.

But note also that we can simulate this on a finite discrete grid : a numerical inte-
gration of the partial differential equation, satisfying the boundary conditions (say on a
grid of dimensions 50 × 50). If we do this, we obtain a very good approximation to the
analytic solution. This is easiest to see visually:41

40In this case, the Axiom of Choice isn’t needed. As I have tried to stress above, such metatheoretic
conclusions will be largely invariant with respect the choice of foundational system, so long as it is
not too weak. For example, I am reasonably certain this could be formalized inside the HOL/Isabelle
theorem-proving assistant, or within Mizar, Coq or Lean.

41The numerical solution was worked out using the package ReacTran (for the programming language
R), based on modifying code provided in Soetaert et al. (2012) (Ch. 9, “Solving Partial Differential
Equations in R”, p. 167).
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There is a sense in which discretized versions of our formalized axioms—Θlap,2 and
BC—are implemented within the computational system, which then computes a dis-
cretized version of the solution. And note well, that the results are extremely good
approximations to each other. Moreover, more careful analysis can indeed examine the
convergence of such approximations: the numerical solution more closely approximates
the analytic one, as the grid becomes finer. This is probably why such continuum methods
will almost certainly work perfectly fine and give correct answers to high approximation,
even if space (or spacetime) is somehow granular at a tiny level.

8 Application Conditionals

The (quantified) conditionals referred to in Theorem 3, Theorem 4 and Theorem 5 are:

Θsho → (∃r1, r2 : R)(∀r : R)(Qϕ(r) = r1 sin(ωr) + r2 cos(ωr)) (121)

Θqho →
(

(∃n : N)(Ψ(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mω2x
~ Hn(

√
mω

~
x)

)
(122)

Θqho → ((∃n : N)(E = ~ω(n+ 1/2)) (123)

Θhyd →
(
E < 0→ (∃n : N+)(E = − me4

2(4πε0)2~2
1

n2
)

)
(124)

(
Θlap,2 ∧ BC

)
→ (∀x, y : R)

(
Uϕ(x, y) =

1

sinh(π)
sinh(πx) sin(πy)

)
(125)

I take no credit, of course, for these! They are well-known, but often quite difficult
to derive, results in mathematical physics. My point, however, is meta-theoretic: these
are theorems of the applied mathematics base theory ZCAσ.

Definition 16. I refer to (possibly, universally quantified) conditionals which are prov-
able in applied mathematics as application conditionals.

I admit that this definition, at first sight, seems a bit silly, as it includes countless
redundant cases: e.g., ZCAσ ` ∀x(x = x)→ ∀x(x = x); and ZCAσ ` φ→ θ, if ZCAσ ` θ;
and ZCAσ ` φ→ θ, if ZCAσ ` ¬φ.

Nonetheless, theorems of the form φ→ θ, where neither θ nor ¬φ is provable in ZCAσ,
show up everywhere in applied mathematics. In fact, it is not too much of an exaggeration
to say that a significant bulk of applied mathematics consists in the discovery and proof
of interesting application conditionals. For example, the logical form of an application
conditional such as (125) is

[
Θlap,2 ∧ BC

]
→ Solution. So, meta-theorems stating the

provability of application conditionals frequently have the form:

ZCAσ ` physical axioms ∧ boundary conditions → solution statement (126)
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9 Summary

To recap, in §1, we introduced the problem of providing standard formalizations of sci-
entific theories, and especially the case of theories formulated as differential equations—
Laplace’s equation, the wave equation and so on. We recalled Patrick Suppes’ scepticism
(Suppes (1992)) about whether there could be “simple or elegant method” for presenting
such theories in standard formalization, as they “assume a great deal of mathematics as
part of their substructure”. How might we resolve this challenge?

In §2, we noted that, strictly speaking, the equation is given for the coordinate rep-
resentation Qϕ of the physical quantity Q involved, relative to a coordinate chart ϕ; we
noted, with Feynman, that quantities/fields such as Q are mixed functions on a domain
of space or time or spacetime points; and likewise, that the structures referred to in
physics are, typically, impure structures. And we noted there are two further obstacles
in constructing simple or elegant formalizations:

(I) The specification of the underlying applied mathematics base theory.
(II) The specification of the underlying geometric structure of physical points (or

instants, or events, . . . ) on which the physical quantity is defined.

In §3, we resolved the first of these obstacles by invoking ZCAσ as applied mathematics
base theory: Definition 1. In §4, we resolved the second by specifying “quasi-synthetic”
axioms EG(n) for the underlying physical geometry for n-dimensions, and showed how
these can be condensed to a single geometric axiom of the form

Geom(n) : Pgeom
ϕ∼= En, (127)

where ϕ is a chart and En is the standard Cartesian coordinate structure for n-dimensional
Euclidean geometry, using the “internal” version (Theorem 2) of Tarski’s Representation
Theorem (Theorem 1).

In §5, we noted that one needs to state at least two further kinds of physical ax-
iom. One must specify a state space, F , to which the coordinate representation belongs.
Second, one needs to state the “dynamical” axiom, a formula expressing that the coordi-
nate representation satisfies the relevant dynamical equation. Usually, this has the form
Df = 0, where D is a differential operator on the state space F .

In §6, we assembled the above pieces, and gave two examples of standard formal-
izations. Definition 13, for the simple harmonic oscillator theory; and Definition 15, for
Laplace’s equation in two dimensions:

Θsho :

geometric axiom︷ ︸︸ ︷
Geom(1) ∧

state space axiom︷ ︸︸ ︷
(Qϕ ∈ C2(R)) ∧

dynamical axiom︷ ︸︸ ︷
(∀x : R)((∂xx + ω2)Qϕ = 0)

Θlap,2 : Geom(2) ∧ (Uϕ ∈ C2(R2)) ∧ (∀x, y : R)((∂xx + ∂yy)U
ϕ = 0)

The corresponding standard formalizations are then simply:

Tsho := ZCAσsho + Θsho

Tlap,2 := ZCAσlap,2 + Θlap,2
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In §7 and §8, we looked, albeit briefly, at solution statements and application condi-
tionals. Examples are (121)–(125):

ZCAσsho ` Θsho → (∃r1, r2 : R)(∀r : R)(Qϕ(r) = r1 sin(ωr) + r2 cos(ωr)).

ZCAσqho ` Θqho → (∃n : N)(Ψ(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mω2x
~ Hn(

√
mω

~
x))

ZCAσqho ` Θqho → (∃n : N)(E = ~ω(n+ 1/2))

ZCAσhyd ` Θhyd → (E < 0→ (∃n : N+)(E = − me4

2(4πε0)2~2
1

n2
)).

ZCAσlap,2 `
[
Θlap,2 ∧ BC

]
→ (∀x, y : R)(Uϕ(x, y) =

1

sinh(π)
sinh(πx) sin(πy))

I stress that Θsho,Θqho,Θhyd and Θlap,2 ∧ BC are physical axioms (assuming the lan-
guage is interpreted). The above application conditionals show how physical axioms lead
to physical conclusions/predictions, using mathematical reasoning.42
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